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Abstract
Sleep is a complex physiological process evalu-
ated through various modalities recording elec-
trical brain, cardiac, and respiratory activities.
We curate a large polysomnography dataset from
over 14,000 participants comprising over 100,000
hours of multi-modal sleep recordings. Leverag-
ing this extensive dataset, we developed SleepFM,
the first multi-modal foundation model for sleep
analysis. We show that a novel leave-one-out
approach for contrastive learning significantly im-
proves downstream task performance compared
to representations from standard pairwise con-
trastive learning. A logistic regression model
trained on SleepFM’s learned embeddings out-
performs an end-to-end trained convolutional neu-
ral network (CNN) on sleep stage classification
(macro AUROC 0.88 vs 0.72 and macro AUPRC
0.72 vs 0.48) and sleep disordered breathing de-
tection (AUROC 0.85 vs 0.69 and AUPRC 0.77 vs
0.61). Notably, the learned embeddings achieve
48% top-1 average accuracy in retrieving modal-
ity clip pairs from 90,000 candidates. This work
demonstrates the value of holistic multi-modal
sleep modeling to fully capture the richness of
sleep recordings. SleepFM is open source and
available at https://github.com/rthapa84/sleepfm-
codebase.

1. Introduction
Sleep monitoring is critical to evaluate sleep disorders but
also as a proxy to assess overall brain, pulmonary, and car-
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diac health (Worley, 2018; Brink-Kjaer et al., 2022; Leary
et al., 2021). Polysomnography (PSG) is the current gold
standard for studying sleep by recording diverse physiolog-
ical signals during sleep, including electroencephalogram
(EEG), electroocculograms (EOG), and electromyography
(EMG), electrocardiogram (ECG) and respiratory channels
(Kryger et al., 2010). EOG and EMG are often combined
with EEG recordings to better determine sleep stages, which
we refer to collectively as Brain Activity Signals (BAS).
These different data modalities offer complementary per-
spectives. BAS measures brain activity to categorize sleep
stages and diagnose sleep disorders. ECG captures heart
rhythms; changes in heart rate can indicate sleep disor-
dered breathing events. Respiratory sensors directly quan-
tify breathing patterns including sleep disordered breathing
(SDB). Together, these signals provide a comprehensive
assessment of sleep health.

Traditionally, sleep data analysis involved manual visual
inspection, a labor-intensive and time-consuming process
prone to errors (Boashash & Ouelha, 2016; Hassan &
Bhuiyan, 2017). Recent advancements in supervised deep
learning have shown promise in automating sleep staging
and classification of disorders like SDB (Nassi et al., 2021;
Perslev et al., 2021; Stephansen et al., 2018). However,
most methods rely on labeled data from a narrow task. They
rarely leverage the full breadth of unlabeled physiological
dynamics within and across diverse PSG sensors.

In parallel, contrastive learning (CL) has emerged as a pow-
erful technique in other domains to learn representations by
maximizing alignment between modalities (Radford et al.,
2021). However, joint integration of BAS, ECG, and respi-
ratory signals from PSGs via multi-modal CL has been less
explored. Previous works have focused solely on ECG or
combined ECG with electronic health records (EHR), while
joint modeling of BAS, respiratory, and ECG signals has
been limited. Our work demonstrates a first attempt at de-
veloping a multi-modal CL approach for PSG analysis that
capitalizes on synergies between BAS, ECG, and respiratory
signals to learn enhanced physiological representations for
sleep analysis.

Our Contribution We introduce SleepFM, a sleep founda-
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tion model trained using CL on a multi-modal PSG dataset
comprising over 100,000 hours of sleep monitoring data
from over 14,000 participants at Stanford sleep clinic col-
lected between 1999 and 2020. By combining BAS, ECG,
and respiratory modalities from PSG, SleepFM exhibits su-
perior performance on tasks such as demographic attributes,
sleep stage, and SDB event classifications, outperforming
end-to-end trained convolutional neural network (CNN)
models. Additionally, we introduce a novel leave-one-out
approach for CL, which significantly outperforms the stan-
dard pairwise CL on all of our downstream tasks. To our
knowledge, this is the first attempt to build and evaluate a
multi-modal foundation model for sleep analysis.

2. Related Work
2.1. Machine Learning for Analyzing Sleep Data

The application of machine learning (ML) in sleep stud-
ies has garnered significant recent attention, promising to
streamline and expedite the sleep scoring process as well as
detecting respiratory events such as SDB. Models including
autoencoders (Tsinalis et al., 2016), convolutional neural
networks (CNNs) (Tsinalis et al.; Sors et al., 2018; Yildirim
et al., 2019), recurrent neural networks (RNNs) (Michielli
et al., 2019; Phan et al., 2019), and multiple other variations
of deep neural networks (DNNs) (Supratak et al., 2017;
Mousavi et al., 2019; Seo et al., 2020; Phan et al., 2021;
Perslev et al., 2021) have been proposed for sleep scoring
tasks.

Moreover, in the domain of respiratory event classification,
automatic detection of SDB using ECG (Urtnasan et al.,
2020; Tripathy et al., 2020), EEG (Zhao et al., 2021), and
PSG with its respiratory channels (Mostafa et al., 2020; Yu
et al., 2022; Haidar et al., 2018; Yeo et al., 2021; Nassi et al.,
2021; Stephansen et al., 2018) has been explored extensively.
A recent study introduced a multi-task learning approach,
training a supervised deep learning model to predict diverse
sleep events (e.g., sleep stages, arousal, leg movements, and
sleep-disordered breathing) using multiple sleep modalities
like EEG, EOG, and EMG (Zahid et al., 2023). These stud-
ies predominantly utilize supervised learning, often limited
by a narrow subset of downstream tasks.

2.2. Contrastive Learning

A major development in self-supervised learning techniques
is the rise of contrastive methods for comprehensive data
representation learning. In computer vision, influential
frameworks have emerged including: InfoNCE (Oord et al.,
2018), SimCLR (Chen et al., 2020), MoCo (He et al., 2020),
and SupCon (Khosla et al., 2020). These uni-modal con-
trastive approaches focus primarily on single data modalities
like images. A notable multi-modal exception is the Con-

trastive Language-Image Pretraining (CLIP) model (Rad-
ford et al., 2021), which aligns image and text embeddings.
In medicine, ConVIRT (Zhang et al., 2022) pioneered multi-
modal CL between chest radiographs and reports. Other
works have explored similar directions for medical images
(Huang et al., 2021; Boecking et al., 2022; Bannur et al.,
2023; Lu et al., 2023).

