
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

HAMILTONIAN MECHANICS OF FEATURE LEARNING:
BOTTLENECK STRUCTURE IN LEAKY RESNETS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study Leaky ResNets, which interpolate between ResNets (L̃ = 0) and Fully-
Connected nets (L̃ → ∞) depending on an ’effective depth’ hyper-parameter L̃.
In the infinite depth limit, we study ’representation geodesics’ Ap: continuous
paths in representation space (similar to NeuralODEs) from input p = 0 to output
p = 1 that minimize the parameter norm of the network. We give a Lagrangian
and Hamiltonian reformulation, which highlight the importance of two terms: a
kinetic energy which favors small layer derivatives ∂pAp and a potential energy
that favors low-dimensional representations, as measured by the ’Cost of Identity’.
The balance between these two forces offers an intuitive understanding of feature
learning in ResNets. We leverage this intuition to explain the emergence of a
bottleneck structure, as observed in previous work: for large L̃ the potential energy
dominates and leads to a separation of timescales, where the representation jumps
rapidly from the high dimensional inputs to a low-dimensional representation,
move slowly inside the space of low-dimensional representations, before jumping
back to the potentially high-dimensional outputs. Inspired by this phenomenon, we
train with an adaptive layer step-size to adapt to the separation of timescales.

1 INTRODUCTION

Feature learning is generally considered to be at the center of the recent successes of deep neural
networks (DNNs), but it also remains one of the least understood aspects of DNN training.

There is a rich history of empirical analysis of the features learned by DNNs, for example the
appearance of local edge detections in CNNs with a striking similarity to the biological visual cortex
(Krizhevsky et al., 2012), feature arithmetic properties of word embeddings (Mikolov et al., 2013),
similarities between representations at different layers (Kornblith et al., 2019; Li & Papyan, 2024),
or properties such as Neural Collapse (Papyan et al., 2020) to name a few. While some of these
phenomena have been studied theoretically (Arora et al., 2016; Ethayarajh et al., 2018; Súkeník et al.,
2024), a more general theory of feature learning in DNNs is still lacking.

For shallow networks, there is now strong evidence that the first weight matrix is able to recognize
a low-dimensional projection of the inputs that determines the output (assuming this structure is
present) (Bach, 2017; Abbe et al., 2021; 2022). A similar phenomenon appears in linear networks,
where the network is biased towards learning low-rank functions and low-dimensional representations
in its hidden layers (Gunasekar et al., 2018b; Li et al., 2020; Wang & Jacot, 2024). But in both cases
the learned features are restricted to depend linearly on the inputs, and the feature learning happens
in the very first weight matrix, whereas it has been observed that features increase in complexity
throughout the layers (Zeiler & Fergus, 2014).

The linear feature learning ability of shallow networks has inspired a line of work that postulates that
the weight matrices learn to align themselves with the backward gradients and that by optimizing for
this alignment directly, one can achieve similar feature learning abilities even in deep nets (Beaglehole
et al., 2023; Radhakrishnan et al., 2024).

For deep nonlinear networks, a theory that has garnered a lot of interest is the Information Bottleneck
(Tishby & Zaslavsky, 2015), which observed amongst other things that the inner representations
appear to maximize their mutual information with the outputs, while minimizing the mutual
information with the inputs. A limitation of this theory is its reliance on the notion of mutual
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information which has no obvious definition for empirical distributions, which led to some criticism
(Saxe et al., 2018).

A recent theory that is similar to the Information Bottleneck but with a focus on the
dimensionality/rank of the representations and weight matrices rather than the mutual information is
the Bottleneck rank/Bottleneck structure (Jacot, 2023a;b; Wen & Jacot, 2024): which describes how,
for large depths, most of the representations will have approximately the same low dimension, which
equals the Bottleneck rank of the task (the minimal dimension that the inputs can be projected to while
still allowing for fitting the outputs). The intuitive explanation for this bias is that a smaller parameter
norm is required to (approximately) represent the identity on low-dimensional representations rather
than high dimensional ones. Some other types of low-rank bias have been observed in recent work
(Galanti et al., 2022; Guth et al., 2023).

In this paper we will focus on describing the Bottleneck structure in ResNets, and formalize the
notion of ‘cost of identity’ as a driving force for the bias towards low dimensional representation.
The ResNet setup allows us to consider the continuous paths in representation space from input to
output, similar to the NeuralODE (Chen et al., 2018), and by adding weight decay, we can analyze
representation geodesics, which are paths that minimize parameter norm, as already studied in
(Owhadi, 2020). The appearance of separation of timescales in the layers of ResNets with a modified
loss has been mentioned in Geshkovski & Zuazua (2022), under the name ‘turnpike principle’, but
the underlying mechanism for the separation of timescales/turnpike behavior are very different to
ours. One of the main differences is the absence of a low-dimensional bias, as we observe.

1.1 LEAKY RESNETS

Our goal is to study a variant of the NeuralODE (Chen et al., 2018; Owhadi, 2020) approximation of
ResNet with leaky skip connections and with L2-regularization. The classical NeuralODE describes
the continuous evolution of the activations αp(x) ∈ Rw starting from α0(x) = x at the input layer
p = 0 and then follows

∂pαp(x) = Wpσ(αp(x))

for the w × (w + 1) matrices Wp and the nonlinearity σ : Rw → Rw+1 which maps a vector z
to σ(z) = ([z1]+, . . . , [zw]+, 1), applying the ReLU nonlinearity entrywise and appending a new
entry with value 1. Thanks to the appended 1 we do not need any explicit bias, since the last column
Wp,·w+1 of the weights replaces the bias.

This can be thought of as a continuous version of the traditional ResNet with activations αℓ(x) for
ℓ = 1, . . . , L: αℓ+1(x) = αℓ(x) +Wℓσ(αℓ(x)).

We will focus on Leaky ResNets, a variant of ResNets that interpolate between ResNets and FCNNs,
by tuning the strength of the skip connections leading to the following ODE with parameter L̃:

∂pαp(x) = −L̃αp(x) +Wpσ(αp(x)).

This can be thought of as the continuous version of αℓ+1(x) = (1− L̃)αℓ(x) +Wℓσ(αℓ(x)). As we
will see, the parameter L̃ plays a similar role as the depth in a FCNN.

Finally we will be interested in describing the paths that minimize a cost with L2-regularization

min
Wp

1

N

N∑
i=1

∥f∗(xi)− α1(xi)∥2 +
λ

2L̃

∫ 1

0

∥Wp∥2F dp.

The scaling of λ
L̃

for the regularization term will be motivated in Section 1.2.

This type of optimization has been studied in (Owhadi, 2020) without leaky connections. In this paper,
we describe the large L̃ behavior which leads to a so-called Bottleneck structure (Jacot, 2023a;b) as a
result of a separation of time scales in p.

