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The More You Learn from Abundant Data

ABSTRACT

Recent advances in feed-forward Novel View Synthesis (NVS) have led to a
divergence between two design philosophies: bias-driven methods, which rely
on explicit 3D knowledge, such as handcrafted 3D representations (e.g., NeRF
and 3DGS) and camera poses annotated by Structure-from-Motion algorithms,
and data-centric methods, which learn to understand 3D structure implicitly from
large-scale imagery data. This raises a fundamental question: which paradigm
is more scalable in an era of ever-increasing data availability? In this work, we
conduct a comprehensive analysis of existing methods and uncover a critical trend
that the performance of methods requiring less 3D knowledge accelerates more
as training data increases, eventually outperforming their 3D knowledge-driven
counterparts, which we term “the less you depend, the more you learn.” Guided by
this finding, we design a feed-forward NVS framework that removes both explicit
scene structure and pose annotation reliance. By eliminating these dependencies,
our method leverages great scalability, learning implicit 3D awareness directly from
vast quantities of 2D images, without any pose information for training or inference.
Extensive experiments demonstrate that our model achieves state-of-the-art NVS
performance, even outperforming methods relying on posed training data. The
results validate not only the effectiveness of our data-centric paradigm but also the
power of our scalability finding as a guiding principle.



1 INTRODUCTION

Novel View Synthesis (NVS), a long-standing challenge in computer vision and graphics, aims to
render high-fidelity, unseen views of a scene from a collection of 2D images. Traditional solution
typically involves Structure-from-Motion (SfM) (Wu et al., 2011; Schonberger & Frahm, 2016)
to estimate camera parameters of each view, followed by per-scene fitting of representations like
Neural Radiance Fields (Mildenhall et al., 2020, NeRF) or 3D Gaussian Splatting (Kerbl et al., 2023,
3DGS). Recently, the field has experienced a rapid shift towards a feed-forward paradigm (Yu et al.,
2021; Charatan et al., 2024; Chen et al., 2024; Ye et al., 2025; Jin et al., 2025; Jiang et al., 2025),
where the specific scene representations are directly predicted by neural networks instead of by a
gradient-descent-based optimization. Leveraging powerful priors learned from large-scale datasets,
these approaches can synthesize compelling novel views from sparse, wide-baseline, or even entirely
unposed input images, bypassing the restrictive assumptions of their optimization-based predecessors.

Reviewing recent advances in feed-forward NVS reveals a key distinction between two design
philosophies. The bias-driven one (Yu et al., 2021; Charatan et al., 2024; Chen et al., 2024; Ye
et al., 2025) explicitly injects 3D knowledge, such as human inductive biases (e.g., handcrafted
rendering formulas and predefined 3D representations) or intermediate 3D clues estimated by heuristic
algorithms (e.g., camera parameters obtained by COLMAP (Schonberger & Frahm, 2016))—directly
into the method architecture. The alternative, the data-centric approaches (Sajjadi et al., 2023; Jin
et al., 2025; Jiang et al., 2025), seek to learn 3D knowledge implicitly, allowing spatial understanding
to be distilled directly from vast quantities of 2D image data. This divergence raises fundamental
questions about the future of the field: which paradigm proves more effective and scalable, especially
in an era of increasingly abundant data?

In this work, we investigate the relationship between explicit 3D knowledge dependencies and data
scalability to address these questions. We categorize existing methods (Charatan et al., 2024; Chen
et al., 2024; Ye et al., 2025; Jin et al., 2025) by their dependence on 3D knowledge and systematically
analyze their performance across varying data regimes. Our experiments reveal a consistent and
critical trend: methods that require less explicit 3D knowledge demonstrate superior data scalability.
Their performance accelerates more significantly as the amount of training data increases, eventually
surpassing their 3D knowledge-driven counterparts. This finding highlights a fundamental trade-off:
while explicit 3D knowledge provides a useful scaffold for training on limited data, it creates a
performance bottleneck at scale. We conclude that reducing dependence on 3D knowledge is essential
for developing truly scalable NVS approaches.

Building on these insights, we propose UP-LVSM, a data-centric NVS framework designed to unlock
scalability by eliminating 3D knowledge dependencies. Using a pure Transformer architecture similar
to Jin et al. (2025), UP-LVSM models scenes implicitly within a latent space, bypassing the need
for predefined 3D structures. We further identify camera poses annotated by Structure-from-Motion
pipelines as an indirect form of 3D knowledge that hinders scalability. To address this, we introduce
a novel Latent Pliicker Learner to infer camera geometry directly from images in a self-supervised
manner, further bypassing the need for pose annotations during training.

By shedding these dependencies on 3D knowledge, UP-LVSM fully leverages data scaling to
synthesize photorealistic and 3D-consistent novel views from sparse, unposed images—even without
any pose supervision during training. Experiments demonstrate that UP-LVSM outperforms state-of-
the-art approaches that rely on explicit scene structure or pose annotations. This not only confirms
the viability of minimizing 3D knowledge but also establishes a new path toward scalable and
generalizable novel view synthesis learned purely from 2D observations.

Our primary contributions are summarized as follows:

1. We perform a systematic analysis of NVS methods through the lens of 3D knowledge, uncovering
the key principle that reducing dependence on such knowledge is the key to unlocking scalability.

2. We propose UP-LVSM, a novel data-centric NVS framework that effectively learns spatial reason-
ing from unposed 2D images without requiring explicit 3D representations or pose supervision.

Extensive experiments demonstrate that our framework achieves both superior scalability and state-of-
the-art performance, validating our key hypothesis and the effectiveness of the data-centric paradigm.



2 REVISITING 3D KNOWLEDGE IN FEED-FORWARD NOVEL VIEW SYNTHESIS

2.1 PRELIMINARIES

Novel View Synthesis The goal of novel view synthesis (NVS) is to reconstruct a 3D scene
representation, denoted as S, from a given set of 2D images and their corresponding camera poses,
{(Z%,PL)} N ,. This reconstructed scene is then used to render a novel image 7 from a new target
viewpoint Pr. The process is typically supervised by a reconstruction loss L(T, 7') that measures
the difference between the rendered image 7~ and the ground-truth image 7. This can be formally

expressed as:
§=A(Z" P, I% P;... 2%, P1), T =R(S. Pr), M

where A is the scene reconstruction function and R is the rendering function. In settings with dense
observations (/N > 50), the scene S is typically modeled using explicit 3D representations like Neural
Radiance Fields (NeRFs) (Mildenhall et al., 2020) or 3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023). The differentiable nature of these representations allows the reconstruction function .4 to be
implemented as a per-scene optimization process (Mildenhall et al., 2020; Barron et al., 2022; Kerbl
et al., 2023; Yu et al., 2024), which effectively yields photorealistic novel views.

Feed-Forward NVS Despite their promise, per-scene optimization approaches are limited by their
reliance on dense observations, making them less suitable for under-constrained settings where inputs
are sparse (typically N < 5) or camera poses Pz are unavailable. To address this, feed-forward
approaches (Yu et al., 2021; Charatan et al., 2024; Chen et al., 2024; Ye et al., 2025; Jin et al., 2025)
employ a neural network as the reconstruction function .A. By training on large-scale multi-view
datasets (Zhou et al., 2018; Deitke et al., 2023; Ling et al., 2024), these methods learn powerful priors
to compensate for the ambiguity of sparse inputs, enabling reconstruction of the scene S in a single
forward pass. More discussions are provided in Appendix B.

2.2 3D KNOWLEDGE DEPENDENCE IN FEED-FORWARD NV S

In reviewing recent advances in feed-forward NVS, the methods can be characterized by their varying
reliance on 3D knowledge, which typically manifests in two key aspects: explicit scene structure and
pose annotation availability. Table 1 demonstrates the categorization.