Outside of computer vision, uni-modal contrastive meth-
ods have been applied to time series data like ECG signals
(Kiyasseh et al., 2021; Gopal et al., 2021). CL has also en-
abled signal conversion tasks (Nørskov et al., 2023). How-
ever, contrastive representation learning across diverse phys-
iological modalities remains relatively uncharted. Two prior
studies have investigated contrastive multi-modal clinical
time series analysis. One work employed SimCLR-style pre-
training on data encompassing ECG and structured records
(Raghu et al., 2022). Another derived ECG representations
by contrasting ECGs, structured EHRs, and clinical notes
(Lalam et al., 2023).

SleepFM differs from these past works in two primary ways.
First, it explores self-supervised representation learning on
a large sleep dataset, while most prior works rely on super-
vised learning. Second, it is the first contrastive model that
utilizes a wide array of sleep modalities such as BAS, ECG
waveforms, and respiratory signals, covering 19 data chan-
nels across three main physiological systems: brain, heart,
and lungs. Alongside pairwise CL, we propose and evaluate
a novel leave-one-out CL approach. Comprehensive down-
stream tasks verify SleepFM’s superior performance over
supervised baseline.

3. Method
3.1. Dataset and Preprocessing

Our dataset encompasses PSG records from Stanford Sleep
Clinic from 1999-2020, spanning participants aged 2-91.
Comprising 14,068 recordings, this dataset features diverse
waveforms, such as BAS, ECG, and respiratory channels
collected over approximately 8 hours per individual. Its
comprehensive nature makes it a valuable and high-quality
resource for sleep-related research.

Our preprocessing strategy aimed to make minimal alter-
ations to preserve raw signal characteristics crucial for nu-
anced pattern recognition. Each recording consists of three
modalities: BAS, ECG, and respiratory, encompassing 10,
2, and 7 channels, respectively. The BAS modality includes
channels gauging brain activity from various brain regions
(frontal, central, occipital), as well as EOG for eye move-
ment and EMG for chin muscle activation. The ECG modal-
ity contains channels that measure electrical cardiac func-
tion. The respiratory modality includes channels measuring
chest and abdomen movements, pulse readings, nasal and
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oral flow measurements. The selection of these channels
was guided by sleep experts due to their relevance in sleep
studies, facilitating sleep stage scoring and SDB detection
(Berry et al., 2012).

Subsequently, we segmented the total sleep duration into
consecutive 30-second clips for all participants, following
the standard clip duration used in sleep studies (Berry et al.,
2012). We then resampled the dataset to 256 Hz to standard-
ize the sampling rate across all participants. Furthermore,
expert sleep technicians labeled each clip for both sleep
stage and SDB. Sleep stage is categorized into Wake, Stage
1, Stage 2, Stage 3, REM, and SDB is a binary label. To
prevent data leakage, the dataset is split into participant-
level pretrain/train/validation/test sets consisting of 11,261,
1,265, 141, and 1,401 participants respectively. Each partic-
ipant contributes multiple clips to our dataset, resulting in a
total of 10.6M, 1.19M, 130K, and 1.31M clips, respectively.
The pretrain dataset is only used to pretrain our foundation
model. The remaining set serves to train and test our model
and baseline models for downstream applications as ex-
plained in Section 4. The validation set is used to optimize
the hyperparameters. Demographic statistics for different
splits are presented in Table 1. An illustrative snapshot of
our data can be found in Figure 4.

3.2. Embedding Model

Our pre-training stage employed CL as the foundational al-
gorithm for representation learning, explained in more detail
in Section 3.3. We used three 1D CNNs to generate three
separate embeddings from the BAS, ECG, and respiratory
modalities and trained them separately. The architecture of
the models is based on a 1D CNN developed for classifying
ECG measurements (Ouyang et al., 2022). These models
differ in their first convolutional layers to accommodate the
number of channels specific to each modality: 10 for BAS,
2 for ECG, and 7 for respiratory channels.

The architecture of these embedding models is rooted in
EfficientNet architecture (Tan & Le, 2019). The architec-
ture starts with atrous convolutions followed by subsequent
multi-channel 1D convolutions. The layer count aligns with
the original design of EfficientNet (Tan & Le, 2019), but the
number of channels is significantly reduced for model run-
time efficiency and to minimize complexity. Following the
initial atrous layers, the model incorporates convolutional
layers utilizing an invested residual structure, mirroring the
input and output bottleneck layers with an intermediate ex-
pansion layer (Sandler et al., 2018).

For regularization, a dropout layer precedes the final fully
connected output layer. Depthwise separable convolutions
are extensively utilized to minimize parameters while pre-
serving representational capacity. Residual connections aid
gradient flow across multiple layers during optimization,

facilitating hierarchical feature learning on variable-length
sequential data.

3.3. Multi-modal Contrastive Learning

We explore two CL frameworks for learning joint represen-
tations across modalities: pairwise CL and leave-one-out
CL ( Figure 1). The key idea is to bring positive pairs of
embeddings from different modalities closer in the latent
space while pushing apart negative pairs. The positive pairs
are derived from temporally aligned 30-second clips across
modalities. All other non-matching instances within a train-
ing batch are treated as negative pairs.
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Figure 1. Overview of SleepFM pre-training with CL. We experi-
ment with two types of pre-training: standard pairwise CL where
we contrast embeddings from each pair of modalities separately,
and our novel leave-one-out CL where we contrast the embed-
ding of each modality against the average embedding of all other
modalities. BAS (Brain Activity Signals) measures brain activity,
eye and muscle movement, Electrocardiogram (ECG) measures
heart activity, and Respiratory channels measure chest, abdomen
movements, pusle, nasal, and oral flow.

