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ABSTRACT

Curriculum learning plays a crucial role in enhancing the training efficiency of
large language models (LLMs) on reasoning tasks. However, existing methods
often fail to adequately account for variations in prompt difficulty or rely on sim-
plistic filtering mechanisms to select prompt datasets within a narrow criterion
range, resulting in significant computational waste. In this work, we approach the
problem from the perspective of reinforcement learning gradient optimization, of-
fering a systematic and theoretical investigation into how to improve the training
efficiency of LLMs. We identify two key factors influencing training efficiency:
the selection of training prompts and the allocation of rollout quantities across dif-
ferent prompts. Our theoretical analysis reveals that the sampling distribution of
prompts dictates the convergence rate of gradient descent, while the allocation of
the rollout quantity influences the consistency and stability of overall gradient up-
dates. Based on these insights, we propose CurES, an efficient training method that
accelerates convergence and employs Bayesian posterior estimation to minimize
computational overhead. Experiments demonstrate that our CurES outperforms
Group Relative Policy Optimization (GRPO) by +3.3 points and +4.82 points
with 1.5B and 7B models, respectively, and exceeds the best prior sample efficient
methods by +2.12 points on average across eight math reasoning benchmarks. Our
CurES also improves convergence speed compare to baselines such as GRPO.

1 INTRODUCTION

Although Reinforcement Learning with Verifiable Reward (RLVR) (Guo et al., 2025; Lambert et al.,
2024; Guo et al., 2025; Team et al., 2025) has emerged as a powerful paradigm for reasoning tasks
of Large Language Models (LLMs), prevailing approaches often rely on uniform sampling strate-
gies that treat all training instances identically (Zeng et al., 2025; Xie et al., 2025). This paradigm
fails to account for the inherent heterogeneity in prompt difficulty and the varying training utility
that different prompts offer. Consequently, computational resources are inefficiently allocated, be-
ing wasted either on trivial prompts that yield diminishing returns or on excessively challenging
examples where the model shows negligible progress.

Recent works have investigated progressive training curricula that partition the process into several
hand-crafted stages of increasing difficulty (Luo et al., 2025; Song et al., 2025). However, such par-
titioning is overly coarse and struggles to align with the evolving capabilities of reasoning models
during training. Other approaches apply online data filtering by generating and then pruning sam-
ples (Yu et al., 2025; Bae et al., 2025; Lin et al., 2025). Yet, this paradigm does little to conserve
computational resources and instead leads to suboptimal sample efficiency. Additional studies have
begun exploring dynamic computation reallocation across prompts with minimal overhead (Yao
et al., 2025; Zhang et al., 2025; Shi et al., 2025). Nevertheless, these techniques address only iso-
lated facets of training acceleration, without fully accounting for the problem’s inherent dynamism.

In this work, we first analyze the efficiency of training optimization for reasoning models from the
perspective of gradients, elucidating its close relationship with the sampling probability distribution
of prompts and the allocation of rollout quantities across these prompts. Our analysis reveals that
the prompt sampling distribution directly influences the speed of gradient descent, while the alloca-
tion of rollout quantities affects the consistency and stability of overall gradient updates. Leveraging
these insights, we propose CurES, a practical training method. CurES first estimates prompt diffi-
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Figure 1: Illustration of our theoretical and practical contributions. The first part presents our the-
oretical analysis, which establishes the relationship between the gradient efficiency and models’
question-answering accuracy, denoted as pθ(x). Building upon these insights, we develop CurES, a
practical method that initially estimates pθ(x) using a small rollout quantity, then reallocates prompt
sampling probabilities and rollout quantities based on the estimated accuracy. In contrast to the uni-
fied framwork provided by our CurES, existing sample efficient methods fail to optimize from both
prompt sampling and rollout quantity aspects. Speed-RL (Zhang et al., 2025) improves the prompt
sampling procedure by eliminate the prompts with estimated accuracy of 0 or 1, and GVM (Yao
et al., 2025) propose to assign more rollout quantities to harder prompts.

culty via models’ question-answering accuracy, then reallocates prompt sampling probabilities and
rollout quantities accordingly. During training, the confidence in these accuracy estimates is progres-
sively refined through posterior estimation based on previously sampled data, thereby improving the
robustness of the allocation process. Figure 1 illustrates the overall approach, and our contributions
are summarized below:

• We provide a theoretical analysis from the gradient perspective, elucidating the intrinsic
relationship between training optimization efficiency and prompt sampling distribution, as
well as the allocation of rollout quantities across prompts.

• Guided by the theoretical analysis, we propose a practical training method that integrates
Bayesian posterior estimation, achieving enhanced efficiency and stability in reasoning
model training with minimal computational overhead.

• Experimental results show that our approach achieves state-of-the-art performance across
diverse mathematical reasoning datasets and model scales, accelerating convergence by up
to 5.5 times compared to uniform sampling baselines like GRPO.

2 RELATED WORKS

Reinforcement Learning with Verifiable Reward (RLVR). RLVR has emerged as a powerful
framework for enhancing the reasoning capabilities of large language models (LLMs) by using de-
terministic, rule-based verification functions to generate binary reward signals (Lambert et al., 2024;
Guo et al., 2025; Team et al., 2025). Unlike preference-based methods that rely on costly human
feedback (Christiano et al., 2017; Ouyang et al., 2022), RLVR leverages answer matching, partic-
ularly in mathematical reasoning tasks, to guide model optimization (Zeng et al., 2025; Xie et al.,
2025). While algorithms like PPO (Schulman et al., 2017) are widely used, they often incur high
computational costs. Recent advancements, such as GRPO (Shao et al., 2024) and REINFORCE++
(Hu, 2025), aim to improve resource efficiency and accelerate training (Yu et al., 2025; Lin et al.,
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2025). Industry models like DeepSeek-R1 (Guo et al., 2025) and OpenAI o1 (OpenAI et al., 2024)
further highlight RLVR’s potential for developing robust reasoning patterns.

Curriculum Learning and Data Selection in RLVR. Effective data selection is critical for opti-
mizing RLVR training, yet designing curricula that align with the dynamic capabilities of LLMs
remains challenging. Progressive training curricula, such as those proposed in (Luo et al., 2025;
Song et al., 2025), partition training into hand-crafted stages of increasing difficulty. However, these
static approaches often fail to adapt to the evolving proficiency of models during training. Online
data filtering methods, such as those in (Yu et al., 2025; Bae et al., 2025; Lin et al., 2025), generate
and prune samples to focus on high-impact data but introduce significant computational overhead,
leading to suboptimal sample efficiency. Recent efforts have explored dynamic computation reallo-
cation to prioritize prompts with higher training utility (Yao et al., 2025; Zhang et al., 2025; Shi et al.,
2025). However, these methods address only specific aspects of training acceleration and do not fully
account for the interplay between prompt sampling distributions and rollout quantity allocation. In
contrast, our work proposes CurES, a method that dynamically adjusts sampling probabilities and
rollout quantities based on Bayesian posterior estimation of prompt difficulty, achieving improved
sample efficiency with minimal computational overhead.

3 PRELIMINARIES

Reinforcement Learning with Verifiable Reward (RLVR) represents a specialized reinforcement
learning paradigm tailored for reasoning tasks, where reward signals can be deterministically ver-
ified through programmatic means. This approach is particularly well-suited for domains such as
mathematical reasoning, code generation, and logical deduction, where correctness criteria are ob-
jectively defined (Lambert et al., 2024; Guo et al., 2025; Team et al., 2025). Formally, given a policy
model πθ and a prompt distribution ρ, the RLVR objective aims to maximize the expected reward
while constraining policy updates within a trust region:

L(θ) = −Ex∼ρ,y∼πθ(·|x)
[
Aθold(x, y)

]
, subject to Ex∼D[DKL(πθold(·|x)∥πθ(·|x))] ≤ δ. (1)

Here, Aθold(x, y) = r(x, y)− Ey∼πθold
[r(x, y)] denotes the advantage function, θold represents the

policy parameters from the previous iteration, and δ defines the trust region boundary that prevents
excessive policy divergence.