Method | Explicit Scene Structure S Modeling R Modeling | Problem Setting Pz Pr
PixelNeRF (Yu et al., 2021) v NeRF Volumetric Rendering v v
PixelSplat (Charatan et al., 2024) v 3DGS Gaussian Splatting osed v v
MVSplat (Chen et al., 2024) v 3DGS Gaussian Splatting pos v v
LVSM (Jin et al., 2025) X Latent Learnable Network v v
NoPoSplat (Ye et al., 2025) v 3DGS Gaussian Splatting osed-tareet X v
Ours (PT-LVSM) X Latent Learnable Network pos g X v
SPFSplat* (Huang & Mikolajczyk, 2025) v 3DGS Gaussian Splatting X X
Rayzer* (Jiang et al., 2025) X Latent Learnable Network unposed X X
Ours (UP-LVSM) X Latent Learnable Network X X

Table 1: 3D Knowledge in Feed-Forward NVS. We characterize recent feed-forward NVS methods
(*denotes concurrent work) based on their varying dependence on explicit 3D knowledge (i.e., the
choice of S and R modeling) and pose availability (i.e., whether Pz and P are provided).

Explicit Scene Structure As demonstrated in Table 1, this refers to the integration of explicit 3D
representations or handcrafted rendering operations directly into the NVS architecture. Methods based
on established 3D structures, such as PixelNeRF (Yu et al., 2021), PixelSplat (Charatan et al., 2024),
MVSplat (Chen et al., 2024), NoPoSplat (Ye et al., 2025), and SPFSplat (Huang & Mikolajczyk,
2025), incorporate explicit representations like NeRF (Mildenhall et al., 2020) or 3DGS (Kerbl et al.,
2023) along with their associated rendering equations to model the scene S and the render function
‘R. These architectural choices enforce a strong geometric consistency based on principles like
volumetric rendering or plane sweeps, thereby explicitly injecting 3D knowledge into method designs.
In contrast, approaches like LVSM (Jin et al., 2025) and Rayzer (Jiang et al., 2025), treat scene
modeling as a learning problem, representing the scene S implicitly as latent tokens and allowing its
modeling to be learned implicitly from data.
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Figure 1: Pose Annotation Availability.

2.3 EXPLICIT VS. LEARNED 3D KNOWLEDGE: A DIVERGENCE

Viewing predefined 3D structure and pose availability as forms of explicit 3D knowledge reveals a
fundamental divergence in feed-forward NVS design. On one side, the bias-driven paradigm relies
on explicitly injecting 3D knowledge as human inductive biases. On the other, the data-centric
paradigm allows this knowledge to be learned implicitly from large-scale imagery. While both
paradigms have proven effective, a critical question remains: which is more scalable and learns more
effectively in an era of increasing data abundance? This work argues that reducing dependence on
explicit 3D knowledge leads to superior scalability and, ultimately, better performance. We term this
principle “the less you depend, the more you learn”, and provide a detailed analysis to substantiate
this hypothesis in the following section.

3 THE LESS YOU DEPEND, THE MORE YOU LEARN

In this section, we present our analysis to validate the hypothesis that the less you depend, the
more you learn. Specifically, the less you depend refers to reducing reliance on 3D knowledge in
methodology design, including explicit scene structure and camera pose annotations. Meanwhile, the
more you learn refers to scalability, which is defined as how performance improves as the amount of
training data increases. By examining the relationship between performance and data quantity for
different methods, we find the performance of methods that requires less 3D knowledge accelerates
more as data scales.

Dataset While our experiments are conducted across diverse Subset Train Test
datasets (Zhou et al., 2018; Ling et al., 2024; Liu et al., 2021; Deitke et al., -
2023), as explained later in Section 3.3, we select the RealEstate10K Little 1202

dataset (Zhou et al., 2018) as the representative to introduce our exper- Medium 124114215 7286

Large
imental setup, vyl}ich contains real—worlld.imagery over 70K scenes. .To Fuug 66033
evaluate scalability, we create four training subsets of increasing size
(little, medium, large, and full, summarized in Table 2), while using a Table 2: Number of scenes

single, consistent test set for all evaluations to ensure fair comparison.  in RealEstate10K subsets.

Representative Methods We select methods that span different levels of explicit 3D structural
biases and vary in problem settings to represent different dependencies on 3D knowledge. In the
posed setting, we contrast the structural bias-driven MV Splat (Chen et al., 2024) with the bias-free
LVSM (Jin et al., 2025). In the posed-target setting, we select NoPoSplat (Ye et al., 2025) as the
bias-driven representative. As no established bias-free method exists in the posed-target setting,



we simply adapt LVSM for this setting to further enhance the comprehensiveness of our analysis,
denoting it as PT-LVSM. We leave adaptation details in Appendix I to maintain the flow of our main

analysis.

Experimental Results

We evaluate these methods trained at different subsets of the RealEstate 10K

dataset to assess their scalability, as shown in Table 3. We quantify scalability as the average gain in
NVS metrics (PSNR, SSIM, LPIPS) for every 4 increase in training data.

. Little Subset Medium Subset Large Subset Full Subset Avg. Gain T
Method  Bias-free  Prfree PSNR?/ SSIM1 / LPIPS., APSNR / ASSIM / ALPIPS
MV Splat X X 25.24/0.849/0.136  26.06/0.865/0.128 26.38/0.872/0.124 26.45/0.874/0.123 0.39/0.008 /0.004
LVSM v X 25.67/0.831/0.145 26.52/0.851/0.135 27.11/0.864/0.124 27.60/0.874/0.117 0.64/0.014/0.009
NoPoSplat X v 25.09/0.840/0.142 25.33/0.849/0.139 25.43/0.851/0.139 25.46/0.854/0.137 0.12/0.004 /0.002
PT-LVSM v v 20.80/0.659/0.231 22.92/0.731/0.184 24.54/0.781/0.159 26.00/0.825/0.135 1.72/0.055/ 0.031
Table 3: Scalability Comparisons on RealEstate 10K (Zhou et al., 2018).
3.1 DEPENDENCY ANALYSIS ON EXPLICIT 3D STRUCTURE

As shown in Table 3 and Figure 2, our experiments reveal a clear trade-off between explicit scene
structure and data scalability. Methods with explicit scene structure (i.e., MVSplat and NoPoSplat)
excel in low-data regimes (e.g., 1K scenes) but fail to scale effectively with more data. Conversely,
implicit methods (i.e., LVSM and PT-LVSM), while initially underperforming, demonstrate substan-
tial performance gains as the training set grows to 66K scenes. This confirms our hypothesis that
reducing reliance on explicit 3D structures is crucial for unlocking data scalability.
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Figure 3: Intuitive Explanation. On posed-target setting, both NoPoSplat and PT-LVSM fail to
infer correct spatial structure when trained with 1K scenes, resulting in artifacts at the right bottom
of target views. While bias-driven NoPoSplat consistently makes mistakes, PT-LVSM significantly
improves when training data scales up from 1K to 66K, eventually outperforming NoPoSplat.
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Discussion Intuitively, strong structural biases act as a necessary scaffold when training data is
scarce, compensating for a lack of information. However, as data becomes abundant, these same
biases become restrictive, limiting the model’s ability to learn complex patterns directly from the



data and thus hindering generalization. As illustrated in Figure 3, performance of the data-centric
method improves with more data, while the bias-driven approach stagnates.

3.2 DEPENDENCY ANALYSIS ON POSE ANNOTATIONS

Beyond 3D bias, we find that reliance on pose annotations also critically impacts scalability. As
shown in Table 3 and Figures 4, PT-LVSM demonstrates significantly better scalability than LVSM.
Although both are data-centric methods with weak 3D biases, they differ in a key aspect: LVSM
requires input images annotated with camera pose Pz, whereas PT-LVSM does not.

Discussion Benefiting from known camera poses that provide strong 3D 29

clues, posed methods like LVSM should theoretically have a significantly A/‘/A—”‘
. - o 26
higher performance ceiling. However, it is observed that our pose-free £

PT-LVSM quickly closes this gap as data scales. We attribute this to noise £ A vsm
in pose annotations. As discussed in Section 2.2, pose annotations in » - Privsu
real-world datasets (Zhou et al., 2018; Yao et al., 2020; Yeshwanth et al., Ik 4k 16k 66k

Training Scenes

2023; Ling et al., 2024) are typically generated by Structure-from-Motion . . P
tools (Wu et al., 2011; Schonberger & Frahm, 2016) that are built on E{%lﬁ :n dS ;?ll_af\l};tg,[?f
geometric inductive biases, thereby introducing noise and inconsistencies.