1.2 A FEW SYMMETRIES

Changing the leakage parameter L̃ is equivalent (up to constants) to changing the integration range
[0, 1] or to scaling the outputs.
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Integration range: Consider the weights Wp on the range [0, 1] and leakage parameter L̃, leading
to activations αp. Then stretching the weights to a new range [0, c], by defining W ′

q = 1
cWq/c for

q ∈ [0, c], and dividing the leakage parameter by c, stretches the activations α′
q = αq/c:

∂qα
′
q(x) = −

L̃

c
α′
q(x) +

1

c
Wq/cσ(α

′
q(x)) =

1

c
∂pαq/c(x),

and the parameter norm is simply divided by c:
∫ c

0

∥∥W ′
q

∥∥2 dq = 1
c

∫ 1

0
∥Wp∥2 dp.

This implies that a path on the range [0, c] with leakage parameter L̃ = 1 is equivalent to a path on
the range [0, 1] with leakage parameter L̃ = c up to a factor of c in front of the parameter weights.
For this reason, instead of modeling different depths as changing the integration range, we will keep
the integration range to [0, 1] for convenience but change the leakage parameter L̃ instead. To get rid
of the factor in front of the integral, we choose a regularization term of the form λ

L̃
. From now on, we

call L̃ the (effective) depth of the network.

Note that this also suggests that in the absence of leakage (L̃ = 0), changing the range of integration
has no effect on the effective depth, since 2L̃ = 0 too. Instead, in the absence of leakage, the effective
depth can be increased by scaling the outputs as we now show.

Output scaling: Given a path Wp on the [0, 1] (for simplicity, we assume that there are no bias, i.e.
Wp,·w+1 = 0), then increasing the leakage by a constant L̃ → L̃ + c leads to a scaled down path
α′
p = e−cpαp. Indeed we have α′

0(x) = α0(x) and

∂pα
′
p(x) = −(L̃+ c)α′

p(x) +Wpσ(α
′
p(x)) = e−cp (∂pαp(x)− cαp(x)) = ∂p(e

−cpαp(x)).

Thus a nonleaky ResNet L̃ = 0 with very large outputs α1(x) is equivalent to a leaky ResNet L̃ > 0

with scaled down outputs e−L̃α1(x). Such large outputs are common when training on cross-entropy
loss, and other similar losses that are only minimized at infinitely large outputs. When trained on
such losses, it has been shown that the outputs of neural nets will keep on growing during training
(Gunasekar et al., 2018a; Chizat & Bach, 2020), suggesting that when training ResNets on such a
loss, the effective depth increases during training (though quite slowly).

1.3 LAGRANGIAN REFORMULATION

The optimization of Leaky ResNets can be reformulated, leading to a Lagrangian form.

First observe that the weights Wp at any minimizer can be expressed in terms of the matrix of
activations Ap = αp(X) ∈ Rw×N over the whole training set X ∈ Rw×N (similar to (Jacot et al.,
2022)):

Wp = (L̃Ap + ∂pAp)σ(Ap)
+

where (·)+ is the pseudo-inverse. This formula comes from the fact that Wp has minimal parameter
norm amongst the weights W that satisfy ∂pAp = −L̃Ap +Wσ(Ap).

We therefore consider the equivalent optimization over the activations Ap:

min
Ap:A0=X

1

N
∥f∗(X)−A1∥2 +

λ

2L̃

∫ 1

0

∥∥∥L̃Ap + ∂pAp

∥∥∥2
Kp

dp.

This is our first encounter with the norm ∥M∥Kp
= ∥Mσ(Ap)

+∥F corresponding to the scalar
product ⟨A,B⟩Kp

= Tr
[
AK+

p BT
]

for the N × N matrix Kp = σ(Ap)
Tσ(Ap) that will play a

central role in our upcoming analysis. By convention, we say that ∥M∥Kp
=∞ if M does not lie in

the image of Kp, i.e. ImMT ⊈ ImKp.

It can be helpful to decompose this loss along the different neurons

min
Ap:A0=X

w∑
i=1

1

N
∥f∗

i (X)−A1,i∥2 +
λ

2L̃

∫ 1

0

∥∥∥L̃Ap,i· + ∂pAp,i·

∥∥∥2
Kp

dp,

3
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Leading to a particle flow behavior, where the neurons Ap,i· ∈ RN are the particles. At first glance, it
appears that there is no interaction between the particles, but remember that the norm ∥·∥Kp

depends
on the covariance Kp =

∑w
i=1 σ((Ap)i·)σ((Ap)i·)

T , leading to a global interaction between the
neurons.

If we assume that ImAT
p ⊂ Imσ(Ap)

T , we can decompose the inside of the integral as three terms:

1

2L̃

∥∥∥L̃Ap + ∂pAp

∥∥∥2
Kp

=
L̃

2
∥Ap∥2Kp

+ ⟨∂pAp, Ap⟩Kp
+

1

2L̃
∥∂pAp∥2Kp

.

The middle term ⟨∂pAp, Ap⟩Kp
plays a relatively minor role in our analysis1, so we focus more on

the two other terms:

Cost of identity ∥Ap∥2Kp
/ potential energy − L̃

2 ∥Ap∥2Kp
: This term can be interpreted as a form of

potential energy, since it only depends on the representation Ap and not its derivative ∂pAp. We call
it the cost of identity (COI), since it is the Frobenius norm of the smallest weight matrix Wp such that
Wpσ(Ap) = Ap. The COI can be interpreted as measuring the dimensionality of the representation,
inspired by the fact if the representations Ap is non-negative (and there is no bias β = 0), then
Ap = σ(Ap) and the COI simply equals the rank ∥Ap∥2Kp

= RankAp (this interpretation is further
justified in Section 1.4). We follow the convention of defining the potential energy as the negative of
the term that appears in the Lagrangian, so that the Hamiltonian equals the sum of these two energies.

Kinetic energy 1
2L̃
∥∂pAp∥2Kp

: This term measures the size of the representation derivative ∂pAp

w.r.t. the Kp norm. It favors paths p 7→ Ap that do not move too fast, especially along directions
where σ(Ap) is small. This interpretation as a kinetic energy also illustrates how the inverse kernel
K+

p is the analogue of the mass matrix from classical mechanics.

This suggests that the local optimal paths must balance two objectives that are sometimes opposed:
the kinetic energy favors going from input representation to output representation in a ‘straight line’
that minimizes the path length, the COI on the other hand favors paths that spends most of the path in
low-dimensional representations that have a low COI. The balance between these two goals shifts
as the depth L̃ grows, and for large depths it becomes optimal for the network to rapidly move to a
representation of smallest possible dimension (not too small that it becomes impossible to map back
to the outputs), remain for most of the layers inside the space of low-dimensional representations,
and finally move rapidly to the output representation; even if this means doing a large ‘detour’ and
having a large kinetic energy. The main goal of this paper is to describe this general behavior.