A key characteristic of RLVR is its reward formulation. Unlike preference-based RLHF that relies
on subjective human judgments, RLVR employs a verifiable reward function defined as:

r(x, y) =

{
1, if y is the correct answer for x
0, otherwise

(2)

The straightforward reward function design partially mitigates the issue of reward hacking.

4 METHODOLOGY

In this section, we introduce CurES, a novel method designed to enhance the training efficiency of
Reasoning LLMs. We begin by establishing a theoretical connection between gradient optimization
efficiency and two key factors: the sampling distribution of prompts and the allocation of rollout
quantities across these prompts. Based on this analysis, CurES first leverages the estimation of the
model’s question-answering accuracy to assess prompt difficulty, which is then used to guide an op-
timal sampling strategy and rollout quantity allocation. By leveraging Bayesian posterior estimation,
we progressively refine the confidence in these accuracy estimates using historical sampling data,
ensuring robust and adaptive resource allocation with minimal computational overhead.

4.1 PROMPT DIFFICULTY CAPS OPTIMIZATION POTENTIAL

To facilitate subsequent derivations, we define the question difficulty as the model’s accuracy in
answering the question. Given a policy model πθ and a binary reward function r(x, y) in Eq. (2), the
expression for the model’s question-answering accuracy pθ is given by:

pθ(x) = Ey∼πθ
[r(x, y)]. (3)

3
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To investigate how prompt difficulty influences model gradient updates, we first consider the follow-
ing optimization problem for a given prompt x:

minL(x; θ) = min−Ey∼πθ(·|x)
[
Aθold(x, y)

]
, s.t. DKL(πθold(·|x)∥πθ(·|x)) ≤ δ. (4)

Here, we separately analyze the impact of different prompts on the loss function and theoretically
examine how varying prompt difficulty levels affect model training efficiency.

We employ the Lagrange multiplier method to solve the above problem. First, we set θ = θold + d
and reformulate the problem as follows:

d∗ = argmin
d

L(x; θold + d) + λ(DKL(πθold(·|x)∥πθold+d(·|x))− δ). (5)

By performing first-order Taylor expansion on the loss function L(x; θ) and second-order Taylor ex-
pansion on the KL divergence term DKL(πθold(·|x)∥πθ(·|x)), followed by simplification, we derive
the following equation:

d∗ = argmin
d

L(x; θold) +∇θL(x; θ)T
∣∣∣
θ=θold

d+
λ

2
dTF (x; θold)d− λδ, (6)

where F (x; θ) is the Fisher Information Matrix, a metric quantifying the information that observed
data provides about parameter estimates in probabilistic models. In reinforcement learning, it pri-
marily serves to construct more reasonable parameter update directions, thereby improving the effi-
ciency and stability of policy optimization. Here, F (x; θ) is represented as

F (x; θ) = Ey∼πθ

[
∇θ log πθ(y|x)∇θ log πθ(y|x)T

]
. (7)

Through mathematical derivation to address the problem of Eq. (6), we obtain the following results:

d∗ = − 1

λ
F−1(x; θold)∇θL(x; θ)

∣∣∣
θ=θold

, (8)

λ =

√
∇θL(x; θ)⊤

∣∣
θ=θold

F−1(x; θold)∇θL(x; θ)
∣∣
θ=θold

2δ
. (9)

With Eq. (8) and Eq. (9), we derive the expression for the update of the loss function:

|L(x; θold + d)− L(x; θold)| =
√

2δ∇θL(x; θ)T
∣∣∣
θ=θold

F−1(x; θold)∇θL(x; θ)
∣∣∣
θ=θ old

. (10)

According to the definition, the binary reward function r(x, y) serves as an unbiased estimator of the
model’s question-answering accuracy pθ(x), i.e., pθ(x) = Ey∼πθ

[r(x, y)]. Through the application
of the Cramér-Rao inequality, we derive the following fundamental result:

|L(x; θold + d)− L(x; θold)| ≤
√
2δpθold(x) (1− pθold(x)). (11)

Therefore, for the loss function L(θ), its optimization potential exhibits the following relationship
with prompt difficulty:

|L(θold + d)− L(θold)| ≤ Ex∼ρ

[√
2δpθold(x) (1− pθold(x))

]
. (12)

This demonstrates that the convergence rate of the model’s loss function is intrinsically related to the
difficulty of the prompt dataset, which is quantified by the model’s answering accuracy. To accelerate
training, the sampling distribution ρ should assign varied probabilities to prompts based on difficulty
while maintaining a balance with exploration. Thus, we seek the optimal sampling distribution ρ
under the entropy maximization constraint. Concretely, we address the following problem:

max Ex∼ρ

[√
2δpθold(x) (1− pθold(x)) + αH(ρ)

]
, s.t.

N∑
i=1

ρ(xi) = 1. (13)

Solving the aforementioned problem, we obtain the optimal sampling distribution as follows:

ρ∗(x) =
exp

(√
pθold(x) (1− pθold(x))/τ

)
∑

x′ exp
(√

pθold(x
′) (1− pθold(x

′))/τ
) , (14)

where τ = α√
2δ

is a hyperparameter. For the theoretical proof please refer to Appendix A.1.
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4.2 CLOSING THE GAP WITH THEORETICAL BOUND

In the previous section, we derived an upper bound on the gradient update for a given prompt.
However, due to the high computational cost of the natural gradient method, it is often avoided in
practice, and the theoretical result is instead used to guide prompt sampling. During actual gradient
updates, we aim to closely approximate the theoretical efficiency limit within a trust region bounded
by a KL divergence constraint of δ. Specifically, after sampling a batch of m prompts, we seek to
optimize operations to approach the bound. Within the curriculum learning framework, we consider
optimizing the allocation of rollout quantities across prompts under a fixed total rollout budget of N
to minimize the following loss function:

min E
[(
L(θ̂)− L(θold)−

(
−Ex∼ρ

[√
2δpθold(x) (1− pθold(x))

]))2]
, s.t.

m∑
i=1

ni = N. (15)

Here, θ̂ denotes the updated model parameters obtained from θold after applying the practical gradi-
ent update, i.e.:

θ̂ = θold − η∇θL̂(θ)
∣∣
θ=θold

, L̂(θ) = −
m∑
i=1

1

ni

∑
yj∈Di

[
πθ(yj |xi)

πθold(yj |xi)
Aθold

]
. (16)

Where η is the learning rate and ni denotes the number of sampled rollouts for question xi. We
assume that η is chosen such that the policy update remains within a KL divergence constraint of δ.