In pairwise CL, we construct contrastive prediction tasks
between all pairs of modalities. We use a contrastive loss
to encourage agreement between positive pairs while dis-
couraging agreement between negative pairs. Specifically,
for modalities i and j and sample k in a batch, we have an
embedding xi

k from modality i and an embedding xj
k from
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Table 1. Demographics table. REM: Rapid Eye Movement; AHI: Apnea-Hypopnea Index, a measure used in sleep medicine to assess the
severity of sleep apnea; WASO: Wake After Sleep Onset, the total time spent awake after initially falling asleep; SL: Sleep Latency, the
time it takes to transition from wakefulness to sleep; REML: REM Sleep Latency, the time it takes to enter REM sleep after falling asleep;
TSD: Total Sleep Duration, the overall duration of sleep. ± represents upper and lower bound.

pretrain train valid test

Participants (count) 11,261 1,265 141 1,401
Events (count) 10,611,314 1,190,392 130,380 1,314,267
Duration (hours) 88,427 9,920 1,086 10,952

Male (%) 49.9 50.2 47.1 53.0
Female (%) 43.8 44.0 48.1 41.8
Unknown (%) 6.3 5.9 4.8 5.2
Age (years) 42.2 ± 19.6 43.0 ± 20.3 40.4 ± 20.0 41.9 ± 19.9

TSD (mins) 376.7 ± 90.8 376.4 ± 90.6 371.2 ± 84.9 374.3 ± 87.5
WASO (mins) 79.4 ± 60.5 79.7 ± 62.3 78.8 ± 57.3 81.5 ± 62.8
SL (mins) 22.2 ± 32.8 21.2 ± 31.6 29.0 ± 87.8 22.5 ± 32.6
REML (mins) 151.9 ± 102.6 149.4 ± 97.7 148.6 ± 99.9 154.8 ± 103.5

Stage 1 (%) 9.4 ± 9.2 9.3 ± 8.8 8.2 ± 7.7 9.0 ± 8.9
Stage 2 (%) 65.0 ± 14.7 64.8 ± 14.7 64.8 ± 14.7 65.0 ± 14.7
Stage 3 (%) 10.2 ± 13.2 10.2 ± 13.2 10.9 ± 12.7 10.3 ± 13.6
REM (%) 15.5 ± 7.9 15.7 ± 8.0 16.2 ± 6.8 15.7 ± 7.9

AHI (h−1) 22.2 ± 79.3 22.8 ± 19.1 22.2 ± 18.5 20.9 ± 17.0

modality j. The contrastive prediction loss is defined as:

l
pair
i,j,k = − log

exp(sim(xi
k, x

j
k) ∗ exp(τ))∑N

m=1 exp(sim(xi
k, x

j
m) ∗ exp(τ))

, (1)

where N is the number of samples in a batch, τ is a trainable
temperature parameter, and sim is cosine similarity. We
sum this loss over all the samples in a batch and repeat the
process for all pairs of modalities i, j. The final loss is the
sum of pairwise contrastive losses over all modality pairs.

In leave-one-out CL, we construct a predictive task where
an embedding from one modality tries to identify the cor-
responding embeddings from the remaining modalities. In
particular, for each modality i, we construct an embedding
x̄ ̸=i by averaging over embeddings from all other modal-
ities, excluding modality i. We then apply a contrastive
loss between modality i’s embedding and this leave-one-out
representation:

lLOO
i,k = − log

exp(sim(xi
k, x

̸=i
k ) ∗ exp(τ))∑N

m=1 exp(sim(xi
k, x̸

=i
m ) ∗ exp(τ))

(2)

Similar to pairwise, this is the loss for a sample k from
modality i in a given batch.

The motivation behind the leave-one-out method is to en-
courage each embedding to capture semantics aligned with
all other modalities. Pairwise CL, on the other hand, encour-
ages alignments only between particular pairs of modalities.

3.4. Model Training

Our model pretraining involves minimizing the contrastive
loss with stochastic gradient descent (SGD) using an initial
learning rate set to 0.001 and a momentum of 0.9. The learn-
ing rate is decayed by a factor of 10 every 5 epochs. The
trainable temperature parameter is initialized to 0. Training
spans a maximum of 20 epochs with early stopping based on
validation loss, employing a batch size of 32 and validating
checkpoints at each epoch to ensure robust regularization.

Upon pretraining completion via this self-supervised ap-
proach, we generate embeddings for the training, validation,
and test sets, utilizing the learned modality encoders. Sub-
sequently, these training embeddings drive the training of a
logistic regression classifier. The classifier’s performance
undergoes evaluation on the test set for both sleep stage and
SDB event detection tasks, as outlined in Section 4.3.

In our experiments, we additionally compare against train-
ing a supervised CNN without contrastive learning as a
baseline. The supervised CNN uses an 1D EfficientNet ar-
chitecture akin to our pretrained model encoder but is solely
trained via supervised learning on the entire (pretraining
+ training) dataset for classification tasks. This architec-
ture uses a series of 1D convolutions encoding all three
modalities into an embedding space, followed by a dropout
layer for regularization and a fully-connected layer predict-
ing scores across different classes. This model is trained
end-to-end from scratch using cross-entropy loss between
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the predicted and true labels, optimized by SGD. Mirroring
the pretraining phase, this model undergoes training for 20
epochs with a batch size of 32, aligning hyperparameters
with our model pretraining strategy. Additional training
details are available in Appendix A.3.

4. Experiments and Results
4.1. Demographic Attributes Classification

We evaluated our SleepFM’s embedding quality by train-
ing a logistic regression classifier on top of the combined
multimodal embeddings to predict common demographic
attributes such as age and gender. Our classification task
directly used the 30-second clip-level embeddings generated
by SleepFM. For age prediction, we grouped ages into the
following categories: 0-18, 18-35, 35-50, and 50+. The
prevalence of these age groups in our dataset is 0.17, 0.18,
0.28, and 0.37, respectively. For gender classification, we
considered male vs. female, with the prevalence of females
being 0.41 in our dataset. We evaluated the performance
based on AUROC (Area Under the Receiver Operating Char-
acteristic curve) and AUPRC (Area Under the Precision-
Recall Curve). As a baseline, we trained a CNN end-to-end
to perform age and gender classification given the combined
multimodal raw input data.

We find that SleepFM can predict age and gender with high
accuracy from just 30-second clips of physiological data (Ta-
ble 2 and Table 3). Both our pre-trained models significantly
outperform the end-to-end CNN baseline across all evalua-
tion metrics and tasks. Note that the end-to-end supervised
CNN used the full (pretraining + training) dataset during
training, while the embeddings from SleepFM were only
trained on the training set. Notably, the model pre-trained
with leave-one-out CL achieves the best performance. The
strong clip-level performance indicates SleepFM’s embed-
dings effectively capture salient demographic information.
Analyzing the performance per modality, we find that the
BAS signals contain the most distinctive features for these
tasks as shown in Table 15 and Table 16.

4.2. Retrieval Analysis

To further assess the quality of SleepFM’s embeddings, we
assessed its retrieval capabilities by retrieving one modal-
ity’s closest embeddings from the test set based on another
modality’s embeddings. For instance, computing cosine
similarity between BAS and ECG embeddings generated
a ranked list, allowing us to gauge retrieval performance.
Evaluation was measured using recall@10 and median rank
metrics.

• Recall@10: Measures the true paired item’s appear-
ance within the top 10 recommendations. Higher val-

ues indicate more accurate retrieval among top recom-
mendations.

