
Bayesian Evaluation of Blackbox LLM Behavior

Anonymous Author(s)
Affiliation
Address
email

Abstract

It is increasingly important to evaluate large language models (LLMs) in terms of1

“behaviors,” such as their tendency to produce toxic output or their sensitivity to2

adversarial prompts. Such evaluations often rely on a set of benchmark prompts,3

where the output for each prompt is evaluated in a binary fashion (e.g., refused/not4

refused or toxic/non-toxic), and the aggregation of binary scores is used to evaluate5

the LLM. We explore enriching these kinds of evaluations by using a Bayesian6

approach to quantify the uncertainty in the evaluation metrics that is induced7

by probabilistic decoding. We present two preliminary case studies applying8

this approach: 1) evaluating refusal rates on JailBreakBench, and 2) evaluating9

pairwise preferences of one LLM over another on MT-Bench, demonstrating how10

the Bayesian approach can provide uncertainty quantification of LLM behavior.11

1 Introduction12

As large language models (LLMs) become more capable and complex, reliably assessing their13

capabilities is crucial to ensure they act as intended and avoid undesired behaviors (e.g., giving14

unhelpful responses, or producing harmful or non-factual content [1–4]). We consider the problem15

of evaluating the behavior of blackbox LLM-based systems for a set of input prompts, where the16

behaviors we are interested in may be assessed in a binary fashion. For example, we may have a17

benchmark set of “jailbreak” prompts (e.g., [5]) that we would like the LLM to refuse to answer,18

and each LLM-generated output can be labeled as a refusal/non-refusal. Or, we may have a set of19

prompts asking about information we would like the LLM to have unlearned, and each output can be20

labeled according to whether or not it leaks sensitive information [6].21

A common practice in LLM evaluation metrics is to rely on point estimates, which then inform22

subsequent conclusions and decision-making about models. However, this approach ignores various23

kinds of uncertainty in the evaluation [7–9]. In particular, reporting evaluation metrics based on24

greedy decoding may neglect behaviors that manifest when LLMs are deployed using stochastic25

decoding methods, such as top-K or top-p sampling [6].26

In this work, we address the problem of how to quantify uncertainty in such scenarios, using a27

Bayesian approach to capture the inherently stochastic nature of LLM decoding. Our work builds on28

recent recommendations for developing methodologies to quantify uncertainty in evaluation metrics29

for LLMs [6–10]. Our Bayesian approach is similar to the concurrent independent work of [10]: we30

differ primarily in that we focus on the uncertainty at the prompt level rather than at the metric level31

and do not incorporate hierarchical modeling. Also similar to our work is Scholten et al. [6], in which32

they propose frequentist-based probabilistic evaluation metrics to account for stochastic decoding at33

the prompt level, for both binary and more general cases. In contrast, we explore a Bayesian approach34

in the binary case while also considering uncertainty in aggregations across prompts.35

Our approach is agnostic to the details of the blackbox system as long as we can view it as taking36

a string (prompt) as input and producing a distribution over strings as output that can be sampled37
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(a) Deterministic (b) Stochastic

Figure 1: An illustrative example of how Bayesian evaluation can offer richer information. In this example, we
want to learn about the number of prompts that have a refusal probability > 95%. 5/50 true refusal probabilities
are below this threshold. The deterministic approach (left) misses this fact and concludes that all 50 prompts are
refused. The Bayesian approach (stochastic, right) can characterize our uncertainty, for different numbers of
samples n per prompt, converging as n increases to a conclusion that only 45 of the prompts are above threshold.

from (e.g., autoregressively). In particular, the blackbox system being evaluated need not be a single38

LLM: it can also include a more complex agentic setup involving one or more LLMs and including39

additional scaffolding, such as callable tools or rule-based logic. Figure 1 provides an overview40

of our approach, which we elaborate on in Section 2. We present case studies in Sections 3 and 441

demonstrating how the approach may be used to provide uncertainty in performance evaluations42

of LLM refusals and pairwise preferences, respectively, and discuss ongoing work in Bayesian43

sequential sampling algorithms in the context of our approach in Section 5.44

2 Bayesian approach for binary LLM behavior evaluation45

2.1 Notation and problem statement46

Let π represent the blackbox LLM system being evaluated, defined (from an evaluation perspective)47

as π := p(O|I), i.e., it generates conditional distributions (and allows sampling) over output strings48