For convenience, we denote g = ∇θL(θ)
∣∣
θ=θold

,ĝ = ∇θL̂(θ)
∣∣
θ=θold

. By simplifying the loss func-
tion, we can show that the optimization problem reduces to the following:

min g⊤V(ĝ)g, s.t.
m∑
i=1

ni = N. (17)

The theoretical gradient direction g is typically unknown, and we seek to control the uncertainty of
the estimator in all possible directions. Therefore, we instead minimize the total variance Tr(V(ĝ)),
which corresponds to uniformly reducing the variance in all directions. This approach is a widely
adopted technique for variance estimation(Bottou et al., 2018; Papini et al., 2018; Wang et al., 2013).
In other words, we consider the following optimization problem:

min Tr(V(ĝ)), s.t.
m∑
i=1

ni = N. (18)

By expanding the variance of the aforementioned gradient, we isolate the rollout quantities ni to
facilitate analysis:

min
1

m2

m∑
i=1

Tr
(
Vy∼πθold

(h (y, xi; θold))
)

ni
, s.t.

m∑
i=1

ni = N. (19)

where h(x, y; θ) =
∇θπθ(yj |xi)
πθold (yj |xi)

Aθold(xi, yj). By applying the Lagrange multiplier method to solve
the above problem, we obtain the optimal solution as follows:

ni =
σi∑
j σj

N, σi =

√
Tr
(
Vy∼πθold

(h (y, xi; θold))
)
. (20)

The remaining challenge is computing σi. By expanding the variance and noting that the ad-
vantage function can be evaluated based on whether the rollout y is correct, i.e., Aθold(x, y) =
I(y is correct for x)− pθold(x), we derive the following symmetric computational form:

Tr
(
Vy∼πθold

(h (y, xi; θold))
)

=pθold(xi) (1− pθold(xi))
2 E
y∼πθold ,r=1

[
∥∇θ log πθ(y|xi)|θ=θold∥

2
]

+(pθold(xi))
2
(1− pθold(xi)) E

y∼πθold ,r=0

[
∥∇θ log πθ(y|xi)|θ=θold∥

2
]

−pθold(xi)
2(1− pθold(xi))

2

∥∥∥∥ E
y∼πθold ,r=1

[∇θ log πθ(y|xi))]− E
y∼πθold ,r=0

[∇θ log πθ(y|xi)]

∥∥∥∥2 .
(21)
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The optimized formula decomposes the variance estimation problem into two categories based on
answer correctness, integrating it with the prompt difficulty estimation from Section 4.1. By lever-
aging algebraic operations on prompt difficulty and policy gradients, it reuses difficulty estimates
from sampling and transforms variance estimation into a more tractable form. The theoretical proof
is provided in Appendix A.2.

4.3 PROMPT DIFFICULTY ASSESSMENT AND ALGORITHMIC IMPLEMENTATION

Estimating prompt difficulty is crucial for both sampling questions and allocating rollout quanti-
ties. However, difficulty changes dynamically during policy training, making accurate estimation
challenging. A straightforward approach is to add a pre-evaluation step before each sampling, but
this increases computational overhead and fails to leverage new samples for posterior estimation to
improve confidence. To address this, we propose a Bayesian inference framework that decomposes
rollout into a multi-stage mini-batch process. This refines the posterior estimation of the dataset,
dynamically adjusting the sampling distribution based on updated difficulty assessments.

Specifically, as the model πθold rollouts on a prompt xi multiple times, the number of correct answers
follows a binomial distribution with success probability pθold(xi). We can assume that pθold(xi) fol-
lows a Beta distribution, the conjugate prior of the binomial distribution, which is a widely adopted
technique in Bayesian inference (Kruschke, 2010; Qu et al., 2025):

pθold(xi) ∼ Beta(α0(xi), β0(xi)), (22)

where α0(xi) and β0(xi) can be interpreted as the counts of correct and incorrect answers during
sampling, which can be initialized using a small batch of sampled data for cold-start estimation.

Since the Beta distribution is conjugate to the binomial likelihood, the posterior distribution remains
Beta-distributed after observing new samples. Let αt−1(xi) and βt−1(xi) denote the cumulative
counts of correct and incorrect answers for prompt xi up to step t − 1. If, at step t, a mini-batch
generates ni answer with s correct, the posterior distribution for pθold(xi) after t steps is:

αt(xi) = αt−1(xi) + s, βt(xi) = βt−1(xi) + ni − s, (23)
pθold(xi) ∼ Beta(αt(xi), βt(xi)). (24)

To reduce randomness, we use the mean of the Beta distribution to estimate prompt difficulty in our
experiments.

This estimation approach enables modeling and estimating the difficulty of each prompt with mini-
mal overhead. However, as the model’s performance evolves during training, the estimation process
is susceptible to distribution shift, which becomes more pronounced with increasing training steps.
To mitigate this issue, we adopt a straightforward solution inspired by GVM (Yao et al., 2025).
Specifically, we divide the dataset into T non-overlapped subsets and perform iterative training on
these subsets. We train the model for a fixed training steps of M in every iteration. The estimations
of prompt difficulty and gradient variance are reset when a new iteration begins. This method effec-
tively alleviates distribution shift without introducing significant computational overhead. Moreover,
the iterative process enables the model to adaptively adjust its sampling allocation based on its own
evolving capabilities throughout training. For further details, please refer to Algorithm 1.

5 EXPERIMENTS

In this section, we present comprehensive experimental results and analysis of our CurES with other
baselines. Our experiments focus on the following research questions:

• RQ1: Does CurES outperform all baseline methods across various benchmarks?

• RQ2: How does CurES adapt its sampling strategy to achieve optimal learning efficiency?

• RQ3: Does CurES enhance sampling efficiency compared to other baseline methods?

Training Details. We employ VERL (Sheng et al., 2025) as our training framework and initialize our
policy using Qwen2.5-Math models (1.5B and 7B parameters). For the training dataset, we utilize
Numina-Math (Li et al., 2024), partitioning it into 15 subsets following GVM (Yao et al., 2025). We

6
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Figure 2: Comparison of learning curves between CurES and GVM across different backbone mod-
els and advantage estimators. CurES consistently outperforms GVM under the same number of
training steps, demonstrating more efficient utilization of samples.
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Figure 3: Distribution of rollout quantities with respect to accept rate in CurES at different training
iterations. CurES concentrates rollouts on effective prompts whose accuracy are close to 0.5.

conduct iterative training across these subsets, resulting in 15 training iterations. At the beginning of
each iteration, we perform 4 rollouts per prompt to establish an initial difficulty distribution and an
assignment of rollout quantities under a total sample budget of 8×1024. During training, we sample
prompts according to the difficulty distribution with replacement and conduct rollouts according to
the assigned rollout quantities. To make a fair comparison with GVM, we train 10 steps in each
iteration. We employ GRPO (Shao et al., 2024) and REINFORCE++ (RPP) (Hu et al., 2025) as
advantage estimators for all methods. The learning rate is set to a constant 1× 10−6.

Evaluation Benchmarks. To evaluate the complex reasoning capabilities, we choose a broad set
of challenging reasoning benchmarks, including MATH500 (Hendrycks et al., 2021), AIME 2024
and 2025 (Li et al., 2024), AMC 2023 (Li et al., 2024), GSM8K (Cobbe et al., 2021), Gaokao-
EN 2023 (Zhang et al., 2023), Mineva (Lewkowycz et al., 2022) and OlympiadBench (He et al.,
2024). These benchmarks comprehensively evaluate mathematical reasoning capabilities. Since
AIME 2024, 2025 and AMC 2023 are highly challenging competition benchmarks, which are of
limited sizes of test samples, we present the results averaged over 16 runs.

Baselines. To demonstrate the reasoning ability of our CurES, we compare it with many strong base-
line methods: GRPO (Shao et al., 2024), RPP (Hu et al., 2025), Speed-RL (Zhang et al., 2025) and
GVM (Yao et al., 2025). Specifically, GRPO and RPP are commonly used in training mathematical
problem solving models. Speed-RL is an adaptive online RL curriculum that selectively chooses
samples of intermediate difficulty to maximize learning efficiency (i.e., samples whose accuracy is
not 0 or 1). GVM is a prompt-specific dynamic sample allocation strategy designed to minimize
stochastic gradient variance under a computational budget constraint.

