
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SWIFT-FEDGNN: FEDERATED GRAPH LEARNING WITH
LOW COMMUNICATION AND SAMPLE COMPLEXITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have achieved great success in a wide variety of
graph-based learning applications. To expedite training for large-scale graphs, dis-
tributed GNN training has been proposed using sampling-based mini-batch training.
However, such a traditional distributed GNN training approach is not applicable
to emerging GNN learning applications with geo-distributed input graphs, which
require the data to be kept within the site where it is generated to protect privacy.
On the other hand, federated learning (FL) has been widely used to enable privacy-
preserving training under data parallelism. However, because of cross-client links in
the aforementioned geo-distributed graph data, applying federated learning directly
to GNNs incurs expensive cross-client neighbor sampling and communication costs
due to the large graph size and the dependencies between nodes among different
clients. To overcome these challenges, we propose a new mini-batch and sampling-
based federated GNN algorithmic framework called Swift-FedGNN that primarily
performs efficient parallel local training and periodically conducts time-consuming
cross-client training. Specifically, in Swift-FedGNN, each client primarily trains
a local GNN model using only its local graph data, and some randomly sampled
clients periodically learn the local GNN models based on their local graph data
and the dependent nodes across clients. We theoretically establish the conver-
gence performance of Swift-FedGNN and show that it enjoys a convergence rate
of O

(
T−1/2

)
, matching the state-of-the-art (SOTA) rate of sampling-based GNN

methods, despite operating in the challenging FL setting. Extensive experiments on
real-world datasets show that Swift-FedGNN significantly outperforms the SOTA
federated GNN approaches with comparable accuracy in terms of efficiency.

1 INTRODUCTION

1) Background and Motivation: Graph neural networks (GNNs) have received increasing attention
in recent years and have been widely used across various applications, such as social networks (Deng
et al., 2019; Qiu et al., 2018; Wang et al., 2019a), recommendation systems (Ying et al., 2018;
Wang et al., 2019b;d), traffic prediction (Cui et al., 2019; Kumar et al., 2019; Li et al., 2019), drug
discovery (Wang et al., 2022b; Do et al., 2019; Fout et al., 2017), and disease prediction (Ghorbani
et al., 2022; Kazi et al., 2023; Li & Zhang, 2024). GNN learns the high-level graph representations
by iteratively aggregating the neighboring features of each node, which is then used for downstream
tasks, such as node classification (Kipf & Welling, 2017; Hamilton et al., 2017), link prediction (Yao
et al., 2023b; Zhang & Chen, 2018), and graph classification (Zhang et al., 2018; Bacciu et al., 2018).

However, real-world graph datasets can be extensive in scale (e.g., Microsoft Academic Graph (Wang
et al., 2020) with over 100 million nodes) and generated in a geo-distributed fashion (Yao et al., 2023a).
Similar to traditional datasets (e.g., images), graph datasets may be collected across multiple geo-
distributed sites/devices and stored locally. Collecting the entire dataset onto a single site/device not
only incurs prohibitively high communication costs, but may also violate data protection regulations.
Unlike the traditional datasets where data is mutually independent, the nodes in graph data are usually
dependent (shown as the links between nodes in Figure 1). Such large-scale real-world graph datasets
often exceed the memory and computational capabilities of a single device (e.g., GPU), which leads
to a compelling need for developing distributed GNN training with multiple devices or machines (Fey
& Lenssen, 2019; Zheng et al., 2020). A common paradigm in distributed GNN training involves
subgraph sampling (Zeng et al., 2020) and mini-batch training on each device (Luo et al., 2022). In

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Client m

Server

Client m+1

… …

Node
Features

&
Activations…

Figure 1: Federated GNN set-
ting. Dashed lines show graph
dependency cross-clients.

250 500 1000
Batch Size

0

200

400

600

800

1000

Ti
m

e
(m

s)

Local Sampling
Local Training
Cross-Client Sampling
Cross-Client Data Transferring
Cross-Client Training

Figure 2: Per-iteration time
breakdown: local vs. cross-
client training.

(𝐿 − 2)-th
layer

(𝐿 − 1)-th
layer

𝐿-th layer

… … … … … … …

1-hop
neighbor

2-hop
neighbor

Training
node 𝑣

…

<latexit sha1_base64="ODAffBpItkdSi1tyu00vl5avIr0=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYhBiE+5EomXQxsIigvmQ5Ax7m71kye7esbsXCEd+hY2FIrb+HDv/jZvkCk18MPB4b4aZeUHMmTau++2srK6tb2zmtvLbO7t7+4WDw4aOEkVonUQ8Uq0Aa8qZpHXDDKetWFEsAk6bwfBm6jdHVGkWyQczjqkvcF+ykBFsrPQ46I6e0tLd2aRbKLpldwa0TLyMFCFDrVv46vQikggqDeFY67bnxsZPsTKMcDrJdxJNY0yGuE/blkosqPbT2cETdGqVHgojZUsaNFN/T6RYaD0Wge0U2Az0ojcV//PaiQmv/JTJODFUkvmiMOHIRGj6PeoxRYnhY0swUczeisgAK0yMzShvQ/AWX14mjfOyVylX7i+K1essjhwcwwmUwINLqMIt1KAOBAQ8wyu8Ocp5cd6dj3nripPNHMEfOJ8/PfWQDw==</latexit>

h(L)
v

GNN Layer

Neighbor
Aggregation

Figure 3: Federated GNN
model. Dashed lines show com-
munication between clients.

this approach, workers on each device select training nodes, perform cross-device sampling to gather
multi-hop neighbor features as subgraphs, construct subgraphs as mini-batches, and then train on
these mini-batches in parallel. However, due to the aforementioned data privacy constraints, this
distributed GNN training paradigm is not directly applicable to geo-distributed graphs, as features
cannot be directly shared among clients.

Meanwhile, federated learning (FL) (McMahan et al., 2017; Yang et al., 2021; Karimireddy et al.,
2020), which has emerged as a promising learning paradigm, enables collaborative training of a
model using geo-distributed traditional datasets under the coordination of a central server. However,
applying FL to geo-distributed graph data is highly non-trivial due to the dependencies between
the nodes in a graph and the fact that the neighbors of the node may be located on different clients,
which we refer to as “cross-client neighbors” (shown as the dashed links between nodes in Figure 1).
Ignoring the cross-client neighbors as in (Wang et al., 2022a; He et al., 2021b) would degrade the
performance of the models and prevent them from reaching the same accuracy as the models trained
on a single device/machine, which is due to the information loss of the cross-client neighbors.

2) Technical Challenges: A naive solution to federated GNN is to leverage the server as an interme-
diary to perform subgraph sampling and part of the training operation (i.e., neighbor aggregation) to
protect data privacy. For example, consider a country that has many hospitals and one medical admin-
istrative center and needs to investigate a healthcare problem in the whole country (e.g., infection
prediction) (Zhang et al., 2021). The residents may go to different hospitals for healthcare because of
various reasons, e.g., the locations of the hospitals. Their healthcare data (e.g., personal information,
and patient interactions) would be stored locally only at the hospitals they visit, and such data cannot
be directly shared among different hospitals due to privacy concerns and conflicts of interest. Note
that in a graph, the patients here are the nodes and the patient interactions are the edges, and the
graphs located at different hospitals may have cross-hospital edges and thus have cross-hospital
neighbors. In this situation, the medical administrative center can serve as the server in federated
GNN because it is trusted and thus has access to the graph data located at different hospitals.

However, this method introduces significant sampling and communication overhead (as shown in
Figure 1), as the server needs to communicate with all clients to perform subgraph sampling and
neighbor aggregation for each client sequentially. Figure 2 illustrates the per-iteration time breakdown
of local training (i.e., training only on the local graph of the client) versus cross-client training (i.e.,
training using both the client’s local graph and the cross-client neighbors) on the Amazon product co-
purchasing dataset (Leskovec et al., 2007) 1. As observed from the figure, cross-client sampling and
data communication time dominate the total time for cross-client training, making it five times slower
than local training. Therefore, it is critical to mitigate the communication overhead in cross-client
training to enable efficient federated learning on GNNs.

While some prior works ignore the information of the cross-client neighbors (He et al., 2021a)
or assume overlapping nodes between different clients (Wu et al., 2021) (may not hold for geo-
distributed graphs), other prior works (Zhang et al., 2021; Du & Wu, 2022; Yao et al., 2023a) address
the information loss of the cross-client neighbors by facilitating the exchange of such information
between clients. However, these approaches may lead to significant sampling and communication

1Figure 2 uses a two-layer GNN, with sampling fanout values being 15 and 10 for the two layers, and the
network bandwidth being 1 Gbps. We ignore model synchronization time, as the model (of size 0.3 MB) takes
less than 10 ms to synchronize.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

overhead, which is due to cross-client sampling and cross-client neighbor information transferring.
In addition, they may impose heavy memory burdens, which is attributed to the information (graph
structure and node features) storage of the cross-client neighbors on the clients. (see detailed
discussions in Section 2).

3) Our Contributions: The key contribution of this paper is that, by addressing the above challenges,
we develop a mini-batch-based and sampling-based federated GNN framework called Swift-FedGNN.
The main results and technical contributions of this paper are as follows:
• We develop a new communication- and sample-efficient mini-batch sampling-based federated GNN

algorithm called Swift-FedGNN to train GNNs on geo-distributed graphs in a federated fashion.
To reduce the sampling and communication overhead, the clients in Swift-FedGNN primarily
conduct the efficient local training in parallel and some sampled clients only occasionally and
periodically perform the time-consuming cross-client training. The information loss of the cross-
client neighbors in the federated setting is alleviated via cross-client training. Thanks to our use of
different mini-batch training nodes at each iteration, the clients do not need to store the cross-client
neighbor information, which significantly reduces the memory overhead. To further reduce the
communication cost, the cross-client neighbor information is aggregated at remote clients before
communicating to the server and accumulated one more time before transferring to the training
client. This special design further offers the benefit of helping preserve data privacy since the
information of each node is not leaked.

• We conduct rigorous theoretical convergence performance analysis for Swift-FedGNN. It is worth
noting that the convergence analysis of our Swift-FedGNN is highly non-trivial. Unlike deep
neural networks (DNNs), the stochastic gradients in GNNs are biased, which poses significant
challenges on the theoretical analysis of Swift-FedGNN’s convergence guarantees. Moreover, the
structural entanglement in GNNs (i.e., the interleaving of neighbor aggregations and non-linear
transformations across multiple layers) further complicates the performance analysis. In stark
contrast to existing works in the literature that made strong assumptions on the biases of stochastic
gradients (e.g., the unbiased stochastic gradient assumption in (Chen et al., 2018) and the consistent
stochastic gradient assumption in (Chen & Luss, 2018), etc.), for the first time in the literature,
we are able to bound the stochastic gradient approximation errors rather than resorting to these
unrealistic assumptions in practice. Such results could also be of independent theoretical interests.

• Given the biased stochastic gradients in GNNs that arise from the missing cross-client neighbors
and the neighbor sampling process, we reveal an interesting theoretical insight that the stochastic
gradient approximation errors are correlated with the structure of GNNs. More specifically, our
theoretical analysis quantifies and characterizes a positive correlation with the number of layers in
the networks. We note that this is a new finding that is unique to federated GNN training. Lastly,
by putting the above insights together, we show that Swift-FedGNN achieves a convergence rate of
O
(
T−1/2

)
, which matches the state-of-the-art (SOTA) convergence rate of sampling-based GNN

methods (hence low communication and sample complexities), despite operating in the far more
challenging FL setting with much less frequent information exchanges among the clients.

2 RELATED WORK

In this section, we provide an overview on distributed GNNs and offer a comprehensive comparison
with the most relevant work on federated GNNs.