Note that one could imagine that as L̃→∞ it would always be optimal to first go to the minimal
COI representation which is the zero representation Ap = 0, but once the network reaches a zero
representation, it can only learn constant representations afterwards (the matrix Kp = 11T is then
rank 1 and its image is the space of constant vectors). So the network must find a representation that
minimizes the COI under the condition that there is a path from this representation to the outputs.
Remark. While this interpretation and decomposition is a pleasant and helpful intuition, it is rather
difficult to leverage for theoretical proofs directly. The problem is that we will focus on regimes
where the representations Ap and σ(Ap) are approximately low-dimensional (since those are the
representations that locally minimize the COI), leading to an unbounded pseudo-inverse σ(Ap)

+.
This is balanced by the fact that (L̃Ap + ∂pAp) is small along the directions where σ(Ap)

+ explodes,

ensuring a finite weight matrix norm
∥∥∥L̃Ap + ∂pAp

∥∥∥2
K+

p

. But the suppression of (L̃Ap + ∂pAp)

along these bad directions usually comes from cancellations, i.e. ∂pAp ≈ −L̃Ap. In such cases, the
decomposition in three terms of the Lagrangian is ill adapted since all three terms are infinite and

cancel each other to yield a finite sum
∥∥∥L̃Ap + ∂pAp

∥∥∥2
Kp

. One of our goal is to save this intuition

1In linear networks σ = id it can actually be discarded, since it is integrable∫ 1

0
Tr

[
∂pApσ(Ap)

+σ(Ap)
+TAT

p

]
dp = log |A1|+ − log |A0|+, where |·|+ is pseudo-determinant,

the product of the non-zero singular values. Since its integral only depends on the endpoints, it has no impact on
the representation path in between, which is the focus of this paper. In nonlinear networks, we are not able to
discard in such a manner, but we will see that in the rest of analysis the two other terms play a central role, while
the second term plays a lesser role.
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and prove a similar decomposition with stable equivalent to the cost of identity and kinetic energy
where K+

p is replaced by the bounded (Kp + γI)
+ for the right choice of γ.

1.4 COST OF IDENTITY AS A MEASURE OF DIMENSIONALITY

This section shows the relation between the COI of and the dimensionality of the data. The intuition
is simple, the cost of representing the identity on a k-dimensional representation should be k, at least
for representations that locally minimize the COI. We are interested in these local minima of the COI
because as we will later see, the representations inside the bottleneck are close to local minima of the
COI.

We define two types of COI, the standard COI (or COI with bias) ∥A∥2K which is the one that appears
in the previous sections, and the COI without bias ∥A∥2K̄ , where for any activation matrix A, we define
the covariance with bias K = σ(A)Tσ(A) and without bias K̄ = σ̄(A)T σ̄(A) where σ̄ denotes the
simple ReLU (without appending a constant entry), leading to the relation K̄ = K − 1N1TN .

It is easier to see the relation between the COI without bias and the dimensionality of the
representation. For example if the representation is nonegative A ≥ 0, we have ∥A∥2K̄ =

∥Aσ̄(A)+∥2F = ∥AA+∥2F = RankA. More generally, the COI without bias is lower bounded
by a notion of effective dimension:

Proposition 1. ∥A∥2K̄ ≥
∥A∥2

∗
∥A∥2

F

for the nuclear norm ∥A∥∗ =
∑RankA

i=1 si(A).

Proof. We know that ∥σ(A)∥F ≤ ∥A∥F , therefore ∥Aσ(A)+∥2F ≥ min∥B∥F≤∥A∥F
∥AB+∥2F which

is minimized when B =
∥A∥F√
∥A∥∗

√
A, yielding the result.

The stable rank ∥A∥2
∗

∥A∥2
F

is upper bounded by RankA, with equality if all non-zero singular values of

A are equal, and it is lower bounded by the more common notion of stable rank ∥A∥2
F

∥A∥2
op

, because∑
si max si ≥

∑
s2i for the singular values si.

Note that in contrast to the COI which is a very unstable quantity because of the pseudo-inverse, the
ratio ∥A∥2

∗
∥A∥2

F

is continuous except at A = 0. This also makes it much easier to compute empirically
than the COI itself.

The relation between the COI with bias and dimensionality. is less obvious in general, but as we will
see, inside the bottleneck the representation will approach local minima of the COI with bias. It turns
out that at any local minima A that is in some sense stable under adding more neurons, not only is the
representation nonegative, but both COIs must also match and be equal to the dimension:

Proposition 2. A local minimum of A 7→ ∥A∥2K is said to be stable if it remains a local minimum

after concatenating a zero vector A′ =

(
A
0

)
∈ R(w+1)×N . All stable minima are non-negative,

and satisfy ∥A∥2K = ∥A∥2K̄ = RankA.

These stable minima will play a significant role in the rest of our analysis, as we will see that for large
L̃ the representations Ap of most layers will be close to one such local minimum. Now we are not
able to rule out the existence of non-stable local minima (nor guarantee that they are avoided with
high probability), but one can show that all strict local minima of wide enough networks are stable.
Actually we can show something stronger, starting from any non-stable local minimum there is a
constant loss path that connects it to a saddle:

Proposition 3. If w > N(N + 1) then if Â ∈ Rw×N is local minimum of A 7→ ∥A∥2K that is not
non-negative, then there is a continuous path At of constant COI such that A0 = Â and A1 is a
saddle.

This could explain why a noisy GD would avoid such negative/non-stable minima, since there is
no ‘barrier’ between the minima and a lower one, one could diffuse along the path described in

5
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(a) Hamiltonian measures across L̃ (b) BN structure (L̃ = 5, γ = 0.001)

(c) BN structure (L̃ = 2, γ = 0.001) (d) BN structure (L̃ = 7.5, γ = 0.001)

Figure 1: Leaky ResNet structures: We train adaptive networks with a fixed L = 50 over a range
of effective depths L̃. The true function f∗ : R20 → R20 is the composition of two random FCNNs
g1, g2 mapping from dim. 20 to 5 to 20, the network recovers the true rank of k∗ = 5. (a) Estimates
of the Hamiltonian constants for networks trained with different L̃. The Hamiltonian refers to − 2

L̃
H

which estimates the true rank k∗. The COI refers to minp ||Ap||Kp
. The trend line follows the

median estimate for − 2
L̃
H across each network’s layers, whereas the error bars signify its minimum

and maximum over p ∈ [0, 1]. The "stable" Hamiltonians utilize the relaxation from Theorem 4.
(b,c,d) Top: The 10 largest singular values of Wp throughout the layers. The bottleneck structure and
separation of timescales becomes more visible as L̃ grows. Bottom: the rescaled Hamiltonian, stable
Hamiltonian, COI and kinetic energy. The Hamiltonian remains constant throughout the layers, and
the stable Hamiltonian approximates it well except in the first layers, where both COI and kinetic
energy appear to blow up. We see how inside the bottleneck, the kinetic energy approaches zero and
the COI approaches k∗.

Proposition 3 until reaching a saddle and going towards a lower COI minima. But there seems to be
something else that pushes away from such non-negative minima, as in our experiments with full
population GD we have only observed stable/non-negative local minimas.

