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Abstract

There have been various types of pretrain-001
ing architectures including autoencoding mod-002
els (e.g., BERT), autoregressive models (e.g.,003
GPT), and encoder-decoder models (e.g., T5).004
However, none of the pretraining frameworks005
performs the best for all tasks of three main cat-006
egories including natural language understand-007
ing (NLU), unconditional generation, and con-008
ditional generation. We propose a General009
Language Model (GLM) based on autoregres-010
sive blank infilling to address this challenge.011
GLM improves blank filling pretraining by012
adding 2D positional encodings and allowing013
an arbitrary order to predict spans, which re-014
sults in performance gains over BERT and T5015
on NLU tasks. Meanwhile, GLM can be pre-016
trained for different types of tasks by varying017
the number and lengths of blanks. On a wide018
range of tasks across NLU, conditional and019
unconditional generation, GLM outperforms020
BERT, T5, and GPT given the same model021
sizes and data, and achieves the best perfor-022
mance from a single pretrained model with023
1.25× parameters of BERTLarge, demonstrat-024
ing its generalizability to different downstream025
tasks.026

1 Introduction027

Large-scale language models pretrained on web028

texts have substantially advanced the state of the029

art in various NLP tasks, ranging from natural030

language understanding (NLU) to text genera-031

tion (Radford et al., 2018a; Devlin et al., 2019;032

Yang et al., 2019; Radford et al., 2018b; Raffel033

et al., 2020; Lewis et al., 2019; Brown et al., 2020).034

Downstream task performance as well as the scale035

of the parameters have also constantly increased in036

the past few years.037

In general, existing pretraining frameworks can038

be categorized into three families: autoregressive,039

autoencoding, and encoder-decoder models. Au-040

toregressive models, such as GPT (Radford et al.,041

2018a), learn left-to-right language models. While 042

they have succeeded in long-text generation and 043

shown strong few-shot learning ability when scaled 044

to billions of parameters (Radford et al., 2018b; 045

Brown et al., 2020), the inherent disadvantage is 046

that the unidirectional attention mechanism cannot 047

fully capture the dependencies between the context 048

words in NLU tasks. Autoencoding models, such 049

as BERT (Devlin et al., 2019), learn bidirectional 050

Transformers as context encoders via denoising ob- 051

jectives like Masked Language Model (MLM). The 052

encoders generate contextualized representations 053

that excel at natural language understanding tasks, 054

but could not be directly applied for text generation. 055

Encoder-decoder models adopt bidirectional atten- 056

tion for the encoder, unidirectional attention for the 057

decoder, and cross attention to connect them (Song 058

et al., 2019; Bi et al., 2020; Lewis et al., 2019). 059

They are typically deployed in tasks of conditional 060

text generation, also called seq2seq, such as text 061

summarization and response generation1. T5 (Raf- 062

fel et al., 2020) unifies NLU and conditional genera- 063

tion via encoder-decoder models but requires more 064

parameters to match the performance of BRET- 065

based models such as RoBERTa (Liu et al., 2019) 066

and DeBERTa (He et al., 2021). 067

None of these pretraining frameworks is flexible 068

enough to perform competetively across all NLP 069

tasks. Previous works have tried to unify differ- 070

ent frameworks by combining their objectives via 071

multi-task learning (Dong et al., 2019; Bao et al., 072

2020). However, since the autoencoding and au- 073

toregressive objectives differ by nature, a simple 074

unification cannot fully inherit the advantages of 075

both frameworks. 076

In this paper, we propose a general pretrain- 077

ing framework named GLM (General Language 078

Model), based on autoregressive blank infilling. 079

1Unconditional generation refers to generating text as a
language model without further training, while conditional
generation refers to sequence-to-sequence tasks.
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We randomly blank out continuous spans of to-080

kens from the input text, following the idea of au-081

toencoding, and train the model to sequentially082

reconstruct the spans, following the idea of autore-083

gressive pretraining. While blanking filling has084

been applied in T5 (Raffel et al., 2020) for text-to-085

text pre-training, we propose two improvements,086

namely span shuffling and 2D positional encoding.087

Empirically, we show that with the same amount088

of parameters and computational cost, GLM sig-089

nificantly outperforms BERT on the SuperGLUE090

benchmark by a large margin of 4.6% – 5.0% and091

outperforms RoBERTa and BART when pretrained092

on a corpus of similar size (158GB). GLM also093

significantly outperforms T5 on NLU and seq2seq094

tasks with fewer parameters and data.095

Inspired by Pattern-Exploiting Training096

(PET) (Schick and Schütze, 2020a) for few-097

shot learning, we reformulate NLU tasks as098

human-crafted cloze questions that mimic human099

languages. Different from the BERT-based100

models used by PET, GLM can naturally handle101

multi-token answers to the cloze question via102

autoregressive blank filling.103

Furthermore, we show that by varying the num-104

ber and lengths of missing spans, the autoregres-105

sive blank filling can become pretraining objec-106

tives for conditional and unconditional generation.107

Via multi-task learning of different autoregressive108

blank filling objectives, a single GLM can excel109

in both NLU and (conditional and unconditional)110

text generation. Empirically, compared with stan-111

dalone baselines, GLM with multi-task pretraining112

achieves improvements in NLU, conditional text113

generation, and language modeling tasks altogether114

by sharing the parameters.115

2 GLM Pretraining Framework116

We propose a general pretraining framework GLM117

based on a novel autoregressive blank infilling ob-118

jective. GLM formulates NLU tasks as cloze ques-119

tions that contain task descriptions, which can be120

answered by autoregressive generation.121

2.1 Pretraining Objective122

2.1.1 Autoregressive Blank Infilling123

GLM is trained by optimizing an autoregressive124

blank infilling objective. Given an input text x =125

[x1, · · · , xn], multiple text spans {s1, · · · , sm} are126

sampled, where each span si corresponds to a127

series of consecutive tokens [si,1, · · · , si,li ] in x.128

Each span is replaced with a single [MASK] to- 129

ken, forming a corrupted text xcorrupt. The model 130

predicts the missing tokens in the spans from the 131

corrupted text in an autoregressive manner, which 132

means when predicting the missing tokens in a 133

span, the model has access to the corrupted text 134

and the previously predicted spans. To fully cap- 135

ture the interdependencies between different spans, 136

we randomly permute the order of the spans, simi- 137

lar to the permutation language model (Yang et al., 138

2019). Formally, let Zm be the set of all possi- 139

ble permutations of the length-m index sequence 140

[1, 2, · · · ,m], and sz<i be [sz1 , · · · , szi−1 ], we de- 141

fine the pretraining objective as 142

max
θ

Ez∼Zm

[
m∑
i=1

log pθ(szi |xcorrupt, sz<i)

]
(1) 143

We always generate the tokens in each blank fol- 144

lowing a left-to-right order, i.e. the probability of 145

generating the span si is factorized as: 146

pθ(si|xcorrupt, sz<i) =

li∏
j=1

p(si,j |xcorrupt, sz<i , si,<j)

