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ABSTRACT

We investigate Siamese networks for learning related embeddings for augmented
samples of molecular conformers. We find that a non-contrastive (positive-pair
only) auxiliary task aids in supervised training of Euclidean neural networks
(E3NNs) and increases manifold smoothness (MS) around point-cloud geometries.
We demonstrate this property for multiple drug-activity prediction tasks while
maintaining relevant performance metrics, and propose an extension of MS to prob-
abilistic and regression settings. We provide an analysis of representation collapse,
finding substantial effects of task-weighting, latent dimension, and regularization.
We expect the presented protocol to aid in the development of reliable E3NNs from
molecular conformers, even for small-data drug discovery programs.

1 BACKGROUND & INTRODUCTION

Modeling conformational shape is of critical importance in many molecular machine learning
(MolML) tasks (Zheng et al., 2017). This is especially true in the drug discovery (DD) regime,
e.g., for predicting the affinity of a ligand-protein binding interaction (Jones et al., 2021). However,
many programs in ML-based DD (MLDD) rely on small, noisy datasets (O 102−4) containing
complex structures, making the development of generalizable 3D neural networks (NNs) particularly
challenging.

Euclidean NNs (E3NNs) (Geiger & Smidt, 2022) make up the basis of many graph NN (GNN)
models with equivariance to SE(3) transformations (Liao & Smidt, 2022; Batatia et al., 2022). Atomic
coordinates are used to define radial edges for spatial message passing, increasing GNN expressivity
over covalent-only adjacencies (Geiger & Smidt, 2022). Through-space interactions that intuitively
influence structure activity relationships (SARs) (Kombo et al., 2013; Sauer & Schwarz, 2003) are
thus explicitly modeled.

E3NNs have shown impressive performance for a variety of MolML tasks such as learning neural
potentials (Zaidi et al., 2022; Devereux et al., 2020) and predicting electronic properties (Rackers
et al., 2022; Thomas et al., 2018). However, their use in drug-activity modeling is comparatively rare,
likely owing to the data challenges described above. Furthermore, in this space, little is understood
about the generalizability and latent properties of E3NNs. We seek to address this here and to better
understand representation learning with molecular conformers.

1.1 MOTIVATION

Given the fundamental dependence of drug-target binding and SARs on 3D structure, we sought an
understanding of E3NN behavior around molecular geometries. During supervised training with
3D datasets, we found that models were strikingly sensitive to input coordinates (see Section 4.3).
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This was seen as highly problematic, since models are often exposed to structures from varying
experimental and/or computational methods in production settings. As such, we sought to develop
learning methods to increase the generalizability of E3NNs to geometry perturbations.

Inspired by recent works in self-supervised learning (SSL) for (Mol)ML (Grill et al., 2020; Chen &
He, 2020; Wang et al., 2020; Zaidi et al., 2022; Godwin et al., 2021), we devised auxiliary tasks to
aid in training smooth, supervised E3NN manifolds. Simple Siamese networks (SimSiam) (Chen &
He, 2020) were identified as a promising base method due to the following preliminary guidelines:

1. We desire that networks embed very similar geometries (e.g., augmented pairs) to nearby
latent vectors

2. We do not require that distinct conformers of the same graph map to distant latent vectors
(i.e., no negative pairs)

3. Likewise, we do not require that conformations of distinct graphs (i.e., unique molecules)
map to distant latent vectors

Guideline 1 is intuitively motivated; given the geometry dependence of biophysical interactions that
create SARs, we desire models to learn that similar geometries should receive similar predictions.
For 2 and 3, our decision to avoid negative pairing is based on two non-assumptions. First, we
recognize that, in many cases, it will be desirable for most conformers c ∈ C to be embedded closely
to one another. However, for many high-value tasks, we desire that networks precisely discriminate
between individual conformers, as they may behave differently in biochemical systems. Second,
molecules with unrelated connectivity (2D graph) can adopt very similar 3D shapes and possess
similar functional properties (Sauer & Schwarz, 2003). Therefore, though often reasonable, we avoid
the assumption that is desirable for models to force embeddings of distinct molecules apart.

Given this context, we developed positive-pair-only auxiliary tasks for 3D MolML. Presented herein
are detailed investigations of Supervised Siamese networks (SupSiam) for MLDD tasks.