1) Distributed Graph Neural Networks: Distributed GNN training framework (e.g., DGL’s Dist-
DGL (Wang et al., 2019c; Zheng et al., 2020), Pytorch Geometric (Fey & Lenssen, 2019), Ali-
Graph (Zhao et al., 2019) and Dorylus (Thorpe et al., 2021)) have been developed to train large-scale
graph datasets that exceed the storage capacities of a single device. Each worker on the device
constructs mini-batches via cross-device sampling and communication, trains in parallel, and syn-
chronizes the model. However, in distributed GNN training, extensive graph sampling and data
communication can account for up to 80% of the total training time, substantially slowing the training
process (Gandhi & Iyer, 2021). Considerable efforts have been made to optimize distributed GNN
training, including employing strategic graph partitioning to minimize edge cuts between graph
partitions (Zheng et al., 2020), implementing static or dynamic node feature caching (Liu et al., 2023;
Zhang et al., 2023), enhancing communication strategies (Cai et al., 2021; Luo et al., 2022), and
utilizing various parallel training schemes (Gandhi & Iyer, 2021; Wan et al., 2022; Du et al., 2024).
However, the majority of these techniques are not directly applicable to geo-distributed graphs due

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

to privacy concerns, as they typically involve operations that require access to or the transfer of
graph data across different training devices. To our knowledge, LLCG (Ramezani et al., 2022) is the
only distributed GNN training framework that avoids transferring node features between workers,
making it potentially applicable to geo-distributed graphs. Every worker in LLCG trains only on
its local graph partitions. To address the missing information from cross-device neighbors, LLCG
employs central server to periodically perform full-neighbor training with neighbor aggregation over
all workers. However, this method suffers significant communication overhead on the server end, as
the server needs to communicate with all workers to perform the full-neighbor training.

2) Federated Graph Neural Networks: To date, the research on federated GNNs remains in its
infancy and results in this area are quite limited. In (He et al., 2021a), it is assumed that graphs are
dispersed across multiple clients and the information of the cross-client neighbors is ignored, which
does not align with the real-world scenarios and would degrade the performance of the trained model.
In (Wu et al., 2021), it is assumed that the clients’ local graphs have overlapped nodes and the edges
are distributed, which may not be true in real-world situations. The authors in (Zhang et al., 2021)
mitigate the information loss of the cross-client neighbors by exchanging such information in each
training round. However, this approach incurs considerable communication overhead and exposes
private node information to other clients. Although the algorithm in (Yao et al., 2023a) exchanges the
information of the full cross-client neighbors only once before the training to supplement the missing
information from the cross-client neighbors, it is not applicable to large-scale graphs because it uses
the full graph for training and incurs significant memory overhead on each client. Note that this
one-time communication only works for full graph training and is not suitable for the situations in
which clients sample different mini-batches of training nodes in each iteration since the cross-client
neighbors of these training batches are different. Furthermore, the homomorphic encryption used
in (Yao et al., 2023a) would significantly increase the communication cost, which is at least several
times higher than communication without homomorphic encryption.

The most related work to ours can be found in (Du & Wu, 2022), where the authors used sparse
cross-client neighbor sampling to supplement the lost information of the cross-client neighbors and
reduce the communication overhead. Each client periodically samples the cross-client neighbors
and exchanges the information of the sampled neighbors with other clients. In the remaining
iterations, the clients reuse the most recent sampled cross-client neighbors, which requires additional
cache for saving transferred graph data, thereby increasing memory overhead. However, as training
progresses, the frequency of information exchange increases, leading to higher communication costs.
Additionally, they relaxed the privacy constraint to allow the transfer of the graph data between clients
directly. Reusing the same sampled data across multiple iterations would cause additional bias, and
thus degrading the performance of the model. In contrast, our proposed Swift-FedGNN method limits
cross-client training to a subset of sampled clients and avoids direct graph data exchange between
clients by offloading certain operations to the central server. Before communication with the training
clients, cross-client neighbor information is aggregated twice: first at the remote clients and then on
the server—helping to preserve data privacy and significantly reduce communication costs. Since
clients perform local training in the remaining iterations, cross-client neighbor information does not
need to be stored, thereby reducing memory overhead.

3 FEDERATED GRAPH LEARNING: PRELIMINARIES

In this section, we provide the background of the mathematical formulation for training GNNs
in a federated setting. For convenience, we provide a list of key notations used in this paper in
Appendix A. In order for this paper to be self-contained and to facilitate easy comparisons, we
provide the background for training GNNs on a single machine in Appendix B.

Consider a graph G (V, E), where V is a set of nodes with N = |V| and E is a set of edges. We
consider a standard federated setting that has a central server and a set of M clients with M = |M|.
The graph G is geographically distributed over these clients, and each client m contains a subgraph
represented by Gm (Vm, Em). Note that

⋃M
m=1 Gm ̸= G due to the missing cross-client edges

between clients (
⋃M

m=1 Em ̸= E). In addition, we assume that the nodes are disjointly partitioned
across clients, i.e.,

⋃M
m=1 Vm = V and

⋂M
m=1 Vm = ∅. Each node v ∈ Vm has a feature vector

xm
v ∈ Rd, and each node v ∈ Vm

train corresponds to a label ymv , where Vm
train ⊆ Vm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In federated GNN training, the clients collaboratively learn a model with distributed graph data and
under the coordination of the central server. Typically, clients in FL receive the model from the server,
compute local model updates iteratively, and then send the updated model to the server. The server
periodically aggregates the models and then sends the aggregated model back to the clients. The goal
in federated GNN training is to solve the following optimization problem:

minL(θ) := 1
|M|

∑
m∈M Fm (θ) = 1

|M|
∑

m∈M
1

|Vm
B |

∑
v∈Vm

B
ℓm

(
h
(L),m
v , ymv

)
, (1)

where ℓm is a loss function (e.g., cross-entropy loss) at client m, Vm
B denotes a mini-batch of training

nodes uniformly sampled from Vm, and θ :=
{
W (l)

}L

l=1
corresponds to all model parameters.

GNNs aim to generate representations (embeddings) for each node in the graph by combining
information from its neighboring nodes. Recall that in federated GNNs, the neighbors of node v may
be located on its local client m(v) or on remote clients m̄(v) ∈ M̄(v), where M̄(v) represents a
set of the remote clients that host the neighbors of node v, and M̄(v) ⊆ M\{m(v)}. As shown in
Figure 3, to compute the embedding of node v at the l-th layer in a GNN with L layers, the client
m(v) first aggregates the neighbor information from both itself and the remote clients m̄(v) ∈ M̄(v),
and then updates the embedding of node v, as follows:

h
(l)
N (v)=AGG

({
h
(l−1),m(v)
u | u∈Nm(v)(v)

}
∪
{⋃

m̄(v)∈M̄(v)

{
h
(l−1),m̄(v)
u | u∈N m̄(v)(v)

}})
,

h(l),m(v)
v = σ

(
W (l) · COMBINE

(
h(l−1),m(v)
v ,h

(l)
N (v)

))
, (2)

where Nm(v) (v) is a set of the neighbors of node v located on its local client m(v), N m̄(v) (v) is a set
of the neighbors of node v located on remote client m̄(v), h(l)

N (v) is the aggregated embedding from

node v’s neighbors, h(l),m(v)
v is the embedding of node v located on client m(v) and is initialized as

h
(0),m(v)
v = x

m(v)
v , W (l) represents the weight matrix at l-th layer, σ (·) corresponds to an activation

function (e.g., ReLU), AGG(·) is an aggregation function (e.g., mean), and COMBINE (·) is a
combination function (e.g., concatenation). Compared to distributed GNNs where clients can directly
transfer node features, the key difference in federated GNNs is that clients cannot do so due to privacy
concerns, requiring additional modifications.

4 THE Swift-FedGNN ALGORITHM

In this section, we propose a new algorithmic framework called Swift-FedGNN , designed to effi-
ciently solve Problem (1) by reducing both sampling and communication costs in federated GNN
training. The overall algorithmic framework of Swift-FedGNN is illustrated in Algorithms 1-3. Rather
than each client performing cross-client training in every round, the clients in Swift-FedGNN primarily
conduct the efficient local training in parallel, and a set of randomly selected clients periodically carry
out the time-consuming cross-client training. By offloading part of the graph operation to the server
and remote clients, Swift-FedGNN eliminates the need for sharing graph features among clients.

Algorithm 1 outlines the main framework of Swift-FedGNN. Specifically, it performs parallel local
training across clients for every I − 1 iterations, followed by one iteration of cross-client training
involving randomly selected clients. In the local training iterations (t), every client m updates the
local GNN model only using its local graph, as presented in Algorithm 3. Client m samples a
mini-batch of training nodes Bm

v and a subset of L-hop neighbors for the training nodes in Bm
v ,

denote as S̃ =
{
S̃(l)

}L−1

l=0
, all from the local graph data. To compute the embedding of node v in

the l-th GNN layer (v ∈ Bm
v if l = L, otherwise v ∈ S̃(l)), client m first conducts the neighbor

aggregation for node v based on the sampled neighbors using:

h̃
(l)
N (v) = AGG

({
h̃(l−1),m
u | u ∈ Ñm (v)

})
, (3)

where Ñm (v) denotes a set of the sampled neighbors located on client m for node v, Ñm (v) ⊆
S̃(l−1), and Ñm (v) ⊆ Nm (v). Then, client m updates the embedding of node v in the l-th GNN
layer based on the aggregated neighbor information and the embedding of node v from the (l−1)-th
layer, as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Swift-FedGNN Algorithm.
Input: Initial parameters θ0, learning rate α,

and correction frequency I
for t = 0 to T − 1 do

if t mod I = 0 then
Randomly sample |K| clients
for m ∈ M in parallel do

if m ∈ K then
Client update with local

graph data and cross-
client neighbors using Al-
gorithm 2

else
Client update with local

graph data according to
Algorithm 3

else
for m ∈ M in parallel do

Client update with local graph
data based on Algorithm 3

Server:
Aggregate and update global model pa-

rameter as:
θt+1=θt−α 1

|M|
∑

m∈M∇F̃m (θm
t)

Algorithm 2: Client m in the t-th iteration: update
with local graph data and cross-client neighbors.
Receive global parameter θm

t = θt

Construct a mini-batch Bm
v of nodes

Server samples a subset of L-hop neighbors S̃ =
{
S̃(l)

}L−1

l=0
for

the training nodes in Bm
v

for l = 1 to L do
/* Derive l-th layer embedding of

node v ∈ Bm
v if l = L, otherwise

v ∈ S̃(l)
*/

for Remote client m̃(v) ∈ M̃(v) in parallel do
Aggregate the neighbor embeddings using Eq. (5)
Send the aggregated embedding h̃

(l),m̃(v)

N (v) to the server

Server:
Aggregate the neighbor embeddings from the remote clients
using Eq. (6)
Send the aggregated cross-client neighbor embedding r̃

(l)

N (v)

to Client m(v)

Client m(v): Compute node embeddings using Eq. (7) and
(8)

Compute the stochastic gradient as ∇F̃m (θm
t) and send to the

server

Algorithm 3: Client m in the t-th iteration: update with local graph data.
Receive global parameter θm

t = θt

Construct a mini-batch Bm
v of nodes

Sample a subset of L-hop neighbors S̃ =
{
S̃(l)

}L−1

l=0
for the training nodes in Bm

v

for l = 1 to L do
/* Derive l-th layer embedding of node v ∈ Bm

v if l = L, otherwise

v ∈ S̃(l)
*/

Compute node embeddings using Eq. (3) and (4)

Compute the stochastic gradient ∇F̃m (θm
t) and send to the server

h̃(l),m
v = σ

(
W

(l),m
t · COMBINE

(
h̃(l−1),m
v , h̃

(l)
N (v)

))
. (4)

At every I-th iteration, Swift-FedGNN allows a set of K clients, uniformly sampled from M, to
conduct cross-client training that trains the local GNN models using both their local graph data
and the cross-client neighbors. We use K to denote the set of K clients, where K ⊂ M. The
remaining clients perform local training as shown in Algorithm 3. Algorithm 2 details the cross-
client training process for client m ∈ K. Rather than directly exchanging node features between
clients, Swift-FedGNN partitions GNN training between the clients and the server. We offload2 the
aggregation of node features and intermediate activations at each GNN layer to the server and remote
clients corresponding to node v, thus reducing the communication overhead and eliminating the need
for graph data sharing. This procedure helps preserve data privacy because the clients are unaware of
the locations of neighbor nodes, and the embeddings of these neighbor nodes are aggregated before
being transmitted to the clients. Operations performed on the server and the remote clients are colored
using server and remote client respectively.