(2) 147

We implement the autoregressive blank infilling 148

objective with the following techniques. The input 149

x is divided into two parts: Part A is the corrupted 150

text xcorrupt, and Part B consists of the masked 151

spans. Part A tokens can attend to each other, but 152

cannot attend to any tokens in B. Part B tokens can 153

attend to Part A and antecedents in B, but cannot 154

attend to any subsequent tokens in B. To enable au- 155

toregressive generation, each span is padded with 156

special tokens [START] and [END], for input and 157

output respectively. In this way, our model auto- 158

matically learns a bidirectional encoder (for Part 159

A) and a unidirectional decoder (for Part B) in a 160

unified model. The implementation of GLM is 161

illustrated in Figure 1. 162

We randomly sample spans of length drawn from 163

a Poisson distribution with λ = 3. We repeatedly 164

sample new spans until at least 15% of the original 165

tokens are masked. Empirically, we have found 166

that the 15% ratio is critical for good performance 167

on downstream NLU tasks. 168

2.1.2 Multi-Task Pretraining 169

In the previous section, GLM masks short spans 170

and is suited for NLU tasks. However, we are 171

interested in pretraining a single model that can 172

handle both NLU and text generation. We then 173
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Figure 1: GLM pretraining. (a) The original text is [x1, x2, x3, x4, x5, x6]. Two spans [x3] and [x5, x6] are sampled.
(b) Replace the sampled spans with [M] in Part A, and shuffle the spans in Part B. (c) GLM autoregressively
generates Part B. Each span is prepended with [S] as input and appended with [E] as output. 2D positional
encoding represents inter- and intra-span positions. (d) Self-attention mask. Grey areas are masked out. Part A
tokens can attend to themselves (blue frame) but not B. Part B tokens can attend to A and their antecedents in B
(yellow and green frames correpond to the two spans). [M] := [MASK], [S] := [START], and [E] := [END].

study a multi-task pretraining setup, in which a174

second objective of generating longer text is jointly175

optimized with the blank infilling objective. We176

consider the following two objectives:177

• Document-level. We sample a single span178

whose length is sampled from a uniform distri-179

bution over 50%–100% of the original length.180

The objective aims for long text generation.181

• Sentence-level. We restrict that the masked182

spans must be full sentences. Multiple spans183

(sentences) are sampled to cover 15% of184

the original tokens. This objective aims for185

seq2seq tasks whose predictions are often186

complete sentences or paragraphs.187

Both new objectives are defined in the same way188

as the original objective, i.e. Eq. 1. The only differ-189

ence is the number of spans and the span lengths.190

2.2 Model Architecture191

GLM uses a single Transformer with several mod-192

ifications to the architecture: (1) we rearrange193

the order of layer normalization and the resid-194

ual connection, which has been shown critical for195

large-scale language models to avoid numerical196

errors (Shoeybi et al., 2019); (2) we use a sin-197

gle linear layer for the output token prediction;198

(3) we replace ReLU activation functions with199

GeLUs (Hendrycks and Gimpel, 2016).200

2.2.1 2D Positional Encoding201

One of the challenges of the autoregressive blank202

infilling task is how to encode the positional infor-203

mation. Transformers rely on positional encodings204

to inject the absolute and relative positions of the 205

tokens. We propose 2D positional encodings to 206

address the challenge. Specifically, each token is 207

encoded with two positional ids. The first posi- 208

tional id represents the position in the corrupted 209

text xcorrupt. For the masked spans, it is the position 210

of the corresponding [MASK] token. The second 211

positional id represents the intra-span position. For 212

tokens in Part A, their second positional ids are 213

0. For tokens in Part B, they range from 1 to the 214

length of the span. The two positional ids are pro- 215

jected into two vectors via learnable embedding 216

tables, which are both added to the input token 217

embeddings. 218

Our encoding method ensures that the model is 219

not aware of the length of the masked span when 220

reconstructing them. It is an important difference 221

as compared to other models. For example, XL- 222

Net (Yang et al., 2019) encodes the original posi- 223

tion so that it can perceive the number of missing 224

tokens, and SpanBERT (Joshi et al., 2020) replaces 225

the span with multiple [MASK] tokens and keeps 226

the length unchanged. Our design fits downstream 227

tasks as usually the length of the generated text is 228

unknown beforehand. 229

2.3 Finetuning GLM 230

Typically, for downstream NLU tasks, a linear clas- 231

sifier takes the representations of sequences or to- 232

kens produced by pretrained models as input and 233

predicts the correct labels. The practices are differ- 234

ent from the generative pretraining task, leading to 235

inconsistency between pretraining and finetuning. 236
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Figure 2: Formulation of the sentiment classification
task as blank infilling with GLM.