2 RELATED WORK

2.1 MULTI-INSTANCE LEARNING (MIL) WITH CONFORMER ENSEMBLES (CES)

Despite the growing literature in equivariant GNNs, relatively little focus has gone toward the effects
of 3D conformers themselves (Axelrod & Gomez-Bombarelli, 2020; Ganea et al., 2021a;b; Isert et al.,
2022). Existing efforts have even demonstrated a lack of performance gains from multiple-instance
learning (MIL) with conformer ensembles (CEs) (Axelrod & Gomez-Bombarelli, 2020). Despite this,
we expect that modeling the dynamics of CEs will be critical for many MLDD tasks, particularly
for developing oracles that generalize to new 3D structures. To this end, we are unaware of detailed
studies of MIL over CEs for activity-related tasks. Prior art in CE-MIL has focused only on electronic
or quantum mechanical (QM) property prediction (Axelrod & Gomez-Bombarelli, 2020; Zaidi et al.,
2022; Godwin et al., 2021), for which MolML has been well-demonstrated, even with 2D graphs
(Wu et al., 2017).

2.2 CONTRASTIVE LEARNING (CLR)

Contrastive learning (CLR) is in widespread use as a pre-training method for computer vision
and other ML disciplines (Le-Khac et al., 2020). Recently, “MolCLR” was demonstrated to be
effective for improving the performance of 2D GNNs in QM property prediction (Wang et al., 2021).
Typical augmentation tasks include subgraph masking as well as node and/or edge dropout. Graphs
augmented from the same parent molecule are treated as positive pairs, while those derived from
different parents are treated as negative pairs. The pre-training objective is to minimize and maximize
the embedding distance between positive and negative pairs, respectively.

The rationale for this objective states that similar — but different — 2D graphs should map to
similar latent vectors (Le-Khac et al., 2020). We pose that this treatment could be counterproductive
given the fundamentals of SARs that we desire models to learn: Changing a molecule’s connectivity
(input) should change its properties (labels). This is especially concerning in the small-molecule
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Figure 1: SupSiam pipeline.

setting (roughly ≤ 50 heavy atoms), where “activity cliffs,” or drastic label shifts arising from, e.g.,
single-atom edits, frequently plague DD programs (Stumpfe et al., 2019; Aldeghi et al., 2022).

2.3 SIAMESE NETWORKS (POSITIVE-ONLY NON-CLR)

Non-CLR has been substantially developed for SSL/pre-training, in part to address the drawbacks
of CLR above. SimSiam is an easily implemented non-CLR mechanism that is widely used in CV
(Chen & He, 2020). As in CLR, augmented samples derived from parent inputs are treated as positive
pairs, and models are trained to minimize the cosine distance between their embeddings. No negative
pair constraints are imposed, satisfying our desired setting (see Section 1.1).

A trivial global solution to the non-CLR task is to map all embeddings to a single latent point. To
avoid such collapse, in SimSiam loss gradients are backpropagated only for one augmented sample
and are detached from the rest. The loss is then symmetrized by multiple backward passes rotating
the detached samples. The authors in Chen & He (2020) claim that this stopgrad is sufficient to
prevent collapse. They demonstrate that the embedding variance along the feature dimension remains
roughly stable throughout training, indicating models are not learning to predict identical embeddings
for all inputs. However, Li et al. (2022) recently showed that partial dimensional collapse (PDC) can
occur despite stable overall variance (see Section 3).

2.4 PRE-TRAINING BY STRUCTURE DENOISING

Node denoising (“noisy nodes”) has recently been demonstrated as an effective pre-training task for
modeling 3D graphs (Godwin et al., 2021; Zaidi et al., 2022). Input coordinates are augmented with
Gaussian noise, and models are trained to predict this noise, i.e., to recover the ground-truth structure.

While promising, this approach has two limiting pre-conditions: 1. Access to ground-truth (QM)
conformations to denoise to and from; and 2. A suitably large corpus of QM structures of a relevant
chemical space for pre-training. These conditions are quite difficult to satisfy for active DD programs,
where structure optimization, e.g., by density functional theory (DFT) (Kohn & Sham, 1965), is
prohibitively expensive, even for small labeled datasets.