1.5 HAMILTONIAN REFORMULATION

We can further reformulate the evolution of the optimal representations Ap in terms of a Hamiltonian,
similar to Pontryagin’s maximum principle.

Let us define the backward pass variables Bp = − 1
λ∂ApC(A1) for the cost C(A) = 1

N ∥f
∗(X) −

A∥2F , which play the role of the ‘momenta’ of Ap in this Hamiltonian interpretation, and follow the
backward differential equation

6
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B1 = − 1

λ
∂A1

C(A1) =
2

λN
(f∗(X)−A1)

−∂pBp = σ̇(Ap)⊙
[
WT

p Bp

]
− L̃Bp.

Now at any critical point, we have that ∂Wp
C(A1) + λ

L̃
Wp = 0 and thus Wp =

− L̃
λ∂Ap

C(A1)σ(Ap)
T = L̃Bpσ(Ap)

T , leading to joint dynamics for Ap and Bp:

∂pAp = L̃(Bpσ(Ap)
Tσ(Ap)−Ap)

−∂pBp = L̃
(
σ̇(Ap)⊙

[
σ(Ap)B

T
p Bp

]
−Bp

)
.

These are Hamiltonian dynamics ∂pAp = ∂BpH and −∂pBp = ∂ApH w.r.t. the Hamiltonian

H(Ap, Bp) =
L̃

2

∥∥Bpσ(Ap)
T
∥∥2 − L̃Tr

[
BpA

T
p

]
.

The Hamiltonian is a conserved quantity, i.e. it is constant in p. It will play a significant role in
describing a separation of timescales that appears for large depths L̃. Another significant advantage
of the Hamiltonian reformulation over the Lagrangian approach is the absence of the unstable
pseudo-inverses σ(Ap)

+.
Remark. Note that the Lagrangian and Hamiltonian reformulations have already appeared in previous
work (Owhadi, 2020) for non-leaky ResNets. Our main contributions are the description in the next
section of the Hamiltonian as the network becomes leakier L̃ → ∞, the connection to the cost of
identity, and the appearance of a separation of timescales. These structures are harder to observe in
non-leaky ResNets (though they could in theory still appear since increasing the scale of the outputs
is equivalent to increasing the effective depth L̃ as shown in Section 1.2).

The Lagrangian and Hamiltonian are also very similar to the ones in (Grafke et al., 2014; Grafke &
Vanden-Eijnden, 2019), and the separation of timescales and rapid jumps that we will describe also
bear a strong similarity. Though a difference with our work is that the norm ∥·∥Kp

depends on Ap

and can be degenerate.

2 BOTTLENECK STRUCTURE IN REPRESENTATION GEODESICS

A recent line of work (Jacot, 2023a;b) studies the appearance of a so-called Bottleneck structure
in large depth fully-connected networks, where the weight matrices and representations of ‘almost
all’ layers are approximately low-rank/low-dimensional as the depth grows. This dimension k is
consistent across layers, and can be interpreted as being equal to the so-called Bottleneck rank of the
learned function. This structure has been shown to extend to CNNs in (Wen & Jacot, 2024), and we
will observe a similar structure in our leaky ResNets, further showcasing its generality.

More generally, our goal is to describe the ‘representation geodesics’ of DNNs: the paths in
representation space from input to output representation. The advantage of ResNets (leaky or
not) over FCNNs is that these geodesics can be approximated by continuous paths and are described
by differential equations (as described by the Hamiltonian reformulation).

This section provides an approximation of the Hamiltonian that illustrates the separation of timescales
that appears for large depths, with slow layers with low COI/dimension, and fast layers with high
COI/dimension.

2.1 SEPARATION OF TIMESCALES

If ImAT
p ⊂ Imσ(Ap)

T , then the Hamiltonian equals the sum of the kinetic and potential energies:

H =
1

2L̃
∥∂pAp∥2Kp

− L̃

2
∥Ap∥2Kp

.

This implies that ∥∂pAp∥Kp
= L̃

√
∥Ap∥2Kp

+ 2
L̃
H which implies that for large L̃, the derivative

∂pAp is only finite at ps where the COI ∥Ap∥2Kp
is close to − 2

L̃
H. On the other hand, ∂pAp will

blow up for all p with a finite gap
√
∥Ap∥2Kp

+ 2
L̃
H > 0 between the COI and the Hamiltonian. This

7
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suggests a separation of timescales as L̃→∞, with slow dynamics (∥∂pAp∥Kp
∼ 1) in layers whose

COI/dimension is close to − 2
L̃
H and fast dynamics (∥∂pAp∥Kp

∼ L̃) in the high COI/dimension
layers.

But the assumption ImAT
p ⊂ Imσ(Ap)

T seems to rarely be true in practice, and both kinetic and
COI appear to be often infinite in practice. Thankfully, the same argument can be extended to stable
versions of the kinetic energy/COI up to a few approximations:

Theorem 4. For sequence AL̃
p of geodesics with

∥∥∥BL̃
p

∥∥∥ ≤ c <∞, and any γ > 0, we have

−
(
1

L̃
ℓγ,L̃ + γc

)2

≤ − 2

L̃
H−min

p

∥∥∥AL̃
p

∥∥∥2
(Kp+γI)

≤ γc2,

for the path length ℓγ,L̃ =
∫ 1

0

∥∥∥∂pAL̃
p

∥∥∥
(Kp+γI)

dp. Finally

−L̃γc ≤ ∥∂pAp∥(Kp+γi) − L̃

√
∥Ap∥2(Kp+γI) +

2

L̃
H ≤ 2L̃γc.

Note that the size of ∥BL̃
p ∥2 can vary a lot throughout the layers, we therefore suggest choosing

a p-dependent γ: γp = γ0∥σ(AL̃
p )∥2op = γ0∥Kp∥2op. There are two motivations for this: first it is

natural to have γ scale with Kp, ; and second, since Wp = L̃Bpσ(Ap)
T is of approximately constant

size (thanks to balancedness, see Appendix A.3), we typically have that the size of Bp is inversely
proportional to that of σ(Ap), so that γp∥Bp∥2 should keep roughly the same size for all p.

Theorem 4 shows that for large L̃ (and choosing e.g. γ = L̃−1), the Hamiltonian is close to the
minimal COI along the path. Second, the norm of the derivative ∥∂pAp∥(Kp+γi) is close to L̃ times

the ‘extra-COI’
√
∥Ap∥2(Kp+γI) +

2
L̃
H ≈

√
∥Ap∥2(Kp+γI) −minq ∥Aq∥2(Kq+γI), which describes

the separation of timescales, with slow (∥∂pAp∥Kp+γI ∼ 1) dynamics at layers p where the COI is
almost optimal and fast (∥∂pAp∥Kp+γI ∼ L̃) dynamics everywhere the COI is far from optimal.