Specifically, client m ∈ K samples a mini-batch of training nodes Bm
v . Then, with the cooperation of

the server, a subset of L-hop neighbors for the training nodes in Bm
v is sampled and represented as

2Note that the operation offloading in Swift-FedGNN only supports element-wise (e.g., mean, sum, max)
operations, e.g., GCN Kipf & Welling (2017) and SGCN Wu et al. (2019). To support non-element-wise
operation, e.g., GAT Veličković et al. (2017), each remote client can transfer the raw graph features or activations
to the server for aggregation, instead of performing the locally partial aggregation first with Eq. (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

S̃ =
{
S̃(l)

}L−1

l=0
. The nodes v ∈ Bm

v are on client m, while for v ∈ S̃(l) with l < L, the nodes may
be on clients other than m, denoting the client storing v as m(v). The set M̃(v) represents remote
clients with respect to m(v), i.e., M̃(v) ⊆ M\{m(v)}, where the sampled cross-client neighbors
of the training node v are located. Each remote client m̃(v) ∈ M̃(v) may contain multiple sampled
neighbors of the training node v, and the numbers of the sampled neighbors can vary across clients.

Computing the l-th layer embedding of node v consists of four steps. Steps 1 to 3 below are used to
aggregate the neighbor information of node v, and Step 4 is used to update the node v’s embedding at
l-th GNN layer.

Step 1) Each remote client m̃(v) aggregates its sampled neighbors of node v in parallel, using

h̃
(l),m̃(v)
N (v) = AGG

({
h̃(l−1),m̃(v)
u | u ∈ Ñ m̃(v) (v)

})
. (5)

We send only the aggregated results from each remote client m̃(v) to the server, which can help
preserve data privacy and reduce communication overhead.

Step 2) Upon receiving the aggregated neighbor information from all the remote clients m̃(v) ∈
M̃(v), the server aggregates this information from different remote clients before sending it to client
m(v) as follows:

r̃
(l)
N (v) = AGG

({
h̃
(l),m̃(v)
N (v) | m̃(v) ∈ M̃(v)

})
. (6)

This approach not only helps maintain data privacy but also reduces communication costs by mini-
mizing the amount of data transmitted between clients and the server.

Step 3) Neighbor information of node v for both the sampled local neighbors and the sampled
cross-client neighbors is aggregated as follows:

h̃
(l)
N (v) = AGG

({
h̃(l−1),m(v)
u | u ∈ Ñm(v) (v)

}
∪
{
r̃
(l)
N (v)

})
. (7)

The cross-client neighbor information used here helps mitigate the information loss and reduce the
performance degradation caused by connected nodes being distributed across different clients.

Step 4) The embedding of node v in the l-th GNN layer is updated using the aggregated neighbor
information and the embedding of node v from the (l−1)-th layer as:

h̃(l),m(v)
v = σ

(
W

(l),m(v)
t · COMBINE

(
h̃(l−1),m(v)
v , h̃

(l)
N (v)

))
. (8)

Using the embeddings of the training nodes in the mini-batch and the model parameters, the local
stochastic gradients ∇F̃m (θm

t) are computed and then used in the update of the global model
parameters shown as θt+1 = θt − α 1

|M|
∑

m∈M ∇F̃m (θm
t), where α is the learning rate.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we establish the theoretical convergence guarantees for Swift-FedGNN using Graph
Convolutional Network (GCN) (Kipf & Welling, 2017) as the GNN architecture to solve Problem
(1). The analysis of GNN convergence is significantly more challenging compared to the existing
literature on deep neural networks (DNNs). The key difficulties stem from the fact that, unlike in
DNNs, the stochastic gradients in GNNs are inherently biased. This bias is primarily caused by the
presence of cross-client neighbors and the neighbor sampling process. The errors from missing or
unsampled neighbors propagate across layers, gradually getting amplified from the input layer to the
output layer, complicating the overall convergence behavior.

For a graph G, the structure can be represented by its adjacency matrix A ∈ RN×N , where Avu = 1

if (v, u) ∈ E , otherwise Avu = 0. The propagation matrix can be computed as P = D−1/2ÂD−1/2,
where Â = A+ I , and D ∈ RN×N corresponds to the degree matrix and Dvv =

∑
u Âvu.

For subgraph Gm located on client m, the adjacency matrix Am can be denoted as Am = Am
local +

Am
remote, where Am

local corresponds to the nodes located on client m, and Am
remote corresponds to

their cross-client neighbors located on the remote clients other than m. Then, the propagation matrix

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

can be calculated as Pm = D
−1/2
m (Am + Im)D

−1/2
m , and can be represented as Pm = Pm

local +

Pm
remote, where Pm

local = D
−1/2
m (Am

local + Im)D
−1/2
m and Pm

remote = D
−1/2
m (Am

remote)D
−1/2
m .

Given GCN as the GNN architecture, for client m training using only the local graph data, Eq. (3)
and (4) are equivalent to H̃

(l),m
t = σ

(
P̃

(l),m
local H̃

(l−1),m
local W

(l),m
t

)
. For client m training based on

both the local graph data and the cross-client neighbors, Eq. (5)–(8) are equivalent to H̃
(l),m
t =

σ
((

P̃
(l),m
local H̃

(l−1),m
local +P̃

(l),m
remoteH̃

(l−1),m
remote

)
W

(l),m
t

)
.

Before proceeding with the convergence analysis, we make the following standard assumptions.
Assumption 5.1. The loss function ℓm (·, ·) is Cl-Lipschitz continuous and Ll-smooth with re-
spect to the node embedding h(L), i.e., ∥ℓm(h

(L)
1 , y) − ℓm(h

(L)
2 , y)∥2 ≤ Cl∥h(L)

1 − h
(L)
2 ∥2 and

∥∇ℓm(h
(L)
1 , y)−∇ℓm(h

(L)
2 , y)∥2 ≤ Ll∥h(L)

1 − h
(L)
2 ∥2.

Assumption 5.2. The activation function σ (·) is Cσ-Lipschitz continuous and Lσ-smooth, i.e.,
∥σ(z(l)

1)− σ(z
(l)
2)∥2 ≤ Cσ∥z(l)

1 − z
(l)
2 ∥2 and ∥∇σ(z

(l)
1)−∇σ(z

(l)
2)∥2 ≤ Lσ∥z(l)

1 − z
(l)
2 ∥2.

Assumption 5.3. For any l ∈ [L], the norm of weight matrices, the propagation matrix, and the node
feature matrix are bounded by BW , BP and BX , respectively, i.e., ∥W (l)∥F ≤ BW , ∥P ∥F ≤ BP ,
and ∥X∥F ≤ BX . Note that this assumption is commonly used in the analysis of GNNs, e.g., (Chen
et al., 2018; Liao et al., 2020; Garg et al., 2020; Cong et al., 2021; Wan et al., 2022)

Different from DNNs with unbiased stochastic gradients, the stochastic gradients in sampling-based
GNNs are biased due to neighbor sampling of the training nodes. This is one of the key challenges
in the convergence performance analysis of Swift-FedGNN. Some existing works used strong
assumptions to deal with these biased stochastic gradients in their analysis, e.g., the authors in (Chen
et al., 2018) adopted the unbiased stochastic gradient assumption, and the authors in (Chen & Luss,
2018) used the consistent stochastic gradient assumption. However, these assumptions may not hold
in reality. In this paper, without using the aforementioned strong assumptions, we are able to bound
the errors between the stochastic gradients and the full gradients in the following lemma.
Lemma 5.4. Under Assumptions 5.1–5.3, the errors between the stochastic gradients and the full
gradients are bounded as follows:∥∥∥∇Fm

local (θ
m)−∇F̃m

local (θ
m)

∥∥∥
F
≤ LBl

∆G,
∥∥∥∇Fm

full (θ
m)−∇F̃m

full (θ
m)

∥∥∥
F
≤ LBf

∆G,

where ∇Fm
local (θ

m) and ∇F̃m
local (θ

m) correspond to the full and stochastic gradients computed
with only the local graph data, respectively. ∇Fm

full (θ
m) and ∇F̃m

full (θ
m) represent the full and

stochastic gradients computed with both the local graph data and the cross-client neighbors of the
training nodes, respectively. Bl

∆G and Bf
∆G are defined in Eq. (12) and (13) in Appendix D.

Furthermore, the dependencies of the nodes located on different clients can lead to additional errors
in the gradient computations when client m is updated only with its local graph data, since the cross-
client neighbors are missed. This becomes another key challenge in the analysis of the convergence
of Swift-FedGNN. We prove that such an error is upper-bounded as shown in the following lemma.
Lemma 5.5. Under Assumptions 5.1–5.3, the error between the full gradient computed with both the
local graph data and the cross-client neighbors of the training nodes (denote as ∇Fm

full (θ
m)) and

the full gradient computed with only the local graph data (denote as ∇Fm
local (θ

m)) is upper-bounded
as follows: ∥∥∇Fm

full (θ
m)−∇Fm

local (θ
m)

∥∥
F
≤ LBr

∆G,

where Br
∆G is defined in Eq. (14) in Appendix D.

We note that all the errors mentioned in Lemmas 5.4 and 5.5 are correlated with the structure of
GNNs, specifically showing a positive correlation with the number of layers in the networks. This
finding is unique to GNNs, where each layer involves both neighbor aggregation and non-linear
transformation. As these two operations are interleaved across multiple layers, they create a structural
entanglement that complicates the analysis.

Using Lemmas 5.4 and 5.5, we state the main convergence result of Swift-FedGNN solving an
L-layer GNN in the following theorem:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 5.6. Under Assumptions 5.1–5.3, choose step-size α=min
{√

M√
T
, 1
LF

}
, where LF is the

smoothness constant in Lemma D.2. The output of Swift-FedGNN solving an L-layer GNN satisfies:

1

T

T−1∑
t=0

∥∇L (θt)∥2≤
2√
MT

(L (θ0)−L (θ∗))+L2
(
Bl

∆G+Br
∆G

)2

+
K

IM
L2

((
Bf

∆G

)2

−
(
Bl

∆G+Br
∆G

)2
)
.

The detailed proof of Theorem 5.6 can be found in Appendix D. We can see from Theorem 5.6 that
the convergence rate of Swift-FedGNN is O

(
T−1/2

)
to a neighborhood of the exact solution, which

matches the SOTA convergence rate of sampling-based GNN algorithms, e.g., (Chen et al., 2018;
Cong et al., 2021; Ramezani et al., 2022; Du & Wu, 2022), even though Swift-FedGNN operates in
the far more challenging federated setting.