Instead, we reformulate NLU classification tasks237

as generation tasks of blank infilling, following238

PET (Schick and Schütze, 2020a). Specifically,239

given a labeled example (x, y), we convert the in-240

put text x to a cloze question c(x) via a pattern241

containing a single mask token. The pattern is writ-242

ten in natural language to represent the semantics243

of the task. For example, a sentiment classification244

task can be formulated as “{SENTENCE}. It’s245

really [MASK]”. The candidate labels y ∈ Y are246

also mapped to answers to the cloze, called ver-247

balizer v(y). In sentiment classification, the labels248

“positive” and “negative” are mapped to the words249

“good” and “bad”. The conditional probability of250

predicting y given x is251

p(y|x) = p(v(y)|c(x))∑
y′∈Y p(v(y

′)|c(x)) (3)252

where Y is the label set. Therefore the probability253

of the sentence being positive or negative is propor-254

tional to predicting “good” or “bad” in the blank.255

Then we finetune GLM with the cross-entropy loss.256

For text generation tasks, the given context con-257

stitutes the Part A of the input, with a mask token258

appended at the end. The model generates the text259

of Part B autoregressively. We can directly apply260

the pretrained GLM for unconditional generation,261

or finetune it on downstream conditional genera-262

tion tasks. The finetuning method is illustrated in263

Figure 2.264

2.4 Discussion and Analysis265

In this section, we discuss the differences between266

GLM and other pretraining models. We are mainly267

concerned with how they can be adapted to down-268

stream blank infilling tasks.269

Comparison with BERT (Devlin et al., 2019).270

As pointed out by (Yang et al., 2019), BERT fails271

to capture the interdependencies of masked tokens272

due to the independence assumption of MLM. An- 273

other disadvantage of BERT is that it cannot fill in 274

the blanks of multiple tokens properly. To infer the 275

probability of an answer of length l, BERT needs 276

to perform l consecutive predictions. If the length l 277

is unknown, we may need to enumerate all possible 278

lengths, since BERT needs to change the number 279

of [MASK] tokens according to the length. 280

Comparison with XLNet (Yang et al., 2019). 281

Both GLM and XLNet are pretrained with autore- 282

gressive objectives, but there are two differences 283

between them. First, XLNet uses the original posi- 284

tion encodings before corruption. During inference, 285

we need to either know or enumerate the length of 286

the answer, the same problem as BERT. Second, 287

XLNet uses a two-stream self-attention mechanism, 288

instead of the right-shift, to avoid the information 289

leak within Transformer. It doubles the time cost 290

of pretraining. 291

Comparison with T5 (Raffel et al., 2020). T5 292

proposes a similar blank infilling objective to pre- 293

train an encoder-decoder Transformer. T5 uses 294

independent positional encodings for the encoder 295

and decoder, and relies on multiple sentinel tokens 296

to differentiate the masked spans. In downstream 297

tasks, only one of the sentinel tokens is used, lead- 298

ing to a waste of model capacity and inconsistency 299

between pretraining and finetuning. Moreover, T5 300

always predicts spans in a fixed left-to-right order. 301

As a result, GLM can significantly outperform T5 302

on NLU and seq2seq tasks with fewer parameters 303

and data, as stated in Sections 3.2 and 3.3. 304

Comparison with UniLM (Dong et al., 2019). 305

UniLM combines different pretraining objectives 306

under the autoencoding framework by changing the 307

attention mask among bidirectional, unidirectional, 308

and cross attention. However, UniLM always re- 309

places masked spans with [MASK] tokens, which 310

limits its ability to model the dependencies between 311

the masked spans and their context. GLM feeds in 312

the previous token and autoregressively generates 313

the next token. Finetuning UniLM on downstream 314

generation tasks also relies on masked language 315

modeling, which is less efficient. UniLMv2 (Bao 316

et al., 2020) adopts partially autoregressive model- 317

ing for generation tasks, along with the autoencod- 318

ing objective for NLU tasks. Instead, GLM unifies 319

NLU and generation tasks with autoregressive pre- 320

training. 321
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Table 1: Results on the SuperGLUE dev set.

Model ReCoRD
F1/Acc.

COPA
Acc.

WSC
Acc.

RTE
Acc.

BoolQ
Acc.

WiC
Acc.

CB
F1/Acc.

MultiRC
F1a/EM Avg

Pretrained on BookCorpus and Wikipedia
BERTBase 65.4 / 64.9 66.0 65.4 70.0 74.9 68.8 70.9 / 76.8 68.4 / 21.5 66.1
GLMBase 73.5 / 72.8 71.0 72.1 71.2 77.0 64.7 89.5 / 85.7 72.1 / 26.1 70.7

BERTLarge 76.3 / 75.6 69.0 64.4 73.6 80.1 71.0 94.8 / 92.9 71.9 / 24.1 72.0
UniLMLarge 80.0 / 79.1 72.0 65.4 76.5 80.5 69.7 91.0 / 91.1 77.2 / 38.2 74.1
GLMLarge 81.7 / 81.1 76.0 81.7 74.0 82.1 68.5 96.1 / 94.6 77.1 / 36.3 77.0
GLMDoc 80.2 / 79.6 77.0 78.8 76.2 79.8 63.6 97.3 / 96.4 74.6 / 32.1 75.7
GLMSent 80.7 / 80.2 77.0 79.8 79.1 80.8 70.4 94.6 / 93.7 76.9 / 36.1 76.8
GLM410M 81.5 / 80.9 80.0 81.7 79.4 81.9 69.0 93.2 / 96.4 76.2 / 35.5 78.0
GLM515M 82.3 / 81.7 85.0 81.7 79.1 81.3 69.4 95.0 / 96.4 77.2 / 35.0 78.8

Pretrained on larger corpora
T5Base 76.2 / 75.4 73.0 79.8 78.3 80.8 67.9 94.8 / 92.9 76.4 / 40.0 76.0
T5Large 85.7 / 85.0 78.0 84.6 84.8 84.3 71.6 96.4 / 98.2 80.9 / 46.6 81.2
BARTLarge 88.3 / 87.8 60.0 65.4 84.5 84.3 69.0 90.5 / 92.9 81.8 / 48.0 76.0
RoBERTaLarge 89.0 / 88.4 90.0 63.5 87.0 86.1 72.6 96.1 / 94.6 84.4 / 52.9 81.5
GLMRoBERTa 89.6 / 89.0 82.0 83.7 87.7 84.7 71.2 98.7 / 98.2 82.4 / 50.1 82.9

3 Experiments322

We now describe our pretraining setup and the eval-323

uation of downstream tasks.324

3.1 Pretraining Setup325

For a fair comparison with BERT (Devlin et al.,326

2019), we use BooksCorpus (Zhu et al., 2015) and327

English Wikipedia as our pretraining data. We use328

the uncased wordpiece tokenizer of BERT with 30k329

vocabulary. We train GLMBase and GLMLarge with330

the same architectures as BERTBase and BERTLarge,331

containing 110M and 340M parameters respec-332

tively.333

For multi-task pretraining, we train two Large-334

sized models with a mixture of the blank infill-335

ing objective and the document-level or sentence-336

level objective, denoted as GLMDoc and GLMSent.337

Additionally, we train two larger GLM models of338

410M (30 layers, hidden size 1024, and 16 atten-339

tion heads) and 515M (30 layers, hidden size 1152,340

and 18 attention heads) parameters with document-341

level multi-task pretraining, denoted as GLM410M342

and GLM515M.343

To compare with SOTA models, we also train344

a Large-sized model with the same data, tokeniza-345

tion, and hyperparameters as RoBERTa (Liu et al.,346

2019), denoted as GLMRoBERTa. Due to resource347

limitations, we only pretrain the model for 250,000348

steps, which are half of RoBERTa and BART’s349

training steps and close to T5 in the number of350

trained tokens. More experiment details can be351

found in Appendix A.352

3.2 SuperGLUE 353

To evaluate our pretrained GLM models, we 354

conduct experiments on the SuperGLUE bench- 355

mark (Wang et al., 2019) and report the standard 356

metrics. SuperGLUE consists of 8 challenging 357

NLU tasks. We reformulate the classification tasks 358

as blank infilling with human-crafted cloze ques- 359

tions, following PET (Schick and Schütze, 2020b). 360

Then we finetune the pretrained GLM models on 361

each task as described in Section 2.3. The cloze 362

questions and other details can be found in Ap- 363

pendix B.1. 364

For a fair comparison with GLMBase and 365

GLMLarge, we choose BERTBase and BERTLarge 366

as our baselines, which are pretrained on the same 367

corpus and for a similar amount of time. We report 368

the performance of standard finetuning (i.e. classifi- 369

cation on the [CLS] token representation). The per- 370

formance of BERT with cloze questions is reported 371

in Section 3.4. To compare with GLMRoBERTa, we 372

choose T5, BARTLarge, and RoBERTaLarge as our 373

baselines. T5 has no direct match in the number 374

of parameters for BERTLarge, so we present the re- 375

sults of both T5Base (220M parameters) and T5Large 376

(770M parameters). All the other baselines are of 377

similar size to BERTLarge. 378

Table 1 shows the results. With the same amount 379

of training data, GLM consistently outperforms 380

BERT on most tasks with either base or large archi- 381

tecture. The only exception is WiC (word sense dis- 382

ambiguation). On average, GLMBase scores 4.6% 383

higher than BERTBase, and GLMLarge scores 5.0% 384

higher than BERTLarge. It clearly demonstrates 385
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the advantage of our method in NLU tasks. In386