• Median rank: Determines the median position of the
true paired item in rankings; a lower median rank signi-
fies a more consistent ranking of the correct pair among
recommendations.

We measured the retrieval performance using 90,000 ran-
domly selected 30-second clips encompassing all modalities
from the test set. To ensure a representative sample, we
uniformly selected clips from various event types across all
participants within the test set. The Recall@10 for random
retrievals is 10/90000 = 0.0001.

SleepFM achieved over 500x-8000x higher Recall@10 than
the random chance as shown in Table 4 and Table 5. Pair-
wise CL yields better overall retrieval performance than
leave-one-out, likely because the retrieval evaluation di-
rectly maps the training procedure of pairwise. One trend
across both metrics is that retrieval performance between res-
piratory and other modalities is comparatively worse. The
discrepancy in retrieval performance may stem from the
higher variablilty of the respiratory measurements. While
BAS is directly measured via electrical activity from the
brain and ECG is directly measured via electrical activity
from the heart, the respiratory channels indirectly measure
breathing through the movement of the participant, which
can be influenced by body position and non-breathing re-
lated motion.

4.3. Downstream Classification Tasks

Having demonstrated that SleepFM learns useful represen-
tations from PSG clips for tasks such as demographic pre-
diction and clip retrieval, we now evaluate performance on
clinically useful downstream tasks: sleep stage and SDB
classification. Manual sleep stage scoring and SDB clas-
sification currently requires extensive analysis by trained
technicians, motivating automatic techniques. To do so, we
used the embeddings learned by SleepFM to train a logistic
regression model and classify sleep stages and SDB events
on a held-out test dataset. Sleep stage classification is a
multi-class classification task, with 5 classes: Wake, Stage
1, Stage 2, Stage 3, and REM. Prevalence of these groups
are 0.21, 0.07, 0.51, 0.09, and 0.12 respectively. SDB clas-
sification is a binary classification task, with a prevalence
of 0.017. We compared SleepFM performance with end-to-
end CNN trained on all three modalities, for sleep stage and
SDB event classification.

The results for sleep stage classification are presented in
Table 6. Notably, across both AUROC and AUPRC metrics,
the logistic regression model trained using representations
from SleepFM outperforms the CNN trained end-to-end in
a supervised manner. This superiority holds true across all
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Table 2. Age classification metrics for models trained using different types of contrastive learning (CL). The supervised CNN is trained on
the entire (pretraining + training) dataset to classify age groups. The leave-one-out and pairwise models are logistic regression models
trained on the embeddings generated from only the training dataset. Therefore end-to-end CNN saw all data 11,261 participants while
pretrained model saw data from 1,265 participants for sleep stage classification. Prevalence of 0-18, 18-35, 35-50, and 50+ are 0.17, 0.18,
0.28, and 0.37 respectively. ± represents 95% Confidence Intervals.

AUROC AUPRC

Leave-One-Out Pairwise Supervised CNN Leave-One-Out Pairwise Supervised CNN

0-18 0.982±.001 0.977±.001 0.864±.001 0.937±.002 0.929±.004 0.628±.003

18-35 0.852±.001 0.809±.002 0.683±.002 0.549±.003 0.458±.002 0.308±.002

35-50 0.784±.001 0.740±.001 0.606±.003 0.524±.001 0.476±.002 0.371±.002

50+ 0.915±.001 0.880±.001 0.745±.002 0.856±.002 0.796±.002 0.619±.002

Avg 0.883 0.851 0.724 0.716 0.664 0.481

Table 3. Gender classification metrics for models trained using
different types of CL. The supervised CNN is trained on the entire
(pretraining + training) dataset to classify gender. The leave-one-
out and pairwise models are logistic regression models trained on
the embeddings generated from only the training dataset. Therefore
end-to-end CNN saw 11,261 patient data while pretrained model
saw 1,265 training data for SDB classification. Prevalence of
female gender is 0.41. ± represents 95% Confidence Intervals.

AUROC AUPRC

Leave-One-Out CL 0.850±.001 0.774±.002

Pairwise CL 0.810±.001 0.731±.002

Supervised CNN 0.690±.002 0.614±.002

sleep stage classes as well as on aggregated class metrics.
Model pretrained with leave-one-out CL performs better
than the one pretrained with pairwise across both metrics.

Similarly, the SDB classification metrics, displayed in Ta-
ble 7, underscore our approach’s superiority over supervised
CNN models. We find that the model pretrained with leave-
one-out CL significantly outperforms the model pretrained
with pairwise. While our classification performance aligns
with existing methods (Salari et al., 2022; Li et al., 2022),
our study emphasizes the potential of multi-modal CL in
these specific domains.

Furthermore, we sought to understand the performance of
individual modality embeddings when trained separately for
these tasks. Table 11 and Table 12, exhibit the results for
sleep staging and SDB classification using each modality’s
embeddings independently. As expected, model trained on
BAS embeddings excel in sleep stage classification, while
the model trained on respiratory embeddings perform no-
tably well in SDB event detection, as these are the modali-
ties commonly used for the respective tasks. Surprisingly,
across both tasks, embeddings from all modalities demon-
strated reasonably high performance, specially for sleep
stage classification.

Table 4. Retrieval on the test set for model trained with leave-one-
out contrastive learning (CL). Resp is for Respiratory. Random
baseline for Recall@10 = 0.0001

Median Rank Recall@10

BAS ECG Resp BAS ECG Resp

BAS - 7 416 - 0.58 0.05
ECG 13 - 19 0.46 - 0.39
Resp 400 21 - 0.05 0.38 -

Table 5. Retrieval on the test set for model trained with pairwise
contrastive learning (CL). Resp is for Respiratory. Random base-
line for Recall@10 = 0.0001

Median Rank Recall@10

BAS ECG Resp BAS ECG Resp

BAS - 1 6 - 0.74 0.58
ECG 1 - 2 0.82 - 0.81
Resp 5 2 - 0.60 0.82 -

Additionally, we stratified the performance of our model
across different age and gender groups to ensure there were
no discrepancies across demographics. In Table 19 and
Table 20, we see that both our pretrained models perform
consistently well across all age groups with minor varia-
tion, especially among the 50+ age group. Across genders,
the performance was similarly consistent with even less
variation. For SDB classification, the performance was con-
sistently strong across age and gender groups, except for the
0-18 age group, which exhibited slightly lower performance
than other groups as shown in Tables 21 and 22.