We argue that relying on these poses during training is an indirect form of 3D knowledge dependence,
which creates a bottleneck at scale. See Appendix E for a detailed explanation.

3.3 UNLOCKING DATA-CENTRIC FEED-FORWARD NVS

Motivation Our analysis indicates that data scalability in feed-forward NVS is fundamentally
limited by dependencies on explicit scene structure and camera pose annotations. As PT-LVSM still
relies on target view poses Py for its posed-target setting (Figure 1), a critical question remains: can
we achieve even greater scalability and surpass the performance ceiling of pose-dependent methods
like LVSM by removing this final dependency? We answer this by proposing UP-LVSM, a novel
feed-forward NVS framework that learns 3D knowledge implicitly from 2D images without any pose
annotations, which we will detail in Section 4.
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Figure 5: Superior Scalability of UP-LVSM on RealEstate10K.
. RealEstate10K (Zhou et al., 2018): PSNRT / SSIMT / LPIPS | APSNR / ASSIM / ALPIPS
Method Profiee  Profree #Scenes: 1K #Scenes: 4K #Scenes: 16K #Scenes: 66K Avg. Gain 1
LVSM X X 25.67/0.831/0.145 26.52/0.851/0.135 27.11/0.864/0.124  27.60/0.874/0.117 0.64/0.014/0.009
PT-LVSM v X 20.80/0.659/0.231 22.92/0.731/0.184 24.54/0.781/0.159  26.00/0.825/0.135 1.72/0.055/0.031
UP-LVSM v v 21.037/0.670/0.226  23.97/0.744/0.185  26.90/0.817/0.142  28.82/0.891/0.104 2.63/0.074/0.041
, , DL3DV (Ling et al., 2024): PSNR1 / SSIM* / LPIPS | APSNR / ASSIM / ALPIPS
Method Prfree  Pr-free ‘ #Scenes: 0.2K #Scenes: 0.6K #Scenes: 2.5K #Scenes: 10K Avg. Gain T
LVSM X a8 16.61/0.531/0.457 17.82/0.572/0.422 19.14/0.603 / 0.397 1.27/0.035/0.030
PT-LVSM v X Not Converged. 16.58/0.410/0.465 17.66/0.585/0.424  19.47/0.641/0.379 1.44/0.115/0.043
UP-LVSM v ' 16.45/0.387/0.471  17.66/0.581/0.423  19.59/0.653 /0.366 1.57/0.133/0.053
, ACID (Liu et al., 2021): PSNRT / SSIM1 / LPIPS | APSNR / ASSIM / ALPIPS
Method Profiee  Profree ‘ #Scenes: 0.2K #Scenes: 0.8K #Scenes: 3K #Scenes: 13K Avg. Gain 1
LVSM X X 23.43/0.717/0.245 25.96/0.759/0.223  27.01/0.779/0.211 1.79/0.031/0.017
PT-LVSM v X Not Converged. 18.41/0.565/0.459  26.31/0.760/0.204  26.75/0.768 / 0.199 4.17/0.102/0.130
UP-LVSM v v 15.92/0.431/0.643  26.88/0.771/0.194  27.21/0.787/0.186 5.65/0.178/0.224
e s Objaverse (Deitke et al., 2023): PSNR7/ SSIM? / LPIPS | APSNR / ASSIM / ALPIPS
Method Profiee  Pr-free ‘ #Objects: 2K #Objects: 8K #Objects: 32K #Objects: 128K Avg. Gain 1
LVSM X X 24.58/0.814/0.177 28.90/0.887/0.106  29.63/0.898/0.096  30.22/0.906/0.087 1.7770.029 /0.028
PT-LVSM v X 21.64/0.754/0.326  25.01/0.825/0.198  26.83/0.852/0.141  27.44/0.859/0.120 1.92/0.034/0.068
UP-LVSM v v 19.96/0.712/0.403  23.38/0.773/0.275  26.02/0.827/0.158  26.12/0.829/0.156 2.11/0.040/0.086

Table 4: We conduct extensive experiments across diverse datasets (Zhou et al., 2018; Ling et al.,
2024; Liu et al., 2021; Deitke et al., 2023) to validate our hypothesis.

Discussion As demonstrated in Figure 5 and Table 4, our UP-LVSM achieves consistently superior
scalability by fully eliminating reliance on explicit 3D knowledge, which validates our hypothesis.
Moreover, benefiting from great scalability, our UP-LVSM achieves state-of-the-art performance



using only 2D supervision, which unlocks the full potential of data-driven NVS learning. More
analysis about data scalability of our method is provided in Appendix E.

4 METHODOLOGY

As motivated in Section 3.3, we propose UP-LVSM (Unposed Large View Synthesis Model) to
unlock scalability by eliminating the need for explicit scene structure and camera pose annotations.
This, however, places our method in the challenging unposed setting (Figure 1), where the core
difficulty lies in learning without the explicit target pose supervision (P7) available in simpler
settings like posed-target. To this end, we propose the Latent Pliicker Learner, the core component in
UP-LVSM that learns a meaningful latent pose space in a self-supervised manner. In this section, we
will detail these technical designs and provide experimental results to validate the effectiveness of
our proposed method, highlighting its capability of synthesizing high-fidelity novel views directly
from unstructured 2D image collections.

4.1 TRANSFORMER-BASED ARCHITECTURE

As illustrated in Figure 6 (a), we build upon previous works (Jin et al., 2025; Wang et al., 2025),
employing Transformer (Vaswani et al., 2017) to construct our feed-forward neural networks as
an encoder-decoder architecture. As detailed in Figure 6 (b), it first encodes input images Z into
patchified tokens using DINOv2 (Oquab et al., 2023), and then employs Transformer networks to
reconstruct scene latents. A decoder takes the scene latents and the camera pose information in latent
Pliicker as inputs to synthesize novel views. See Appendix I for detailed network architecture.
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Figure 6: UP-LVSM Architecture.

4.2 LATENT PLUCKER LEARNER

Background As previously discussed, UP-LVSM operates in the challenging unposed setting,
where ground-truth poses P are not provided. Target poses are fundamental to conventional NVS
(posed & posed-target settings), as they provide the explicit viewpoint conditioning required for the
rendering process. This creates clear image-pose pairs for supervised learning. In the absence of
such ground-truth, the model must learn to infer latent poses in a self-supervised manner, leveraging
the implicit signal from multi-view imagery (i.e., images of the same scene serve as positive pairs).
However, the key challenge lies in constraining the representational capacity of this learned latent pose.
A high-dimensional latent space risks severe information leakage, where the latent pose inadvertently
encodes the target image itself rather than just the viewpoint. Conversely, a low-dimensional space
may lack the expressiveness required to guide fine-grained, pixel-accurate rendering.



Method We propose the Latent Pliicker Learner to address this challenge using an autoencoder
architecture that strategically manages information flow, as illustrated in Figure 6 (c). To prevent
information leakage from the target view, the learner first uses an encoder to distill the image into
a highly compact 7D latent pose token (translation x and quaternion q), as detailed in Figure 6 (d).
This low-dimensional bottleneck constrains the latent space, making it unable to retain specific image
content. Conversely, to ensure this compact representation is expressive enough for rendering, the
token is then analytically upsampled into fine-grained, pixel-level conditions by adapting the Pliicker
ray embedding (Plucker, 1865) to operate within a learned latent space. This design provides rich,
per-ray conditioning for the renderer while maintaining a minimal set of learnable pose parameters.
By training this module with a shared latent space across scenes, our model effectively learns a
meaningful camera pose representation without any 3D supervision.