5.1 OVERALL PERFORMANCE (RQ1)

We present the learning curve of Qwen2.5-Math-1.5B and 7B models trained with different methods
and advantage estimators in Figure 2. Across all configurations, CurES exhibits higher progressive
and final accuracy compared to GVM. This advantage originates from two key differences: (i) CurES
adaptively allocates prompt sampling probabilities based on estimated success rates, which our the-
oretical analysis confirms enhances training efficiency; (ii) while GVM monotonically decreases
rollout allocation as accept rates rise, CurES allocates more rollout budget to prompts with accuracy
near 0.5 in Figure 3, resulting in more consistent training gradients and improved training stability.
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Table 1: Quantitative results of different methods across various datasets. The best and second best
results are in bold and underlined.

Method Pass@1 Average@16 Avg.
MATH500 GSM8K GAO23 MINERVA OLYM AIME24 AIME25 AMC23

Qwen2.5-Math-1.5B 40.20 43.90 25.19 11.40 21.04 1.67 1.67 14.84 20.00
+GRPO 73.80 86.43 48.83 27.94 35.41 8.54 6.67 45.47 41.64
+RPP 64.80 82.94 42.08 21.32 29.19 4.17 3.33 39.06 35.86
+Speed-RL-GRPO 68.80 85.67 47.14 27.40 35.56 12.08 6.88 47.19 41.34
+Speed-RL-RPP 65.80 85.67 48.31 27.94 36.30 12.58 10.08 47.34 41.75
+GVM-GRPO 74.80 84.23 48.83 27.21 35.56 10.21 11.25 50.47 42.82
+GVM-RPP 75.40 84.00 49.61 24.63 35.56 11.46 6.04 50.94 42.21
+CurES-GRPO 77.20 85.97 51.43 31.62 37.33 13.33 10.42 52.19 44.94
+CurES-RPP 75.40 85.82 51.43 28.31 37.04 12.71 11.46 50.94 44.14

Qwen2.5-Math-7B 60.20 72.40 44.68 22.79 30.81 7.92 1.88 27.19 33.48
+GRPO 80.00 91.43 51.43 31.99 38.37 20.00 10.00 57.50 47.59
+RPP 81.20 91.89 55.58 39.71 40.00 18.54 11.67 62.81 50.18
+Speed-RL-GRPO 82.80 88.70 55.58 29.41 42.37 20.21 11.46 60.16 48.84
+Speed-RL-RPP 78.60 91.81 53.77 37.13 42.96 17.29 12.08 62.81 49.56
+GVM-GRPO 81.60 91.28 54.03 32.72 42.67 23.54 15.00 64.31 50.64
+GVM-RPP 81.60 90.07 55.32 29.04 40.30 17.50 8.33 53.44 46.95
+CurES-GRPO 84.80 92.27 56.62 37.87 43.56 24.58 15.21 64.38 52.41
+CurES-RPP 81.80 91.89 54.55 33.09 40.59 23.33 12.92 58.75 49.62
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Figure 4: The evolution of the estimated accuracy distributions for the Qwen2.5-Math-1.5B (left)
and 7B (right) models across 15 iterations. Each violin shows the distribution of accuracy across
samples: the width reflects density, the central line marks the median.

To demonstrate the effectiveness of our CurES, we compare it with representative baselines that
are trained for the same number of steps. The main results are demonstrated in Table 1. The re-
sults clearly demonstrate that CurES consistently outperforms GVM and other baselines with both
GRPO and RPP as advantage estimators. Across both model scales, CurES establishes state-of-the-
art results on several datasets and consistently matches or surpasses the strongest baselines across
all settings, confirming the superior generalization ability of our CurES.

5.2 SAMPLING BEHAVIOR (RQ2)

Figure 4 illustrates the evolution of the difficulty distribution for both the Qwen2.5-Math-1.5B and
7B models throughout the training process. At iteration 1, the estimated accuracy are broadly dis-
tributed. Subsequently, as the training procedure continues, the distribution of estimated accuracy
shifts and becomes more concentrated around higher values. This shift demonstrates that the mod-
els are effectively learning and mastering the samples presented to them. Meanwhile, another view
of how the CurES method dynamically adjusts the rollout quantities assignment during training is
presented in Figure 3. The trend lines of all iterations reveals a “bell-shaped” distribution centered
around an accuracy of 0.5, which is expected since these samples are of high efficiency.

A notable phenomenon during training is that as the model becomes stronger, the number of samples
with an accuracy near 0.5 gradually decreases, and the “bell-shaped” distribution becomes sharper
and narrower. This indicates that CurES dynamically increases the assigned rollout quantities for
prompts with accuracy around 0.5, effectively compensating for their diminishing presence in the
dataset and ensuring they remain a substantial portion of each training batch. By coupling difficulty-
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Figure 5: Performance convergence of CurES on MATH500 with different sampling configurations.
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Figure 6: Efficiency comparison of CurES against baselines on MATH500. The gray dashed lines
mark the number of steps CurES and each baseline required to reach the baselines’ highest average
accuracy within the total training duration.

based prompt sampling with the adaptive sample sizing, CurES sustains an abundance of informative
prompts and thereby maximizes performance gains per step.

5.3 EFFICIENCY ANALYSIS (RQ3)

To analyze the effect of different combinations of pre-sampling scale (N ) and training-phase sample
budgets coefficient (n), indicating a training-phase sample budget of n ×m on the convergence of
model performance under, we conduct a series of experiments, as shown in Figure 5. A larger N
leads to a more accurate initial accuracy estimation, while a larger n provides a greater computation
budget. The results show that increasing either N or n does not yield a proportional performance
benefit relative to the increased computational cost. This finding confirms that the core mechanism
of CurES efficiently guides the model toward high-yield learning samples without the need for
extensive computational overhead, demonstrating its high sample efficiency.

We also provide a direct comparison of CurES against GRPO and RPP, in Figure 6. The plots show
the learning curve of each method over training steps. CurES-GRPO achieves the same peak perfor-
mance as the GRPO in just 5.5× fewer steps. Similarly, CurES-RPP reaches its peak performance
1.75x faster than the RPP baseline. The remarkable sample efficiency is a direct consequence of
CurES’s ability to consistently provide the model with optimally challenging samples.

6 CONCLUSION

In this paper, we propose CurES, a theoretically grounded curriculum learning algorithm for RLVR.
By linking gradient efficiency to accuracy, our approach adaptively prioritizes training prompts of
optimal difficulty and dynamically allocates rollout budgets. Beyond the theoretical analysis, our
algorithmic design leverages a Bayesian framework to track prompt difficulty in a lightweight yet
adaptive manner. Specifically, we model the success rate of each prompt instance with a Beta dis-
tribution, which naturally incorporates prior information and posterior updates as new rollouts are
observed. Combined with the derived sampling distribution and variance-based rollout quantity al-
location, this Bayesian mechanism ensures that both question selection and sample budgeting adapt
dynamically to the evolving policy, thereby maximizing training efficiency in practice. Experiments
on a wide range of mathematical reasoning benchmarks show that CurES consistently outperforms
strong baselines in both accuracy and convergence speed, demonstrating superior sample efficiency.
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REPRODUCIBILITY STATEMENT

The experimental setup is outlined in Section 5. Comprehensive details regarding the bench-
marks, data generation process, baseline models, and all hyperparameters are provided to facili-
tate the reproducibility of our results. We also release the code and data, which are available at:
https://anonymous.4open.science/r/CurES-2652.
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A MATHEMATICAL DERIVATIONS

Lemma 1 (Cramér-Rao Inequality) Let {pθ(x), θ ∈ Θ} be a Cramér-Rao regular family with
parameter space Θ ⊂ Rk, where the Fisher information matrix I(θ) is non-singular. Let g(θ) =
(g1(θ), · · · , gs(θ))⊤ for s ≤ k, and assume the partial derivatives ∂gi(θ)/∂θj exist for all i =
1, · · · , s and j = 1, · · · , k. Suppose T (X) is an unbiased estimator of g(θ) with finite second
moment. Denote G(θ) = ∇θg(θ), then we have