Assuming a finite length ℓγ,L̃ < ∞, the norm of the derivative must be finite at almost all layers,
meaning that the COI/dimensionality is optimal in almost all layers, with only a countable number
of short high COI/dimension jumps. These jumps typically appear at the beginning and end of the
network, because the input and output dimensionality and COI are (mostly) fixed, so it will typically
be non-optimal, and so there will often be fast regions close to the beginning and end of the network.
We have actually never observed any jump in the middle of the network, though we are not able to
rule them out theoretically.

If we assume that the paths AL̃
p are stable under adding a neuron, then we can additionally guarantee

that the representations in the slow layers (‘inside the Bottleneck’) will be non-negative:

Proposition 5. Let AL̃
p be a uniformly bounded sequence of local minima for increasing L̃, at

any p0 ∈ (0, 1) such that ∥∂pAp∥ is uniformly bounded in a neighborhood of p0 for all L̃, then
A∞

p0
= limL̃ AL̃

p0
is non-negative if it exists.

We therefore know that the optimal COI minq ∥Aq∥2(Kq+γI) is close to the dimension of the limiting
representations A∞

p0
, i.e. it must be an integer k∗ which we call the Bottleneck rank of the sequence of

minima since it is closely related to the Bottleneck rank introduced in (Jacot, 2023a). The Hamiltonian
H is then close to − L̃

2 k
∗.

Figure 1 illustrates these phenomena: the Hamiltonian (and the stable Hamiltonians Hγ =
1
2L̃
∥∂pAp∥2(Kp+γI) −

L̃
2 ∥Ap∥2(Kp+γI)) approach the rank k∗ = 3 from below, while the minimal

COI approaches it from above; The kinetic energy is proportional to the extra COI, and they are both
large towards the beginning and end of the network where the weights Wp are higher dimensional.
We see in Figure 1d that the (stable) Hamiltonian are not exactly constant, but it still varies much less
than its components, the kinetic and potential energies.
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(a) Test performance versus depth (b) Bottleneck structure and adaptivity. (c) Paths

Figure 2: Discretization: We train networks with a fixed L̃ = 3 over a range of depths L and
definitions of ρℓs. The true function f∗ : R30 → R30 is the composition of three random ResNets
g1, g2, g3 mapping from dim. 30 to 6 to 3 to 30. (a) Test error as a function of L for different
discretization schemes. (b) Weight spectra across layers for adaptive ρℓ (L = 18), grey vertical lines
represents the steps pℓ (c) 2D projection of the representation paths Ap for L = 18. Observe how
adaptive ρℓs appears to better spread out the steps.

Because of the non-convexity of the loss we are considering, there are likely distinct sequences of
local minima as L̃→∞ of different ranks, depending on what low-dimension they reach inside their
bottleneck. Indeed in our experiments we have seen that the number of dimensions that are kept
inside the bottleneck can vary by 1 or 2, and in FCNN distinct sequences of depth increasing minima
with different ranks have been observed in (Jacot, 2023b).

3 DISCRETIZATION SCHEME

To use such Leaky ResNets in practice, we need to discretize over the range [0, 1]. For this we
choose a set of layer-steps ρ1, . . . , ρL with

∑
ρℓ = 1, and define the activations at the locations

pℓ = ρ1 + · · ·+ ρℓ ∈ [0, 1] recursively as

αp0
(x) = x

αpℓ
(x) = (1− ρℓL̃)αpℓ−1

(x) + ρℓWpℓ
σ
(
αpℓ−1

(x)
)

and the regularized cost L(θ) = C(α1(X)) + λ
2L̃

∑L
ℓ=1 ρℓ ∥Wpℓ

∥2, for the parameters θ =

(Wp1
, . . . ,WpL

). Note that it is best to ensure that ρℓL̃ remains smaller than 1 so that the prefactor
(1− ρℓL̃) does not become negative, though we will also discuss certain setups where it might be
okay to take larger layer-steps.

Now comes the question of how to choose the ρℓs. We consider three options:

Equidistant: The simplest choice is to choose equidistant points ρℓ = 1
L . Note that the condition

ρℓL̃ < 1 then becomes L > L̃. But this choice might be ill adapted in the presence of a Bottleneck
structure due to the separation of timescales.

Irregular: Since we typically observe that the fast layers appear close to the inputs and outputs with
a slow bottleneck in the middle, one could simply choose the ρℓ to be go from small to large and back
to small as ℓ ranges from 1 to L. This way there are many discretized layers in the fast regions close
to the input and output and not too many layers inside the Bottleneck where the representations are
changing less. More concretely one can choose ρℓ = 1

L + a
L (

1
4 −

∣∣ ℓ
L −

1
2

∣∣) for a ∈ [0, 1), the choice
a = 0 leads to an equidistant mesh, but increasing a will lead to more points close to the inputs and
outputs. To guarantee ρℓL̃ < 1, we need L > (1 + a 1

4 )L̃.

Adaptive: But this can be further improved by choosing the ρℓ to guarantee that the distances
∥Aℓ −Aℓ−1∥ /∥Ap∥ are approximately the same for all ℓ (we divide by the size of Ap since
it can vary a lot throughout the layers). Since the rate of change of Ap is proportional to ρℓ

(∥Aℓ −Aℓ−1∥ /∥Ap∥ = ρℓcℓ), it is optimal to choose ρℓ =
c−1
ℓ∑
c−1
ℓ

for cℓ = ∥Aℓ−Aℓ−1∥/ρℓ∥Ap∥. The
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update ρℓ ←
c−1
i∑
c−1
i

can be done at every training step or every few training steps. For large networks,
this has negligible computational cost (an approx. 2% longer training time in some experiments).

Note that the condition ρℓL̃ < 1 might not be necessary inside the bottleneck since we have the
approximation Wpσ(Apℓ−1

) ≈ L̃Apℓ−1
, canceling out the negative direction. In particular with the

adaptive layer-steps that we propose, a large ρℓ is only possible for layers where cℓ is small, which is
only possible when Wpσ(Apℓ−1

) ≈ L̃Apℓ−1
.

Figure 2 illustrates the effect of the choice of ρℓ for different depths L, we see a small but consistent
advantage in the test error when using adaptive or irregular ρℓs. Looking at the resulting Bottleneck
structure, we see that the adaptive ρℓs result in more steps especially in the beginning of the network,
but also at the end. This because the ‘true function’ f∗ : R30 → R30 we are fitting in these
experiments is of the form f∗ = g3 ◦ g2 ◦ g1 where the first inner dimension is 6 and the second is 3,
thus resulting in a rank of k∗ = 3. But before reaching this minimal dimension, the network needs to
represent g2 ◦ g1, which requires more layers, and one can almost see that the weight matrices are
roughly 6-dimensional around p = 0.3. The adaptivity to this structure could explain the advantage
in the test error.