Pliicker Ray Embedding Pliicker ray embedding (Plucker, 1865) is an effective technique to embed
camera pose information into pixel-aligned tokens. Given an image Z € R *W*3 the Pliicker ray
encodes its corresponding camera pose for each pixel as P= concat(o x d,d) € REXWx6 where
o represents the camera center and d is the camera ray direction corresponding to the pixels.

4.3 EXPERIMENTS

Setup As our method employs the DINOvV2 tokenizer, the 256 x 256 resolution is incompatible
with for a patch size of 14. We therefore adopt the 224 x 224 resolution to align with DINOv2’s
native configuration. Note that to ensure strict fairness, we do not use official checkpoints of
baselines. Instead, we retrain all baseline methods from scratch using the exact same 224 x 224
resolution with a patch size of 14 and the same training split as our UP-LVSM. All training follows
the official implementations of each baseline. This experimental setup is also applied in the scalability
experiments of Section 3.

NVS Performance We follow Ye et al. (2025) to evaluate NVS performance. Qualitative and
quantitative results on the RealEstate10K dataset (Zhou et al., 2018) are shown in Figure 7 and
Table 5, respectively. Despite trained without any 3D supervision, our UP-LVSM even outperforms
previous pose-dependent methods, which have access to the dataset-provided poses. These results
demonstrate the effectiveness of our proposed framework, validating the feasibility of scaling 2D-only
learning frameworks to unlock spatial reasoning without explicit scene structure or pose annotations.
More results are illustrated in Appendix F.
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Figure 7: Qualitative View Synthesis Comparisons.



Large Overlap Medium Overlap Small Overlap Full Eval.

Method  InputPose Pz | ponp 4 SSIMT  LPIPS | | PSNRT SSIM{ LPIPS| | PSNRT SSIM{T LPIPS| | PSNR{ SSIM 1 LPIPS |

Ours (UP-LVSM) 29.51 0.901 0.098 26.93 0.852 0.132 24.54 0.796 0.174 28.82 0.891 0.104

PixelNeRF 20.94 0.581 0.517 20.38 0.559 0.540 19.27 0.536 0.568 20.33 0.572 0.549

PixelSplat v 26.18 0.879 0.115 23.61 0.821 0.162 21.22 0.752 0.225 25.51 0.867 0.126

MVSplat 27.32 0.889 0.112 23.97 0.819 0.165 20.67 0.730 0.238 26.45 0.874 0.123

LVSM 28.58 0.887 0.108 25.60 0.830 0.149 22.71 0.765 0.202 27.60 0.874 0.117
NoPoSplat

Ours (PT-LVSM) X ‘ 26.47 0.829 0.130 24.27 0.778 0.173 22.03 0.720 0.224 26.00 0.825 0.135

25.84 0.854 0.133 ‘ 23.67 0.808 0.177 ‘ 21.58 0.750 0.231 ‘ 25.46 0.854 0.137

Table 5: Quantitative Comparisons on RealEstate 10K (Zhou et al., 2018). Following Ye et al. (2025),
we conduct evaluations across different overlap levels. Our UP-LVSM outperforms pose-dependent
approaches, particularly in challenging cases where input views share minimal overlap.

Method Train—»Test | PSNR1 SSIM?t LPIPS | Model Source of Target Pose Pr | PSNRT SSIMt LPIPS |
LVSM  ACID—ACID 27.03 0.774 0.201 (a) SfM annotations 26.00 0.825 0.135
UP-LVSM  ACID—ACID 27.21 0.787 0.194 UP-LVSM  (b) Pose Estimator in Sajjadi et al. (2023) 20.92 0.521 0.558
UP-LVSM  REI10K—ACID 27.33 0.792 0.182 (c) Latent Pliicker Learner 28.82 0.891 0.104

Table 6: Zero-Shot Generalization. Table 7: Ablation Studies on the Latent Pliicker Learner.

Zero-Shot Generalization We evaluate the zero-shot generalization of UP-LVSM by training on
the RealEstate 10K dataset and testing on the unseen ACID dataset (Liu et al., 2021), denoted as
RE10K—ACID. As demonstrated in Table 6, this zero-shot generalization even outperforms methods
trained directly on ACID, highlighting the performance gains from the larger quantity of data in
RealEstate 10K (66K scenes) over ACID (13K scenes), which reinforces our findings.

Ablation Studies To validate the effectiveness of
our Latent Pliicker Learner, we conduct ablation stud-
ies by contrasting different source of target pose Py
information during UP-LVSM’s training, as illus-
trated in Figure A. The choice of SfM annotations
results in a fallback to the posed-target setting and the
inaccuracies of SfM lead to a performance degrada- (®) STM Tools

tion, as demonstrated in Table 7 (a). We also replace & CoLMAP

the Latent Pliicker Learner with the pose estimator

from Sajjadi et al. (2023), which uses a key-value (b) Sjjadi et al.

querying mechanism and masking strategy to encour- Mask

age learning a meaningful latent pose space. While . i:l-ﬁ
effective in smaller data regimes, this design becomes . .

unstable at scale and yields suboptimal results, as Figure A. Ablation Studies on the Latent
demonstrated in Table 7 (b). In contrast, our Latent Pliicker Learner. (a) Directly us1ng‘expl1c1t
Pliicker Learner leverages fine-grained Pliicker em- Poses annotated by SfM tools to provide pose
beddings together with a bottlenecked architecture, Information of target views. (b) Replacing the

naturally avoiding information leakage and delivering Latent Pliicker Learner with a special pose
substantially better rendering quality. estimator network (Sajjadi et al., 2023).

Scene Synthesized
Target View

Input Views
Latent

Encoder E Decoder

GT Target Views

4.4 MORE INVESTIGATION
Reference View Source View  Attn. Weights DINOv2 Sim.

Model [ 0°~15° 7 15°~30°1 30°~60°1 60°~ 180°1
CLIP (Radford et al., 2021) 6.6 52 47 3.0
MAE (He et al., 2022) 10.8 78 6.0 35
DINOV2 (Oquab et al., 2023) 36.8 27.5 179 8.0
UP-LVSM (Ours) 319 254 180 8.2

Table 8: Correspondence Estimation Accuracy for 3D
Awareness Probing (El Banani et al., 2024).

Model | PSNR@AIIT SSIM@AII 1 LPIPS@AIl |
DUSER (Wang et al., 2024) 19.28 0.630 0.391
LVSM (Jin et al., 2025) 18.73 0.590 0.415
UP-LVSM (Ours) 18.81 0.601 0.409
Table 9: GTA Metrics for 3D Awareness Probing (Chen
et al., 2025). F1gure 8: Attentlon Weight Visualization.

Probing 3D Awareness As our UP-LVSM is a fully implicit approach to NVS which forgoes
explicit 3D knowledge, it is critical to ascertain whether it implicitly learns spatial relationships. To
this end, we probe the model’s 3D awareness following the methodologies proposed in (El Banani



et al., 2024; Chen et al., 2025). Our quantitative assessment, summarized in Table 8 & 9, demonstrates
competitive 3D awareness. For a qualitative analysis, we visualize the attention weights of UP-
LVSM between the marked patch (red) in the reference view and each patch in the source view, as
illustrated in Figure 8. The visualized weights demonstrate noticeable correspondence awareness,
even compared to DINOvV2 feature similarity. Both analyses confirm that UP-LVSM successfully
develops a considerable degree of 3D awareness. See Appendix J.1 for detailed explanation.

Probing Pose Accuracy We further evaluate the accuracy of the latent poses produced by our
Latent Pliicker Learner by training a simple 2-layer MLP to map the latent poses to SE (3) space,
supervised with pose annotations from RealEstate10K. We report the accuracy of mapped poses in
Table 10, where our method achieves pose accuracy comparable to the concurrent Rayzer (Jiang et al.,
2025). Qualitatively, we use t-SNE (Van der Maaten & Hinton, 2008) to visualize difference between
the latent space and the real-world SE (3) space in Figure 9, demonstrating that the two spaces can
align through a simple twisted domain transformation. See Appendix J.2 for details. Both results
indicate that our model effectively learns the underlying 3D pose geometry using only 2D supervision.
To demonstrate real-world applicability, we additionally explain how to explicitly control the learned
latent poses (e.g., to render along a specific camera trajectory) in Appendix D.