the setting of RoBERTaLarge, GLMRoBERTa can still387

achieve improvements over the baselines, but with388

a smaller margin. Specifically, GLMRoBERTa outper-389

forms T5Large but is only half its size. We also find390

that BART does not perform well on the challeng-391

ing SuperGLUE benchmark. We conjecture this392

can be attributed to the low parameter efficiency of393

the encoder-decoder architecture and the denoising394

sequence-to-sequence objective.395

3.3 Multi-Task Pretraining396

Then we evaluate the GLM’s performance in a397

multi-task setting (Section 2.1). Within one train-398

ing batch, we sample short spans and longer399

spans (document-level or sentence-level) with400

equal chances. We evaluate the multi-task model401

for NLU, seq2seq, blank infilling, and zero-shot402

language modeling.403

SuperGLUE. For NLU tasks, we evaluate mod-404

els on the SuperGLUE benchmark. The results405

are also shown in Table 1. We observe that with406

multi-task pretraining, GLMDoc and GLMSent per-407

form slightly worse than GLMLarge, but still outper-408

form BERTLarge and UniLMLarge. Among multi-409

task models, GLMSent outperforms GLMDoc by410

1.1% on average. Increasing GLMDoc’s param-411

eters to 410M (1.25×BERTLarge) leads to better412

performance than GLMLarge. GLM with 515M pa-413

rameters (1.5×BERTLarge) can perform even better.414

Sequence-to-Sequence. Considering the415

available baseline results, we use the Gigaword416

dataset (Rush et al., 2015) for abstractive summa-417

rization and the SQuAD 1.1 dataset (Rajpurkar418

et al., 2016) for question generation (Du et al.,419

2017) as the benchmarks for models pretrained420

on BookCorpus and Wikipedia. Additionally, we421

use the CNN/DailyMail (See et al., 2017) and422

XSum (Narayan et al., 2018) datasets for abstrac-423

tive summarization as the benchmarks for models424

pretrained on larger corpora.425

The results for models trained on BookCorpus426

and Wikipedia are shown in Tables 3 and 4. We427

observe that GLMLarge can achieve performance428

matching the other pretraining models on the two429

generation tasks. GLMSent can perform better than430

GLMLarge, while GLMDoc performs slightly worse431

than GLMLarge. This indicates that the document-432

level objective, which teaches the model to extend433

the given contexts, is less helpful to conditional434

generation, which aims to extract useful informa-435

tion from the context. Increasing GLMDoc’s pa- 436

rameters to 410M leads to the best performance on 437

both tasks. The results for models trained on larger 438

corpora are shown in Table 2. GLMRoBERTa can 439

achieve performance matching the seq2seq BART 440

model, and outperform T5 and UniLMv2. 441

Text Infilling. Text infilling is the task of pre- 442

dicting missing spans of text which are consistent 443

with the surrounding context (Zhu et al., 2019; 444

Donahue et al., 2020; Shen et al., 2020). GLM 445

is trained with an autoregressive blank infilling 446

objective, thus can straightforwardly solve this 447

task. We evaluate GLM on the Yahoo Answers 448

dataset (Yang et al., 2017) and compare it with 449

Blank Language Model (BLM) (Shen et al., 2020), 450

which is a specifically designed model for text in- 451

filling. From the results in Table 5, GLM outper- 452

forms previous methods by large margins (1.3 to 453

3.9 BLEU) and achieves the state-of-the-art result 454

on this dataset. We notice that GLMDoc slightly 455

underperforms GLMLarge, which is consistent with 456

our observations in the seq2seq experiments. 457

Language Modeling. Most language model- 458

ing datasets such as WikiText103 are constructed 459

from Wikipedia documents, which our pretraining 460

dataset already contains. Therefore, we evaluate 461

the language modeling perplexity on a held-out 462

test set of our pretraining dataset, which contains 463

about 20M tokens, denoted as BookWiki. We also 464

evaluate GLM on the LAMBADA dataset (Paperno 465

et al., 2016), which tests the ability of systems to 466

model long-range dependencies in text. The task 467

is to predict the final word of a passage. As the 468

baseline, we train a GPTLarge model (Radford et al., 469

2018b; Brown et al., 2020) with the same data and 470

tokenization as GLMLarge. 471

The results are shown in Figure 3. All the models 472

are evaluated in the zero-shot setting. Since GLM 473

learns the bidirectional attention, we also evalu- 474

ate GLM under the setting in which the contexts 475

are encoded with bidirectional attention. Without 476

generative objective during pretraining, GLMLarge 477

cannot complete the language modeling tasks, 478

with perplexity larger than 100. With the same 479

amount of parameters, GLMDoc performs worse 480

than GPTLarge. This is expected since GLMDoc 481

also optimizes the blank infilling objective. In- 482

creasing the model’s parameters to 410M (1.25× of 483

GPTLarge) leads to a performance close to GPTLarge. 484

GLM515M (1.5× of GPTLarge) can further outper- 485

form GPTLarge. With the same amount of param- 486
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Table 2: Results of abstractive summarization on the CNN/DailyMail test set and XSum test set.

Model CNN/DailyMail XSum
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

BERTSumAbs (Liu and Lapata, 2019) 41.7 19.4 38.8 38.8 16.3 31.2
UniLMv2Base (Bao et al., 2020) 43.2 20.4 40.1 44.0 21.1 36.1
T5Large (Raffel et al., 2020) 42.5 20.7 39.8 40.9 17.3 33.0
BARTLarge (Lewis et al., 2019) 44.2 21.3 40.9 45.1 22.3 37.3

GLMRoBERTa 43.8 21.0 40.5 45.5 23.5 37.3

Table 3: Results on Gigaword summarization.

Model RG-1 RG-2 RG-L

MASS 37.7 18.5 34.9
UniLMLarge 38.5 19.5 35.8

GLMLarge 38.6 19.7 36.0
GLMDoc 38.5 19.4 35.8
GLMSent 38.9 20.0 36.3
GLM410M 38.9 20.0 36.2

Table 4: Results on SQuAD question generation.

Model BLEU-4 MTR RG-L

SemQG 18.4 22.7 46.7
UniLMLarge 22.1 25.1 51.1

GLMLarge 22.4 25.2 50.4
GLMDoc 22.3 25.0 50.2
GLMSent 22.6 25.4 50.4
GLM410M 22.9 25.6 50.5

Table 5: BLEU scores on Yahoo text infilling. † indi-
cates the results from (Shen et al., 2020).