That said, including denoising as an auxiliary objective during supervised fine-tuning was shown
to be beneficial, from which we take inspiration. At time of writing, we are unaware of the use of
non-CLR tasks for CE-MolML, whether un-, self-, or label-supervised.
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3 APPROACH AND METHODS

A schematic of our approach is found in figure 1, and its components are described in detail in the
following sections. All data and code are made available at [link to be activated on acceptance for
publication].

3.1 CONFORMER PREPARATION AND AUGMENTATION

Following Axelrod & Gomez-Bombarelli (2020), we prepare CEs of modest size (Cm ≤ 10) for each
molecule m in a dataset with the inexpensive Experimental Torsion Knowledge Distance Geometry
(ETKDG) method (Wang et al., 2020).

We note that conformer selection for MolML remains an outstanding challenge (Axelrod & Gomez-
Bombarelli, 2020; Zaidi et al., 2022; Ganea et al., 2021b). In attempt to isolate the effects of the
non-CLR mechanism from a dependence on starting conformers, we randomly sample a single
conformer c ∈ Cm for each molecule at each pass through models. This has the added benefit of
computational efficiency over modeling a full CE in each pass. We report aggregated results over
repeated training runs to marginalize over the effects of conformer selection.

Following Godwin et al. (2021); Zaidi et al. (2022), we augment conformers c by sampling Gaussian
noise N (0, 1) ∈ Rn×3 around normalized node positions vci ∈ Vc to give ca. The noise scale is
controlled by a temperature hyperparameter τ (i.e., noise is sampled from N (0, τ)). A cutoff radius
of 4.0 Å was used for constructing radial graphs, to which self-loops were added.

3.2 SIAMESE E3NNS

E3NNs (Thomas et al., 2018) were utilized as a base architecture to demonstrate our approach, though
it is architecture-agnostic. The overall loss for optimization combines a target-prediction term (Ly), a
positive-only cosine embedding term (Ls), and an l2-regularization penalty (Lr) as follows:
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where N is the dataset size, Cm is the number of conformers of molecule m modeled in each pass
(1 herein), λy,r,s are sub-task weights, A is the number of augmented samples of each conformer
(including parent, 2 herein), zc1 and zca are the learned embeddings for the parent and augmented
conformers, respectively, yi and ŷca are the ground-truth and predicted labels for molecule i and
augmented conformer ca, respectively, and ξ(·) represents the stopgrad operation.

We utilize a moderate-capacity, feed-forward E3NN, the trunk of which consists of 4 convolutional
interaction blocks as defined in Geiger & Smidt (2022). This is followed by global mean pooling over
node features and a readout multi-layer perceptron (MLP) of length 1. layernorm is applied to
each interaction block. The penultimate parent and augmented representations ẑc1 and ẑca are projected
by another MLP h to give zc1 and zca of dimension d.

The Siamese task Ls in Equation 2 translates to predicting zca from ẑc1 with h, and vice versa. In
this mechanism, each backward pass only propagates through one sample (zca or zc1), with gradients
detached from the other. This is symmetrized such that each augmentation ca ∈ A receives a
backward pass.

For the target task Ly in Equation 1, probabilistic inference was utilized to account for aleatoric
uncertainty in the datasets (Kendall & Gal, 2017). Models thus output parameterized distributions
over logits, from which we sample before appropriate activation and loss calculation.

Each experiment assesses E3NNs over 5 random weight instantiations, and experiments are run in
duplicate (10 total runs). For test-set evaluation, weights of each ensemble member were loaded from
the epoch of their best validation-set performance for the applicable metric (vide infra).
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3.3 DATASETS

It was hypothesized that our approach may be most useful for shape-based MLDD tasks such as
binding/affinity prediction. For initial studies, one dataset both in and out of this task type were
selected from the Therapeutic Data Commons (TDC) (Huang et al., 2022). These included one
classification (3.3.1) and one regression (3.3.2) dataset, for which ablation studies over τ , d, and λs,r

were performed.

Dataset splits were used as given in the TDC API (link). For consistency, each dataset was restricted
to the set of molecules containing only atoms of types [C, N, O, F, S, Cl, Br, I]. Com-
pounds that failed conformer generation were also removed. Initial conformer diversity was imposed
by RMSD ≥ 0.1 Å. All conformers were optimized with the Universal Force Field (UFF) using
default parameters in RDKit (Landrum, 2022).1

Brief dataset details are given below, and we direct the reader to the TDC web page (link) for full
descriptions and original references.