Ground Truth Space Latent Space

Model \ Trans.@0.1 T Trans.@0.2 1 Trans.@0.3 1
- SR 4 Groum truhSpace - o Latent Space
Rayzer (Jiang et al., 2025) 61.2 84.2 92.8 - &Q', X ~ &
UP-LVSM (Ours) 713 89.2 96.4 FR £ ""«9"3’
; t‘}% ; ‘«2’}.

Model | Rot.@10°1  Rot.@20°1  Rot.@30° 1 % % "‘»_:_,
Rayzer (Jiang et al., 2025) 99.6 99.9 100 Rl N
UP-LVSM (Ours) 98.4 99.6 99.8 +-SNE Dim 1 ¢-SNE Dim 1

Figure 9: Visualization of the Learned La-

Table 10: Accuracy of Mapping Latent Pose to SE (3) . tent Space of Camera Poses

Camera Control While UP-LVSM em-
ploys the Latent Pliicker Learner to eliminate
pose annotation dependence for improved scal-
ability, the implicit nature of its estimated la-
tent camera poses hinders the explicit control
of the rendering view. However, it is easy to
extend UP-LVSM for camera-controllable ren-
dering in real-world scenarios by additionally !
learning a linear mapping from the SE (3) St -
space to the learned latent space, as our La- Figure B: The linear transformation effectively maps
tent Pliicker Learner effectively encourages input camera sequence into latent space, facilitating
the model to learn a meaningful manifold (Ta- explicit camera control.

ble 10 and Figure 9). After a regular training

Input Camera Sequence Mapped in Latent Space

. R Model PSNRT SSIMT LPIPS]

stage, we fine-tune UP-LVSM with this lin- _ |
. UP-LVSM (w. Latent Pliicker Learner) 28.82 0.891 0.104
ear mapper using a small subset of posed data  yp.LvsM (w. Linear Mapper) 2841 0886  0.110

(1202 scenes in RealEstate 10K, 1.8% of the
training dataset). Table A demonstrates little
performance degradation of this finetuning stage. We further visualize the linearly mapped poses in
Figure B, providing evidence that our design effectively supports transformation between explicit
SE (3) cameras and the latent ones, allowing human-specified camera sequences to be directly
mapped to latent Pliicker representations for controllability.

Table A: NVS Performance with Mapped Poses.

5 CONCLUSION

In this work, we revisit the field of feed-forward novel view synthesis through the lens of 3D
knowledge dependency. We first highlight the need to reduce dependence on 3D knowledge by
analyzing the scaling behaviors of state-of-the-art methods, revealing a key trend: methods with
less 3D dependence accelerate dramatically as data scales—the less you depend, the more you
learn. Building on this, we propose a novel NVS framework bypassing the need of explicit scene
structure and camera pose annotations. By eliminating these 3D knowledge dependencies, our method
leverages data scaling to foster implicit 3D awareness from 2D imagery, even outperforming the 3D
knowledge-driven counterparts, thereby validating the effectiveness of our data-centric paradigm.
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REPRODUCIBILITY STATEMENT

The scalability analysis in Section 3, the training of our proposed method (UP-LVSM), and the
experimental results in Section 4.3 & 4.4, are all reproducible. Details of the scalability analysis are
provided in Section 3 and Appendix 1.2 to ensure reproducibility. Details of training UP-LVSM are
provided in Appendix I.1 with the architecture illustrated in Section 4.1. Details of investigation
in Section 4.4 are provided in Appendix J. Furthermore, we will release code for the training and
evaluation of our UP-LVSM to facilitate future research for the community.
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A  PROBLEM SETTING DETAILS

In this section, we provide additional details regarding the problem settings described in Section 3 of
the main paper, where we present our analysis to support the hypothesis: The less you depend, the
more you learn. Clarifying these settings is essential, as our analysis relies heavily on experimental
results and comparative evaluations across state-of-the-art methods. While Figure 1 in the main paper
illustrates the three problem settings we categorize, and Table 1 lists the corresponding methods, the
definitions of these settings—such as their inputs, outputs, and evaluation protocols—are only briefly
discussed for clarity. In this appendix, we elaborate on these aspects, with particular attention to
distinctions between training, evaluation, and real-world deployment.

A.1 POSED SETTING

The posed setting is the most straightforward scenario, assuming that pose information is always
available. During both training and evaluation, the pose of the target view Py is provided by the
dataset. In real-world applications, however, P is determined by a user query, reflecting natural
camera control behavior.

A critical aspect of this setting is that the view synthesis problem is inherently pose-equivalent: any
given instance with poses Pz, Pr is functionally equivalent to one with poses H'Pz, H'Pr, where
‘H’ is an arbitrary transformation in SE(3). To ensure pose-equivalence during training, a common
practice is to apply camera pose normalization. This procedure treats the first input view as the
reference, designating its pose as canonical and transforming all other camera poses from world
coordinates into the canonical frame.

A.2 POSED-TARGET SETTING

The posed-target setting introduces a subtle but important distinction. Unlike the posed setting, it
does not require the input view poses Pz for scene modeling, but it does require the target pose
‘Pr for view synthesis. Despite the pose-equivalence normalization discussed earlier, this setting
inherently introduces ambiguity—specifically, how can a model reason about the spatial relationship
between a posed target view and unposed input views?

To address this challenge, existing posed-target methods (Wang et al., 2021b; Fan et al., 2024; Ye
et al., 2025) typically employ an evaluation-time pose alignment trick to ensure fair comparison on
benchmarks such as RealEstate 10K (Zhou et al., 2018). For example, in NoPoSplat (Ye et al., 2025),
the model first estimates a 3D Gaussian Splatting (3DGS) representation in a canonical space from
two unposed input views. This reconstructed 3DGS is then frozen, and the target camera pose is
optimized at inference time so that the synthesized target view aligns as closely as possible with the
ground truth image. It is important to note that this procedure is used solely for benchmark evaluation;
in real-world applications, the target view pose is typically determined directly via user input, making
such optimization unnecessary.

A.3 UNPOSED SETTING

The unposed setting presents the most challenging scenario. Unlike the posed-target setting, where
the target view pose P is known and can guide view synthesis, the unposed setting assumes no
pose information is available even during training, leaving explicit pose-based viewpoint control
impossible.

To overcome this limitation, the early method, RUST (Sajjadi et al., 2023), employs a strategy similar
to evaluation-time alignment, but adapted for training. Specifically, RUST introduces an implicit
alignment mechanism by allowing the model to observe the ground truth target image 7 and learn to
estimate its pose in a self-supervised manner, as depicted in Figure 1 of the main paper. Following
this, our UP-LVSM framework introduces the Latent Pliicker Learner, which estimates latent Pliicker
coordinates from the target view 7 and the scene latent S. This design enables the model to infer the
viewpoint from which to render, facilitating implicit alignment between the synthesized and ground
truth target views for effective supervision. The concurrent work, Rayzer (Jiang et al., 2025), adopts
a similar strategy by inferring the spatial relationship from multiple input and target views to predict
each view’s corresponding Pliicker maps for view synthesis.
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While such alignment techniques are effective during training and evaluation, they are unsuitable
for real-world deployment, where the ground truth target view is unavailable. Unlike the posed and
posed-target settings, where the target pose can be explicitly determined via human-specified camera
sequences, the unposed setting relies on a learned, implicit pose space. This fundamentally limits
direct, interpretable control and thereby weakens its practical applicability. To address this, our work
prioritizes explicit camera control over implicit solutions (Sajjadi et al., 2023) or relative ones (Jiang
et al., 2025), and proposes an effective strategy, which we detail in Appendix D.