Mask ratio 10% 20% 30% 40% 50%

BERT† 82.8 66.3 50.3 37.4 26.2
BLM† 86.5 73.2 59.6 46.8 34.8
GLMLarge 87.8 76.7 64.2 48.9 38.7
GLMDoc 87.5 76.0 63.2 47.9 37.6

eters, encoding the context with bidirectional at-487

tention can improve the performance of language488

modeling. Under this setting, GLM410M outper-489

forms GPTLarge. This is the advantage of GLM490

over unidirectional GPT. We also study the con-491

tribution of 2D positional encoding to long text492

generation. We find that removing the 2D posi-493

tional encoding leads to lower accuracy and higher494

perplexity in language modeling.495

Summary. Above all, we conclude that GLM496

effectively shares model parameters across natu-497

ral language understanding and generation tasks,498

achieving better performance than a standalone499

BERT, encoder-decoder, or GPT model.500
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Figure 3: Zero-shot language modeling results.

3.4 Ablation Study 501

Table 6 shows our ablation analysis for GLM. 502

First, to provide an apple-to-apple comparison with 503

BERT, we train a BERTLarge model with our im- 504

plementation, data, and hyperparameters (row 2). 505

The performance is slightly worse than the official 506

BERTLarge and significantly worse than GLMLarge. 507

It confirms the superiority of GLM over Masked 508

LM pretraining on NLU tasks. Second, we show 509

the SuperGLUE performance of GLM finetuned as 510

sequence classifiers (row 5) and BERT with cloze- 511

style finetuning (row 3). Compared to BERT with 512

cloze-style finetuning, GLM benefits from the au- 513

toregressive pretraining. Especially on ReCoRD 514

and WSC, where the verbalizer consists of multi- 515

ple tokens, GLM consistently outperforms BERT. 516

This demonstrates GLM’s advantage in handling 517

variable-length blank. Another observation is that 518

the cloze formulation is critical for GLM’s perfor- 519

mance on NLU tasks. For the large model, cloze- 520

style finetuning can improve the performance by 521

7 points. Finally, we compare GLM variants with 522

different pretraining designs to understand their 523

importance. Row 6 shows that removing the span 524

shuffling (always predicting the masked spans from 525

left to right) leads to a severe performance drop on 526

SuperGLUE. Row 7 uses different sentinel tokens 527

instead of a single [MASK] token to represent dif- 528

ferent masked spans. The model performs worse 529

than the standard GLM. We hypothesize that it 530

wastes some modeling capacity to learn the differ- 531

ent sentinel tokens which are not used in down- 532

stream tasks with only one blank. In Figure 3, we 533
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Table 6: Ablation study on the SuperGLUE dev set. (T5 ≈ GLM – shuffle spans + sentinel tokens.)

Model ReCoRD
F1/Acc.

COPA
Acc.

WSC
Acc.

RTE
Acc.

BoolQ
Acc.

WiC
Acc.

CB
F1/Acc.

MultiRC
F1a/EM Avg

BERTLarge 76.3 / 75.6 69.0 64.4 73.6 80.1 71.0 94.8 / 92.9 71.9 / 24.1 72.0
BERTLarge (reproduced) 82.1 / 81.5 63.0 63.5 72.2 80.8 68.7 80.9 / 85.7 77.0 / 35.2 71.2
BERTLarge (cloze) 70.0 / 69.4 80.0 76.0 72.6 78.1 70.5 93.5 / 91.1 70.0 / 23.1 73.2
GLMLarge 81.7 / 81.1 76.0 81.7 74.0 82.1 68.5 96.1 / 94.6 77.1 / 36.3 77.0

– cloze finetune 81.3 / 80.6 62.0 63.5 66.8 80.5 65.0 89.2 / 91.1 72.3 / 27.9 70.0
– shuffle spans 82.0 / 81.4 61.0 79.8 54.5 65.8 56.3 90.5 / 92.9 76.7 / 37.6 68.5
+ sentinel tokens 81.8 / 81.3 69.0 78.8 77.3 81.2 68.0 93.7 / 94.6 77.5 / 37.7 76.0