3.3.1 PGP_BROCATELLI (PGP)

This dataset comprises 1,212 molecules with affinity labels for binding to P-glycoprotein receptors.
The task is binary classification; Ly is binary cross entropy (BCE), and the evaluated metric is
ROCAUC.

3.3.2 CLEARANCE_HEPATOCYTE_AZ (CLEAR)

This dataset contains 1,020 molecules with continuous labels for degree of hepatocyte clearance. The
task is regression; Ly is mean squared error (MSE), and the evaluated metric is Spearman ρ.

3.4 ANALYSIS AND METRICS

We hypothesized that the auxiliary task in 1 could result in more generalizable E3NNs in small-data
regimes. This was analyzed by quantification of local manifold smoothness (MS, ηf ) (Ng et al., 2022)
as a proxy for model f ’s robustness to conformer noise in unseen data (see Section 1.1).

In Ng et al. (2022), η(f, c) is defined as the total percentage of augmented samples ca of input c
that are assigned the mode predicted label in the set (for binary tasks). We generalize this to the
probabilistic and regression settings by computing the KL divergence between predicted posterior
distributions (µ̂c

1, σ̂
c
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While difficult to assess on absolute scale, we utilize ηf to compare between models with different
weightings of the subtasks and noise hyperparameters.

Following Chen & He (2020), we detect trivial collapse by quantifying the variance in embeddings
(σ2

z ) along the feature axis (see section 2.3). Finally, we follow Li et al. (2022) to detect partial
dimensional collapse. We quantify the cumulative explained variance (CEV, Γ) of the singular values
γ computed via principal component analysis of embedding sets. The CEV up to rank-sorted γj (Γj)
and the area under the full CEV curve (Γ) are defined as:

Γj =

∑j
i=1 γi∑d
k=1 γk

; Γ =
1

d

d∑
j=1

Γj , (4)

1It is possible that initial conformers converge to a small number of locally optimal geometries. We allow
this under the assumption that this final set may be most reflective of that observed in a biological setting. I.e.,
since a random conformer is sampled in each epoch, models are roughly exposed to a Boltzmann-weighted
distribution of conformations. Further study into learned conformer sampling will be presented in future work.
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Figure 2: E3NN Pgp-binding classification training profiles at varying λs. A) target loss (BCE); B)
Siamese loss (cos); C) regularization loss (l2-norm); D) embedding feature variance. All curves show
validation set results with A = 1, d = 128, τ = 0.1, λr = 0.0.

Figure 3: E3NN Pgp-binding classification test set ROCAUC across SupSiam parameters.

where d is the full embedding size. Γ ranges between [0.5, 1.0]; larger values correspond to more
rapid coverage of the total CEV over fewer singular values, and thus indicate a larger degree of
collapse. Γ = 0.5 corresponds to zero PDC.
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4 RESULTS AND DISCUSSION

4.1 TRAINING PROFILES

Figure 2 shows E3NN training profiles on the Pgp task at varying λs values without regularization
(λr = 0.0). Target loss curves are largely consistent across λs values, (Figure 2A), though this is
not the case in all settings (see Section A.3.1 for full results). It is worth noting that with standard
supervision (λs = λr = 0), training curves are often highly erratic. Further, cosine embedding
distance for augmented pairs actually diverges over the course of training for purely supervised
models (Figure 2B, red). As anticipated, this divergence is mitigated using SupSiam, with an intuitive
trend at increasing λs. At higher levels of λs, smooth training toward Ls = 0 is observed.

Interestingly, the opposite trend is observed for Lr (Figure 2C). However, this only holds without
regularization (λr = 0); with λr > 0, Lr smoothly converges in all cases (see Section A.3.1).

Surprisingly, embedding-feature variance decreases monotonically over training at low values of λs,
and is largely flat at higher λs (Figure 2D). This effect is dependent on regularization. With λr = 0 as
in Figure 2, the maximum λs = 10 actually maintains the highest feature variance throughout training.
With λr > 0, however, σ2

z behaves as observed in Chen & He (2020) — σ2
z sharply decreases in early

epochs before recovering to inital levels and plateauing (see Section A.3.1).