Three important remarks on Theorem 5.6 are in order: (1) When choosing I = 1 and K = M ,
Swift-FedGNN performs fully cross-client training, ensuring no information loss in the graph data.
In this scenario, Swift-FedGNN experiences minimal residual error. Such error is caused by sampling
and is inevitable. However, Swift-FedGNN suffers from maximum sampling and communication
overhead; (2) When choosing K = 0, Swift-FedGNN conducts fully local training, resulting in
the information loss of all the cross-client neighbors. Consequently, Swift-FedGNN encounters
maximum residual error. Nonetheless, the sampling and communication overhead is minimized; and
(3) It can be shown that the last term of the convergence rate bound in Theorem 5.6 is negative. Hence,
increasing I or decreasing K would increase the residual error due to more information loss of the
cross-client neighbors. However, this would reduce the sampling and communication overhead. Thus,
there is a trade-off between the information loss and the sampling and communication overhead.

6 NUMERICAL RESULTS

Table 1: Benchmark datasets and key parameters.

DATASET # OF NODES # OF EDGES
OGBN-PRODUCTS 2.4 M 61.8 M

REDDIT 0.2 M 114.6 M

In this section, we conducte experiments to eval-
uate the performance of Swift-FedGNN.

1) Experiment Settings: We train a representa-
tive GNN model, GraphSAGE (Hamilton et al.,
2017), in the FL settings on two real-world node
classification datasets: 1) ogbn-products (Hu et al., 2020), which is an Amazon product co-purchasing
graph derived from (Leskovec et al., 2007); and 2) Reddit (Hamilton et al., 2017), which consists of
online forum posts within a month, where posts commented on by the same user are connected by an
edge. Table 1 summarizes the key statistics of the datasets. Note that Ogbn-products dataset is the
largest dataset one can find in the federated GNN literature, while the Reddit dataset is known for its
density. These datasets were chosen for their distinct and representative characteristics, ensuring a
thorough evaluation that addresses diverse scenarios in federated GNN training. In our FL simulations,
we use 20 clients for the experiments with ogbn-products dataset and 10 clients for the experiments
with Reddit dataset. Both graphs are partitioned with METIS partitioning (Karypis & Kumar, 1998).
Due to space limitations, additional experimental details and results are provided in Appendix C.

2) Baselines: Since the goal of Swift-FedGNN is to reduce the sampling and communication time, we
compare Swift-FedGNN with the algorithms most closely related to Swift-FedGNN, which mitigates
the information loss of cross-client neighbors through periodical (sampling-based) full-neighbor
training: 1) LLCG (Ramezani et al., 2022): A distributed GNN training framework that performs local
training on each client independently, with periodic full-neighbor training conducted on a central
server; 2) FedGNN-PNS (Du & Wu, 2022): A federated GNN training framework where each client
periodically samples cross-client neighbors with an increasing sampling frequency. In the remaining
iterations, clients reuse the most recently sampled cross-client neighbors; and 3) FedGNN-G: Naive
federated GNN training where cross-client training is performed on each client in every iteration.

3) Convergence Performance Comparisons: In Figure 4, we can see that for both the ogbn-products
dataset and the Reddit dataset, Swift-FedGNN demonstrates the fastest convergence speed compared
to the baseline algorithms, which verifies the effectiveness of Swift-FedGNN. In addition, the
validation accuracy of Swift-FedGNN is comparable to that of FedGNN-G, which trains a GNN
model on the dataset without any information loss. Specifically, when Swift-FedGNN converges,
the validation accuracy is 87.73% on the ogbn-products dataset and 95.60% on the Reddit dataset.
When FedGNN-G converges, the validation accuracy is 87.93% on ogbn-products dataset and 96.03%
on Reddit dataset. Although LLCG performs periodic cross-client training on the server, it requires

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000 60000 70000 80000
Wall-Clock Time (ms)

0

10

20

30

40

50

60

70

80

90

100

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Swift-FedGNN

FedGNN-G
FedGNN-PNS

LLCG

(a) ogbn-products

0 10000 20000 30000 40000 50000 60000 70000 80000
Wall-Clock Time (ms)

0

10

20

30

40

50

60

70

80

90

100

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Swift-FedGNN

FedGNN-G
FedGNN-PNS

LLCG

(b) Reddit

Figure 4: Convergence performance in terms of validation
accuracy of different algorithms.

Swift-FedGNN
FedGNN-G

FedGNN-PNS LLCG
0

10

20

30

40

50

60

70

80

90

100

R
at

io
s

78%

22%

13%

87%

13%

87%

58%

42%

Computation
Sampling & Communicaiton

(a) ogbn-products
Swift-FedGNN

FedGNN-G
FedGNN-PNS LLCG

0

10

20

30

40

50

60

70

80

90

100

R
at

io
s

67%

33%

8%

92%

8%

92%

66%

34%

Computation
Sampling & Communicaiton

(b) Reddit

Figure 5: Comp.-(sampling & comm.)
ratio of different algorithms.

1 5 10 20 40 80 160 320
Correction Frequency I

0

10

20

30

40

50

60

70

80

90

100

R
at

io
s

3%

97%

12%

88%

19%

81%

29%

71%

39%

61%

47%

53%

53%

47%

56%

44%

Computation
Sampling & Communicaiton

(a) correction frequencies
(I)

1 5 10 15 20
Number of Cross-Client

Training Clients K

0

10

20

30

40

50

60

70

80

90

100

R
at

io
s

46%

54%

34%

66%

26%

74%

21%

79%

18%

82%

Computation
Sampling & Communicaiton

(b) # of cross-client train-
ing clients (K)

[10,5] [15,10] [20,15]
Sampling Fan-Outs

0

10

20

30

40

50

60

70

80

90

100

R
at

io
s

45%

55%

39%

61%

34%

66%

Computation
Sampling & Communicaiton

(c) # of sampled neigh-
bors

10 / 5 20 / 10 40 / 20
of Clients /

of Cross-Client Training Clients

0

10

20

30

40

50

60

70

80

90

100

R
at

io
s

39%

61%

26%

74%

8%

92%

Computation
Sampling & Communicaiton

(d) # of clients (50% for
cross-client training)

Figure 6: Comp.-(sampling & comm.) ratio of Swift-FedGNN on ogbn-products dataset.

training over the full set of neighbors of the training nodes, leading to significant sampling and
communication overhead. For instance, when training the ogbn-products dataset, LLCG takes over
5000 ms to perform cross-client training on the server, whereas Swift-FedGNN completes cross-
client training within 200 ms due to neighbor sampling. FedGNN-PNS employs a dynamic cross-
client sampling interval throughout training, gradually reducing the interval as training progresses.
Consequently, FedGNN-PNS incurs extensive sampling and communication overhead during the
later stages of training, slowing down the convergence process.

4) Communication and Sample Costs Analysis: Figure 5 illustrates the comparison between the
ratios of the computation time and the sampling and communication time for Swift-FedGNN and the
baseline algorithms. It can be seen that Swift-FedGNN significantly reduces the computation-
(sampling & communication) ratio on the ogbn-products dataset. On the Reddit dataset,
Swift-FedGNN also significantly reduces this ratio compared to FedGNN-PNS and FedGNN-G.
While Swift-FedGNN achieves a comparable ratio to LLCG, it converges much faster and achieves
higher validation accuracy than LLCG.

5) Hyperparameter Sensitivity Analysis: We explore the impact of the important hyperparameters
in Swift-FedGNN. Figure 6a shows that when the correction frequency I increases, the computation-
(sampling & communication) ratio increases. Figure 6b and 6c indicate that as the number of
cross-client training clients K, and the number of sampled neighbors increase, the computation-
(sampling & communication) ratio decreases. Figure 6d evaluates Swift-FedGNN with different
numbers of clients. In this experiment, 50% of clients periodically conduct cross-client training
on both local and cross-client neighbors. We can see that as the number of clients increases, the
computation-(sampling & communication) ratio decreases. These findings align with our expectations
since sampling and communication overhead is significantly greater than computation overhead in
GNN training.

7 CONCLUSION

In this paper, we proposed the Swift-FedGNN algorithm, which is a mini-batch-based and sampling-
based federated GNN framework, for efficient federated GNN training. Swift-FedGNN reduces the
cross-client neighbor sampling and communication overhead by periodically sampling a set of clients
to conduct the local GNN training on local graph data and cross-client neighbors, which is time-
consuming. The rest clients in these periodical iterations and all the clients in the remaining iterations
perform efficient parallel local GNN training using only local graph data. We theoretically proved that
the convergence rate of Swift-FedGNN is O

(
T−1/2

)
, matching the SOTA rate of sampling-based

GNN methods, even in the more challenging federated settings. We conducted extensive numerical
experiments on real-world graph datasets and verified the effectiveness of Swift-FedGNN.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual graph markov model: A deep and
generative approach to graph processing. In International conference on machine learning, pp.
294–303. PMLR, 2018.

Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. DGCL: An Efficient
Communication Library for Distributed GNN Training. In Proc. of EuroSys, pp. 130–144, 2021.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942–950. PMLR, 2018.

Jie Chen and Ronny Luss. Stochastic gradient descent with biased but consistent gradient estimators.
arXiv preprint arXiv:1807.11880, 2018.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On the importance of sampling in training
gcns: Tighter analysis and variance reduction. arXiv preprint arXiv:2103.02696, 2021.

Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic learning and
forecasting. IEEE Transactions on Intelligent Transportation Systems, 21(11):4883–4894, 2019.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for predicting
social events. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1007–1016, 2019.

Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical
reaction prediction. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 750–760, 2019.

Bingqian Du and Chuan Wu. Federated graph learning with periodic neighbour sampling. In 2022
IEEE/ACM 30th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE, 2022.

Bingqian Du, Jun Liu, Ziyue Luo, Chuan Wu, Qiankun Zhang, and Hai Jin. Expediting Distributed
GNN Training with Feature-only Partition and Optimized Communication Planning. In Proc. of
IEEE INFOCOM, 2024.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric. In
Proc. of ICLR, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed Deep Graph Learning at Scale. In
Proc. of OSDI, pp. 551–568, 2021.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419–3430. PMLR,
2020.

Mahsa Ghorbani, Anees Kazi, Mahdieh Soleymani Baghshah, Hamid R Rabiee, and Nassir Navab.
Ra-gcn: Graph convolutional network for disease prediction problems with imbalanced data.
Medical image analysis, 75:102272, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang
He, Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. arXiv preprint arXiv:2104.07145, 2021a.

Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and Salman Avestimehr.
Spreadgnn: Serverless multi-task federated learning for graph neural networks. arXiv preprint
arXiv:2106.02743, 2021b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

Anees Kazi, Soroush Farghadani, Iman Aganj, and Nassir Navab. Ia-gcn: Interpretable attention
based graph convolutional network for disease prediction. In International Workshop on Machine
Learning in Medical Imaging, pp. 382–392. Springer, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The Dynamics of Viral Marketing.
ACM Transactions on the Web (TWEB), 1(1):5–es, 2007.

Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia Pan. Predicting
path failure in time-evolving graphs. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1279–1289, 2019.

Sihui Li and Rui Zhang. A novel interactive deep cascade spectral graph convolutional network with
multi-relational graphs for disease prediction. Neural Networks, pp. 106285, 2024.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua Peng, Hongzheng
Chen, Hongzhi Chen, and Chuanxiong Guo. BGL: GPU-Efficient GNN Training by Optimizing
Graph Data I/O and Preprocessing. In Proc. of NSDI, pp. 103–118, 2023.

Ziyue Luo, Yixin Bao, and Chuan Wu. Optimizing Task Placement and Online Scheduling for
Distributed GNN Training Acceleration. In Proc. of IEEE INFOCOM, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Proc. of NeurIPS, 2019.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Modeling
influence locality in large social networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’18), 2018.

Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Mahmut Kandemir, and Anand Sivasubrama-
niam. Learn locally, correct globally: A distributed algorithm for training graph neural networks.
In International Conference on Learning Representations, 2022.