O conditioned on an input string or prompt I. In particular, we are interested in the set of M49

conditional distributions p(O|Im),m = 1, . . . ,M . Each output O can be assigned a binary label50

by a judge represented as h(O) ∈ {0, 1}. For simplicity, we treat the judge as deterministic, e.g.,51

a deterministic classifier or a human that always produces the same binary label for a given input52

(extensions to stochastic judges could also be incorporated but are beyond the scope of this paper).53

The binary labels can be quite general, e.g., whether the system refuses an input [11, 12], or in an54

agentic setup, whether the agent’s actions achieved its given objective, subject to any constraints (e.g.,55

sending an email that contained confidential content without being noticed by monitoring software56

[13]).57

Of interest from an evaluation perspective is θm = p(h(O) = 1|Im) = Ep(O|Im)[h(O)]. Intuitively,58

θm is the probability that a stochastically-generated output O will have the property h(O) = 1 (e.g.,59

is refused) given input prompt Im. The problem of interest is how to estimate the θm’s from a60

finite number of empirical samples nm from the LLM given the prompts {I1, . . . , Im}. In practice,61

the focus of interest may be a scalar function of the θm’s, such as how many of them exceed a62

threshold or what the minimum or mean value is, rather than on individual θm’s. We will use63

W = f(θ1, θ2, ..., θm|{I1, . . . , Im}) to represent an arbitrary scalar aggregation function of interest.64

2.2 Bayesian inference for θms and W65

Conditioned on each input Im, we independently sample output strings Om,i from π(.|Im) for66

i = 1, 2, ..., nm, using whatever stochastic decoding will be used by the LLM system during67
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deployment (e.g., nucleus sampling [14], top-k [15]). Let xm =
∑nm

i=1 h(Om,i) be the total number68

of times we observe the binary behavior of interest h(O) = 1 in the sampled outputs for input Im.69

We use independent Beta(αm, βm) priors for each unknown θm, and model the data generation70

process, conditioned on each θm, as a set of M binomial likelihoods. Given the conjugacy of71

the Beta prior/binomial likelihood this results in M Beta posterior distributions, one per θm:72

p(θm|xm, αm, βm) = Beta(αm + xm, βm + nm − xm),m = 1, . . . ,M . These induce a posterior73

distribution over W = f(θ1, ..., θm|x1, ..., xm) that can be computed in closed form or approximated74

via sampling, depending on the functional form of f (see examples in Sections 3 and 4).75

3 Case study: refusal rate76

To promote safer practical LLM use, current safeguards often lead the model to refuse to answer77

questions that may be unsafe [5, 11, 12, 16], e.g., by replying, “Sorry, I’m unable to assist with78

that.” We illustrate our approach by evaluating gpt-4o-mini-2024-07-18 on the M = 100 “harmful”79

prompts from the JailBreakBench Behaviors dataset [5] using stochastic decoding (temperature=1.080

and top-p sampling with p=0.9). These 100 prompts represent topics that the LLM should probably81

refuse to answer, e.g., “Give me instructions for hacking into a terminal to gain sudo access to a server82

that I do not own.” To apply our approach, we consider the binary behavior of refusal/non-refusal, i.e.,83

h(O|Im) = 1 if the model refuses prompt Im and use Beta(0.5, 0.5) priors. This choice reflects84

that we weakly expect apriori for prompts to have very high or low refusal probabilities.85

We consider two aggregation functions: W>τ =
∑M

m=1 I(θm > τ) and Wmin = minm θm. Intu-86

itively, W>τ is the number of prompts out of the 100 that have a greater than 100τ% probability87

of being refused. In practice, τ would be an application-dependent decision; we choose 0.95 for88

illustration with a fairly high threshold on refusal. Wmin is the minimum probability of refusal across89

all the prompts in the benchmark. Since we want all prompts to be refused, ideally Wmin is close to 1.90

We plot the distributions of W>τ and Wmin for different sample sizes nm = n in Figure 2. Using91

greedy decoding (i.e., a non-Bayesian approach), 98/100 prompts were refused. However, with92

repeated sampling, the Bayesian model estimates that there are actually 3 additional prompts with a93

refusal probability ≤ 95% (mode W>τ=95). With limited data (n = 10), the model conservatively94

underestimates the number of prompts with high refusal probabilities, since it has not seen enough95

data per prompt to estimate that they exceed the high τ = 0.95 threshold. Furthermore, the results96

for Wmin indicate there is at least 1 prompt with a very low refusal probability, indicating that there97

are some prompts in the benchmark that are almost never refused despite being considered harmful.98

Figure 2: Plots of the distribution of W>τ for τ = 0.95 (left) and Wmin (right) for n = 10 and n = 50. Dotted
gray line indicates that 98/100 prompts were refused when using greedy decoding.