show that removing the second dimension of 2D534

positional encoding hurts the performance of long535

text generation.536

We note that T5 is pretrained with a similar blank537

infilling objective. GLM differs in three aspects:538

(1) GLM consists of a single encoder, (2) GLM539

shuffles the masked spans, and (3) GLM uses a540

single [MASK] instead of multiple sentinel tokens.541

While we cannot directly compare GLM with T5542

due to the differences in training data and the num-543

ber of parameters, the results in Tables 1 and 6 have544

demonstrated the advantage of GLM.545

4 Related Work546

Pretrained Language Models. Pretraining large-547

scale language models significantly improves the548

performance of downstream tasks. There are three549

types of pretrained models. First, autoencoding550

models learn a bidirectional contextualized encoder551

for natural language understanding via denoising552

objectives (Devlin et al., 2019; Joshi et al., 2020;553

Yang et al., 2019; Liu et al., 2019; Lan et al., 2020;554

Clark et al., 2020). Second, autoregressive mod-555

els are trained with a left-to-right language mod-556

eling objective (Radford et al., 2018a,b; Brown557

et al., 2020). Third, encoder-decoder models are558

pretrained for sequence-to-sequence tasks (Song559

et al., 2019; Lewis et al., 2019; Bi et al., 2020;560

Zhang et al., 2020).561

Among encoder-decoder models, BART (Lewis562

et al., 2019) conducts NLU tasks by feeding the563

same input into the encoder and decoder, and tak-564

ing the final hidden states of the decoder. Instead,565

T5 (Raffel et al., 2020) formulates most language566

tasks in the text-to-text framework. However, both567

models require more parameters to outperform au-568

toencoding models such as RoBERTa (Liu et al.,569

2019). UniLM (Dong et al., 2019; Bao et al., 2020)570

unifies three pretraining models under the masked571

language modeling objective with different atten-572

tion masks.573

NLU as Generation. Previously, pretrained 574

language models complete classification tasks for 575

NLU with linear classifiers on the learned rep- 576

resentations. GPT-2 (Radford et al., 2018b) and 577

GPT-3 (Brown et al., 2020) show that generative 578

language models can complete NLU tasks such 579

as question answering by directly predicting the 580

correct answers without finetuning, given task in- 581

structions or a few labeled examples. However, 582

generative models require much more parameters 583

to work due to the limit of unidirectional atten- 584

tion. Recently, PET (Schick and Schütze, 2020a,b) 585

proposes to reformulate input examples as cloze 586

questions with patterns similar to the pretraining 587

corpus in the few-shot setting. It has been shown 588

that combined with gradient-based finetuning, PET 589

can achieve better performance in the few-shot set- 590

ting than GPT-3 while requiring only 0.1% of its 591

parameters. Similarly, Athiwaratkun et al. (2020) 592

and Paolini et al. (2020) convert structured predic- 593

tion tasks, such as sequence tagging and relation 594

extraction, to sequence generation tasks. 595

Blank Language Modeling. Donahue et al. 596

(2020) and Shen et al. (2020) also study blank- 597

ing infilling models. Different from their work, 598

we pre-train language models with blank infilling 599

objectives and evaluate their performance in down- 600

stream NLU and generation tasks. 601

5 Conclusions 602

GLM is a general pretraining framework for nat- 603

ural language understanding and generation. We 604

show that the NLU tasks can be formulated as con- 605

ditional generation tasks, and therefore solvable by 606

autoregressive models. GLM unifies the pretrain- 607

ing objectives for different tasks as autoregressive 608

blank infilling, with mixed attention masks and 609

the novel 2D position encodings. Empirically we 610

show that GLM outperforms previous methods for 611

NLU tasks and can effectively share parameters for 612

different tasks. 613
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A Pretraining Setting842

A.1 Datasets843

To train GLMBase and GLMLarge, we use Book-844

Corpus (Zhu et al., 2015) and Wikipedia used by845

BERT (Devlin et al., 2019).846

To train GLMRoBERTa, we follow the pretraining847

datasets of RoBERTa (Liu et al., 2019), which con-848

sist of BookCorups (Zhu et al., 2015),Wikipedia849

(16GB), CC-News (the English portion of the Com-850

monCrawl News dataset2 76GB), OpenWebText851

(web content extracted from URLs shared on Red-852

dit with at least three upvotes(Gokaslan and Co-853

hen, 2019), 38GB) and Stories (subset of Common-854

Crawl data filtered to match the story-like style of855

Winograd schemas (Trinh and Le, 2019), 31GB).856

The Stories dataset is no longer publicly available3.857

Therefore, we remove the Stories dataset and re-858

place OpenWebText with OpenWebText24 (66GB).859

The CC-News dataset is not publicly available and860

we use the CC-News-en published by (Mackenzie861

et al., 2020). All the datasets used total 158GB of862

uncompressed texts, close in size to RoBERTa’s863

160GB datasets.864

A.2 Hyperparameters865

The hyperparameters for GLMBase and GLMLarge866

are similar to those used by BERT. For trade-off867

of training speed and fair comparison with BERT868

(batch size 256 and 1,000,000 training steps), we869

use batch size of 1024 and 200,000 training steps870

for GLMLarge. Since GLMBase is smaller, we re-871

duce the number of training steps to 120,000 to872

speed up pre-training. The hyperparameters for873

2https://commoncrawl.org/2016/10/
news-dataset-available

3https://github.com/tensorflow/models/
tree/archive/research/lm_commonsense#
1-download-data-files

4https://openwebtext2.readthedocs.io/
en/latest

GLMDoc and GLMSent are the same as those of 874

GLMLarge. The hyperparameters except Trans- 875

former architecture for GLM410M and GLM515M 876

are the same as those of GLMLarge. The models 877

are trained on 64 V100 GPUs for 200K steps with 878

batch size of 1024 and maximum sequence length 879

of 512, which takes about 2.5 days for GLMLarge. 880

To train GLMRoBERTa, we follow most of the hy- 881

perparameters of RoBERTa. The main difference 882

includes: (1) Due to resource limit, we only pre- 883

train GLM RoBERTa for 250,000 steps, which are 884

half of RoBERTa and BART’s training steps, and 885

close to T5 in number of trained tokens. (2) We use 886

cosine decay instead of linear decay for learning 887

rate scheduling (3) We additionally apply gradient 888

clipping with value 1.0. 889

The hyperparameters for all the pre-training set- 890

tings are summarized in Table 7. 891

A.3 Implementation 892

Our pretraining implementation is based on 893

Megatron-LM (Shoeybi et al., 2019) and Deep- 894

Speed (Rasley et al., 2020). We include our code in 895

the supplementary material. Due to the size limit of 896

supplementary material, we cannot include the pre- 897

trained models, but will make them public available 898

in the future. 899

B Downstream Tasks 900

B.1 SuperGLUE 901

The SuperGLUE benchmark consists of 8 NLU 902

tasks. We formulate them as blank infilling tasks, 903

following (Schick and Schütze, 2020b). Table 8 904

shows the cloze questions and verbalizers we used 905

in our experiments. For 3 tasks (ReCoRD, COPA, 906

and WSC), the answer may consist of multiple 907

tokens, and for the other 5 tasks, the answer is 908

always a single token. 909

When finetuning GLM on the SuperGLUE tasks, 910

we construct the input using the cloze questions 911

in Table 8 and replace the blank with a [MASK] 912

token. Then we compute the score of generating 913

each answer candidate. For the 5 single-token tasks, 914

the score is defined to be the logit of the verbal- 915

izer token. For the 3 multi-token tasks, we use 916

the sum of the log-probabilities of the verbalizer 917

tokens. Thanks to the autoregressive blank infill- 918

ing mechanism we proposed, we can obtain all the 919

log-probabilities in one pass. Then we compute the 920

cross entropy loss using the groundtruth label and 921

update the model parameters. 922
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Table 7: Hyperparameters for pretraining

Hyperparameters GLM Base GLM Large GLM RoBERTa

Number of Layers 12 24 24
Hidden size 768 1024 1024
FFN inner hidden size 3072 4096 4096
Attention heads 12 16 16
Attention head size 64 64 64
Dropout 0.1 0.1 0.1
Attention Dropout 0.1 0.1 0.1
Warmup Steps 6k 8k 30K
Peak Learning Rate 4e-4 2e-4 4e-4
Batch Size 1024 1024 8192
Weight Decay 0.1 0.1 0.01
Max Steps 120k 200k 250k
Learning Rate Decay Cosine Cosine Cosine
Adam ε 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98
Gradient Clipping 1.0 1.0 1.0