John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei,
Keval Vora, Ravi Netravali, Miryung Kim, et al. Dorylus: Affordable, Scalable, and Accurate
GNN Training with Distributed CPU Servers and Serverless Threads. In Proc. of USENIX OSDI,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. arXiv preprint arXiv:1710.10903, 2017.

Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and Yingyan Lin.
PipeGCN: Efficient full-graph training of graph convolutional networks with pipelined feature
communication. In International Conference on Learning Representations, 2022.

Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. Graphfl: A federated learning framework
for semi-supervised node classification on graphs. In 2022 IEEE International Conference on Data
Mining (ICDM), pp. 498–507. IEEE, 2022a.

Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, and Wen Su.
Mcne: An end-to-end framework for learning multiple conditional network representations of
social network. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 1064–1072, 2019a.

Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and
Zhongyuan Wang. Knowledge-aware graph neural networks with label smoothness regularization
for recommender systems. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 968–977, 2019b.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft Academic Graph: When Experts Are Not Enough. Quantitative Science Studies, 1(1):
396–413, 2020.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang,
Chao Ma, et al. Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019c.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat: Knowledge graph
attention network for recommendation. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 950–958, 2019d.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279–287,
2022b.

Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn: Federated graph
neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
in non-IID federated learning. In International Conference on Learning Representations, 2021.

Yuhang Yao, Weizhao Jin, Srivatsan Ravi, and Carlee Joe-Wong. Fedgcn: Convergence-
communication tradeoffs in federated training of graph convolutional networks. Advances in
Neural Information Processing Systems, 36, 2023a.

Yuhang Yao, Mohammad Mahdi Kamani, Zhongwei Cheng, Lin Chen, Carlee Joe-Wong, and
Tianqiang Liu. Fedrule: Federated rule recommendation system with graph neural networks. In
Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation,
pp. 197–208, 2023b.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018.

Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
environments. volume 35, pp. 25464–25477, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph Sampling Based Inductive Learning Method. In Proc. of ICLR, 2020.

Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. Subgraph federated learning with
missing neighbor generation. Advances in Neural Information Processing Systems, 34:6671–6682,
2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Zhe Zhang, Ziyue Luo, and Chuan Wu. Two-Level Graph Caching for Expediting Distributed GNN
Training. In Proc. of INFOCOM, pp. 1–10. IEEE, 2023.

Kun Zhao, Wencong Xiao, Baole Ai, Wenting Shen, Xiaolin Zhang, Yong Li, and Wei Lin. AliGraph:
An Industrial Graph Neural Network Platform. In Proc. of SOSP Workshop on AI Systems, 2019.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang,
and George Karypis. DistDGL: Distributed Graph Neural Network Training for Billion-Scale
Graphs. In IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A LIST OF NOTATIONS

G (V, E) Graph

V Set of nodes

E Set of edges

N = |V| Number of nodes

M Set of clients

M = |M| Number of clients

Gm (Vm, Em) Subgraph at client m

Vm Set of nodes at client m

Em Set of edges at client m

xm
v ∈ Rd Feature vector of node v at client m

ymv Label of node v at client m

ℓm Loss function (e.g., cross-entropy loss) at client m

Vm
B Mini-batch of training nodes

θ =
{
W (l)

}L

l=1
Set of trainable model parameters

m(v) Local client of node v

m̄(v) Remote client of node v

M̄(v) Set of the remote clients that host the neighbors of node v

Nm(v) (v) Set of the neighbors of node v located on local client m(v)

N m̄(v) (v) Set of the neighbors of node v located on remote client
m̄(v)

h(l),m(v)
v Embedding of node v located on client m(v)

h
(l)
N (v) Aggregated embedding from node v’s neighbors

W (l) Weight matrix at l-th layer

σ (·) Activation function (e.g., ReLU)

AGG(·) Aggregation function (e.g., mean)

COMBINE (·) Combination function (e.g., concatenation)

Bm
v Mini-batch of training nodes at client m

S̃ =
{
S̃(l)

}L−1

l=0
Subset of L-hop neighbors for the training nodes in Bm

v

Ñm (v) Set of the sampled neighbors located on client m for node v

K Set of sampled clients for cross-client training

K = |K| Number of sampled clients for cross-client training

M̃(v) Set of remote clients that host the sampled cross-client neigh-
bors of the training node v

m̃(v) Remote client with respect to m(v)

∇F̃m (θm
t) Stochastic gradient

α Learning rate

A ∈ RN×N Adjacency matrix of graph G
P Propagation matrix

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D Degree matrix

Am Adjacency matrix of subgraph Gm

Am
local Adjacency matrix corresponds to the nodes located on client

m

Am
remote Adjacency matrix corresponds to the cross-client neighbors

located on the remote clients other than m

Dm Degree matrix of client m

Pm Propagation matrix of client m

Pm
local Propagation matrix corresponds to the nodes located on

client m

Pm
remote Propagation matrix corresponds to the cross-client neigh-

bors located on the remote clients other than m

B SINGLE-MACHINE GRAPH NEURAL NETWORKS TRAINING

We consider a graph G (V, E), where V is a set of nodes with N = |V| and E is a set of edges. Each
node v ∈ V is associated with a feature vector xv ∈ Rd, where d is the dimension of the feature
vector. Each node v ∈ Vtrain has a corresponding label yv , where Vtrain ⊆ V .

GNNs aim to generate representations (embeddings) for each node in the graph by combining
information from its neighboring nodes. Consider a GNN that consists of L layers. The embedding
of node v at l-th layer, which is represented by h

(l)
v , can be obtained through neighbor aggregation

and node update, which are formulated as follows:

h
(l)
N (v) = AGG

({
h(l−1)
u | u ∈ N (v)

})
, h(l)

v = σ
(
W (l) · COMBINE

(
h(l−1)
v ,h

(l)
N (v)

))
,

where h
(0)
v is initialized as the feature vector xv, N (v) denotes the set of neighbors of node v,

h
(l)
N (v) is the aggregated embedding from node v’s neighbors aggregated neighbor embedding for

node v, W (l) represents the weight matrix at l-th layer, σ (·) corresponds to an activation function
(e.g., ReLU), AGG(·) is an aggregation function (e.g., mean), and COMBINE (·) is a combination
function (e.g., concatenation).

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

C.1 ADDITIONAL EXPERIMENTAL RESULTS

0 250 500 750 1000 1250 1500
Training Steps

0

10

20

30

40

50

60

70

80

90

100

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Swift-FedGNN

FedGNN-G
FedGNN-PNS

LLCG

(a) ogbn-products

0 250 500
Training Steps

0

10

20

30

40

50

60

70

80

90

100

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Swift-FedGNN

FedGNN-G
FedGNN-PNS

LLCG

(b) Reddit

Figure 7: Convergence performance (validation accuracy versus training steps) of different algorithms.

Table 2: Communication overhead per iteration when communication occurs.

Swift-FedGNN LLCG FedGNN-PNS FedGNN-G
OGBN-PRODUCTS 19.5 MB 378.3 MB 78.0 MB 78.0 MB

REDDIT 90.4 MB 619.6 MB 180.7 MB 180.7 MB

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7 shows that the numbers of iterations required by all algorithms in comparison are similar,
which is due to the fact that they share the same convergence rate result. However, since Swift-
FedGNN minimizes the sampling and communication overhead, it achieves the lowest wall-clock
time for convergence, making it the most efficient in terms of practical implementation.

Table 2 shows the communication overhead per iteration when cross-client sampling and commu-
nication occur for different algorithms. We can see that Swift-FedGNN significantly reduces the
communication overhead compared to all baselines across both datasets. Specifically, on the ogbn-
products dataset, Swift-FedGNN incurs 19.5 MB of overhead per iteration, which is approximately
20 times less than LLCG and 4 times less than both FedGNN-PNS and FedGNN-G. Similarly, for
the Reddit dataset, due to its dense inter-node connections and larger feature size, Swift-FedGNN’s
overhead is 90.4 MB, which is still about 7 times less than LLCG and 2 times less than both FedGNN-
PNS and FedGNN-G. This highlights the efficiency of Swift-FedGNN in reducing communication
costs during cross-client training.

C.2 ADDITIONAL EXPERIMENTAL DETAILS

Implementation and testbed. We implement Swift-FedGNN using Python on DGL 2.0.0 (Wang
et al., 2019c) and PyTorch 2.2.1 (Paszke et al., 2019) with 1241 LoC. Our implementation includes a
custom GPU-based sampler built on top of DGL’s native sampler, which is designed to sequentially
sample local and remote neighbors for each client at every layer. Additionally, we customized the
GraphSAGE layer (Hamilton et al., 2017) to facilitate model-parallel training within Swift-FedGNN .
In this setup, the server handles the sampling and aggregation of node features and intermediate
activations, while the clients are responsible for executing the nonlinear computations associated with
the GraphSAGE layer.

We simulate a real-world federated learning scenario using a single machine equipped with NVIDIA
Tesla V100 GPUs and 64GB memory. In our setup, both the clients and the server operate on the
GPU, and data communication between them is simulated using shared memory. We monitor the
data transfer size between the server and clients and set a simulated cross-client network bandwidth
at 1Gbps, aligning with real-world measurements reported in (Yuan et al., 2022).

GNN Model. We train a two-layer GraphSAGE model with a hidden dimension of 256. Uniform
sampling is employed for neighbor sampling, with fan-outs—i.e., the number of sampled neigh-
bors—set according to the official training script provided by the DGL team. The fan-outs for both
the ogbn-products dataset and the Reddit dataset are set to be [15, 10]. The training mini-batch size is
set at 256. For optimization, we use the Adam optimizer with a learning rate of 0.001 and a weight
decay of 5× 10−4.

D PROOF OF THEOREM 5.6

D.1 GRADIENT COMPUTATIONS IN Swift-FedGNN

Recall that Swift-FedGNN uses GCN (Kipf & Welling, 2017) as the architecture of GNN to prove the
convergence performance. When client m performs local training that updates the local GNN model
using only the local graph data, Each sampling-based GCN layer executes one feature propagation
step, defined as:

H̃
(l),m
local =

[
f̃ (l),m

(
H̃

(l−1),m
local ,W (l),m

)
≜ σ

(
P̃

(l),m
local H̃

(l−1),m
local W (l),m

)]
.

Using the chain rule, the stochastic gradient can be computed as ∇F̃m (θm) =
{
G̃

(l),m
local

}L

l=1
, where

G̃
(l),m
local =

[
∇W f̃ (l),m

(
D̃

(l),m
local , H̃

(l−1),m
local ,W (l),m

)
≜

[
P̃

(l),m
local H̃

(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)]
,

D̃
(l),m
local =

[
∇H f̃ (l+1),m

(
D̃

(l+1),m
local , H̃

(l),m
local ,W

(l+1),m
)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

≜
[
P̃

(l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

) [
W (l+1),m

]⊤]
,

in which Z̃
(l),m
local = P̃

(l),m
local H̃

(l−1),m
local W (l),m, D̃(L),m

local = ∂ℓm
(
H̃

(L),m
local ,Y m

local

)
/∂H̃

(L),m
local , and ◦

represents Hadamard product.

Similarly, when client m conducts cross-client training that updates the local GNN model based on
the local graph data and the cross-client neighbors, each sampling-based GNN layer can be defined
as:

H̃
(l),m
full =

[
f̃ (l),m

(
H̃

(l−1),m
full ,W (l),m

)
≜ σ

((
P̃

(l),m
local H̃

(l−1),m
local +P̃

(l),m
remoteH̃

(l−1),m
remote

)
W (l),m

)]
.