B MORE RELATED WORK

Feed-forward Novel View Synthesis Recent advancements in novel view synthesis using dense
multi-view inputs have made significant progress (Mildenhall et al., 2020; Barron et al., 2022; Kerbl
et al., 2023; Yu et al., 2024), but their reliance on explicit geometric cues limits applicability to un-
structured observations. In contrast, generalizable methods aim to bypass computationally expensive
per-scene optimization, typically by combining neural networks with 3D representations (Yu et al.,
2021; Wang et al., 2021a; Du et al., 2023; Charatan et al., 2024; Chen et al., 2024; Xu et al., 2024;
Zhang et al., 2024; Ye et al., 2025; Huang & Mikolajczyk, 2025). Another paradigm (Dosovitskiy
et al., 2020; Rombach et al., 2021; Sajjadi et al., 2022; 2023; Suhail et al., 2022; Jin et al., 2025; Jiang
et al., 2025) explores geometry-free solutions using feed-forward neural networks, with the recent
methods (Jin et al., 2025; Jiang et al., 2025) achieving impressive results without explicit 3D bias.

Multi-view Imagery Dataset Learning-based novel view synthesis approaches typically rely on
large-scale datasets consisting of multi-view images and their corresponding camera parameters for
training. Early datasets focused on object-level data (Chang et al., 2015; Reizenstein et al., 2021;
Collins et al., 2022; Downs et al., 2022), while recent efforts (Yu et al., 2023; Deitke et al., 2023) have
significantly expanded data scales. Meanwhile, several scene-level datasets (Dai et al., 2017; Chang
et al., 2017; Li & Snavely, 2018; Yao et al., 2020; Li et al., 2021; Liu et al., 2021; Roberts et al.,
2021; Yeshwanth et al., 2023; Ling et al., 2024; Tung et al., 2024) have been proposed to facilitate
scene-level view synthesis. Among them, the RealEstate 10K dataset (Zhou et al., 2018) has garnered
significant attention due to its early release, open-source nature, and massive size, becoming a widely
used training set and benchmark for recent generalizable view synthesis methods (Yu et al., 2021;
Charatan et al., 2024; Chen et al., 2024; Ye et al., 2025; Jin et al., 2025).

Pose-free View Synthesis Despite efforts to reduce dependence on input camera poses during
inference (Fan et al., 2023; Smart et al., 2024; Ye et al., 2025; Zhang et al., 2025), generalizable novel
view synthesis methods typically depend on posed data for training supervision, with few tackling
the elimination of pose annotations. Early work (Sajjadi et al., 2023) pioneered the really unposed
setting, bypassing pose dependence even during training. However, their solution struggles with
high-fidelity rendering, and the latent pose representation remains difficult to interpret, making direct
camera pose control challenging. In contrast, our data-centric framework harnesses scalability and
the Latent Pliicker Learner design, achieving rendering quality comparable to methods requiring
pose input or supervision (Ye et al., 2025; Jin et al., 2025).

C MORE DISCUSSIONS ABOUT CONCURRENT WORK

As summarized in Table 1, there are two concurrent works also aiming for the unposed setting
(Rayzer (Jiang et al., 2025) and SPFSplat (Huang & Mikolajczyk, 2025)).

Rayzer While our design emphasizes camera control, the critical trend uncovered by our investiga-
tion is also confirmed by Rayzer (Jiang et al., 2025), a concurrent work with their focus on multiple
sparse views (/N > 5 instead of our N = 2), achieving promising results at the unposed setting,
which bypasses 3D supervision. Most of our main paper experiments exclude this approach due
to a difference in problem settings and the current lack of an official implementation. Despite this,
in Table 11, we compare the results reported in its paper (Jiang et al., 2025) with our UP-LVSM
performance on RealEstate 10K. It is important to note that the Rayzer is trained with N > 5 input
views, which differs from our N = 2.

SPFSplat Another concurrent work, SPFSplat (Huang & Mikolajczyk, 2025), pushes the bias-
driven approaches to the unposed setting by extending NoPoSplat (Ye et al., 2025) with a self-
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supervised pose estimator. The training and evaluation settings of SPFSplat are consistent with ours,
and we include its reported results in Table 11.

Predictive Value of Our Findings Notably, the predictive value of our core findings is confirmed
by the performance of these two methods. Rayzer, with its data-centric approach, significantly
surpasses SPFSplat’s bias-driven method in NVS metrics. We attribute this to SPFSplat’s reliance
on a predefined 3D representation (3DGS) and tailored, handcrafted rendering functions “creates a
bottleneck at scale”, as elaborated in Section 3. Furthermore, SPFSplat’s performance (25.84 dB)
aligns with the trend predicted by our scalability findings: as a bias-driven unposed method, it can
outperform bias-driven posed-target methods (e.g., NoPoSplat, 25.46 dB) but will be less competitive
than the data-centric posed-target methods (e.g., PT-LVSM, 26.00 dB).

Method Number of Large Overlap Medium Overlap Small Overlap Full Eval.

etho Input Views | PSNR 1 SSIM1 LPIPS | | PSNR1 SSIM{ LPIPS| | PSNR{ SSIM{ LPIPS| | PSNR1 SSIM{ LPIPS |
SPESplat (Huang & Mikolajczyk, 2025) 2 28.38 0.899 0.111 25.70 0.853 0.151 23.18 0.796 0.200 25.84 0.852 0.151
Rayzer (Jiang et al., 2025) 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A 27.48 0.861 0.146
UP-LVSM (Ours) 2 29.51 0.901 0.098 26.93 0.852 0.132 24.54 0.796 0.174 28.82 0.891 0.104

Table 11: Quantitative Comparisons on RealEstate10K (Zhou et al., 2018). Following Ye et al. (2025),
we conduct evaluations across different overlap levels. Our UP-LVSM consistently outperforms the
concurrent approaches.

D CAMERA CONTROL

Input Camera Sequence Mapped in Latent Space
Motivation While UP-LVSM employs the
Latent Pliicker Learner to eliminate pose an-
notation dependence for improved scalability,
the implicit nature of its estimated latent cam-

era poses hinders the explicit control of the : © N
rendering view. This might restrict its broad I s S o
applicability. In this section, we demonstrate T W w

that it is easy to extend UP-LVSM for camera-
controllable rendering in real-world scenarios
by additionally learning a mapping from the
SE (3) space to the learned latent space. Re-
garding camera intrinsics, we follow NoPoS- ———

plat (Ye et al., 2025) in assuming a known set  ~(57von (v Latent Plicker Learner)
of intrinsics for simplicity, while it is also fea-  UP-LVSM (w. Linear Mapper)

sible to extend the Lategt Pl.uc'ker Learner to Table 12: NVS Performance with Mapped Poses.
accommodate learnable intrinsic.

Figure 10: The linear transformation effectively
maps input camera sequence into latent space, fa-
cilitating explicit camera control.

| PSNRT SSIM?  LPIPS|

28.82 0.891 0.104
28.41 0.886 0.110

Implementation Specifically, we introduce a linear pose mapper parameterized by (A € R™*7. b €
R7), which maps a real-world camera pose vector C= concat(x,q) € R” into its corresponding
latent representation C = concat(x,q) = AC + b € R”. This latent camera pose is then used to
generate the associated Pliicker representation P. We fine-tune UP-LVSM with this linear mapper
using a small subset of posed data (1202 scenes in RealEstate 10K (Zhou et al., 2018), 1.8% of the
training dataset). As described in Appendix A.1, we also apply camera pose normalization to reduce
pose ambiguity. After fine-tuning, human-specified camera sequences can be directly mapped to
latent Pliicker representations for view synthesis. This fine-tuning introduces negligible impact on
rendering quality, as evidenced in Figure 11 and Table 12.

Discussion Earlier work (Sajjadi et al., 2023) also attempts to learn a latent pose, but typically fails
to provide explicit camera control for view synthesis, primarily due to the uninterpretable nature of
the learned pose latent. In contrast, our Latent Pliicker Learner effectively encourages the model
to learn a meaningful manifold as latent space, enabling controllability. This is evidenced by our
investigation in Figure 9 of the main paper, where we visualize the learned latent Pliicker space to
validate that the model captures meaningful 3D pose space using only 2D supervision. We also
visualize the linearly mapped poses in 10, providing evidence that our design effectively supports
transformation between explicit SE (3) cameras and the latent ones.