4.2 PERFORMANCE METRICS

Final test set performances are shown in Figure 3, with error bars representing ± 1 stdev. over repeat
runs. In line with the observations above, test set ROCAUC is highest at intermediate levels of λs

and λr, which holds across settings of d. At small τ , reasonable performance can be maintained even
at maximum λs. At maximum λr, however, the target task is only minimally learned, regardless of
all other settings (see Section A.3.1).

It is important to note that for this task, the maximum ROCAUC obtained (∼ 0.91) is slightly below
the literature benchmark (∼ 0.95) (Huang et al., 2022). However, benchmark methods largely utilize
tree-based learning with cheminformatic representations; modeling this dataset with E3NNs could be
expected to be quite challenging. This is much in line with our motivation (see Sections 1, 1.1), and
exceeding benchmark metrics is neither a goal nor expectation. Altogether, we find the combination
of performance with stable, physically reasonable training profiles obtained with SupSiam (Section
4.1) to be compelling for use in production settings.

The ablation of λr and λs provides insight into their effects on latent properties. We expect that Ls is
not simply serving to compactify latent space (like Lr) due to the following observations:

1. Maximizing λr inhibits training of Ly , regardless of λs (Figure 3). Conversely, maximizing
λs results in viable training profiles at several settings of λr (Figures 2A, 3, Section A.3.1);

2. Ablating λs is uniformly deleterious to Ls across λr values. Conversely, λr has little to no
effect on Ls, regardless of λs (Figure 2B, Section A.3.1);

3. As expected, at fixed λs, Lr decreases with increasing λr (Section A.3.1). Conversely, at
fixed λr, Lr actually tends to increase with increasing λs (Figure 2C).

These observations point to differing behaviors of Siamese learning and latent regularization. It
appears that while Lr does compactify latent space (lower l2), this does not necessarily push related
embeddings to closer cosine distances. Conversely, while Ls does push related embeddings to closer
cosine distances, it does so with an increased expansion of latent space (higher l2). We thus expect a
task-specific balance of λs and λr may lead to the most desirable model properties.

4.3 MANIFOLD SMOOTHNESS AND PARTIAL DIMENSIONAL COLLAPSE

Figure 4 (top) shows KDEs of per-molecule MS (Equation 3) across λs for the models discussed
above. In many cases, SupSiam caused drastic reduction in posterior KL divergence between
augmented samples, often by several log units. We note that the correlation of µf and λs is often
obscured when Lr is heavily weighted (see Section A.3.4). In any case, we find MS analysis very
informative.
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Figure 4: (Top) Pgp E3NN manifold smoothness (ηf ) at varying λs. All models trained with τ = 0.1,
A = 1. ηf evaluated with τ = 0.1, A = 10. (Bottom) Pgp E3NN partial dimensional collapse at
varying λs. Vertical lines indicate singular value at which Γj = 0.95 (γ95

j ).

Figure 4 (bottom) shows CEV curves across λs. We do observe a positive (albeit intuitive) correlation
between Γ and λs. That said, in many cases only minor increases in PDC were observed at low levels
of λs vs λs = 0.0. It is striking to note the degree of PDC in the pure supervision setting (λs = 0).
This may indicate that supervised E3NNs fit to relatively few input structure features, at least in
small-data regimes. We find this alarming, but note that in most models (at λs ≤ 1) 95% CEV (γ95

j )
is not reached until roughly the 1/3 or 1/2 embedding index (Figure 4, bottom).

Contrary to Li et al. (2022), we also observe a positive correlation between Γ and d. In Li et al.
(2022), increasing model capacity (via d) was used explicitly to reduce PDC. This was rationalized
as insufficient capacity resulting in information loss. It is possible that, at least in our data setting
(N ∼ 102−4), the opposite may be true, where an encoded-information limit is reached at relatively
small d, and thus increasing capacity actually results in higher Γs. Increasing λr decreased the
dependence on λs, and in some cases actually reduced PDC (Section A.3.4).

Li et al. (2022) propose continual learning as a mechanism to reduce PDC in Siamese networks. We
leave such studies in our setting for future works. For now, we assess that low λs settings lead to
acceptable ∆Γ from pure supervision, where collapse appears to be an outstanding issue. We expect
that PDC may be a useful tool to analyze learned information in MolML more broadly.