4.4. Few-Shot Evaluation

To understand how our model performs when we only have
a small sample size available to train a model for down-
stream application, we performed a few-shot performance
evaluation. To do so, we steadily increased the number
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Table 6. Sleep stage classification metrics for models trained using different types of contrastive learning (CL). Baseline here is an
end-to-end CNN trained on the entire (pretraining + training) dataset to classify sleep stages. The leave-one-out and pairwise models are
logistic regression models trained on the embeddings generated from only the training dataset. Therefore end-to-end CNN saw 11,261
patient data while pretrained model saw 1,265 training data for sleep stage classification. Prevalence of Wake, Stage 1, Stage 2, Stage 3,
and REM are 0.21, 0.07, 0.51, 0.09, and 0.12 respectively. ± represents 95% Confidence Intervals.

AUROC AUPRC

Leave-One-Out Pairwise Supervised CNN Leave-One-Out Pairwise Supervised CNN

Wake 0.945±.001 0.930±.001 0.869±.001 0.862±.002 0.827±.002 0.711±.002

Stage 1 0.814±.002 0.782±.002 0.706±.002 0.233±.003 0.186±.002 0.130±.002

Stage 2 0.891±.001 0.861±.001 0.840±.001 0.876±.001 0.849±.001 0.822±.001

Stage 3 0.928±.001 0.918±.001 0.918±.001 0.676±.003 0.615±.003 0.695±.002

REM 0.951±.001 0.891±.001 0.878±.001 0.778±.003 0.565±.002 0.540±.003

Avg 0.906 0.876 0.842 0.685 0.608 0.579
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Figure 2. Few Shot Evaluation. The x-axis represents number of patients that the model was trained on and y-axis represents evaluation
metrics AUROC and AUPRC. In case of pairwise and leave-one-out, we select embeddings from k number of patients to train a logistic
regression model. The largest number of patients used (1265) is the total size of our training dataset. In case of supervised CNN, we train
the model end-to-end on k number of patients to classify either sleep stages or SDB. Testing is done on the entire test set. For each shot,
we average the performance across 3 replicates.

Table 7. SDB classification metrics for models trained using differ-
ent types of contrastive learning (CL). Baseline here is a supervised
CNN trained on the entire (pretraining + training) dataset to clas-
sify SDB. The leave-one-out and pairwise models are logistic
regression models trained on the embeddings generated from only
the training dataset. Therefore end-to-end CNN saw 11,261 pa-
tient data while pretrained model saw 1,265 training data for SDB
classification. Prevalence of SDB event is 0.017. ± represents
95% Confidence Intervals.

AUROC AUPRC

Leave-One-Out CL 0.941±.002 0.711±.006

Pairwise CL 0.902±.003 0.586±.007

Supervised CNN 0.843±.002 0.555±.005

of participants k that each model sees from k = 1 to the
full training dataset, and recorded the model’s AUROC
and AUPRC at each k. Note that each participant con-
tributes multiple training clips. We consider values of
k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 1265}, where 1265 is the

size of the full training set. For the supervised CNN, few-
shot examples are the only training examples seen by the
model. For the pretrained models, we use embeddings of
these few-shot examples to train a logistic regression model.

For both AUROC and AUPRC, we see that across all train-
ing set sizes, SleepFM significantly outperforms baseline
supervised CNN model for both sleep stage and SDB clas-
sification (Figure 2). Notably, the leave-one-out model
significantly outperforms pairwise model across all training
set sizes, especially for SDB classification.

4.5. Benefit of Multi-Modal Pretraining

Finally, we conducted ablation studies to analyze how the
number and type of modalities used during pretraining im-
pacts downstream task performance. We pretrained mod-
els using 3 modalities (BAS-ECG-Respiratory signals), 2
modalities (BAS-Respiratory and BAS-ECG, and ECG-
Respiratory), and individual modalities (BAS and Respi-
ratory) with CL. The 3-modality model used leave-one-out
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Figure 3. Ablation few shot plot. The x-axis represents number of patients that the model was trained on and y-axis represents performance
metrics AUROC and AUPRC. We select embedding from k number of patients to train a logistic regression model. The last shot (1265) is
the total size of our training dataset. The other models (Resp-ECG, Resp-BAS, BAS-ECG) represents the model pretrained using only 2
modalities. Finally, BAS and RESP represents models pretrained with only 1 modality. For each shot, we average the performance across
3 replicates.

CL, which was our best performing model. The 2-modality
models used a similar contrastive approach, pairing clips
from different modalities in the same 30-second window as
positives. For single modalities, adjacent 30-second clips
were treated as positive pairs.

For evaluation, we extracted BAS embeddings from all pre-
trained models and trained logistic regression classifiers for
sleep stage classification, a common application of BAS
signals. Similarly, for SDB detection, we extracted respira-
tory embeddings and trained logistic regression models, as
respiratory data is typically used for this task. This enables
a fair comparison to evaluate which pretraining strategy pro-
duces the most useful embeddings for these modalities and
applications.

The result of our experiment is shown in Figure 3. We found
pretraining with 3 modalities clearly helped performance
across both sleep stage and SDB scoring tasks, with the 3-
modality model achieving higher AUPRC for SDB detection
in particular. The BAS-ECG and Respiratory-ECG models
also performed well, suggesting ECG helps enrich repre-
sentations of other signals during pretraining. In contrast,
single modality models consistently underperformed. Inter-
estingly, certain paired modalities like BAS-Respiratory did
not improve performance as much as models incorporating
ECG. This indicates the modalities paired during pretrain-
ing significantly impact downstream utility of embeddings.
Further analysis of how different modality combinations
impact representation learning merits exploration in future
work.

4.6. External Validation

To evaluate the performance of our model, SleepFM, on data
from an external site not seen during the pretraining stage,
we utilized the publicly available dataset from the Physionet
Computing in Cardiology 2018 Challenge (Ghassemi et al.,

2018). SleepFM was pretrained exclusively on our internal
sleep data. For comparison, we also trained a supervised
CNN end-to-end on the external dataset to classify sleep
stages.

Table 8 presents the results of this external validation. The
test set comprised 100 participants, and the metrics reported
include AUROC, AUPRC, and F1 score, each accompanied
by 95% confidence intervals.

The SleepFM demonstrated superior performance across all
sleep stages compared to the supervised CNN. Specifically,
SleepFM achieved an overall macro-average AUROC of
0.924, AUPRC of 0.759, and F1 score of 0.700. In contrast,
the supervised CNN’s macro-average metrics were lower,
with an AUROC of 0.843, AUPRC of 0.553, and F1 score
of 0.363.