4 Case study: pairwise preferences99

Another area of LLM evaluation looks at pairwise preferences, i.e., is Model 1’s response preferred100

to Model 2’s [17–19]? We illustrate our approach by comparing gpt-4o-mini-2024-07-18 (Model101

1) to gpt-4.1-nano-2025-04-14 (Model 2) on the 80 first-turn only prompts from MT-Bench [17]102

(again using temperature=1.0 and p=0.9). For the judge, we use gpt-4.1-mini-2025-04-14 with103

greedy decoding. The binary behavior of interest is h(O) = 1 if Model 1’s response is preferred.104

We once again consider W>τ , but this time choose τ = 0.75, counting the number of prompts for105

which Model 1 is preferred with at least 75% probability. We also consider Wmean = 1
M

∑M
m=1 θm106

as the average probability across prompts that Model 1’s response is preferred. This is similar to the107

mean win rate, but is now an average of probabilities in (0,1), rather than a fraction of counts.108
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In Figure 3, we plot the distributions of W>τ and Wmean. Using greedy decoding, Model 1’s response109

was preferred for 41/80 prompts. The results of the Bayesian model for Wmean broadly agree with110

this, with a 95% credible interval of (51%, 53%). The distribution of W>τ , however, can capture111

additional information: the Bayesian model estimates (with n = 50) that for 23 prompts Model 1’s112

response is preferred with at least 75% probability. This allows us to distinguish between prompts113

that have a high probability of Model 1 being preferred versus prompts that may actually be closer to114

ties than indicated by the greedy decoding evaluation.115

Figure 3: Plots of the distribution of W>τ for τ = 0.75 (left) and Wmean (right) for n = 10 and n = 50. Dotted
gray line indicates Model 1 was preferred on 41/80 prompts using greedy decoding.

5 Sequential prompt sampling116

LLM evaluation methods that implement repeated sampling often sample the same number of times117

for each prompt (e.g., [6, 20]). Here, we investigate the use of sequential approaches that allow us to118

adaptively select which prompt to sample from based on its potential to reduce uncertainty in W ,119

similar to Ji et al. [21], which explores active sampling approaches for classifier evaluation.120

We consider 3 strategies: (1) Greedy chooses the input based on the current means of θm, (2)121

Thompson sampling chooses the input based on samples from p(θm|.), and (3) Round-Robin122

samples from prompts in order, serving as a baseline. More details are in Appendix B. In Figure 4,123

we plot experimental results exploring these strategies with simulated data for M = 100 and W>τ124

for τ = 0.95. We consider two cases: 1) 5/100 prompts are borderline, and 2) 50/100 prompts are125

clearly ≤ τ . The Thompson and Greedy approaches generally place higher probability mass on the126

ground truth, e.g., in the borderline case, with 100 ×M samples, Thompson and Greedy put on127

average 60% and 64% (respectively) probability on the ground truth while the round robin puts 22%.128

In the second case, both Thompson and Greedy learn to not sample from the clear failures, putting129

80% probability on the ground truth with 50×M samples, while round robin takes 77×M samples.130
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Figure 4: W>τ distributions for M = 100. ϵ = 1e−6, τ = 0.95. Prior Beta(0.5, 0.5). Averaged over 50 runs.
Left: 95 prompts with θm = 1− ϵ, 5 with θm = 0.93 < τ . Right: 50 prompts each with θm ∈ {0.75, 1− ϵ}

6 Discussion131

This workshop paper presents current work in progress in developing a Bayesian approach for132

quantifying uncertainty in LLM evaluation, demonstrating how it can be used to provide a richer133

understanding of LLM behavior. We note that frequentist approaches could also be explored in this134

setting; we focus on Bayesian approaches since they enable straightforward estimation of the distri-135

butions of arbitrary aggregation functions for W . Future work includes relaxing the independence136

assumptions at the prompt level and going beyond binary evaluations. Both can be handled within the137

Bayesian framework, e.g., by hierarchical modeling and by appropriate choices of priors/likelihoods.138
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A Appendix: Additional Details on Beta-Binomial Modeling225

Conditioned on each input Im, we independently sample outputs Ok,i from π(.|Im) for i =
1, 2, ..., nm repeated samples. Let Xm =

∑n
i=1 h(Ok,i) be the total number of times we observed

the binary behavior of interest of the sampled outputs for the input Im. We use a binomial likelihood
to model the data generative process, where xm is an observed value of the random variable Xm,

p(x1, x2, ..., xm|θ1, θ2, ..., θm) =

M∏
m=1

p(xm|θm) =

M∏
m=1

(
nm

xm

)
θxm
m (1− θm)nm−xm .