For the baseline classifiers, we follow the stan-923

dard practice to concatenate the input parts of each924

task (such as the premise and hypothesis for textual925

entailment, or the passage, question and answer926

for ReCORD and MultiRC) and add a classifica-927

tion layer on top of the [CLS] token representa-928

tion. We also implemented cloze-style finetuning929

for the other pre-trained models, but the perfor-930

mance was usually similar to the standard classifier,931

as we shown in the ablation study. Models with932

blank-infilling objectives, such as T5 and our GLM,933

benifits more from converting the NLU tasks into934

cloze questions. Thus for T5 and GLM, we report935

the performance after such convertion in our main936

results.937

B.2 Sequence-to-Sequence938

Fot the text summarization task, we use the dataset939

Gigaword (Rush et al., 2015) for model fine-tuning940

and evaluation. We finetune GLMLARGE on the941

training set for 4 epochs with AdamW optimizer.942

The learning rate has a peak value of 3e-5, warm-943

up over the 6% training steps and a linear decay.944

We also use label smoothing with rate 0.1 (Pereyra945

et al., 2017). The maximum document length is 192946

and the maximum summary length is 32. During947

decoding, we use beam search with beam size of 5948

and remove repeated trigrams. We tweak the value949

of length penalty on the development set. The950

evaluation metrics are the F1 scores of Rouge-1, 951

Rouge-2, and Rouge-L (Lin, 2004) on the test set. 952

For the question generation task, we use the 953

SQuAD 1.1 dataset (Rajpurkar et al., 2016) and 954

follow the dataset split of (Du et al., 2017). The 955

optimizer hyperparameters are the same as those of 956

abstractive summarization. The maximum passage 957

length is 464 and the maximum question length 958

is 48. During decoding, we use beam search with 959

beam size 5 and tweak the value of length penalty 960

on the development set. The evaluation metrics are 961

the scores of BLEU-1, BLEU-2, BLEU-3, BLEU- 962

4 (Papineni et al., 2002), METEOR (Denkowski 963

and Lavie, 2014) and Rouge-L (Lin, 2004). 964

Results of T5Large on XSum are obtained by run- 965

ning the summarization script provided by Hug- 966

gingface transformers5. All the other results of 967

baselines on seq2seq tasks are obtained from the 968

corresponding papers. 969

B.3 Text Infilling 970

We follow (Shen et al., 2020) and evaluate text in- 971

filling performance on the Yahoo Answers dataset 972

(Yang et al., 2017), which contains 100K/10K/10K 973

documents for train/valid/test respectively. The av- 974

erage document length is 78 words. To construct 975

the text infilling task, we randomly mask a given ra- 976

5https://github.com/huggingface/
transformers/tree/master/examples/
pytorch/summarization
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Dataset Task Cloze Question Verbalizers

ReCoRD∗ Question answering [passage p] [cloze question q] Anwer candidates
COPA∗ Causal reasoning “[choice c1]” or “[choice c2]”? [premise p], so

.
c1 / c2

WSC∗ Coreference resolution [sentence s] The pronoun ‘∗p∗’ refers to . Noun n
RTE Textual entailment “[hypothesis h]”? | , “[premise p]” “yes” (entail-

ment), “no” (not
entailment)

BoolQ Question anwering [passage p]. Question: q? Answer: . “yes” / “no”
WiC Word sense disambiguation “[sentence s1]” / “[sentence s2]” Similar sense

of [word w]? .
“yes” / “no”

CB Textual entailment “[hypothesis h]”? | , “[premise p]” “yes” (entailment),
“no” (contradiction),
“maybe” (neutral)

MultiRC Question answering [passage p]. Question: q? Is it [answer a]? . “yes” / “no”

Table 8: Cloze questions and verbalizers for the 8 SuperGLUE tasks used in our experiments. ∗ denotes the answer
contains multiple tokens.

tio r ∈ {10% · · · 50%} of each document’s tokens977

and the contiguous masked tokens are collapsed978

into a single blank. We finetune GLMLarge on the979

training set for 5 epochs with dynamic masking, i.e.980

the blanks are randomly generated at training time.981

Similar to the sequence-to-sequence experiments,982

we use an AdamW optimizer with a peak learning983

rate 1e-5 and 6% warm-up linear scheduler.984

For comparison with previous work, we use the985

same test set constructed by (Shen et al., 2020).986

The evaluation metric is the BLEU score of the in-987

filled text against the original document. We com-988

pare with two baselines: (1) BERT, which learns a989

left-to-right language model to generate the masked990

tokens on top of the blank representation, and (2)991

BLM proposed by (Shen et al., 2020), which can992

fill in the blank with arbitrary trajectories.993

B.4 Language Modeling994

We evaluate the model’s ability of language model-995

ing with perplexity on BookWiki and accuracy on996

the LAMBDA dataset (Paperno et al., 2016).997

Perplexity is an evaluation criterion that has been998

well studied for language modeling. Perplexity is999

the exponentiation of the average cross entropy of1000

a corpus.1001

PPL = exp(− 1

T

T∑
t=1

p(xt|x<t)) (4)1002

where x<t = [x0, · · · , xt−1]. Since transformers1003

can only operate on a window of fixed input size1004

w, we cannot fully calculate p(xt|x<t) and can1005

only calculate p(xt|xt−w:t−1). Even calculating 1006

this value for each token is prohibitively expensive, 1007

since we need to conduct T evaluations of w-size 1008

contexts. To improve evaluation efficiency, we 1009

adopt overlapping evaluation, where we advance 1010

the sliding windows by some overlap o each time 1011

and only compute the cross entropy loss for the last 1012

o tokens of the window. In our experiments we set 1013

o = 256 for all the models. 1014

LAMBDA is a cloze-style dataset to test the abil- 1015

ity of long-range dependency modeling. Each ex- 1016

ample is a passage consisting of 4-5 sentences with 1017

the last word missing and the model is required to 1018

predict the last word of the passage. Since we use 1019

WordPiece tokenization, a word can be split into 1020

several subword units. We use teacher forcing and 1021

consider the prediction correct only when all the 1022

predicted tokens are correct. 1023

C Results on Additional NLU 1024

Benchmarks 1025

GLUE (Wang et al., 2018) is another widely-used 1026

NLU benchmark, including single sentence tasks 1027

(e.g. sentiment analysis (Socher et al., 2013)) and 1028

sentence pair tasks (e.g. text similarity (Cer et al., 1029

2017) and natural language inference (Williams 1030

et al., 2018; Dagan et al., 2005)). The benchmark is 1031

usually considered as less challenging than Super- 1032

GLUE. SQuAD (Rajpurkar et al., 2016, 2018) is an 1033

extractive question answering benchmark. We fur- 1034

ther compare GLM with BERT on the two bench- 1035

marks. 1036

The results on GLUE and SQuAD are shown in 1037
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Tables 9 and 10. On the two benchmarks, GLM1038