The primary takeaway from these results is that SleepFM
generalizes well to external sites, despite not being exposed
to the dataset during the pretraining phase. Additionally,
the configuration of EEG channels differs between our site
and the CinC dataset. Despite these differences, our model
demonstrated robust generalization and adaptation to the
new site, showcasing its potential for broader applicability
beyond the conditions for which it was specifically trained.
This highlights the strength of our approach in handling
variations in data acquisition protocols across different sites,
a crucial factor for the real-world deployment of sleep anal-
ysis models.

5. Discussion and Conclusion
Our study leverages multi-modal PSG data and represen-
tation learning techniques to enhance the identification of
sleep events, contributing significantly to the field of sleep
medicine. The primary contributions include the develop-
ment and evaluation of a multi-modal contrastive learning
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Table 8. External validation of SleepFM on Physionet Computing in Cardiology 2018 challenge (Ghassemi et al., 2018). SleepFM was
only pretrained on our internal sleep data. Supervised CNN was trained end to end on the external database to classify sleep stages. Test
size: 100 participants. ± represents 95% confidence intervals.

SleepFM Supervised CNN

AUROC AUPRC F1 AUROC AUPRC F1

Wake 0.966±.001 0.867±.003 0.790±.001 0.867±.002 0.614±.004 0.514±.002

Stage 1 0.830±.004 0.471±.002 0.439±.002 0.709±.003 0.305±.002 0.006±.000

Stage 2 0.902±.002 0.857±.004 0.793±.001 0.843±.001 0.784±.004 0.694±.001

Stage 3 0.971±.001 0.821±.004 0.743±.001 0.925±.002 0.471±.002 0.244±.001

REM 0.950±.002 0.778±.005 0.717±.002 0.872±.003 0.592±.002 0.355±.001

Macro Avg 0.924 0.759 0.700 0.843 0.553 0.363

(CL) model on a dataset comprising 14,000 participants and
over 100,000 hours of sleep data.

Our model demonstrated strong performance across vari-
ous tasks, including demographic attributes classification,
retrieval analysis, sleep stage classification, and sleep-
disordered breathing (SDB) event detection, outperform-
ing end-to-end trained CNNs. The methodology centers
on two CL approaches: leave-one-out and pairwise. Both
approaches effectively unified BAS, ECG, and respiratory
signal representations, proving effective in limited data sce-
narios. Notably, we found that pairwise CL is better suited
for cross-modality retrieval, while leave-one-out CL excels
in learning representations for downstream sleep stage and
SDB classification. This superiority might be attributed
to leave-one-modality-out training, which encourages the
model to learn a more integrated representation of different
modalities.

Moreover, the external validation of SleepFM highlights the
potential of our approach to be broadly applied in diverse
clinical settings, enhancing its utility and impact in sleep
research and medicine. This underscores the robustness and
versatility of our model, suggesting its capability to handle
variations in data acquisition protocols across different sites,
a crucial factor for real-world deployment.

Future Work. Despite its achievements, our study has
limitations. We primarily trained and evaluated on one in-
stitution’s sleep data; extensively evaluating the model’s
generalizability to other institutions is an important direc-
tion of future work. We showed that our model works well
across different gender and age groups, which is a promis-
ing sign of its robustness. Additionally, while we focused
on sleep stage and SDB detection, exploring other tasks
like arousal detection, periodic leg movements, and diseases
such as narcolepsy could provide a more comprehensive
clinical assessment. Moreover, it will be interesting to try
our multiple other self-supervised learning (SSL) methods,
to see which method actually performs best for this task.
Our goal for future work include: (1) pretraining a multi-

site, multi-modal foundation model for sleep using diverse
PSG data, (2) careful selection and weighting of modalities
and handling missing channels, (3) expanding evaluation
to more clinically meaningful tasks beyond sleep stage and
SDB, and (4) experimenting with multiple other SSL meth-
ods.
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A. Appendix
A.1. Data Description

In Figure 4, we see a 30 second clip of our raw data for all 19 channels across 3 modalities. Figure 5 shows the distribution
of various events across the entire sleep duration for a participant. To ensure the protection of participants’ Protected Health
Information (PHI), all data has been de-identified.

Figure 4. 30-second clip of raw patient data. The x-axis is time and y-axis is different channels across all three modalities: BAS, ECG,
and Respiratory.

A.2. Embedding Model

Our EfficientNet model architecture is divided into multiple stages. The first stage (Stage 1) consists of a Conv1d layer
with an input channel size of in channel and an output channel size of 32. This layer uses a 3× 1 kernel, a stride of 2,
padding of 1, and dilation of 1.

After the Conv1d layer, we have a batch normalization layer with an output channel size of 32 as well. Following this,
stages 2 to 8 consist of MobileNet blocks, each of which stack together multiple Bottleneck modules. The output channel
sizes for each stage are specified by the channels parameter, with the default setting being [32, 16, 24, 40, 80,
112, 192, 320, 1280]. However, these channel sizes are reduced compared to the original EfficientNet to improve
runtime efficiency and minimize complexity for the time-series data processing task.

The depth of the model, i.e., the number of Bottleneck modules in each MobileNet block (i.e. layers) in each stage, is
controlled by the depth parameter. The number of layers in each stage are [1, 2, 2, 3, 3, 3, 3].

The model includes two pooling layers with a kernel size of 3, a stride of 1, and padding of 1. The first max-pooling layer is
applied after Stage 3, and the second adaptive average pooling layer is applied after Stage 9. A dropout layer with a rate of
0.5 is used before the final fully connected output layer and ReLU activation for regularization. Dropout layers are also used
in each of the Bottleneck modules.

The expansion factor for the bottleneck blocks within the MBConv modules is set to 6, as per the MobileNetV2 architecture
(Sandler et al., 2018). For a detailed understanding of the architecture of the Bottleneck and EfficientNet model, we refer
readers to the original papers (Sandler et al., 2018; Tan & Le, 2019).
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Figure 5. Distribution of events across an entire patient sleep. The x-axis represents approximately 8 hours in seconds, and y-axis is
distribution of different sleep events during the entire duration of sleep. N1, N2, N3 refers to Sleep Stage 1, 2, and 3 respectively. Obs
Hypopnea and Obs SDB are types of SDBs.

A.3. Training Details

All model training was executed on a single NVIDIA Tesla V100S GPU with 32GB of memory. Each pretraining epoch
consumed approximately 4 hours, while baseline supervised training required roughly 2 hours on the same GPU. Table 9
and 10 lists the hyperparameters we used in our training runs.

Table 9. Hyperparameters for Pretraining and end-to-end CNN training

Hyperparameter Value

Learning Rate 0.01
Batch Size 32
lr step period 5
epochs 20
momentum 0.9
Temperature (init) 0.0
Dropout 0.5

A.4. Additional Results

14



SleepFM: Multi-Modal Sleep Foundation Model

Table 10. Hyperparameters for logistic regression training during downstream classifications.