5 CONCLUSION AND OUTLOOK

Supervised Siamese networks (SupSiam) were presented as an approach to train E3NN models on
molecular geometries. We observe that the Siamese auxiliary task results in desirable latent properties
while maintaining good performance in target prediction. Additionally, in many cases SupSiam was
shown to increase manifold smoothness (i.e., decrease model sensitivity) to noise in input structures,
a critical challenge in MolML. Lastly, embedding collapse was observed to increase only slightly
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over pure supervision. That said, the partial dimensional collapse of E3NNs was observed to be
severe in most cases, which we find alarming. Future works will seek to tackle this issue.

Other topics for future work include expansion to other equivariant architectures (Batatia et al.,
2022) and augmentation mechanisms, e.g., noising bond distances and angles instead of atomic
positions. Further, we are actively exploring non-CLR pre-training mechanisms, which will be
reported separately. Finally, optimal task weighting and architecture settings (λy,s,r, d, τ ) are likely to
be task-specific. We expect an exciting direction for future work will be in, e.g., Bayesian optimization
of these parameters.

Overall, we anticipate the findings herein to aid in the training of more robust 3D GNNs on molecular
conformers. We expect the approach to be applicable in many 3D modeling tasks for small and large
molecules, e.g., proteins. SupSiam may find particular utility in settings where sensitivity to minor
2D structure changes, but insensitivity to minor 3D structure changes, are desirable. We are hopeful
it will aid in overcoming challenges such as activity cliffs (Stumpfe et al., 2019) and rough SAR
landscapes (Aldeghi et al., 2022), and will lead to more reliable modeling in MLDD.
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A APPENDIX

A.1 DATA PROCESSING

A.1.1 TARGET DISTRIBUTIONS

See Section 3.3 for high-level data-processing details. For the Clear task, targets were scaled by log10
to give a roughly Gaussian prior. For all datasets, oversampling was utilized, where model batches
were sampled from the training set weighted proportionally to the inverse of their histogram-bin
density as follows:

wi = 1− py(yi), (5)

where py represents the prior density distribution.

A.1.2 CONFORMER ENSEMBLE GENERATION

All processing functions are made available in the associated code repository at [link to be activated
on acceptance for publication]. The conformer generation pipeline follows that in Axelrod & Gomez-
Bombarelli (2020) closely. A model pipeline is as follows:

Algorithm 1 Conformer ensemble generation
1: Input: Dataset of N observations Dn, with input space X as molecular SMILES strings,

conformer ensemble size c, boolean optimize o, boolean align a, rdkit.Chem.AllChem
package, rdkit.Chem.rdMolAlign package

2: Output: Dataset of N observations Dn, with input space atomic positions X ∈ R3.
3: for {n = 1, . . . , N} do
4: Construct AllChem.Mol objectMn

5: Mn ← AllChem.AddHs(AllChem.MolFromSmiles(Xn))
6: Embed ensemble of 3D conformers with ETKDG
7: MC

n ← AllChem.EmbedMultipleConfs(Mn, numConfs=c)
8: if o then
9: Optimize molecular conformers with force field

10: MC
n ← AllChem.UFFOptimizeMoleculeConfs(MC

n, numConfs=c)
11: end if
12: Remove hydrogen atoms
13: Mn ← AllChem.RemoveHs(Mn)
14: if a then
15: Align molecular conformers
16: MC

n ← rdMolAlign.AlignMolConformers(MC
n)

17: end if
18: end for

A.2 MODEL ARCHITECTURE

A.2.1 E3NNS

See Section 3.2 for high-level architecture details. Full hyperparameters are included below for a
network with hidden dimension d = 128:
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Table 1: E3NN hyperparameter settings
Name Setting Description

irreps_in 128x0e input-layer irreducible representations
irreps_hidden 128x0e+128x1o+x2e hidden-layer irreducible representations

irreps_out 128x0e output-layer irreducible representations
l_max_sh 1 maximum geometric tensor spherical-harmonic level

num_hidden_layers 4 number of E3NN convolution layers
rc 4.0Å neighborhood-edge radial cutoff distance

irreps_edge 128x0e edge-layer irreducible representations
radial_num_basis 16 number of basis functions for radial NN

radial_num_hidden 16 radial NN hidden dimension
radial_num_layers 2 radial NN depth

add_self_loops True include self-edges in radial graphs

Intermediate layers are treated with ShiftedSoftplus activation and LayerNorm.