Using the chain rule, the stochastic gradient can be calculated as ∇F̃m (θm) =
{
G̃

(l),m
full

}L

l=1
, where

G̃
(l),m
full =

[
∇W f̃ (l),m

(
D̃

(l),m
full , H̃

(l−1),m
full ,W (l),m

)
≜

[
P̃

(l),m
local H̃

(l−1),m
local + P̃

(l),m
remoteH̃

(l−1),m
remote

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)]
,

D̃
(l),m
full =

[
∇H f̃ (l+1),m

(
D̃

(l+1),m
full , H̃

(l),m
full ,W (l+1),m

)
≜

[
P̃

(l+1),m
local + P̃

(l+1),m
remote

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

) [
W (l+1),m

]⊤]
,

in which Z̃
(l),m
full =

(
P̃

(l),m
local H̃

(l−1),m
local + P̃

(l),m
remoteH̃

(l−1),m
remote

)
W (l),m, and D̃

(L),m
full =

∂ℓm
(
H̃

(L),m
full ,Y m

full

)
/∂H̃

(L),m
full .

D.2 USEFUL PROPOSITIONS AND LEMMAS

Proposition D.1. Under Assumption 5.3, the inequalities in Table 3 and Table 4 are hold.

Table 3: Upper-bound for the norms of the propagation matrix and the node feature matrix.

PROPAGATION MATRIX NODE FEATURE MATRIX
FULL GRAPH ∥Pfull∥F ≤ BP ∥Xfull∥F ≤ BX

LOCAL GRAPH ∥Plocal∥F ≤ Bl
P ≤ BP ∥Xlocal∥F ≤ Bl

X ≤ BX

CROSS-CLIENT NEIGHBORS ∥Premote∥F ≤ Br
P ≤ BP ∥Xremote∥F ≤ Br

X ≤ BX

Table 4: Relationships for the norms of the propagation matrix and the node feature matrix before
and after sampling.

PROPAGATION MATRIX NODE FEATURE MATRIX

FULL GRAPH
∥∥∥P̃full − Pfull

∥∥∥
F
≤ Bf

∆P

∥∥∥X̃full −Xfull

∥∥∥
F
≤ Bf

∆X

LOCAL GRAPH
∥∥∥P̃local − Plocal

∥∥∥
F
≤ Bl

∆P

∥∥∥X̃local −Xlocal

∥∥∥
F
≤ Bl

∆X

CROSS-CLIENT NEIGHBORS
∥∥∥P̃remote − Premote

∥∥∥
F
≤ Br

∆P

∥∥∥X̃remote −Xremote

∥∥∥
F
≤ Br

∆X

Lemma D.2. [Lemma 1 in (Cong et al., 2021)] An L-later GCN is LF -Lipschitz smooth, i.e.,
∥∇L (θ1)−∇L (θ2)∥F ≤ LF ∥θ1 − θ2∥F .
Lemma D.3. Under Assumptions 5.1–5.3, and for any l ∈ [L], the Frobenius norm of node embedding
matrices, gradient passing from the l-th layer node embeddings to the (l − 1)-th are bounded, i.e.,∥∥∥H(l),m

local

∥∥∥
F
,
∥∥∥H̃(l),m

local

∥∥∥
F
≤ Bl

H ,
∥∥∥H(l),m

full

∥∥∥
F
,
∥∥∥H̃(l),m

full

∥∥∥
F
≤ Bf

H ,∥∥∥D(l),m
local

∥∥∥
F
,
∥∥∥D̃(l),m

local

∥∥∥
F
≤ Bl

D,
∥∥∥D(l),m

full

∥∥∥
F
,
∥∥∥D̃(l),m

full

∥∥∥
F
≤ Bf

D,

where
Bl

H , Bf
H = max

1≤l≤L
(CσBPBW)

l
BX , Bl

D, Bf
D = max

1≤l≤L
(BPBWCσ)

L−l
Cl.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. ∥∥∥H(l),m
local

∥∥∥
F
=

∥∥∥σ (
P

(l),m
local H

(l−1),m
local W (l),m

)∥∥∥
F

(a)

≤ CσBW

∥∥∥P (l),m
local H

(l−1),m
local

∥∥∥
F
≤ CσBW

∥∥∥P (l),m
local

∥∥∥∥∥∥H(l−1),m
local

∥∥∥
F

(b)

≤ CσBWBP

∥∥∥H(l−1),m
local

∥∥∥
F
≤ (CσBWBP)

l ∥Xm∥F
(c)

≤ (CσBWBP)
l
BX ≤ max

1≤l≤L
(CσBWBP)

l
BX ,

where (a)–(c) results from Assumptions 5.2 and 5.3.

∥∥∥H̃(l),m
local

∥∥∥
F
=

∥∥∥σ (
P̃

(l),m
local H̃

(l−1),m
local W (l),m

)∥∥∥
F

(a)

≤ CσBW

∥∥∥P̃ (l),m
local H̃

(l−1),m
local

∥∥∥
F
≤ CσBW

∥∥∥P̃ (l),m
local

∥∥∥∥∥∥H̃(l−1),m
local

∥∥∥
F

(b)

≤ CσBWBP

∥∥∥H̃(l−1),m
local

∥∥∥
F
≤ (CσBWBP)

l ∥Xm∥F
(c)

≤ (CσBWBP)
l
BX ≤ max

1≤l≤L
(CσBWBP)

l
BX ,

where (a)–(c) follow from Assumptions 5.2 and 5.3.

∥∥∥H(l),m
full

∥∥∥
F
=

∥∥∥σ (
P

(l),m
full H

(l−1),m
full W (l),m

)∥∥∥
F

(a)

≤ CσBPBW

∥∥∥H(l−1),m
full

∥∥∥
F
≤ (CσBPBW)

l ∥Xm∥F
(b)

≤ (CσBPBW)
l
BX ≤ max

1≤l≤L
(CσBPBW)

l
BX ,

where (a) and (b) are because of Assumptions 5.2 and 5.3.

∥∥∥H̃(l),m
full

∥∥∥
F
=

∥∥∥σ ((
P̃

(l),m
local H̃

(l−1),m
local + P̃

(l),m
remoteH̃

(l−1),m
remote

)
W (l),m

)∥∥∥
F

(a)

≤ CσBW

∥∥∥P̃ (l),m
local H̃

(l−1),m
local + P̃

(l),m
remoteH̃

(l−1),m
remote

∥∥∥
F
=CσBW

∥∥∥P̃ (l),m
full H̃

(l−1),m
full

∥∥∥
F

(b)

≤ CσBWBP

∥∥∥H̃(l−1),m
full

∥∥∥
F
≤ (CσBWBP)

l ∥Xm∥F
(c)

≤ (CσBWBP)
l
BX ≤ max

1≤l≤L
(CσBWBP)

l
BX ,

where (a)–(c) follow from Assumptions 5.2 and 5.3.

∥∥∥D(l),m
local

∥∥∥
F
=

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BWCσ

∥∥∥P (l+1),m
local

∥∥∥
F

∥∥∥D(l+1),m
local

∥∥∥
F

(b)

≤ BPBWCσ

∥∥∥D(l+1),m
local

∥∥∥
F
≤ (BPBWCσ)

L−l
∥∥∥D(L),m

local

∥∥∥
F

(c)

≤ (BPBWCσ)
L−l

Cl ≤ max
1≤l≤L

(BPBWCσ)
L−l

Cl,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where (a)–(c) are because of Assumptions 5.1–5.3.

∥∥∥D̃(l),m
local

∥∥∥
F
=

∥∥∥∥[P̃ (l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BWCσ

∥∥∥P̃ (l+1),m
local

∥∥∥
F

∥∥∥D̃(l+1),m
local

∥∥∥
F

(b)

≤ BPBWCσ

∥∥∥D̃(l+1),m
local

∥∥∥
F
≤ (BPBWCσ)

L−l
∥∥∥D̃(L),m

local

∥∥∥
F

(c)

≤ (BPBWCσ)
L−l

Cl ≤ max
1≤l≤L

(BPBWCσ)
L−l

Cl,

where (a)–(c) follow from Assumptions 5.1–5.3.

∥∥∥D(l),m
full

∥∥∥
F
=

∥∥∥∥[P (l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BPBWCσ

∥∥∥D(l+1),m
full

∥∥∥
F
≤ (BPBWCσ)

L−l
∥∥∥D(L),m

full

∥∥∥
F

(b)

≤ (BPBWCσ)
L−l

Cl ≤ max
1≤l≤L

(BPBWCσ)
L−l

Cl,

where (a) and (b) use Assumptions 5.1–5.3.

∥∥∥D̃(l),m
full

∥∥∥
F
=

∥∥∥∥[P̃ (l+1),m
local + P̃

(l+1),m
remote

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

=

∥∥∥∥[P̃ (l+1),m
full

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BPBWCσ

∥∥∥D̃(l+1),m
full

∥∥∥
F
≤ (BPBWCσ)

L−l
∥∥∥D̃(L),m

full

∥∥∥
F

(b)

≤ (BPBWCσ)
L−l

Cl ≤ max
1≤l≤L

(BPBWCσ)
L−l

Cl,

where (a) and (b) utilize Assumptions 5.1–5.3.

Lemma D.4. Under Assumptions 5.1–5.3, and for any l ∈ [L], the errors caused by sampling are
bounded, i.e.,∥∥∥H̃(l),m

local −H
(l),m
local

∥∥∥
F
≤ Bl

∆H ,
∥∥∥H̃(l),m

full −H
(l),m
full

∥∥∥
F
≤ Bf

∆H ,∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F
≤ Bl

∆D,
∥∥∥D̃(l),m

full −D
(l),m
full

∥∥∥
F
≤ Bf

∆D,

where

Bl
∆H = max

1≤l≤L

((
CσBWBl

HBl
∆P

)l
+ (CσBWBP)

l
Bl

∆X

)
,

Bf
∆H = max

1≤l≤L

((
CσBWBf

HBf
∆P

)l

+ (CσBWBP)
l
Bf

∆X

)
,

Bl
∆D = max

1≤l≤L

((
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+(BWBPCσ)
L−l

LlB
l
∆H

)
,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Bf
∆D = max

1≤l≤L

((
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+(BWBPCσ)
L−l

LlB
f
∆H

)
.

Proof.∥∥∥H̃(l),m
local −H

(l),m
local

∥∥∥
F

=
∥∥∥σ (

P̃
(l),m
local H̃

(l−1),m
local W (l),m

)
− σ

(
P

(l),m
local H

(l−1),m
local

)
W (l),m

∥∥∥
F

(a)

≤ CσBW

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

≤ CσBW

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H̃

(l−1),m
local

∥∥∥
F
+ CσBW

∥∥∥P (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

(b)

≤ CσBWBl
H

∥∥∥P̃ (l),m
local − P

(l),m
local

∥∥∥
F
+ CσBWBP

∥∥∥H̃(l−1),m
local −H

(l−1),m
local

∥∥∥
F

(c)

≤ CσBWBl
HBl

∆P + CσBWBP

∥∥∥H̃(l−1),m
local −H

(l−1),m
local

∥∥∥
F

≤
(
CσBWBl

HBl
∆P

)l
+ (CσBWBP)

l
∥∥∥X̃m

local −Xm
local

∥∥∥
F

(d)

≤
(
CσBWBl

HBl
∆P

)l
+ (CσBWBP)

l
Bl

∆X

≤ max
1≤l≤L

((
CσBWBl

HBl
∆P

)l
+ (CσBWBP)

l
Bl

∆X

)
, (9)

where (a) uses Assumptions 5.2 and 5.3, (b) is because of Assumption 5.3 and Lemma D.3, and (c)
and (d) follow from Proposition D.1.