Hyperparameter Value

penalty L2
max iter 10000
class weight balanced
solver lbfgs

Table 11. Sleep stage classification metrics for model trained with leave-one-out CL. After having trained the model with all three
modalities, we extract embeddings for each modality separately and train a logistic regression with each modality to identify sleep stages.
± represents 95% confidence intervals.

AUROC AUPRC

ECG Respiratory BAS ECG Respiratory BAS

Wake 0.934±.001 0.846±.001 0.942±.001 0.829±.004 0.652±.003 0.857±.002

Stage 1 0.786±.002 0.676±.002 0.801±.002 0.193±.002 0.127±.001 0.211±.003

Stage 2 0.874±.001 0.728±.001 0.888±.001 0.860±.001 0.708±.001 0.873±.001

Stage 3 0.919±.001 0.788±.001 0.927±.001 0.638±.003 0.307±.002 0.679±.002

REM 0.939±.001 0.789±.001 0.944±.001 0.745±.003 0.388±.003 0.724±.003

Macro Avg 0.891 0.765 0.900 0.436 0.484 0.669

Table 12. SDB classification metrics for model trained with leave-one-out CL. After having trained the model with all three modalities,
we extract embeddings for each modality separately and train a logistic regression with each modality to identify SDB. ± represents 95%
confidence intervals.

ECG Respiratory BAS

AUROC 0.735±.004 0.925±.002 0.735±.004

AUPRC 0.040±.001 0.697±.006 0.040±.001

Table 13. Sleep stage classification metrics for model trained with pairwise CL. After having trained the model with all three modalities,
we extract embeddings for each modality separately and train a logistic regression with each modality to identify sleep stages. ± represents
95% confidence intervals.

AUROC AUPRC

ECG Respiratory BAS ECG Respiratory BAS

Wake 0.917±.001 0.821±.001 0.925±.001 0.782±.002 0.621±.002 0.816±.001

Stage 1 0.766±.002 0.661±.002 0.772±.002 0.167±.002 0.116±.001 0.174±.002

Stage 2 0.848±.001 0.695±.001 0.857±.001 0.841±.001 0.675±.001 0.845±.001

Stage 3 0.911±.001 0.777±.001 0.917±.001 0.601±.002 0.296±.003 0.614±.003

REM 0.872±.001 0.649±.001 0.880±.001 0.526±.003 0.200±.003 0.522±.002

Macro Avg 0.862 0.720 0.870 0.583 0.381 0.594

Table 14. SDB classification metrics for model trained with pairwise CL. After having trained the model with all three modalities, we
extract embeddings for each modality separately and train a logistic regression with each modality to identify SDB. ± represents 95%
confidence intervals.

ECG Respiratory BAS

AUROC 0.698±.003 0.893±.003 0.706±.004

AUPRC 0.029±.001 0.601±.006 0.030±.001
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Table 15. Age classification metrics for model trained with leave-one-out CL. After having trained the model with all three modalities, we
extract embeddings for each modality separately and train a logistic regression with each modality to identify age groups. ± represents
95% confidence intervals.

AUROC AUPRC

ECG Respiratory BAS ECG Respiratory BAS

0-18 0.977±.001 0.965±.001 0.969±.001 0.921±.001 0.883±.003 0.911±.001

18-35 0.833±.001 0.789±.001 0.755±.002 0.493±.003 0.455±.003 0.380±.003

35-50 0.774±.001 0.722±.001 0.686±.001 0.516±.002 0.458±.003 0.424±.002

50+ 0.905±.001 0.873±.001 0.813±.001 0.843±.001 0.780±.001 0.685±.002

Macro Avg 0.872 0.837 0.805 0.693 0.644 0.600

Table 16. Gender classification metrics for model trained with leave-one-out CL. After having trained the model with all three modalities,
we extract embeddings for each modality separately and train a logistic regression with each modality to identify gender. ± represents
95% confidence intervals.

ECG Respiratory BAS

AUROC 0.829±.001 0.790±.002 0.778±.001

AUPRC 0.754±.001 0.710±.003 0.713±.002

Table 17. Age classification metrics for model trained with pairwise CL. After having trained the model with all three modalities, we
extract embeddings for each modality separately and train a logistic regression with each modality to identify age groups. ± represents
95% confidence intervals.

AUROC AUPRC

ECG Respiratory BAS ECG Respiratory BAS

0-18 0.969±.001 0.962±.001 0.963±.001 0.908±.001 0.883±.001 0.897±.001

18-35 0.786±.001 0.769±.001 0.767±.001 0.422±.002 0.455±.003 0.389±.002

35-50 0.712±.002 0.702±.001 0.706±.002 0.441±.002 0.458±.003 0.436±.002

50+ 0.865±.001 0.841±.001 0.840±.001 0.722±.002 0.780±.001 0.742±.001

Macro Avg 0.832 0.818 0.818 0.634 0.617 0.615

Table 18. Gender classification metrics for model trained with pairwise CL. After having trained the model with all three modalities, we
extract embeddings for each modality separately and train a logistic regression with each modality to identify gender. ± represents 95%
confidence intervals.

ECG Respiratory BAS

AUROC 0.795±.001 0.746±.001 0.765±.001

AUPRC 0.722±.001 0.676±.002 0.702±.002
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Table 19. Sleep Stage Classification stratified by age group.

Macro AUROC Macro AUPRC

Leave-One-Out Pairwise Leave-One-Out Pairwise

0-18 0.890 0.849 0.665 0.594
18-35 0.911 0.883 0.702 0.624
35-50 0.897 0.867 0.630 0.559
50+ 0.895 0.861 0.616 0.530

Table 20. Sleep Stage Classification stratified by gender.

Macro AUROC Macro AUPRC

Leave-One-Out Pairwise Leave-One-Out Pairwise

Male 0.899 0.869 0.674 0.594
Female 0.910 0.880 0.693 0.621

Table 21. SDB classification metrics stratified by age group.

AUROC AUPRC

Leave-One-Out Pairwise Leave-One-Out Pairwise

0-18 0.93±0.01 0.86±0.03 0.56±0.04 0.35±0.04

18-35 0.94±0.01 0.90±0.01 0.69±0.02 0.61±0.03

35-50 0.94±0.01 0.89±0.01 0.73±0.01 0.63±0.02

50+ 0.94±0.01 0.90±0.01 0.73±0.01 0.60±0.01

Table 22. SDB classification metrics stratified by gender.