E3NNs output feature vectors for each node, comprising their flattened and concatenated geometric
tensors. These embeddings are pooled by global_mean_pool to give single vector representa-
tions for each molecule, to which a final linear readout layer is applied.

A.2.2 SIAMESE PROJECTION MLP

For the Siamese task, E3NN readout representations of dimension d are input to a multilayer per-
ceptron (MLP) of depth 2 and dimensions {d× 2, d}. Both layers are followed by ShiftedSoftplus
activation, and the intermediate representations are treated with LayerNorm and dropout of proba-
bility 0.2.

A.2.3 PROBABILISTIC MLP

The probabilistic predictive model is a split-head MLP with two modules, each of depth 3 and
output dimensions {d × 2, d, 1}. Intermediate layers are followed by ShiftedSoftplus activation,
LayerNorm, and dropout with probability 0.2. The mean (µ) module is unactivated, outputting raw
logit values. The variance (σ) module outputs are activated by Softplus to give predicted posterior
distributions (µ, σ). Following Kendall & Gal (2017), m samples are drawn from these distributions,
and the resulting logits are activated by sigmoid for classification tasks and Tanhshrink for re-
gression tasks. In the case of regression, the resulting predictions are scaled using the prior parameters
(µt, σt) computed on the training set. An aggregate loss is computed over the sampled predictions,
binary cross entropy (BCE) for classification and mean squared error (MSE) for regression.

A.3 FULL RESULTS

A full grid search study was run over the following hyperparameter ranges:

Table 2: SupSiam hyperparameter screen
Name Values Description

n 10 number of model runs
e 50 number of training epochs
τ [0.1, 1] node noise multiplier
d [128, 256] hidden dimension
λs [0.0, 0.1, 1.0, 10.0] Siamese loss weight
λr [0.0, 0.1, 1.0, 10.0] l2 loss weight
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A.3.1 TRAINING PROFILES

Model performance and properties were tracked throughout training and included Ly, Ls, Lr, and
σ2
z (see Equations 1, 2). roc_auc_scores were additionally tracked for classification tasks, and

Spearman ρ for regression.

Full results are provided below. Each figure contains 1 metric above, from 1 task, and at 1 value of
τ over the course of training. Plots are arranged with increasing d along the horizontal axis, and
increasing λr along the vertical axis. Scatter plots like Figure 3 are also included, where all models
were loaded from the epoch of their best validation set metric performance (roc_auc_score or
Spearman ρ). These are organized with increasing d along the horizontal, increasing τ along the
vertical, and increasing λr on the subplot x-axis.

Note that for the Pgp task, roc_auc_scores in training figures were calculated with predictions
binarized at ŷ ≥ 0.99. For the scatter plots, however, full ROC curves were plotted over a range
of 100 binarization thresholds evenly spaced from [0.0, 1.0]. Areas under these curves were then
directly computed for each repeat model, giving the results shown in the plots.
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A.3.2 PGP

14



Published at the MLDD workshop, ICLR 2023

15



Published at the MLDD workshop, ICLR 2023

16



Published at the MLDD workshop, ICLR 2023

17



Published at the MLDD workshop, ICLR 2023

18



Published at the MLDD workshop, ICLR 2023

19



Published at the MLDD workshop, ICLR 2023

20



Published at the MLDD workshop, ICLR 2023

21



Published at the MLDD workshop, ICLR 2023

22



Published at the MLDD workshop, ICLR 2023

23



Published at the MLDD workshop, ICLR 2023

24



Published at the MLDD workshop, ICLR 2023

A.3.3 CLEAR
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A.3.4 MANIFOLD SMOOTHNESS AND PARTIAL DIMENSIONAL COLLAPSE

See Sections 3.4 and 4.3 for details on the analysis of manifold properties. Expanded results from
Figure 4 are included below, organized in the same manner as those in Section A.3.1. All results
shown were computed for test set samples only, which were never seen in training or validation.

A.3.5 PGP
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A.3.6 CLEAR
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