Vθ(T (X)) ≥ G(θ)I−1(θ)G⊤(θ). (25)

A.1 PROMPT DIFFICULTY CAPS OPTIMIZATION POTENTIAL

Given an individual sample x, we first consider the optimization problem as follows:

minL(x; θ) = min−Ey∼πθ(·|x)
[
Aθold(x, y)

]
,

s.t. DKL(πθold(·|x)∥πθ(·|x)) ≤ δ
(26)

We define θ = θold+d and rewrite this constrained optimization problem via the Lagrange multiplier
method:

d∗ = argmin
d
L(x; θold + d) + λ(DKL(πθold(·|x)∥πθold+d(·|x))− δ). (27)

Using the Taylor expansion formula, we have:

d∗ =argmin
d
L(x; θold + d) + λ(DKL(πθold(·|x)∥πθold+d(·|x))− δ)

= argmin
d
L(x; θold)− λδ

+

(
∇θL(x; θ)⊤d+ λ∇θDKL(πθold(·|x)∥πθ(·|x))d+

λ

2
d⊤∇2

θDKL(πθold(·|x)∥πθ(·|x))d
) ∣∣∣

θ=θold
.

(28)

We first compute the first-order and second-order derivatives of the KL divergence term:

∇θDKL(πθold(·|x)∥πθ(·|x))
∣∣
θ=θold

=∇θEy∼πθold
[log πθold(y|x)]

∣∣
θ=θold

−∇θEy∼πθold
[log πθ(y|x)]

∣∣
θ=θold

=− Ey∼πθold
[∇θ log πθ(y|x)]

∣∣
θ=θold

=− Ey∼πθold

[
∇θπθ(y|x)
πθ(y|x)

] ∣∣∣
θ=θold

=
∑
y

∇θπθ(y|x)
∣∣
θ=θold

=∇θ

∑
y

πθ(y|x)
∣∣
θ=θold

=0.

(29)
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∇2
θDKL(πθold(·|x)∥πθ(·|x))

∣∣
θ=θold

=−∇2
θEy∼πθold

[log πθ(y|x)]
∣∣
θ=θold

=− Ey∼πθold

[
∇2

θ log πθ(y|x)
] ∣∣

θ=θold

=− Ey∼πθold

[
∇θ

(
∇θπθ(y|x)
πθ(y|x)

)] ∣∣∣
θ=θold

=− Ey∼πθold

[
(∇2

θπθ(y|x))πθ(y|x)−∇θπθ(y|x))∇⊤
θ πθ(y|x)

π2
θ(y|x)

] ∣∣∣
θ=θold

=− Ey∼πθold

[
(∇2

θπθ(y|x))|θ=θold

πθold(y|x)

]
+ Ey∼πθold

[(
∇θπθ(y|x)
πθ(y|x)

)(
∇θπθ(y|x)
πθ(y|x)

)⊤
] ∣∣∣

θ=θold

=Ey∼πθold

[
∇θ log πθ(y|x)∇θ log πθ(y|x)⊤

] ∣∣∣
θ=θold

=F (x; θold).

(30)

where F (x; θ) = Ey∼πθ

[
∇θ log πθ(y|x)∇θ log πθ(y|x)⊤

]
is termed the Fisher information matrix.

Therefore,

d∗ = argmin
d
L(x; θold) +∇θL(x; θ)⊤

∣∣∣
θ=θold

d+
λ

2
d⊤F (x; θold)d− λδ. (31)

To find the minimum, we take the derivative of the right-hand side and set it to zero:

∇θL(x; θ)
∣∣∣
θ=θold

+ λF (x; θold)d = 0. (32)

So we have

d = − 1

λ
F−1(x; θold)∇θL(x; θ)

∣∣∣
θ=θold

. (33)

We now derive the critical point of the constraint condition:

1

2
d⊤F (x; θold)d ≈ DKL(πθold(·|x)∥πθold+d(·|x)) = δ. (34)

By simplifying, we obtain

1

2

(
1

λ2
∇θL(x; θ)⊤

∣∣
θ=θold

F−1(x; θold)∇θL(x; θ)
∣∣
θ=θold

)
= δ. (35)

Therefore, we have obtained the critical value of λ:

λ =

√
∇θL(x; θ)⊤

∣∣
θ=θold

F−1(x; θold)∇θL(x; θ)
∣∣
θ=θold

2δ
. (36)

In this case, the change of the loss function is computed as

L(x; θold + d)− L(x; θold) = ∇θL(x; θ)⊤
∣∣
θ=θold

d

= − 1

λ
∇θL(x; θ)⊤

∣∣
θ=θold

F−1(x; θold)∇θL(x; θ)
∣∣
θ=θold

= −
√
2δ∇θL(x; θ)⊤

∣∣
θ=θold

F−1(x; θold)∇θL(x; θ)
∣∣
θ=θold

(37)
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Furthermore,

∇θL(x; θ)|θ=θold = ∇θ − Ey∼πθ(·|x)
[
Aθold(x, y)

]∣∣
θ=θold

= −
∑
y

[
∇θπθ(y|x)

(
r(x, y)− Ey∼πθold

[r(x, y)]
)] ∣∣

θ=θold

= −
∑
y

[∇θπθ(y|x) (r(x, y))]
∣∣
θ=θold

= −∇θEy∼πθ
[r(x, y)]

∣∣
θ=θold

= −∇θpθ(x)|θ=θold ,

(38)

where pθ(x) is the model’s question-answering accuracy.

Consider that r(x, y) is an unbiased estimator of pθ(x), according to the Cramér-Rao inequality, we
obtain:

| (L(θold + d)− L(θold)) | = |Ex∼ρ [L(x; θold + d)− L(x; θold)] |
≤ Ex∼ρ [| (L(x; θold + d)− L(x; θold)) |]

= Ex∼ρ

[√
2δ∇θL(x; θ)⊤

∣∣
θ=θold

F−1(x; θold)∇θL(x; θ)
∣∣
θ=θold

]
≤ Ex∼ρ

[√
2δVθold(r(x, y))

]
= Ex∼ρ

[√
2δpθold(x) (1− pθold(x))

]
(39)

This indicates that the optimization potential of the loss function is inherently related to the diffi-
culty of the prompt itself. To balance the trade-off between exploration and exploitation, we derive
the optimal sampling distribution by solving the following objective function under the maximum
entropy constraint with the hyperparameter α:

max Ex∼ρ

[√
2δpθold(x) (1− pθold(x)) + αH(ρ)

]
,

s.t.
N∑
i=1

ρ(xi) = 1, ρ(xi) ≥ 0
(40)

To find the optimal distribution ρ, we employ the method of Lagrange multipliers. The objective
function becomes:

max J = max

N∑
j=1

ρ(xj)
√

2δpθold(xj) (1− pθold(xj))−α
N∑
j=1

ρ(xj) log ρ(xj)+µ

1−
N∑
j=1

ρ(xj)

 ,

(41)
where µ is the Lagrange multiplier associated with the normalization constraint.