4 CONCLUSION

We have given a description of the representation geodesics Ap of Leaky ResNets. We have identified
an invariant, the Hamiltonian, which is the sum of the kinetic and potential energy, where the kinetic
energy measures the size of the derivative ∂pAp, while the potential energy is inversely proportional
to the cost of identity, which is a measure of dimensionality of the representations. As the effective
depth of the network grows, the potential energy dominates and we observe a separation of timescales.
At layers with minimal dimensionality over the path, the kinetic energy (and thus the derivative ∂pAp)
is finite. Conversely, at layers where the representation is higher-dimensional, the kinetic energy must
scale with L̃. This leads to a Bottleneck structure, with a short, high-dimensional jump from the input
representation to a low dimensional representation, followed by slow dynamics inside the space of
low-dimensional representations followed by a final high-dimensional jump to the high dimensional
outputs.
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A PROOFS

A.1 COST OF IDENTITY

Here are the proofs for the two Propositions of section 1.4.

Proposition 6 (Proposition 2 in the main). A local minimum of A 7→ ∥A∥2K is said to be stable if it

remains a local minimum after concatenating a zero vector A′ =

(
A
0

)
∈ R(w+1)×N . All stable

minima are non-negative, and satisfy ∥A∥2K = ∥A∥2K̄ = RankA.

Proof. At a critical point of the COI with bias A 7→ ∥A∥2K , the derivative w.r.t. to scaling the
representation A up must be zero, i.e.

0 = ∂sTr
[
s2ATA

(
s2K̄ + 1N1T

N

)+]∣∣s=1

= 2Tr
[
ATAK+

]
− 2Tr

[
ATAK+K̄K+

]
= 21T

NK+ATAK+1N ,

which implies that AK+1N = 0.

Furthermore, since A is a stable minima, the COI of the nearby point
(

A
ϵz

)
for z ∈ Imσ(A)T

Tr
[
(ATA+ ϵ2zzT )

(
K + ϵ2σ̄(z)σ̄(z)T

)+]
=

∥∥Aσ(A)+
∥∥2+ϵ2

∥∥zTσ(A)+
∥∥2−ϵ2 ∥∥σ̄(z)TK+AT

∥∥2+O(ϵ4),

must not be smaller than ∥Aσ(A)+∥2 for small ϵ. This implies that

zTK+z =
∥∥zTσ(A)+

∥∥2 ≥ ∥∥σ̄(z)TK+AT
∥∥2 = σ̄(z)TK+ATAK+σ̄(z).

Let us now choose z = K̄i = Ki − 1N , which has positive entries so that σ̄(K̄i) = K̄i and

K̄T
i K

+K̄T
i ≥ K̄T

i K
+ATAK+K̄i.

Both sides can be simplified:

K̄T
i K

+K̄T
i = ∥σ(Ai)∥2 − 2KT

i K
+1N + 1NK+1N = ∥σ(Ai)∥2 − 2 + 1NK+1N

since KT
i K

+1N = eiPImK1N = ei1N = 1 because 1N lies in the image of K; and since
AK+1N = 0

K̄T
i K

+ATAK+K̄i = ∥Ai∥2 − 2KT
i K

+ATAK+1N + 1T
NK+ATAK+1N = ∥Ai∥2 .

This implies that
∥σ(Ai)∥2 − 2 + 1NK+1N ≥ ∥Ai∥2 .

But we have 1NK+1N ≤ 1 since

1NK+1N = lim
γ↘0

1N (K + γI)
−1

K (K + γI)
−1

1N

≤ lim
γ↘0

1N (K + γI)
−1

(K + γI) (K + γI)
−1

1N

= lim
γ↘0

1N (K + γI)
−1

1N ,

and by Shermann-Morrison formula:

1N

(
K̄ + 1N1TN + γI

)−1
1N = 1N

(
K̄ + γI

)−1
1N−

(
1N

(
K̄ + γI

)−1
1N

)2

1 + 1N

(
K̄ + γI

)−1
1N

=
1N

(
K̄ + γI

)−1
1N

1 + 1N

(
K̄ + γI

)−1
1N

≤ 1,

with equality if and only if limγ↘0 1N

(
K̄ + γI

)−1
1N =∞ which happens when 1N does not lie

in the image of K̄.
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This leads to the bound ∥σ(Ai)∥2− 1 ≥ ∥Ai∥2 +1, but in the other direction, we know ∥σ(Ai)∥2 ≤
∥Ai∥2 + 1, with equality if and only if Ai has non-negative entries, since the ReLU satisfies
|σ(x)| ≤ |x| with equality on non-negative x. This implies that Ai has non-negative entries, and that
1NK+1N = 1.

Furthermore, we have ∥A∥2K ≤ ∥A∥
2
K̄ and

∥A∥2K = lim
γ↘0

Tr
[
K̄(K̄ + 1N1N + γI)−1

]
= lim

γ↘0
∥A∥2K̄+γI −

1N (K̄ + γI)−1K̄(K̄ + γI)−11N
1 + 1TN (K̄ + γI)−11TN

≥ lim
γ↘0
∥A∥2K̄+γI −

1N (K̄ + γI)−11N
1 + 1TN (K̄ + γI)−11TN

= ∥A∥2K̄ ,

since limγ↘0 1N

(
K̄ + γI

)−1
1N =∞ because 1NK+1N = 1. Therefore

∥A∥2K = ∥A∥2K̄ = RankA.

Proposition 7 (Proposition 3 in the main.). If w > N(N + 1) then if Â ∈ Rw×N is local minimum
of A 7→ ∥Aσ(A)+∥2F that is not non-negative, then there is a continuous path At of constant COI
such that A0 = Â and A1 is a saddle.

Proof. The local minimum Â leads to a pair of N × N covariance matrices K̂ =

ÂT Â and K̂σ = σ(Â)Tσ(Â). The pair (K̂, K̂σ) belongs to the conical hull
Cone

{
(Âi·Â

T
i· , σ(Âi·)σ(Âi·)

T ) : i = 1, . . . , w
}

. Since this cone lies in a N(N + 1)-dimensional
space (the space of pairs of symmetric N × N matrices), we know by Caratheodory’s
theorem (for convex cones) that there is a conical combination (K̂, K̂σ − β21N×N ) =∑w

i=1 ai(Âi·Â
T
i· , σ(Âi·)σ(Âi·)

T ) such that no more than N(N + 1) of the coefficients are non-
zero. We now define At to have lines At,i· =

√
(1− t) + taiÂi·, so that At=0 = Â and at t = 1 at

least one line of At=1 is zero (since at least one of the ais is zero). First note that the covariance pairs
remain constant over the path: Kt = AT

t At =
∑w

i=1((1− t) + tai)Âi·Â
T
i· = (1− t)K̂ + tK̂ = K̂

and similarly Kσ
t = K̂σ, which implies that the cost ∥Atσ(At)

+∥2F = Tr
[
KtK

σ+
t

]
is constant

too. Second, since a representation A is non-negative iff the covariances satisfy K = Kσ, the
representation path At cannot be non-negative either since it has the same kernel pairs (K̂, K̂σ) with
K̂ ̸= K̂σ .