can still outperform BERT with the same amount1039

of parameters, but with a smaller margin.1040

D Text Generation Samples1041

We show texts generated by GLMDoc given unseen1042

contexts randomly sampled from the test set. We1043

use top-k random sampling with k = 40 for gen-1044

eration and set maximum sequence length to 512.1045

Some of the texts are cut short.1046

Example D.1. The Wyoming State Legislature is1047

the legislative branch of the U.S. State of Wyoming1048

.1049

GLM: It consists of a state senate and a house1050

of representatives. As of 2019, state senators are1051

Steve Kish, Joe L. Williams, and Linda S. Bollens.1052

Members of the Wyoming State Legislature are1053

elected from single-member districts representing1054

the majority of the state. The current state senate1055

members are: In recent years, there have been four1056

changes to the senate. The most recent is the cre-1057

ation of a six-seat district that includes all or part of1058

the following: In the 2009 elections, the state sen-1059

ate members were elected to six-year terms. The1060

current state house members are: The Wyoming1061

Constitution assigns certain powers to the governor.1062

Most notably, the governor is president of the sen-1063

ate and governor. However, if the governor desires1064

to appoint a member to the Wyoming state senate, a1065

law authorizes the governor to do so. The governor1066

of Wyoming holds no legislative power but has the1067

power to veto lawmakers, which is not limited to1068

the veto of laws. Under the wyoming state con-1069

stitution, the governor can veto the actions of the1070

other members of the wyoming house of represen-1071

tatives. The governor can also appoint members of1072

the wyoming senate. In addition, the governor can1073

appoint members of the Wyoming house of repre-1074

sentatives. Wyoming’s constitution provides that1075

the governor can appoint a member of the wyoming1076

state senate to the wyoming supreme court, and the1077

chairman of the wyoming senate.1078

Example D.2. Jonathan Terry is a television and1079

film actor.1080

GLM: He was a voice actor for the “X-Men"1081

cartoon series. He was also a voice actor for “the1082

Simpsons" as well as “the marvelous misadven-1083

tures of superman. He also has voiced characters1084

in “the legend of korra" He has appeared on several1085

television series, including “the simpsons", “the1086

x-files", “heroes" and “the simpsons movie" as the1087

character captain billy higgledy-pig, and the web 1088

series “krusty mysteries" as the character Colonel 1089

Trungus. He wrote for “the Guardian" newspaper. 1090

Jonathan Terry was born in London. Terry grew 1091

up in Surrey, England and attended the University 1092

of Sussex in the United Kingdom, graduating with 1093

a degree in english literature. He was a guest lec- 1094

turer at King’s College London, and then took two 1095

years of acting courses at the brit school of acting 1096

to prepare for his future career in the entertainment 1097

industry. Terry first appeared in the TV series “the 1098

Simpsons" as the character captain Billy Higgledy- 1099

pig, but his character was only a one-time recurring 1100

character in the series’ first six seasons. He later ap- 1101

peared as a regular for the show’s final six seasons, 1102

and has been a frequent guest in the show since. 1103

He appeared in the first few episodes of “" as the 1104

character major Jack Ryan. He has also appeared 1105

as part of the supporting cast of several episodes of 1106

“the secret life of pets". He has also worked on “the 1107

simpsons" TV show since “the simpsons movie", 1108

most notably playing the roles of Captain Skeletor 1109

and the ghost of the same name. He plays char- 1110

acters in several films, including “", “", “" and “". 1111

He has appeared in music videos for the killers in 1112

1993, the pretenders in 1995, and in the TV shows 1113

“the royal" and “the bill". 1114

Example D.3. Corona was a station along the port 1115

Washington branch of the long island rail road in 1116

the Corona section of queens, New York City. It 1117

was one of two stations built by the flushing rail- 1118

road in Corona, this one having been at Grand Av- 1119

enue (later called National Avenue, now National 1120

Street ) and 45th Avenue. 1121

GLM: It had a brick entrance building next to 1122

the tracks, and one platform with 2 side platforms. 1123

The station burned down and was rebuilt in 1908. 1124

The station closed on september 15, 1927, with 1125

the train service transferred from Grand Avenue to 1126

45th Avenue. There were plans to build a subway 1127

extension to Corona, but it was never built. In the 1128

1980s, two stations were constructed on the line, 1129

Corona Road and Corona Park. The new Corona 1130

station opened in 1988, and the original Corona 1131

station was demolished. 1132

Example D.4. Robert Lee Smith (born July 5, 1133

1938) is a former American football cornerback 1134

in the national football league. He played for the 1135

Los Angeles Rams (1962–1965) and the Detroit 1136

Lions (1965–1966). He was also a kick and punt 1137

returner. 1138
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Table 9: Results on the GLUE dev set.

Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg

BERTLarge 86.6 92.3 91.3 73.6 93.2 88.0 60.6 90.0 84.4
GLMLarge 86.7 92.8 91.5 74.0 93.5 90.0 61.4 90.7 85.1

Table 10: Results on the SQuAD v1.1/v2.0 dev sets.

Model
SQuAD v1.1

EM/F1
SQuAD v2.0

EM/F1

BERTBase 80.8 / 88.5 73.7 / 76.3
GLMBase 81.5 / 88.6 74.7 / 77.8

BERTLarge 84.1 / 90.9 79.0 / 81.8
GLMLarge 85.4 / 91.6 80.3 / 83.3

GLM: In his four-year NFL career, he played1139

in 33 games and started 14, registering 62 career1140

interceptions. He completed his NFL career with1141

five interceptions. Smith was born in La Canada1142

Flintridge, Michigan, in 1938. He attended Bishop1143

O’ Dowd high school in Flintridge. Smith’ s fa-1144

ther was a pharmacist. He graduated from Michi-1145

gan State University in 1958 with a degree in busi-1146

ness administration. Smith played for the Michi-1147

gan Wolverines football team from 1959 to 1963.1148

In his two years as a reserve cornerback, he led1149

the conference in interceptions with five. In 1962,1150

he set the Wolverines’ all-time interception record1151

with 13, and was second overall in the 1962 sea-1152

son’s Heisman Trophy voting. Smith also won1153

the Dick Butkus award as the nation’s outstand-1154

ing linebacker. In 1961, the “Los Angeles Times"1155

wrote that Smith “is an outstanding pass rusher,1156

with an average of almost 100 yards per punt re-1157

turn." Smith was inducted into the university of1158

Michigan athletic hall of honor in 1989 and the1159

national football foundation hall of fame in 1991.1160

He was elected to the Michigan sports hall of fame1161

in 1995. Smith earned the honor because of his ac-1162

complishments prior to his NFL career. He was one1163

of four Michigan players honored as first-overall1164

selections in the 1964 NFL draft. The others were1165

Joe Namath, Bill Nelsen, and Jerry Kramer. In1166

1966, the NFL gave players $300,000 a season to1167

play football. After his rookie season, he was not1168

selected to play in the 1966 pro bowl. On January1169

13, 1966, the Rams traded smith to the Detroit Li-1170

ons for Paul Hornung, and later that year he was1171

traded to the Lions for Ray “the Lion" Jones in1172

exchange for Linebacker Jim “the Hawk" Johnson. 1173

On September 10, 1968, he was traded back to Los 1174

Angeles for a second round pick in the 1970 draft. 1175

He was also traded to the St. Louis Cardinals for 1176

a second round pick in the 1970 draft. On June 2, 1177

1970 he was cut by the Cardinals. On November 1178

15, 1970, the Los Angeles Rams acquired Smith 1179

from the Lions in exchange for Linebacker Tony 1180

Harris. The Rams waived Smith during the Septem- 1181

ber 1, 1972 offseason. Smith’s number at Michigan 1182

State was # 7 in 1969. 1183
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