∥∥∥H̃(l),m
full −H

(l),m
full

∥∥∥
F

=
∥∥∥σ ((

P̃
(l),m
local H̃

(l−1),m
local + P̃

(l),m
remoteH̃

(l−1),m
remote

)
W (l),m

)
− σ

(
P

(l),m
full H

(l−1),m
full

)
W (l),m

∥∥∥
F

(a)

≤ CσBW

∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

≤ CσBW

∥∥∥P̃ (l),m
full H̃

(l−1),m
full −P

(l),m
full H̃

(l−1),m
full

∥∥∥
F
+ CσBW

∥∥∥P (l),m
full H̃

(l−1),m
full −P

(l),m
full H

(l−1),m
full

∥∥∥
F

(b)

≤ CσBWBf
H

∥∥∥P̃ (l),m
full − P

(l),m
full

∥∥∥
F
+ CσBWBP

∥∥∥H̃(l−1),m
full −H

(l−1),m
full

∥∥∥
F

(c)

≤ CσBWBf
HBf

∆P + CσBWBP

∥∥∥H̃(l−1),m
full −H

(l−1),m
full

∥∥∥
F

≤
(
CσBWBf

HBf
∆P

)l

+ (CσBWBP)
l
∥∥∥X̃m

full −Xm
full

∥∥∥
F

(d)

≤
(
CσBWBf

HBf
∆P

)l

+ (CσBWBP)
l
Bf

∆X

≤ max
1≤l≤L

((
CσBWBf

HBf
∆P

)l

+ (CσBWBP)
l
Bf

∆X

)
, (10)

where (a) follows from Assumptions 5.2 and 5.3, (b) is due to Assumption 5.3 and Lemma D.3, and
(c) and (d) are because of Proposition D.1.

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

=

∥∥∥∥[P̃ (l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

) [
W (l+1),m

]⊤
21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

−
[
P

(l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BW

∥∥∥∥[P̃ (l+1),m
local

]⊤
D̃

(l+1),m
local ◦∇σ

(
Z̃

(l+1),m
local

)
−
[
P

(l+1),m
local

]⊤
D

(l+1),m
local ◦∇σ

(
Z

(l+1),m
local

)∥∥∥∥
F

≤ BW

∥∥∥∥[P̃ (l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)
−

[
P

(l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
local

]⊤
D̃

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)
−

[
P

(l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z̃

(l+1),m
local

)
−

[
P

(l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)∥∥∥∥
F

(b)

≤ BWBl
DCσ

∥∥∥P̃ (l+1),m
local − P

(l+1),m
local

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

+BWBPB
l
D

∥∥∥∇σ
(
Z̃

(l+1),m
local

)
−∇σ

(
Z

(l+1),m
local

)∥∥∥
F

(c)

≤ BWBl
DCσ

∥∥∥P̃ (l+1),m
local − P

(l+1),m
local

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

+B2
WBPB

l
DLσ

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

≤ BWBl
DCσ

∥∥∥P̃ (l+1),m
local − P

(l+1),m
local

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

+B2
WBPB

l
DLσ

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H̃

(l−1),m
local

∥∥∥
F

+B2
WBPB

l
DLσ

∥∥∥P (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

(d)

≤ BWBl
DCσ

∥∥∥P̃ (l+1),m
local − P

(l+1),m
local

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

+B2
WBPB

l
DLσB

l
H

∥∥∥P̃ (l),m
local − P

(l),m
local

∥∥∥
F
+B2

WB2
PB

l
DLσ

∥∥∥H̃(l−1),m
local −H

(l−1),m
local

∥∥∥
F

(e)

≤ BWBl
DCσB

l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

+BWBPCσ

∥∥∥D̃(l+1),m
local −D

(l+1),m
local

∥∥∥
F

≤
(
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+ (BWBPCσ)
L−l

∥∥∥D̃(L),m
local −D

(L),m
local

∥∥∥
F

(f)

≤
(
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+ (BWBPCσ)
L−l

Ll

∥∥∥H̃(L),m
local −H

(L),m
local

∥∥∥
F

(g)

≤
(
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
l
∆H

≤ max
1≤l≤L

((
BWBl

DCσB
l
∆P +B2

WBPB
l
DLσB

l
HBl

∆P +B2
WB2

PB
l
DLσB

l
∆H

)L−l

+(BWBPCσ)
L−l

LlB
l
∆H

)
,

where (a) uses Assumption 5.3, (b) is because of Assumptions 5.2 and 5.3 and Lemma D.3, (c)
follows from Assumptions 5.2 and 5.3, (d) utilizes Assumption 5.3 and Lemma D.3, (e) results from
Eq. (9) and Proposition D.1, (f) is because of Assumption 5.1, and (g) is due to Eq. (9).

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

=

∥∥∥∥[P̃ (l+1),m
local + P̃

(l+1),m
remote

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

) [
W (l+1),m

]⊤
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BW

∥∥∥∥[P̃ (l+1),m
full

]⊤
D̃

(l+1),m
full ◦∇σ

(
Z̃

(l+1),m
full

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦∇σ

(
Z

(l+1),m
full

)∥∥∥∥
F

≤ BW

∥∥∥∥[P̃ (l+1),m
full

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)
−
[
P

(l+1),m
full

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
full

]⊤
D̃

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z̃

(l+1),m
full

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

)∥∥∥∥
F

(b)

≤ BWBf
DCσ

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

+BWBPB
f
D

∥∥∥∇σ
(
Z̃

(l+1),m
full

)
−∇σ

(
Z

(l+1),m
full

)∥∥∥
F

(c)

≤ BWBf
DCσ

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P̃ (l+1),m
full H̃

(l),m
full − P

(l+1),m
full H

(l),m
full

∥∥∥
F

≤ BWBf
DCσ

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P̃ (l+1),m
full H̃

(l),m
full − P

(l+1),m
full H̃

(l),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P (l+1),m
full H̃

(l),m
full − P

(l+1),m
full H

(l),m
full

∥∥∥
F

(d)

≤ BWBf
DCσ

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσB

f
H

∥∥∥P̃ (l+1),m
full − P

(l+1),m
full

∥∥∥
F
+B2

WB2
PB

f
DLσ

∥∥∥H̃(l),m
full −H

(l),m
full

∥∥∥
F

(e)

≤ BWBf
DCσB

f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

+BWBPCσ

∥∥∥D̃(l+1),m
full −D

(l+1),m
full

∥∥∥
F

≤
(
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+ (BWBPCσ)
L−l

∥∥∥D̃(L),m
full −D

(L),m
full

∥∥∥
F

(f)

≤
(
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+ (BWBPCσ)
L−l

Ll

∥∥∥H̃(L),m
full −H

(L),m
full

∥∥∥
F

(g)

≤
(
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
f
∆H

≤ max
1≤l≤L

((
BWBf

DCσB
f
∆P +B2

WBPB
f
DLσB

f
HBf

∆P +B2
WB2

PB
f
DLσB

f
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
f
∆H

)
,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where (a) is because of Assumption 5.3, (b) results from Assumptions 5.2 and 5.3 and Lemma D.3,
(c) uses Assumptions 5.2 and 5.3, (d) is due to Assumption 5.3 and Lemma D.3, (e) follows from Eq.
(10) and Proposition D.1, (f) utilizes Assumption 5.1, and (g) is because of Eq. (10).

Lemma D.5. Under Assumptions 5.1–5.3, and for any l ∈ [L], the errors caused by the information
loss of the cross-client neighbors are bounded, i.e.,∥∥∥H(l),m

local −H
(l),m
full

∥∥∥
F
≤ Br

∆H ,
∥∥∥D(l),m

local −D
(l),m
full

∥∥∥
F
≤ Br

∆D,

where

Br
∆H = max

1≤l≤L

(
(CσBWBP)

l
Br

X +
(
CσBWBf

HBP

)l
)
,

Br
∆D = max

1≤l≤L

((
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+(BWBPCσ)
L−l

LlB
r
∆H

)
.

Proof.∥∥∥H(l),m
local −H

(l),m
full

∥∥∥
F
=

∥∥∥σ (
P

(l),m
local H

(l−1),m
local

)
W (l),m − σ

(
P

(l),m
full H

(l−1),m
full

)
W (l),m

∥∥∥
F

(a)

≤ CσBW

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
full H

(l−1),m
full

∥∥∥
F

≤ CσBW

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
local H

(l−1),m
full

∥∥∥
F

+ CσBW

∥∥∥P (l),m
local H

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

(b)

≤ CσBWBP

∥∥∥H(l−1),m
local −H

(l−1),m
full

∥∥∥
F
+ CσBWBf

H

∥∥∥P (l),m
local − P

(l),m
full

∥∥∥
F

≤ CσBWBP

∥∥∥H(l−1),m
local −H

(l−1),m
full

∥∥∥
F
+ CσBWBf

H

∥∥∥P (l),m
remote

∥∥∥
F

(c)

≤ CσBWBP

∥∥∥H(l−1),m
local −H

(l−1),m
full

∥∥∥
F
+ CσBWBf

HBP

≤ (CσBWBP)
l ∥∥Xm

local −Xm
full

∥∥
F
+

(
CσBWBf

HBP

)l

(d)

≤ (CσBWBP)
l
Br

X +
(
CσBWBf

HBP

)l

≤ max
1≤l≤L

(
(CσBWBP)

l
Br

X +
(
CσBWBf

HBP

)l
)
, (11)

where (a) uses Assumptions 5.2 and 5.3, (b) is because of Assumption 5.3 and Lemma D.3, (c)
follows from Assumption 5.3, and (d) is due to Proposition D.1.

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

=

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

) [
W (l+1),m

]⊤
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

) [
W (l+1),m

]⊤∥∥∥∥
F

(a)

≤ BW

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)
−

[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

)∥∥∥∥
F

≤ BW

∥∥∥∥[P (l+1),m
local

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)
−
[
P

(l+1),m
full

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)∥∥∥∥
F

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

+BW

∥∥∥∥[P (l+1),m
full

]⊤
D

(l+1),m
local ◦ ∇σ

(
Z

(l+1),m
local

)
−

[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
local

)∥∥∥∥
F

+BW

∥∥∥∥[P (l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
local

)
−

[
P

(l+1),m
full

]⊤
D

(l+1),m
full ◦ ∇σ

(
Z

(l+1),m
full

)∥∥∥∥
F

(b)

≤BWBl
DCσ

∥∥∥P (l+1),m
local −P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D(l+1),m
local −D

(l+1),m
full

∥∥∥
F

+BWBPB
f
D

∥∥∥∇σ
(
Z

(l+1),m
local

)
−∇σ

(
Z

(l+1),m
full

)∥∥∥
F

(c)

≤ BWBl
DCσ

∥∥∥P (l+1),m
local −P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D(l+1),m
local −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P (l+1),m
local H

(l),m
local − P

(l+1),m
full H

(l),m
full

∥∥∥
F

≤ BWBl
DCσ

∥∥∥P (l+1),m
local −P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D(l+1),m
local −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P (l+1),m
local H

(l),m
local − P

(l+1),m
full H

(l),m
local

∥∥∥
F

+B2
WBPB

f
DLσ

∥∥∥P (l+1),m
full H

(l),m
local − P

(l+1),m
full H

(l),m
full

∥∥∥
F

(d)

≤ BWBl
DCσ

∥∥∥P (l+1),m
local −P

(l+1),m
full

∥∥∥
F
+BWBPCσ

∥∥∥D(l+1),m
local −D

(l+1),m
full

∥∥∥
F

+B2
WBPB

f
DLσB

l
H

∥∥∥P (l+1),m
local − P

(l+1),m
full

∥∥∥
F
+B2

WB2
PB

f
DLσ

∥∥∥H(l),m
local −H

(l),m
full

∥∥∥
F

(e)

≤ BWBl
DCσBP +B2

WB2
PB

f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

+BWBPCσ
∥∥∥D(l+1),m

local −D
(l+1),m
full

∥∥∥
F

≤
(
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+ (BWBPCσ)
L−l

∥∥∥D(L),m
local −D

(L),m
full

∥∥∥
F

(f)

≤
(
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+ (BWBPCσ)
L−l

Ll

∥∥∥H(L),m
local −H

(L),m
full

∥∥∥
F

(g)

≤
(
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
r
∆H

≤ max
1≤l≤L

((
BWBl

DCσBP +B2
WB2

PB
f
DLσB

l
H +B2

WB2
PB

f
DLσB

r
∆H

)L−l

+ (BWBPCσ)
L−l

LlB
r
∆H

)
,

where (a) follows from Assumption 5.3, (b) uses Assumptions 5.2 and 5.3 and Lemma D.3, (c) is
because of Assumptions 5.2 and 5.3, (d) results from Assumption 5.3 and Lemma D.3, (e) is due to
Assumption 5.3 and Eq. (11), (f) utilizes Assumption 5.1, and (g) uses Eq. (11).