Now (the converse of) Proposition 2 tells us that if At=1 is not non-negative and has a zero line, then
it is not a local minimum, which implies that it is a saddle.

A.2 BOTTLENECK

Theorem 8 ( Theorem 4 in the main). For sequence AL̃
p of geodesics with

∥∥∥BL̃
p

∥∥∥ ≤ c <∞, and any
γ > 0, we have

−
(
1

L̃
ℓγ,L̃ + γc

)2

≤ − 2

L̃
H−min

p

∥∥∥AL̃
p

∥∥∥2
(Kp+γI)

≤ γc2,

for the path length ℓγ,L̃ =
∫ 1

0

∥∥∥∂pAL̃
p

∥∥∥
(Kp+γI)

dp. Finally

−L̃γc ≤ ∥∂pAp∥(Kp+γi) − L̃

√
∥Ap∥2(Kp+γI) +

2

L̃
H ≤ 2L̃γc.
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Proof. First observe that∥∥∥∥ 1

L̃
∂pAp + γBp

∥∥∥∥2
(Kp+γI)

= ∥Bp(Kp + γ)−Ap∥2(Kp+γI)

=
∥∥Bpσ(Ap)

T
∥∥2 + γ ∥Bp∥2 − 2Tr

[
BpA

T
p

]
+ ∥Ap∥2(Kp+γI)

=
2

L̃
H+ γ ∥Bp∥2 + ∥Ap∥2(Kp+γI)

and thus we have

− 2

L̃
H = ∥Ap∥2(Kp+γI) −

∥∥∥∥ 1

L̃
∂pAp + γBp

∥∥∥∥2
(Kp+γI)

+ γ ∥Bp∥2 .

(1) The upper bound− 2
L̃
H−minp

∥∥∥AL̃
p

∥∥∥2
(Kp+γI)

≤ γc2 then follows from the fact that ∥Bp∥2 ≤ c2.

For the lower bound, first observe that

1

L̃
∥∂pAp∥(Kp+γI) ≥

∥∥∥∥ 1

L̃
∂pAp + γBp

∥∥∥∥
(Kp+γI)

− ∥γBp∥(Kp+γI)

≥
√
∥Ap∥2(Kp+γI) +

2

L̃
H+ γ ∥Bp∥2 − γc

≥
√
∥Ap∥2(Kp+γI) +

2

L̃
H− γc, (1)

and therefore

1

L̃
ℓγ,L̃ =

1

L̃

∫ 1

0

∥∂pAp∥(Kp+γI) dp

≥
∫ 1

0

√
∥Ap∥2(Kp+γI) +

2

L̃
H− γcdp

≥
√
min
p
∥Ap∥2(Kp+γI) +

2

L̃
H− γc

which implies the lower bound.

(2) The lower bound follows from equation 1. The upper bound follows from

1

L̃
∥∂pAp∥(Kp+γI) ≤

∥∥∥∥ 1

L̃
∂pAp + γBp

∥∥∥∥
(Kp+γI)

+ ∥γBp∥(Kp+γI)

≤
√
∥Ap∥2(Kp+γI) +

2

L̃
H+ γ ∥Bp∥2 + γc

≤
√
∥Ap∥2(Kp+γI) +

2

L̃
H+

√
γ ∥Bp∥+ γc

≤
√
∥Ap∥2(Kp+γI) +

2

L̃
H+ 2γc.

Proposition 9 (Proposition 5 in the main.). Let AL̃
p be a uniformly bounded sequence of local minima

for increasing L̃, at any p0 ∈ (0, 1) such that ∥∂pAp∥ is uniformly bounded in a neighborhood of p0
for all L̃, then A∞

p0
= limL̃ AL̃

p0
is non-negative.

Proof. Given a path Ap with corresponding weight matrices Wp corresponding to a width w, then(
A
0

)
is a path with weight matrix

(
Wp 0
0 0

)
. Our goal is to show that for sufficiently large
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depths, one can under certain assumptions slightly change the weights to obtain a new path with the
same endpoints but a slightly lower loss, thus ensuring that if certain assumptions are not satisfied
then the path cannot be locally optimal.

Let us assume that ∥∂pAp∥ ≤ c1 in a neighborhood of a p0 ∈ (0, 1), and assume by contradiction
that there is an input index i = 1, . . . , N such that Ap0,·i has at least one negative entry, and therefore
∥Ap0,·i∥

2 − ∥σ(Ap0,·i)∥
2
= c0 > 0 for all L̃.

We now consider the new weights(
Wp − L̃ϵ2t(p)Ap,·iσ(Ap,·i)

T ϵL̃t(p)Ap,·i
ϵL̃t(p)σ(Ap,·i) 0

)
for t(p) = max{0, 1− |p−p0|

r } a triangular function centered in p0 and for an ϵ > 0.

For ϵ and rsmall enough, the parameter norm will decrease:∫ 1

0

∥∥∥∥ Wp − L̃ϵ2t(p)Ap,·iσ(Ap,·i)
T ϵL̃t(p)Ap,·i

ϵL̃t(p)σ(Ap,·i) 0

∥∥∥∥2 dp
=

∫ 1

0

∥Wp∥2 + L̃2ϵ2t(p)2
(
− 2

L̃
AT

p,·iWpσ(Ap,·i) + ∥Ap,·i∥2 + ∥σ(Ap,·i)∥2
)
dp+O(ϵ4).

Now since Wpσ(Ap,·i) = ∂pAp,·i + L̃Ap,·i, this simplifies to∫ 1

0

∥Wp∥2 + L̃2ϵ2t(p)2
(
−∥Ap,·i∥2 + ∥σ(Ap,·i)∥2 −

1

L̃
AT

p,·i∂pAp,·i

)
dp+O(ϵ4).

By taking r small enough, we can guarantee that −∥Ap,·i∥2 + ∥σ(Ap,·i)∥2 < − c0
2 for all p such that

t(p) > 0, and for L̃ large enough we can guarantee that
∣∣∣ 1
L̃
AT

p,·i∂pAp,·i

∣∣∣ is smaller then c0
4 , so that

we can guarantee that the parameter norm will be strictly smaller for ϵ small enough.

We will now show that with these new weights the path becomes approximately
(

Ap

ϵap

)
where

ap = L̃

∫ p

0

t(q)Kp,i·e
L̃(q−p)dq.

Note that ap is positive for all p since Kp has only positive entries. Also note that as L̃ → ∞,
ap → t(p)Kp,i· and so that a0 → 0 and a1 → 0.

On one hand, we have the time derivative

∂p

(
Ap

ϵap

)
=

(
Wpσ(Ap)− L̃Ap

ϵL̃ (t(p)Kp,i· − ap)

)
.