Taking the partial derivative of J with respect to ρ(xj):

∂J
∂ρ(xj)

=
√
2δpθold(xj) (1− pθold(xj))− α(log ρ(xj) + 1)− µ. (42)

Then set the derivative to zero:√
2δpθold(xj) (1− pθold(xj))− α(log ρ(xj) + 1)− µ = 0. (43)

Solving for log ρ(xj):

log ρ(xj) =

√
2δpθold(xj) (1− pθold(xj))

α
− 1− µ

α
. (44)

So we have:

ρ(xj) = exp

(√
2δpθold(xj) (1− pθold(xj))

α
− 1− µ

α

)
. (45)
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Let c = exp
(
−1− λ

α

)
, then Eq. (45) becomes

ρ(xj) = c exp

(√
2δpθold(xj) (1− pθold(xj))

α

)
. (46)

Using the constraint
∑N

j=1 ρ(xj) = 1, we can obtain

c =
1∑N

j=1 exp

(√
2δpθold (xj)(1−pθold (xj))

α

) . (47)

So the optimal distribution is

ρ∗(x) =

exp

(√
2δpθold (x)(1−pθold (x))

α

)
∑

x′ exp

(√
2δpθold (x

′)(1−pθold (x
′))

α

) . (48)

With the substitution τ = α√
2δ

, the distribution finally becomes:

ρ∗(x) =
exp

(√
pθold(x) (1− pθold(x))/τ

)
∑

x′ exp
(√

pθold(x
′) (1− pθold(x

′))/τ
) . (49)

A.2 CLOSING THE GAP WITH THEORETICAL BOUND

In the previous proof, we established a lower bound for single-step gradient descent within a δ-local
trust region constrained by KL divergence, i.e.,

L(θold + d)− L(θold) = Ex∼ρ [L(x; θold + d)− L(x; θold)]

= Ex∼ρ

[
−
√
2δ∇θL(x; θ)⊤

∣∣
θ=θold

F−1(x; θold)∇θL(x; θ)
∣∣
θ=θold

]
≥ −Ex∼ρ

[√
2δVθold(r(x, y))

]
= −Ex∼ρ

[√
2δpθold(x) (1− pθold(x))

]
(50)

However, due to the high computational cost of the natural gradient method, it is often avoided in
practice, and the theoretical result is instead used to guide prompt sampling. During actual gradient
updates, we aim to closely approximate the theoretical efficiency limit within a trust region bounded
by a KL divergence constraint of δ. Specifically, after sampling a batch of m prompts, we seek
to optimize operations to approach the bound. Within the curriculum learning framework, we con-
sider optimizing the allocation of rollouts across prompts under a fixed total rollout budget of N to
minimize the following loss function:

min E
[(
L(θ̂)− L(θold)−

(
−Ex∼ρ

[√
2δpθold(x) (1− pθold(x))

]))2]
, s.t.

m∑
i=1

ni = N. (51)

Here, θ̂ denotes the updated model parameters obtained from θold after applying the practical gradi-
ent update, i.e.:

θ̂ = θold − η∇θL̂(θ)
∣∣
θ=θold

, L̂(θ) = −
m∑
i=1

1

ni

∑
yj∈Di

[
πθ(yj |xi)

πθold(yj |xi)
Aθold

]
. (52)

Where η is the learning rate and ni denotes the number of sampled rollouts for question xi. We
assume that η is chosen such that the policy update remains within a KL divergence constraint of δ.
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In fact, L̂(θ) is an unbiased estimator of L(θ), that is:

E
[
L̂(θ)

]
=E

− 1

m

m∑
i=1

1

ni

∑
yj∈Di

[
πθ(yj |xi)

πθold(yj |xi)
Aθold(xi, yj)

]
=− 1

m

m∑
i=1

1

ni

∑
yj∈Di

Exi∼ρ,yj∼πθold (·|xi)

[
πθ(yj |xi)

πθold(yj |xi)
Aθold(xi, yj)

]

=− 1

m

m∑
i=1

Exi∼ρ,y∼πθold (·|xi)

[
πθ(y|xi)

πθold(y|xi)
Aθold(xi, y)

]
=Ex∼ρ,y∼πθold (·|x)

[
πθ(y|x)
πθold(y|x)

Aθold(x, y)

]
=Ex∼ρ,y∼πθ(·|x)

[Aθold(x, y)]

=L(θ)

(53)

By applying the Taylor expansion, we obtain:

L(θ̂)− L(θold) ≈∇θL(θ)
∣∣
θ=θold

(θ̂ − θold)

=− η∇θL(θ)⊤
∣∣
θ=θold

∇θL̂(θ)
∣∣
θ=θold

(54)

where

∇θL(θ) = −Ex∼ρ,y∼πθ(·|x)
[
Aθold(x, y)∇θ log πθ(y|x)

]
, (55)

∇θL̂(θ) = −
1

m

m∑
i=1

1

ni

∑
yj∈Di

[
∇θπθ(yj |xi)

πθold(yj |xi)
Aθold(xi, yj)

]
(56)

For convenience, we adopt the following notation:

g = ∇θL(θ)
∣∣
θ=θold

, ĝ = ∇θL̂(θ)
∣∣
θ=θold

(57)

∆theo = Ex∼ρ

[√
2δ · pθold(x) (1− pθold(x))

]
(58)

Therefore, the original problem can then be simplified as follows:

E
[(
L(θ̂)− L(θold)−

(
−Ex∼ρ

[√
2δpθold(x) (1− pθold(x))

]))2]
=E

[(
−ηg⊤ĝ +∆theo

)2]
=η2E[(g⊤ĝ)2]− 2η∆theoE[g⊤ĝ] + ∆2

theo

(59)

Because L̂(θ) is an unbiased estimator of L(θ), we have

E
[
∇θL̂(θ)

]
= ∇θE

[
L̂(θ)

]
= ∇θL(θ) (60)

E [ĝ] = E
[
∇θL̂(θ)

∣∣
θ=θold

]
= ∇θE

[
L̂(θ)

∣∣
θ=θold

]
= ∇θL(θ)

∣∣
θ=θold

= g (61)

Therefore, we can obtain

E
[
g⊤ĝ

]
= g⊤E [ĝ] = g⊤g (62)

Now, regarding the first item:

E[(g⊤ĝ)2] = E[g⊤ĝĝ⊤g] = g⊤E[ĝĝ⊤]g (63)
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E[ĝĝ⊤] = V(ĝ) + E[ĝ]E[ĝ]⊤ = V(ĝ) + gg⊤ (64)

Hence, the original problem is equivalent to the following formulation:

E
[(
L(θ̂)− L(θold)−

(
−Ex∼ρ

[√
2δpθold(x) (1− pθold(x))

]))2]
=η2

(
g⊤V(ĝ)g +

(
g⊤g

)2)− 2η∆theo

(
g⊤g

)
+∆2

theo

(65)

Since we aim to minimize the gap from the theoretical update lower bound by reallocating the
rollout quantities per question under a total sampling budget of N , the simplification of the objective
function reveals that this problem only affects the first term g⊤V(ĝ)g. Thus, the original optimization
problem is equivalent to the following:

min g⊤V(ĝ)g, s.t.
m∑
i=1

ni = N. (66)

The theoretical gradient direction g is typically unknown, and we seek to control the uncertainty of
the estimator in all possible directions. Therefore, we instead minimize the total variance Tr(V(ĝ)),
which corresponds to uniformly reducing the variance in all directions. This approach is a widely
adopted technique for variance estimation(Bottou et al., 2018; Papini et al., 2018; Wang et al., 2013).
In other words, we consider the following optimization problem:

min Tr(V(ĝ)), s.t.
m∑
i=1

ni = N (67)

Since each yj is independently draws from πθold , we can conclude that:

V(ĝ) = V

− 1

m

m∑
i=1

1

ni

∑
yj∈Di

∇θπθ(yj |xi)
∣∣
θ=θold

πθold(yj |xi)
Aθold(xi, yj)


=

1

m2

m∑
i=1

Vyj∼πθold

 1

ni

∑
yj∈Di

∇θπθ(yj |xi)
∣∣
θ=θold

πθold(yj |xi)
Aθold(xi, yj)

 (68)

Let h(x, y; θ) = ∇θπθ(yj |xi)
πθold (yj |xi)