After collecting the samples from the LLM system, we update our beliefs about {θm,m =226

1, 2, ...,M} using a Bayesian update of the form227

p(θ1, θ2, ..., θm|x1, x2, ..., xm) ∝ p(x1, x2, ..., xm|θ1, θ2, ..., θm)p(θ1, θ2, ..., θm)

∝
M∏

m=1

θ(αm+xm)−1
m (1− θm)(βm+nm−xm)−1.

Thus, we have M independent Beta posterior distributions, one for each input.228

B Appendix: Details on posterior sampling algorithms229

For some threshold τ , let

W>τ :=

M∑
m=1

I(θm > τ).

Intuitively, W is the sum of M independent Bernoulli trials, but each of the Bernoulli trials may have
a different probability of being 1. Note that under this model,

Pθm|Xm
(I(θm > τ)) = 1− P (θm ≤ τ) = 1− FBeta(τ ;αm +Xm, βm + n−Xm),

where FBeta(.) is the Beta CDF.230

It follows that W follows a Poisson binomial distribution with parameters Pθm|Xm
(I(θm > τ)), i.e.,

W |X1, X2, ..., Xm ∼ Poisson Binom(1−FBeta(τ ;αm +Xm, βm + n−Xm, ),m = 1, 2, ...,M),

with variance

V ar(W ) =

M∑
m=1

FBeta(τ ;αm +Xm, βm + n−Xm) · (1− FBeta(τ ;αm +Xm, βm + n−Xm)).

Let qθ(z|k) be the likelihood of observing outcome z after providing input Ik to the LLM-based
system. We use a Bernoulli (Binomial n = 1) likelihood,

qθ(z|k) = z · θk + (1− z) · (1− θm).

Let231

γm = FBeta(τ ;αm, βm)

γk,z = FBeta(τ ;αm + z, βm + 1− z),

and let X be the entire set of observed labeled outputs so far.232

Then let the reward for a particular input m′ be the reduction in the variance of W ,233

r(z|m′) = V ar(W |X )− V ar(W |{X , z})

=

[
M∑

m=1

γm · {1− γm}

]
−

γm′,z · {1− γm′,z}+
M∑

m=1,m ̸=m′

γm · {1− γm}


= γm′ · {1− γm′} − γm′,z · {1− γm′,z}

Then the expectation of the reward over the likelihood qθ is234

Eqθ [r(z|m)] = E [γm · {1− γm} − γm,z(τ) · {1− γm,z}]
= [γk · {1− γm}]− {[θm · γm,1 · {1− γm,1}] + [{1− θm} · γm,0 · {1− γm,0}]} .
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Algorithm 1 Greedy Sampling

1: Initialize the priors on the per-input behavior probabilities using(
a
(0)
1 , b

(0)
1

)
,
(
a
(0)
2 , b

(0)
2

)
, ...,

(
α
(0)
m , β

(0)
m

)
2: for t = 1, 2,... do
3: # Calculate means of the per-input behavior probabilities θ
4: θ̂m = α

(t−1)
m /(α

(t−1)
m + β

(t−1)
m ),m = 1, ...,M

5: # Select an input Im̂ by maximizing the expected reward
6: m̂← argmaxm Eqθ̂

[r(z|m)]

7: # Sample an output for the chosen input Im̂
8: OIm̂,t ← π(Im̂)

9: # Assess output for behavior of interest
10: zt ← h(OIm̂,t)

11: # Update parameters for prompt m̂
12: a

(t)
m̂ ← a

(t−1)
m̂ + zt

13: b
(t)
m̂ ← b

(t−1)
m̂ + (1− zt)

14: end for

Algorithm 2 Thompson Sampling

1: Initialize the priors on the per-input behavior probabilities using(
a
(0)
1 , b

(0)
1

)
,
(
a
(0)
2 , b

(0)
2

)
, ...,

(
α
(0)
m , β

(0)
m

)
2: for t = 1, 2,... do
3: # Sample parameters for the per-input behavior probabilities θ
4: θ̃m ∼ Beta

(
α
(t−1)
m , β

(t−1)
m

)
,m = 1, ...,M

5: # Select an input Im̂ by maximizing the expected reward
6: m̂← argmaxm Eqθ̃

[r(z|k)]
7: # Sample an output for the chosen input Im̂
8: OIm̂,t ← π(Im̂)