AUROC AUPRC

Leave-One-Out Pairwise Leave-One-Out Pairwise

Male 0.94±0.01 0.90±0.01 0.73±0.01 0.61±0.01

Female 0.95±0.01 0.91±0.01 0.70±0.01 0.59±0.01

Table 23. Sleep stage classification AUROC metrics for model trained with leave-one-out CL, stratified by different age groups.

0-18 18-35 35-50 50+

Wake 0.937±0.002 0.939±0.001 0.938±0.001 0.944±0.001

Stage 1 0.805±0.006 0.831±0.003 0.808±0.003 0.793±0.002

Stage 2 0.861±0.002 0.900±0.001 0.888±0.002 0.889±0.001

Stage 3 0.906±0.001 0.932±0.002 0.902±0.002 0.902±0.002

REM 0.941±0.002 0.956±0.001 0.950±0.001 0.949±0.001

Avg 0.890 0.911 0.897 0.895
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Table 24. Sleep stage classification AUPRC metrics for model trained with leave-one-out CL, stratified by different age groups.

0-18 18-35 35-50 50+

Wake 0.809±0.005 0.859±0.004 0.843±0.003 0.872±0.002

Stage 1 0.163±0.008 0.290±0.006 0.236±0.005 0.235±0.004

Stage 2 0.812±0.003 0.890±0.002 0.879±0.001 0.863±0.002

Stage 3 0.818±0.004 0.696±0.004 0.406±0.007 0.325±0.005

REM 0.725±0.007 0.775±0.006 0.787±0.004 0.786±0.004

Avg 0.665 0.702 0.630 0.616

Table 25. Sleep stage classification metrics for model trained with leave-one-out CL. The performance is stratified by different gender
groups.

AUROC AUPRC

Male Female Male Female

Wake 0.937±0.001 0.949±0.001 0.844±0.002 0.872±0.002

Stage 1 0.805±0.002 0.824±0.002 0.251±0.004 0.225±0.004

Stage 2 0.887±0.001 0.890±0.001 0.867±0.001 0.870±0.001

Stage 3 0.919±0.001 0.934±0.001 0.635±0.005 0.729±0.004

REM 0.944±0.001 0.955±0.001 0.771±0.004 0.767±0.002

Avg 0.899 0.910 0.674 0.693

Table 26. Sleep stage classification AUROC metrics for model trained with pairwise CL, stratified by different age groups.

0-18 18-35 35-50 50+

Wake 0.919±0.002 0.928±0.002 0.926±0.001 0.926±0.001

Stage 1 0.712±0.009 0.804±0.004 0.775±0.003 0.758±0.003

Stage 2 0.827±0.002 0.870±0.002 0.863±0.002 0.861±0.002

Stage 3 0.891±0.002 0.911±0.002 0.881±0.003 0.891±0.002

REM 0.894±0.002 0.901±0.002 0.891±0.002 0.868±0.002

Avg 0.849 0.883 0.867 0.861

Table 27. Sleep stage classification AUPRC metrics for model trained with pairwise CL, stratified by different age groups.

0-18 18-35 35-50 50+

Wake 0.771±0.005 0.828±0.003 0.813±0.003 0.838±0.003

Stage 1 0.103±0.006 0.218±0.007 0.191±0.004 0.198±0.004

Stage 2 0.780±0.003 0.861±0.003 0.857±0.002 0.833±0.002

Stage 3 0.775±0.004 0.617±0.003 0.340±0.009 0.267±0.007

REM 0.539±0.009 0.597±0.006 0.591±0.006 0.516±0.005

Avg 0.594 0.624 0.559 0.530
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Table 28. Sleep stage classification metrics for model trained with pairwise CL. The performance is stratified by different gender groups.

AUROC AUPRC

Male Female Male Female

Wake 0.924±0.001 0.932±0.001 0.813±0.002 0.834±0.002

Stage 1 0.769±0.002 0.791±0.002 0.194±0.003 0.192±0.004

Stage 2 0.859±0.001 0.861±0.001 0.840±0.001 0.840±0.002

Stage 3 0.910±0.001 0.922±0.001 0.559±0.002 0.687±0.004

REM 0.882±0.001 0.892±0.001 0.561±0.002 0.554±0.005

Avg 0.869 0.880 0.594 0.621

Table 29. Sleep stage classification metrics for model trained with supervised CNN individually on each modality. ± represents 95%
confidence intervals.

AUROC AUPRC

ECG Respiratory BAS ECG Respiratory BAS

Wake 0.440±.004 0.571±.001 0.916±.001 0.186±.001 0.277±.002 0.800±.002

Stage 1 0.478±.002 0.564±.002 0.736±.002 0.063±.001 0.087±.001 0.146±.001

Stage 2 0.474±.001 0.540±.002 0.823±.001 0.481±.002 0.550±.001 0.800±.001

Stage 3 0.620±.001 0.552±.002 0.895±.001 0.121±.001 0.120±.002 0.593±.004

REM 0.490±.002 0.591±.002 0.875±.001 0.128±.003 0.171±.002 0.581±.003

Macro Avg 0.500 0.563 0.850 0.195 0.241 0.584

Table 30. SDB classification metrics for model trained with supervised CNN individually on each modality. ± represents 95% confidence
intervals.

ECG Respiratory BAS

AUROC 0.552±.004 0.870±.003 0.387±.004

AUPRC 0.019±.001 0.553±.003 0.012±.001

Table 31. External validation of SleepFM on Physionet Computing in Cardiology 2018 challenge (Ghassemi et al., 2018). The SleepFM
model was only pretrained on Stanford’s sleep data. Supervised CNN was trained end to end on the external database to classify sleep
stages. Prevalence of Wake, Stage 1, 2, 3, and REM are 0.17, 0.15, 0.42, 0.11, and 0.13, respectively. Test size: 100 participants. ±
represents 95% confidence intervals.

SleepFM Supervised CNN

AUROC AUPRC F1 AUROC AUPRC F1

Wake 0.966±.001 0.867±.003 0.790±.001 0.880±.002 0.617±.004 0.446±.002

Stage 1 0.830±.004 0.471±.002 0.439±.002 0.634±.003 0.191±.002 0.001±.000

Stage 2 0.902±.002 0.857±.004 0.793±.001 0.781±.001 0.668±.004 0.622±.001

Stage 3 0.971±.001 0.821±.004 0.743±.001 0.903±.002 0.610±.002 0.192±.001

REM 0.950±.002 0.778±.005 0.717±.002 0.572±.003 0.146±.002 0.000±.000

Macro Avg 0.924 0.759 0.700 0.754 0.447 0.253

19