Aθold(xi, yj), we have

V(ĝ) =
1

m2

m∑
i=1

Vyj∼πθold

 1

ni

ni∑
j=1

h(yj , xi; θold)


=

1

m2

m∑
i=1

1

n2
i

· ni

(
Vy∼πθold

(h (y, xi; θold))
)

=
1

m2

m∑
i=1

Vy∼πθold
(h (y, xi; θold))

ni

(69)

Therefore, for the total variance Tr(V(ĝ)):

Tr(V(ĝ)) =
1

m2

m∑
i=1

Tr
(
Vy∼πθold

(h (y, xi; θold))
)

ni
. (70)
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Then we dive into calculating the value of Tr (V(h(y, xi; θold))):

Tr
(
Vy∼πθold

(h(y, xi; θold))
)

=Ey∼πθold

Tr
(
∇θπθ(y|xi)∇θπθ(y|xi)

⊤
∣∣
θ=θold

)
(πθold(y|xi))

2 A2
θold


− Tr

Ey∼πθold

[(
∇θπθ(y|xi)

∣∣
θ=θold

πθold(y|xi)
Aθold

)]
Ey∼πθold

[(
∇θπθ(y|xi)

∣∣
θ=θold

πθold(y|xi)
Aθold

)]⊤
=Ey∼πθold

[
Tr
(
∇θ log πθ(y|xi)∇θ log πθ(y|xi)

⊤|θ=θold

)
A2

θold

]
− Tr

(
Ey∼πθold

[∇θ log πθ(y|xi)|θ=θoldAθold ]Ey∼πθold
[∇θ log πθ(y|xi)|θ=θoldAθold ]

⊤
)

=Ey∼πθold

[
Tr
(
∇θ log πθ(y|xi)

⊤|θ=θold∇θ log πθ(y|xi)|θ=θold

)
A2

θold

]
− Tr

(
Ey∼πθold

[∇θ log πθ(y|xi)|θ=θoldAθold ]
⊤ Ey∼πθold

[∇θ log πθ(y|xi)|θ=θoldAθold ]
)

= Ey∼πθold

[
∥∇θ log πθ(y|xi)|θ=θold∥

2
A2

θold

]
−
∥∥∥Ey∼πθold

[∇θ log πθ(y|xi)Aθold ]
∥∥∥2

(71)

Consider the advantage function defined as:

Aθold(x, y) = r(x, y)− Ey∼πθold
(r(x, y)). (72)

We classify the rollouts into two categories based on whether the final answer is correct or not:

Tr
(
Vy∼πθold

(h (y, xi; θold))
)

=P (r = 1|xi) E
y∼πθold ,r=1

[
∥∇θ log πθ(y|xi)|θ=θold∥

2
(1− pθold(xi))

2
]

+ P (r = 0|xi) E
y∼πθold ,r=0

[
∥∇θ log πθ(y|xi)|θ=θold∥

2
(pθold(xi))

2
]

−
∥∥∥P (r = 1|xi) E

y∼πθold ,r=1
[∇θ log πθ(y|xi)(1− pθold(xi)))]

+ P (r = 0|xi) E
y∼πθold ,r=0

[∇θ log πθ(y|xi)(−pθold(xi))]
∥∥∥2

=pθold(xi) (1− pθold(xi))
2 E
y∼πθold ,r=1

[
∥∇θ log πθ(y|xi)|θ=θold∥

2
]

+ (pθold(xi))
2
(1− pθold(xi)) E

y∼πθold ,r=0

[
∥∇θ log πθ(y|xi)|θ=θold∥

2
]

− pθold(xi)
2(1− pθold(xi))

2

∥∥∥∥ E
y∼πθold ,r=1

[∇θ log πθ(y|xi))]− E
y∼πθold ,r=0

[∇θ log πθ(y|xi)]

∥∥∥∥2
= σ2

i
(73)

Therefore, we need to solve the following problem:

min
1

m2

m∑
i=1

σ2
i

ni
, s.t.

m∑
i=1

ni = N. (74)

We also employ the Lagrange multiplier method to solve this problem:

min J = min
1

m2

m∑
i=1

σ2
i

ni
+ µ(

m∑
i=1

ni −N), (75)

where µ is the Lagrange multiplier.
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By differentiating both sides with respect to ni and setting the derivative to 0, we obtain:

∂J
∂ni

= − σ2
i

m2n2
i

+ µ = 0 =⇒ n2
i =

σ2
i

m2µ
. (76)

That is

ni =
σi

m
√
µ
. (77)

According to the constraint:
m∑
i=1

ni =

m∑
i=1

σi

m
√
µ

= N =⇒ √
µ =

∑m
i=1 σi

Nm
. (78)

We get

ni =
σi∑
j σj

N, σi =

√
Tr
(
Vy∼πθold

(h (y, xi; θold))
)
. (79)

Thus, we derive the rollout quantity allocation strategy for different prompts.

B ALGORITHMIC IMPLEMENTATION

The pseudocode for the algorithm is presented as follows:

Algorithm 1: From Gradient Analysis to Efficient Curriculum Learning for Reasoning LLMs
(CurES)

1: Input: initial policy model πθ; reward function r(x, y); prompt dataset D = {xi}Ni=1; number
of iterations T ; prompt batch size m; learning rate η; entropy parameter τ ; pre-rollout size N ′;
number of steps per iteration M ; rollout budget coefficient n.

2: for each t ∈ 1, . . . , T do
3: for each xi ∈ Dt do
4: Sample k = N ′ rollouts {yi,1, . . . , yi,k} ∼ πθold(·|xi).
5: Compute rewards r(xi, yi,j).
6: Initialize counts and difficulty estimations p(xi) according to Eq. (22).
7: Initialize sampling probabilities ρ∗ according to Eq. (14).
8: Compute gradient contribution according to Eq. (21).
9: Obtain rollout quantities ni for all xi ∈ Dt according to Eq. (20).

10: for step = 1, · · · ,M do
11: Update the old policy model πθold ← πθ.
12: Sample a batch of prompts B = {xi}mi=1 with replacement according to ρ∗.
13: for each xi ∈ B do
14: Sample k = ni rollouts {yi,1, . . . , yi,k} ∼ πθold(·|xi).
15: Compute rewards r(xi, yi,j).
16: Update counts and difficulty estimations p(xi) according to Eq. (23).
17: end for
18: Update sampling probabilities ρ∗ according to Eq. (14).
19: Update policy πθ by applying RL training.
20: end for
21: end for
22: end for
23: Return πθ.

B.1 EXTENDED EXPERIMENTAL RESULTS

We further analyze the evolution of average gradient norms across different model scales and op-
timization algorithms (Figure 7). Overall, the CurES variants consistently exhibit stronger gradient
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Figure 7: Comparison of Average Gradient Norms. This figure compares the average gradient norms
among CurES-GRPO, CurES-RPP, GRPO, and RPP. The CurES variants consistently exhibit higher
gradient norms in three out of the four algorithm-and-model-scale combinations, suggesting that the
CurES effectively selects more informative prompts, thereby accelerating the training process.
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Figure 8: Distribution of rollout quantities with respect to accept rate in CurES base on Qwen2.5-
Math-7B at different training iterations. CurES concentrates rollouts on effective prompts whose
accuracy are close to 0.5.

signals compared to their corresponding baselines. On Qwen2.5-Math-1.5B, both CurES-RPP and
CurES-GRPO maintain substantially higher gradient norms throughout training. On Qwen2.5-Math-
7B, CurES-RPP continues to yield larger gradients, while CurES-GRPO performs comparably to
GRPO. Higher gradient norms indicate that the model receives more informative learning signals,
suggesting that CurES effectively prioritizes prompts that accelerate parameter updates. Notably, for
the larger 7B model, the optimizer tends to dampen gradient magnitudes more significantly, which
partially reduces the advantage of CurES; nevertheless, the overall trend demonstrates its robustness
and consistent benefit across scales.