The concurrent work, Rayzer (Jiang et al., 2025), also addresses camera control, but in a relative
rather than explicit manner: it first estimates the camera poses of input views and then allows user-
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Figure 11: Ablation Study of Camera Mapper. The camera mapper fine-tuning introduces negligible
impact on rendering quality.

specified interpolation between these poses. While effective, this strategy offers less flexibility than
our approach. Additionally, it relies on multiple input views (/N > 5) to infer spatial relationship,
while our method only requires two views (/N = 2).

E MORE DISCUSSION ABOUT SCALABILITY

In this section, we further explore the scalability analysis presented in Section 3 of the main paper. By
conducting experiments on the synthetic dataset, we address a key question: Why does the availability
of camera poses limit scalability?

Background As discussed in Section 3.2, theoretically, camera poses provide additional information
that acts as strong 3D cues. Thus, methods with access to camera poses (e.g., LVSM (Jin et al., 2025))
should have a higher performance ceiling—one that significantly outperforms unposed methods
like UP-LVSM. However, the curves in Figure 5 reveal an unexpected trend: our unposed method,
UP-LVSM, achieves superior performance as the dataset scales. We attribute this unexpected trend to
noise in pose annotations. Pose annotations in real-world datasets (Zhou et al., 2018; Yao et al., 2020;
Yeshwanth et al., 2023; Ling et al., 2024) are typically generated by Structure-from-Motion (SfM)
tools (Wu et al., 2011; Schonberger & Frahm, 2016)—which rely on geometric inductive biases—and
these tools often introduce noise and inconsistencies. Relying on such noisy poses during training
constitutes an indirect form of 3D knowledge dependence, creating a critical scalability bottleneck.

30 0.93 0.27
2 .81 .1
% 6 = 0.8 é 0.18
17 7] =
=22 £ 0.69 = 0.09 - 1vsm
—A— UP-LVSM
By te3 1e2 te1 "0 1e3 1e2 te1 "0 1e3 te2 e
Noise Scale Noise Scale Noise Scale

Figure 12: Performance of Methods Trained with Noisy Poses. Different levels of Gaussian noise
(02 = 0.001,0.01,0.1) were added to the rotation (in quaternion form) and translation components
of the poses in training data. While UP-LVSM remains agnostic to noisy poses, LVSM experiences
significant degradation with increasing noise levels, exhibiting sensitivity even to small amounts of
noise (0.001).

Investigation To validate this, we investigate the impact of pose noise on LVSM performance,
with experimental results presented in Figure 12. These results show that even a small amount of
noise significantly affects LVSM’s performance. This provides partial insight into the trend observed
in Figure 4 of the main paper, where unposed methods (e.g., UP-LVSM) eventually outperform
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those that depend on poses (e.g., LVSM), even when the latter have access to additional information.
Moreover, we additionally train LVSM and UP-LVSM on the Objaverse dataset (Deitke et al., 2023),
where the synthetic data will comprise no pose noise. As demonstrated in Table 13, given ground
truth camera poses, pose-dependent methods like LVSM begin to achieve superior performance as
expected, providing strong evidence to support our claims. Moreover, under ground truth poses,
LVSM and UP-LVSM exhibit similar scalability, indicating that it is unreliable pose annotations from
StM that limit scalability and lead to a lower performance ceiling.

NVS performance (PSNR? / SSIM1 / LPIPS ) APSNR / ASSIM / ALPIPS
Method  Py-free 2K 8K 3K 128K Avg. Gain 1

LVSM X 24.58/0.814/0.177 28.90/0.887/0.106 29.63/0.898/0.096 30.22/0.906 /0.087 1.7770.029 / 0.028
UP-LVSM v 19.96/0.712/0.403  23.38/0.773/0.275 26.02/0.827/0.158 26.12/0.829/0.156 2.11/0.040/0.086

Table 13: Qualitative Results on Objaverse (Deitke et al., 2023).

F MORE RESULTS

Input 1 Input 2 Render 1 Render2 Render3 Render4 Render5 Render 6

Figure 13: More Indoor Results of UP-LVSM.

Input 1 Input 2 Render 1 Render2 Render3 Render4 Render5 Render6

Figure 14: More Outdoor Results of UP-LVSM.
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Figure 15: More Challenging Results of UP-LVSM (Little Overlapped Inputs).

Input 1 Input 2 Render 1 Render2 Render3 Render4 Render5 Render6

Figure 16: More Challenging Results of UP-LVSM (Complicated Lighting Effects).

G MORE DISCUSSION ABOUT EXTRAPOLATION

All the view synthesis results in the main paper or the supplementary video are mainly interpolation
between inputs views. This is because currently, most existing generalizable novel view synthesis
(NVS) methods are good at interpolation-style NVS, but perform much worse for extrapolation,
as extrapolation is actually guessing what the whole scenes look like from partial observation,
thereby indeed requiring generative modeling techniques (Wewer et al., 2024). Our methods suffer
from the similar problem. Following extrapolation evaluation principles in previous work (Wewer
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et al., 2024), we measure the extrapolation performance of existing methods. Table 14 compares
the interpolation and extrapolation performance, demonstrating fundamental limitations of these
generalizable methods.

Evaluation Metric ‘ PixeINeRF  PixelSplat MVSplat LVSM ‘ NoPoSplat ~ Ours (PT-LVSM)  Ours (UP-LVSM)
PSNR 1 20.33 25.51 26.45 27.60 25.46 26.00 28.82

Interpolation SSIM 1 0.572 0.867 0.874 0.874 0.854 0.825 0.891
LPIPS | 0.549 0.126 0.123 0.117 0.137 0.135 0.104
PSNR 1 19.96 21.19 20.00 23.80 22.42 19.18 23.82

Extrapolation ~ SSIM 1 0.572 0.799 0.787 0.795 0.786 0.611 0.760
LPIPS | 0.568 0.196 0.205 0.168 0.201 0.282 0.185

Table 14: Quantitative Comparisons. Existing methods perform much worse for extrapolation.

H MORE DISCUSSION ABOUT LIMITATION

Scalability Analysis In the main paper (Section 3.3), we validate the key trend that reducing depen-
dence on 3D knowledge enhances scalability on three real-world datasets, i.e., RealEstate10K (Zhou
et al., 2018), DL3DV (Ling et al., 2024), and ACID (Liu et al., 2021). Of these, the largest is
RealEstate10K, which comprises 66K scenes. An open question remains: if data scale continues
to grow beyond 66K scenes, can UP-LVSM sustain this performance trend? In other words, at
what point will the performance curves in Figure 5 begin to saturate? Although we have observed
this when validating the same trend on the synthetic Objaverse dataset (Deitke et al., 2023) (see
Appendix E), we cannot conduct this experiment on larger real-world datasets primarily because
open-source NVS data remains limited. But we believe our UP-LVSM, benefiting from its pose-free
training, can leverage large-scale video datasets to effectively extend training quantities, not limited
to NVS datasets, with a primary challenge lying in that these datasets may lack strong camera motion
and contain dynamic scenes, which would necessitate extensive data cleaning.

Methodology From a methodological standpoint, our UP-LVSM is still based on DINOv2 (Oquab
et al., 2023) and inherits its limitation of a relatively large patch size of 14 (compared to LVSM’s patch
size of 8). The large patch size hinders fine-granularity image synthesis, leading to blurring artifacts
in richly textured areas. As demonstrated in LVSM (Jin et al., 2025), smaller patch sizes lead to more
competitive performance at the cost of increased training time and higher CUDA memory usage.
Striking a balance between performance and training cost, particularly through improvements to the
network architecture, is an important avenue for future exploration. Furthermore, we observe that
increasing the amount of training data increases the risk of gradient explosion. While we mitigate this
issue by adopting QKNorm (Henry et al., 2020) as in LVSM, addressing this issue more effectively,
particularly when scaling to larger datasets, will be crucial in future work.