On the other hand the actual derivative as determined by the new weights:(
Wp − L̃ϵ2t(p)Ap,·iσ(Ap,·i)

T ϵL̃t(p)Ap,·i
ϵL̃t(p)σ(Ap,·i) 0

)(
σ(Ap)
ϵσ(ap)

)
− L̃

(
Ap

ϵap

)
=

(
Wpσ(Ap)− L̃Ap − L̃ϵ2t(p)2Ap,·iKp,i· + L̃ϵ2t(p)Ap,·iap

ϵL̃t(p)Kp,i· − ϵL̃a(p)

)
.

The only difference is the two terms

−L̃ϵ2t(p)2Ap,·iKi· + L̃ϵ2t(p)Ap,·iap = −L̃ϵ2t(p)Ap,·i (t(p)Ki· − ap) .

One can guarantee with a Grönwall type of argument that the representation path resulting from the

new weights must be very close to the path
(

Ap

ϵap

)
.
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A.3 BALANCEDNESS

This paper will heavily focus on the HamiltonianHp that is constant throughout the layers p ∈ [0, 1],
and how it can be interpreted. Note that the Hamiltonian we introduce is distinct from an already
known invariant, which arises as the result of so-called balancedness, which we introduce now.

Though this balancedness also appears in ResNets, it is easiest to understand in fullyconnected
networks. First observe that for any neuron i ∈ 1, . . . , w at a layer ℓ one can multiply the incoming
weights (Wℓ,i·, bℓ,i) by a scalar α and divide the outcoming weights Wℓ+1,·i by the same scalar
α without changing the subsequent layers. One can easily see that the scaling that minimize the
contribution to the parameter norm is such that the norm of incoming weights equals the norm
of the outcoming weights ∥Wℓ,i·∥2 + ∥bℓ,i∥2 = ∥Wℓ+1,·i∥2. Summing over the is we obtain
∥Wℓ∥2F + ∥bℓ∥2 = ∥Wℓ+1∥2F and thus ∥Wℓ∥2F = ∥W1∥2F +

∑ℓ−1
k=1 ∥bk∥

2
F , which means that the

norm of the weights is increasing throughout the layers, and in the absence of bias, it is even constant.

Leaky ResNet exhibit the same symmetry:

Proposition 10. At any critical Wp, we have ∥Wp∥2 = ∥W0∥2 + L̃
∫ p

0
∥Wp,·w+1∥2 dq.

Proof. This proofs handles the bias Wp,·(w+1) differently to the rest of the weights Wp,·(1:w), to
simplify notations, we write Vp = Wp,·(1:w) and bp = Wp,·(w+1) for the bias.

First let us show that choosing the weight matrices Ṽq = r′(q)Vr(q) and bias b̃q = r′(q)eL̃(r(q)−q)br(q)

leads to the path Ãq = eL̃(r(q)−q)Ar(q). Indeed the path Ãq = eL̃(r(q)−q)Ar(q) has the right value
when p = 0 and it then satisfies the right differential equation:

∂qÃq = L̃(r′(q)− 1)Ãq + eL̃(r(q)−q)r′(q)∂pAr(q)

= L̃(r′(q)− 1)Ãq + eL̃(r(q)−q)r′(q)
(
−L̃Ar(q) + Vr(q)σ(Ar(q)) + br(q)

)
= −L̃Ãq + r′(q)Ar(q)σ

(
Z̃q

)
+ eL̃(r(q)−q)r′(q)br(q)

= Ṽqσ
(
Ãq

)
+ b̃q − L̃Ãq

The optimal reparametrization r(q) is therefore the one that minimizes∫ 1

0

∥∥∥W̃q

∥∥∥2 + ∥∥∥b̃q∥∥∥2 dq =

∫ 1

0

r′(q)2
(∥∥Wr(q)

∥∥2 + e2L̃(r(q)−q)
∥∥br(q)∥∥2) dq

For the identity reparametrization r(q) = q to be optimal, we need∫ 1

0

2dr′(p)
(
∥Wp∥2 + ∥bp∥2

)
+ 2L̃dr(p) ∥bp∥2 dp = 0

for all dr(q) with dr(0) = dr(1) = 0. Since∫ 1

0

dr′(p)
(
∥Wp∥2 + ∥bp∥2

)
dp = −

∫ 1

0

dr(p)∂p

(
∥Wp∥2 + ∥bp∥2

)
dq,

we need ∫ 1

0

dr(p)
[
−∂p

(
∥Wp∥2 + ∥bp∥2

)
+ L̃ ∥bp∥2

]
dp = 0

and thus for all p
∂p

(
∥Wp∥2 + ∥bp∥2

)
= L̃ ∥bp∥2 .

Integrating, we obtain as needed

∥Wp∥2 + ∥bp∥2 = ∥W0∥2 + ∥b0∥2 + L̃

∫ p

0

∥bq∥2 dq.
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B EXPERIMENTAL SETUP

Our experiments make use of synthetic data to train leaky ResNets so that the Bottleneck rank k∗

is known for our experiments. The synthetic data is generated by teacher networks for a given true
rank k∗. To construct a bottleneck, the teacher network is a composition of networks for which the
the inner-dimension is k∗. For data, we sampled a thousand data points for training, and another
thousand for testing which are collectively augmented by demeaning and normalization.

To train the leaky ResNets, it is important for them to be wide, usually wider than the input or output
dimension, we opted for a width of 200. However, the width of the representation must be constant
to implement leaky residual connections, so we introduce a single linear mapping at the start, and
another at the end, of the forward pass to project the representations into a higher dimension for the
paths. These linear mappings can be either learned or fixed.

To achieve a tight convergence in training, we train primarily using Adam using Mean Squared Error
as a loss function, and our custom weight decay function. After training on Adam (we found 20000
epochs to work well), we then train briefly (usually 10000 epochs) using SGD with a smaller learning
rate to tighten the convergence.

The bottleneck structure of a trained network, as seen in Figure 3, can be observed in the spectra of
the weight matrices Wp at each layer. As long as the training is not over-regularized (λ too large)
then the spectra reveals a clear separation between k∗ number of large values as the rest decay. In our
experiments, λ = 0.002 yielded good results. To facilitate the formation of the bottleneck structure,
L should be large, for our experiments we used L = 50 and then a range from 4 to 22. Figure 2a
shows how larger L, which have better separation between large and small singular values, lead to
improved test performance.

As first noted in section 1.3, solving for the Cost Of Identity, the kinetic energy, and the Hamiltonian
H is difficult due to the instability of the pseudo-inverse. Although the relaxation (Kp+γI) improves
the stability, we also utilize the solve function to avoid computing a pseudo-inverse altogether. The
stability of these computations rely on the boundedness of some additional properties: the path length∫
||∂pAp|| dp, as well as the magnitudes of Bp, and Bpσ(Ap)

T from the Hamiltonian reformulation.
Figure 3 shows how their respective magnitudes remains relatively constant as the effective depth L̃
grows.

For compute resources, these small networks are not particularly resource intensive. Even on a CPU,
it only takes a couple minutes to fully train a leaky ResNet.
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Figure 3: Various properties of the Hamiltonian dynamics of Leaky ResNets which remain bounded
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