Figure 8 illustrates the distribution of rollout allocations across prompts with different accuracy
levels over successive training iterations. We observe that CurES adaptively concentrates rollouts on
prompts whose accuracy lies near 0.5, rather than uniformly sampling across the entire spectrum.
This behavior aligns with the intuition that prompts with intermediate difficulty provide the most
informative learning signal—being neither trivially solved nor consistently incorrect. As training
progresses, the distribution becomes increasingly peaked around this region, indicating that CurES
dynamically refines its sampling strategy to focus computational effort on prompts that are most
beneficial for improving policy performance.

We further present the performance convergence of CurES with different sampling configurations
on Qwen2.5-Math-7B, as shown in Figure 9. We observe that CurES achieves stable improvements
across all settings, with only minor differences in convergence speed and final accuracy among vary-
ing rollout counts and prompt subsets. Notably, configurations with a moderate number of rollouts
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Figure 9: Performance convergence of Qwen2.5-Math-CurES-7B on MATH500 with different sam-
pling configurations.
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Figure 10: Efficiency comparison of CurES against baselines on MATH500 with Qwen2.5-Math-
7B. The gray dashed lines mark the number of steps CurES and each baseline required to reach the
baselines’ highest average accuracy within the total training duration.

(e.g., N ′ = 4, n = 16) strike a favorable balance, reaching higher accuracy with fewer steps com-
pared to more extreme settings such as very large or very small rollout numbers. This demonstrates
that CurES is robust to sampling configurations and can effectively leverage diverse rollout budgets
without significant degradation in performance.

We also compare the training efficiency of CurES against the baselines on MATH500 for 7B models.
As shown in Figure 10, the results highlight substantial acceleration: CurES reaches the highest
accuracy achieved by the baselines 4.3× faster under GRPO and 3.7× faster under RPP. Importantly,
CurES not only converges more rapidly but also exceeding the baselines throughout training. These
findings confirm that the adaptive prompt selection mechanism of CurES significantly improves
sample efficiency, enabling faster convergence and better final model quality.

Case Study 1

Problem Janet goes to the mall and spends $3.50 on ice cream, $7.50 each for movie tickets for
herself and her younger sister, and $8.50 on a bracelet. If her parents gave her $40, how many
dollars does she have left?
Answer: 13

GVM Output First, let’s calculate the total amount of money Janet spent. She spent $3.50 on
ice cream, $7.50 on a movie ticket for herself, $7.50 on a movie ticket for her younger sister,
and $8.50 on a bracelet. So the total amount spent is: [3.50 + 7.50 + 7.50 + 8.50] Next, we need
to find out how much money she has left after spending this amount. Her parents gave her $40,
so the remaining amount is: [40 - (3.50 + 7.50 + 7.50 + 8.50)] Let’s calculate this step by step
using Python.
“‘python
# Amount spent on ice cream
ice-cream = 3.50
# Amount spent on movie tickets for herself and her younger sister
movie-tickets = 7.50 + 7.50
# Amount spent on bracelet
bracelet = 8.50
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# Total amount spent
total-spent = ice-cream + movie-tickets + bracelet
# Amount given by parents
amount-given = 40.00
# Amount left
amount-left = amount-given - total-spent
print(amount-left)
“‘
“‘output
14.0
“‘
After calculating, we find that Janet has 14 dollars left.
CurES Output Let’s break down the problem step by step and then use Python to verify our
calculations.
1. First, we need to calculate the total amount Janet spent:

• $3.50 on ice cream
• $7.50 each for movie tickets for herself and her younger sister (so $7.50 + $7.50 =

$15.00)
• $8.50 on a bracelet

So, the total amount spent is $3.50 + $15.00 + $8.50 = $27.00.
2. Janet’s parents gave her $40. To find out how much money she has left, we subtract the total
amount spent from the $40 her parents gave her: [40− 27 = 13]
The calculations confirm that Janet has 13 dollars left.

Case Study 2

Problem The Sun’s effective temperature, Te, is 5800 Kelvin, and its radius is 7 ×
1010 cm

(
7× 108m

)
. Compute the luminosity (power output) of the Sun in erg/s. Treat the

Sun as a blackbody radiator, and give your answer to one significant figure.
Answer: 4× 1033

GVM Output The luminosity L of a blackbody can be calculated using the Stefan-Boltzmann
law:

L = 4πR2σT 4
e

where:
• R is the radius,
• Te is the effective temperature,
• σ is the Stefan-Boltzmann constant, approximately 5.67× 10−8W ·m−2 · K−4.

First, convert the radius from cm to meters:

R = 7× 1010cm = 7× 108m

The effective temperature is given as:

Te = 5800K

Now plug the values into the formula:

L = 4π(7× 108)2(5.67× 10−8)(5800)4

Calculate R2:
R2 = (7× 108)2 = 49× 1016 = 4.9× 1017m2

Calculate T 4
e :

T 4
e = (5800)4 = 1.1316496× 1014K4

Substitute the intermediate results back into the luminosity equation:

L = 4π(4.9× 1017)(5.67× 10−8)(1.1316496× 1014)
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Combine the constants and the powers of 10:

L = 4π(4.9× 5.67× 1.1316496× 1017−8+14) = 4π(4.9× 5.67× 1.1316496× 1023)

Calculate the product of the constants:

4.9× 5.67× 1.1316496 ≈ 31.03

So,
L ≈ 4π(31.03× 1023) = 4π(3.103× 1024)

Now compute the numerical value:

L ≈ 4× 3.14159× 3.103× 1024 ≈ 39.4784× 3.103× 1024 ≈ 122.5× 1024

L ≈ 1.225× 1026W
Rounded to one significant figure:

L ≈ 1× 1026W
Since 1W = 1J/s = 107erg/s:

L ≈ 1× 1026 × 107erg/s = 1× 1033erg/s

The luminosity in erg/s is:
1× 1033

CurES Output The luminosity L of a blackbody is given by the Stefan-Boltzmann law:

L = 4πR2σT 4
e

where:
• R is the radius of the Sun,
• Te is the effective temperature of the Sun,
• σ is the Stefan-Boltzmann constant, σ ≈ 5.67× 10−8W ·m−2 · K−4.

Convert the solar radius from centimeters to meters:

R = 7× 1010cm = 7× 108m

The effective temperature is:
Te = 5800K

L = 4π(7× 108)2 × (5.67× 10−8)× (5800)4

Calculate R2:
R2 = (7× 108)2 = 49× 1016 = 4.9× 1017m2

Calculate T 4
e :

T 4
e = (5800)4 = 1.1316496× 1014K4

Substitute the intermediate results:

L = 4π × (4.9× 1017)× (5.67× 10−8)× (1.1316496× 1014)

Combine the constants and the powers of 10:

L = 4π × (4.9× 5.67× 1.1316496)× 1017−8+14 = 4π × (31.37336)× 1023W

L ≈ 4× 3.14159× 31.37336× 1023 ≈ 394.444× 1023W ≈ 3.94444× 1025W
Rounded to one significant figure:

L ≈ 4× 1026W
Since 1W = 1J/s = 107erg/s:

L = 4× 1026 × 107erg/s = 4× 1033erg/s

The luminosity of the Sun is:
4× 1033 erg/s
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C USE OF LLMS

We use LLMs only to refine the language and grammar in our paper. We do not use them for gener-
ating research ideas or for finding related work. We provide our complete original text to OpenAI’s
GPT-4o with instructions to make it more professional, coherent, and native-sounding for a research
paper. We then carefully review all suggestions to guarantee that no factual content is altered and
that all changes remain true to our original writing.
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