I IMPLEMENTATION DETAILS

In this section, we provide implementation details for the methods compared in the main paper,
including network architectures and training hyperparameters.

I.1 PT-LVSM & UP-LVSM

Following prior works (Sajjadi et al., 2022; Zhang et al., 2024; Jin et al., 2025), the core archi-
tecture of PT-LVSM is composed entirely of Transformer layers (Vaswani et al., 2017). Unlike
previous implementations that train the encoder from scratch, we incorporate a pretrained DINOv2
encoder (Oquab et al., 2023) to enhance training stability, particularly in the early stages, due to the
absence of input pose annotations. The Transformer component adopts a decoder-only architecture, as
in LVSM (Jin et al., 2025), comprising 24 layers. Each multi-head attention layer includes 12 heads,
each with 64-dimensional feature embeddings. The entire model, including both the Transformers
and the DINOv2 encoder, is jointly optimized with a learning rate of 0.0004.

Training is conducted on the full RealEstate10K dataset (Zhou et al., 2018) using 8 NVIDIA A100
GPUs, with a batch size of 16 per GPU. Training for 100K steps takes approximately 60 hours.

The loss function used is £ = MSE(T, 7)) + APerceptual(7, T), where A = 0.5, and Perceptual
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denotes the perceptual loss introduced in (Johnson et al., 2016). For numerical stability, we follow
LVSM (Jin et al., 2025) in employing QKNorm (Henry et al., 2020) to mitigate the risk of gradient
explosion.

The architecture of UP-LVSM differs slightly due to its encoder-decoder structure and latent Pliicker
representation. The encoder comprises a DINOv2 backbone followed by 6 Transformer layers. The
decoder consists of 14 Transformer layers. Additionally, the Latent Pliicker Learner uses a DINOv2
encoder followed by a 4-layer Transformer. Note that our number of layers is set equal to LVSM
and PT-LVSM for fair comparisons under the same level of parameter amount. All other training
settings are consistent with those of PT-LVSM. After pretraining, UP-LVSM is fine-tuned to support
camera-controllable rendering using a linear mapper. This fine-tuning is performed on the /ittle subset
of the RealEstate 10K dataset (1202 scenes, 1.8% of the full set) with a learning rate of 0.0001,
requiring approximately 4 hours for 8K steps. During this stage, the ground truth target image is no
longer provided; instead, the latent Pliicker is generated via the linear mapper from the ground truth
target pose, rather than from the Latent Pliicker Learner.

For both PT-LVSM and UP-LVSM, we adopt camera pose normalization mentioned in Appendix A.1
to designate the pose of the first input view as canonical. However, this conflicts with the permutation-
invariant nature of the Transformer, where the first input view should be recognized as special, but
the Transformer inherently treats all inputs equally. To this end, we assign special significance to
the first view by adding a linearly projected canonical Pliicker onto its DINOv2 image tokens. The
ablation study demonstrates our model cannot converge when trained without this trick, validating its
effectiveness.

Lastly, due to the DINOvV2 encoder’s requirement that input dimensions be divisible by the patch
size of 14, we rescale RealEstate 10K images to a resolution of 224 x 224, rather than the more
commonly used 256 x 256. Following the approach in LVSM, we first train at low resolution (e.g.,
224 x 224), and then fine-tune on higher resolutions such as 518 x 518 to better adapt the model to
high-resolution rendering. However, for the experiments reported in the main paper, we standardize
all evaluations to the 224 x 224 setting, including all baseline comparisons.

1.2 BASELINES

For all baseline methods evaluated in the main paper—PixelNeRF (Yu et al., 2021), Pixel-
Splat (Charatan et al., 2024), MV Splat (Chen et al., 2024), LVSM (Jin et al., 2025), and NoPoSplat (Ye
et al., 2025)—we use the original training configurations provided in their respective official repos-
itories. Since PixeINeRF does not provide official configurations for the RealEstate10K dataset,
we adapt its official code to work with this dataset and successfully reproduce the performance
reported in (Ye et al., 2025; Charatan et al., 2024). All other methods include official support for the
RealEstate 10K dataset, requiring no modification aside from rescaling the input images to 224 x 224
(consistent with our setup as described above).

1.3 OBIJECT-LEVEL TRAINING

Method | Perceptual Weight A Background —Rendering Views Joint Training | Performance (PSNRT)

(a) 0.5 White 24, Sparse No Not Converged.
(b) 0.2 White 24, Sparse No Not Converged.
(c) 0.5 Gray 24, Sparse No Not Converged.

UP-LVSM  (d) 0.2 Gray 24, Sparse No 23.38
(e) 0.2 Gray 128, Sequantial No 24.95
(f) 0.2 Gray 128, Sequantial Yes 24.37
(2) 0.2 Gray 24, Sparse Yes Not Converged.

Table B: We use a small amount (8K) of object-level data to investigate different training strategy,
including varying background color for alpha compositing, different strategies of view rendering, and
whether trained jointly with 8K scene-level data from RealEstate10K.

For object-level experiments (Tables 4 and 13) on the Objaverse dataset (Deitke et al., 2023), we
follow prior works (Jin et al., 2025) to train our method and the baselines under a different setting, as
demonstrated in Table B (d). We first prepared 136K objects from Objaverse, with each rendered by
Blender from 24 randomly sampled views. During training, we sample 4 input views and 8 target
views at each step, in contrast to the scene-level training’s 2 input views and 6 target views. To avoid
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instability, we use a perceptual loss weight A of 0.2 instead of 0.5. The experimental results are
shown in Table B, where we discuss the influence of different strategies on training stability.

J INVESTIGATION DETAILS

This section provides additional details for the analysis presented in Section 4.4 of the main paper,
including attention weight analysis and latent Pliicker space analysis.

J.1 ATTENTION WEIGHT ANALYSIS

We elaborate on Figure 8 of the main paper by visualizing patch-wise attention weights to illustrate
that our model performs spatial reasoning and captures cross-view correspondences. Below, we
describe the process in detail.

Consider an input image resolution of 224. Following the DINOv2 architecture, which uses a
patch size of 14, each input image Z € RB*Nx224x224X3 iq converted into feature tokens D €
REXNx16x16X768 \where B is the batch size and N is the number of input views. These tokens are
then flattened to D’ € RB*256N X768 and passed through the Transformer layers in the encoder.

We examine the attention weights W € RB*256Nx256N from the final Transformer layer, where
each element represents the attention between pairs of input patches across all views. In the case
where N = 2 and B = 1, the bottom-left 256 x 256 block of W, denoted as W’ ¢ R256%256
corresponds to the cross-view attention between the two input views. Specifically, each element
‘W (i, j) indicates the attention weight from the i-th patch of the first view to the j-th patch of the
second view.

While we use the viridis colormap to visualize the attention weights W in Figure 8 of the main
paper, we also visualize the DINOvV2 token similarity to verify that the model learns cross-view
correspondence during training, rather than relying solely on the pretrained DINOv2 encoder’s
inherent capabilities. Specifically, given DINOv2 tokens D/, D), € R2%6%768 from two views, we

compute their cosine similarity along the feature dimension to obtain S € R256%256_ For clearer
S—min(S)

visualization, S is normalized as S’ = — 22 .
max(S)—min(S)

J.2  LATENT PLUCKER ANALYSIS

This section provides a detailed explanation of the analysis presented in Figure 9 of the main
paper. Camera poses are represented as 7-dimensional vectors, with the first 3 dimensions encoding
translation and the last 4 representing rotation as a quaternion. Given N pairs of camera poses
Clatent € RVX7 and C,, € RVY*7, we concatenate them to form C,y; € R?V*7. We then apply
t-SNE (Van der Maaten & Hinton, 2008) to project this 7-dimensional space into two dimensions,
yielding C{;..i» Chroal € RN *2 after splitting. In Figure 9, these 2D points are visualized accordingly,
with corresponding pairs colored identically.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) as writing assistants for this work. They are used only for
text polishing, grammar checking, and sentence-level rephrasing. The core method development in
this work does not involve LLMs as any important, original, or non-standard components.
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