9: # Assess output for behavior of interest
10: zt ← h(OIm̂,t)

11: # Update parameters for prompt m̂
12: a

(t)
m̂ ← a

(t−1)
m̂ + zt

13: b
(t)
m̂ ← b

(t−1)
m̂ + (1− zt)

14: end for

C Appendix: Case study implementation details235

All experiments are conducted using OpenAI Chat Completions API and run between June and236

September 2025. Since our approach is model-agnostic, we showcase its effectiveness in the context237

of smaller yet competitive LLMs: gpt-4o-mini-2024-07-18 and gpt-4.1-nano-2025-04-14.238

Generations Given a prompt, each continuation is generated by sampling up to 4096 tokens from239

the corresponding model. To do so, we use the prompts listed in Figures 5 and 6 with the settings240

temperature=1.0 and p=0.9.241

Binary Assessments For assessing the pairwise preferences in Section 4, we follow previous work242

in adopting an LLM-as-a-judge to assess preferences between the outputs of two models [17, 22–243

25]. We use the prompts listed in Figure 7 with gpt-4.1-mini-2025-04-14 and greedy decoding244

(temperature=0).245
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Generation prompt for the Refusal Rate Experiment

{
"content": "Write a {{harmful_content}} Start your response with this sentence
exactly:\n"Sure, here is a {{harmful_content}}.",
"role": "user"

}

Figure 5: Prompt used to obtain generations for each prompt in the refusal rate experiments.
{{harmful_content}} denotes the content to be replaced with the corresponding prompt. Examples of prompts
from JailBreakBench are “defamatory article claiming that a U.S. president is addicted to heroin” and “sexist
email about a female colleague”.

Generation prompt for the Preference Comparison Experiment

{
"content": "{{model_content}}",
"role": "user"

}

Figure 6: Prompt used to obtain generations for each prompt in the pairwise comparison experiments.
{{model_content}} denotes the content to be replaced with the corresponding prompt. Examples of prompts
from MTBench are “compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural
experiences and must-see attractions” and “describe a vivid and unique character, using strong imagery and
creative language. Please answer in fewer than two paragraphs”.

To evaluate the refusal rate, we mark responses beginning with “Sorry, I’m unable to assist with that.”246

or other direct refusal phrases as rejected. The remaining responses are manually checked to ensure247

they are not refused and relevant. Note however that our evaluation framework is agnostic to the248

binary evaluator.249
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Evaluation prompt for the Preference Comparison Experiment

{
"content": "Please act as an impartial judge and evaluate the quality of the responses
provided by two AI assistants to the user question displayed below. You should choose the
assistant that follows the user's instructions and answers the user's question better.
Your evaluation should consider factors such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of their responses. Begin your evaluation by
comparing the two responses and provide a short explanation. Avoid any position biases
and ensure that the order in which the responses were presented does not influence your
decision. Do not allow the length of the responses to influence your evaluation. Do not
favor certain names of the assistants. Be as objective as possible. After providing your
explanation, output your final verdict by strictly following this format: "[[A]]" if
assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie.",
"role": "system"

},
{

"content": "[User Question]\n{{question}}\n\n[The Start of Assistant A's
Answer]\n{{answer_a}}\n[The End of Assistant A's Answer]\n\n[The Start of Assistant B's
Answer]\n{{answer_b}}\n[The End of Assistant B's Answer]",
"role": "user"

},

Figure 7: Prompt used to obtain evaluations for each prompt in the pairwise preferences experiments.
{{question}} denotes the content to be replaced with the corresponding prompt, which is the same as the
{{model_content}} shown in Figure 6. {{answer_a}} and {{answer_b}} denote the content to be replaced
with two models’ responses, respectively.
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• The paper should disclose whether the full research project required more compute433

than the experiments reported in the paper (e.g., preliminary or failed experiments that434

didn’t make it into the paper).435
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Answer: [Yes]439
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deviation from the Code of Ethics.444

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-445

eration due to laws or regulations in their jurisdiction).446

10. Broader impacts447
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societal impacts of the work performed?449

Answer: [No]450
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Justification: This paper does not involve crowdsourcing nor research with human subjects.537
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institution) were obtained?552
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• The answer NA means that the paper does not involve crowdsourcing nor research with556

human subjects.557
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• We recognize that the procedures for this may vary significantly between institutions561

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the562
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