D.3 ERRORS OF STOCHASTIC GRADIENTS

Lemma D.6. Under Assumptions 5.1–5.3, the errors between the stochastic gradients and the full
gradients are bounded as follows:∥∥∥∇Fm

local (θ
m)−∇F̃m

local (θ
m)

∥∥∥
F
≤ LBl

∆G,
∥∥∥∇Fm

full (θ
m)−∇F̃m

full (θ
m)

∥∥∥
F
≤ LBf

∆G,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

where

Bl
∆G = max

1≤l≤L

((
Bl

DCσ +BPB
l
HBl

DLσBW

)
Bl

HBl
∆P +BPB

l
HCσB

l
∆D

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
BPB

l
∆H

)
, (12)

Bf
∆G = max

1≤l≤L

((
Bf

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBf
∆P +BPB

f
HCσB

f
∆D

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
BPB

f
∆H

)
(13)

Proof.∥∥∥G̃(l),m
local −G

(l),m
local

∥∥∥
F

=

∥∥∥∥[P̃ (l),m
local H̃

(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)
−

[
P

(l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)∥∥∥∥
F

≤
∥∥∥∥[P̃ (l),m

local H̃
(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)
−

[
P

(l),m
local H

(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
local H

(l−1),m
local

]⊤
D̃

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)
−

[
P

(l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z̃

(l),m
local

)
−

[
P

(l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)∥∥∥∥
F

(a)

≤ Bl
DCσ

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F
+BPB

l
HCσ

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

+BPB
l
HBl

D

∥∥∥∇σ
(
Z̃

(l),m
local

)
−∇σ

(
Z

(l),m
local

)∥∥∥
F

(b)

≤ Bl
DCσ

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F
+BPB

l
HCσ

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

+BPB
l
HBl

DLσBW

∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

≤
(
Bl

DCσ +BPB
l
HBl

DLσBW

) ∥∥∥P̃ (l),m
local H̃

(l−1),m
local − P

(l),m
local H̃

(l−1),m
local

∥∥∥
F

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

) ∥∥∥P (l),m
local H̃

(l−1),m
local − P

(l),m
local H

(l−1),m
local

∥∥∥
F

+BPB
l
HCσ

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

(c)

≤
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
Bl

H

∥∥∥P̃ (l),m
local − P

(l),m
local

∥∥∥
F
+BPB

l
HCσ

∥∥∥D̃(l),m
local −D

(l),m
local

∥∥∥
F

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
BP

∥∥∥H̃(l−1),m
local −H

(l−1),m
local

∥∥∥
F

(d)

≤
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
Bl

HBl
∆P +BPB

l
HCσB

l
∆D

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
BPB

l
∆H

≤ max
1≤l≤L

((
Bl

DCσ +BPB
l
HBl

DLσBW

)
Bl

HBl
∆P +BPB

l
HCσB

l
∆D

+
(
Bl

DCσ +BPB
l
HBl

DLσBW

)
BPB

l
∆H

)
:= Bl

∆G,

where (a) follows from Assumptions 5.2 and 5.3 and Lemma D.3, (b) is because of Assumptions 5.2
and 5.3, (c) uses Assumption 5.3 and Lemma D.3, and (d) results from Lemma D.4 and Proposi-
tion D.1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

When client m performs local training with only its local data, the error between the stochastic
gradient and the full-gradient can be bounded as:∥∥∥∇Fm

local (θ
m)−∇F̃m

local (θ
m)

∥∥∥
F
=

L∑
l=1

∥∥∥G(l),m
local − G̃

(l),m
local

∥∥∥
F
≤ LBl

∆G.

∥∥∥G̃(l),m
full −G

(l),m
full

∥∥∥
F

=

∥∥∥∥[P̃ (l),m
local H̃

(l−1),m
local + P̃

(l),m
remoteH̃

(l−1),m
remote

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
full

)∥∥∥∥
F

≤
∥∥∥∥[P̃ (l),m

full H̃
(l−1),m
full

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)
−

[
P

(l),m
full H

(l−1),m
full

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
full H

(l−1),m
full

]⊤
D̃

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)
−

[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z̃

(l),m
full

)
−

[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
full

)∥∥∥∥
F

(a)

≤ Bf
DCσ

∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

+BPB
f
HBf

D

∥∥∥∇σ
(
Z̃

(l),m
full

)
−∇σ

(
Z

(l),m
full

)∥∥∥
F

(b)

≤ Bf
DCσ

∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

+BPB
f
HBf

DLσBW

∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

≤
(
Bf

DCσ +BPB
f
HBf

DLσBW

)∥∥∥P̃ (l),m
full H̃

(l−1),m
full − P

(l),m
full H̃

(l−1),m
full

∥∥∥
F

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)∥∥∥P (l),m
full H̃

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

+BPB
f
HCσ

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

(c)

≤
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
Bf

H

∥∥∥P̃ (l),m
full − P

(l),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D̃(l),m
full −D

(l),m
full

∥∥∥
F

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
BP

∥∥∥H̃(l−1),m
full −H

(l−1),m
full

∥∥∥
F

(d)

≤
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBf
∆P +BPB

f
HCσB

f
∆D

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
BPB

f
∆H

≤ max
1≤l≤L

((
Bf

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBf
∆P +BPB

f
HCσB

f
∆D

+
(
Bf

DCσ +BPB
f
HBf

DLσBW

)
BPB

f
∆H

)
:= Bf

∆G,

where (a) results from Assumptions 5.2 and 5.3 and Lemma D.3, (b) uses Assumptions 5.2 and 5.3,
(c) is due to Assumption 5.3 and Lemma D.3, and (d) is because of Lemma D.4 and Proposition D.1.

When client m conducts cross-client training using its local data and the cross-client neighbors, the
error between the stochastic gradient and the full-gradient can be bounded as:∥∥∥∇Fm

full (θ
m)−∇F̃m

full (θ
m)

∥∥∥
F
=

L∑
l=1

∥∥∥G(l),m
full − G̃

(l),m
full

∥∥∥
F
≤ LBf

∆G.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Lemma D.7. Under Assumptions 5.1–5.3, the error between the full gradient computed with both the
local graph data and the cross-client neighbors and the full gradient computed with only the local
graph data is upper-bounded as follows:∥∥∇Fm

full (θ
m)−∇Fm

local (θ
m)

∥∥
F
≤ LBr

∆G,

where

Br
∆G = max

1≤l≤L

((
Bl

DCσ +BPB
f
HBf

DLσBW

)
BPB

r
∆H +BPB

f
HCσB

r
∆D

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBP

)
(14)

Proof.∥∥∥G(l),m
local −G

(l),m
full

∥∥∥
F

=

∥∥∥∥[P (l),m
local H

(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)
−
[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
full

)∥∥∥∥
F

≤
∥∥∥∥[P (l),m

local H
(l−1),m
local

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)
−

[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
full H

(l−1),m
full

]⊤
D

(l),m
local ◦ ∇σ

(
Z

(l),m
local

)
−

[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
local

)∥∥∥∥
F

+

∥∥∥∥[P (l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
local

)
−

[
P

(l),m
full H

(l−1),m
full

]⊤
D

(l),m
full ◦ ∇σ

(
Z

(l),m
full

)∥∥∥∥
F

(a)

≤ Bl
DCσ

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
full H

(l−1),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

+BPB
f
HBf

D

∥∥∥∇σ
(
Z

(l),m
local

)
−∇σ

(
Z

(l),m
full

)∥∥∥
F

(b)

≤ Bl
DCσ

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
full H

(l−1),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

+BPB
f
HBf

DLσBW

∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
full H

(l−1),m
full

∥∥∥
F

≤
(
Bl

DCσ +BPB
f
HBf

DLσBW

)∥∥∥P (l),m
local H

(l−1),m
local − P

(l),m
local H

(l−1),m
full

∥∥∥
F

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)∥∥∥P (l),m
local H

(l−1),m
full − P

(l),m
full H

(l−1),m
full

∥∥∥
F

+BPB
f
HCσ

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

(c)

≤
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
BP

∥∥∥H(l−1),m
local −H

(l−1),m
full

∥∥∥
F

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
Bf

H

∥∥∥P (l),m
local − P

(l),m
full

∥∥∥
F
+BPB

f
HCσ

∥∥∥D(l),m
local −D

(l),m
full

∥∥∥
F

(d)

≤
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
BPB

r
∆H +BPB

f
HCσB

r
∆D

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBP

≤ max
1≤l≤L

((
Bl

DCσ +BPB
f
HBf

DLσBW

)
BPB

r
∆H +BPB

f
HCσB

r
∆D

+
(
Bl

DCσ +BPB
f
HBf

DLσBW

)
Bf

HBP

)
= Br

∆G,

where (a) is because of Assumptions 5.2 and 5.3 and Lemma D.3, (b) uses Assumptions 5.2 and 5.3, (c)
follow from Assumption 5.3 and Lemma D.3, and (d) results from Assumption 5.3 and Lemma D.5.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

The error between the full gradient computed with both the local graph data and the cross-client
neighbors and the full gradient computed with only the local graph data is bounded as follows:∥∥∇Fm

full (θ
m)−∇Fm

local (θ
m)

∥∥
F
=

L∑
l=1

∥∥∥G(l),m
local −G

(l),m
full

∥∥∥
F
≤ LBr

∆G.

D.4 MAIN PROOF OF THEOREM 5.6

Theorem D.8. Under Assumptions 5.1–5.3, choose step-size α = min
{√

M/
√
T , 1/LF

}
, where

LF is the smoothness constant given in Lemma D.2. The output of Swift-FedGNN with a L-layer
GNN satisfies:

1

T

T−1∑
t=0

∥∇L (θt)∥2 ≤ 2√
MT

(L (θ0)−L (θ∗))+

(
1− K

IM

)
L2

(
Bl

∆G+Br
∆G

)2
+

K

IM
L2(Bf

∆G)
2.

Proof.

L (θt+1)− L (θt)

(a)

≤ ⟨∇L (θt) ,θt+1 − θt⟩+
LF

2
∥θt+1 − θt∥2

(b)
= −α

〈
∇L (θt) ,

1

M

∑
m∈M

∇F̃m (θm
t)

〉
+

LF

2
α2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t)

∥∥∥∥2
(c)
= −α

2

∥∥∥∥∇L (θt)

∥∥∥∥2 − α

2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t)

∥∥∥∥2 + α

2

∥∥∥∥∇L (θt)−
1

M

∑
m∈M

∇F̃m (θm
t)

∥∥∥∥2
+

LF

2
α2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t)

∥∥∥∥2
= −α

2

∥∥∥∥∇L (θt)

∥∥∥∥2 − α

2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t)

∥∥∥∥2 + α

2

∥∥∥∥ 1

M

∑
m∈M

(
∇Fm (θm

t)−∇F̃m (θm
t)

)∥∥∥∥2
+

LF

2
α2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t)

∥∥∥∥2
(d)

≤ −α

2

∥∥∥∥∇L (θt)

∥∥∥∥2 − α

2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t)

∥∥∥∥2 + α

2

1

M

∑
m∈M

∥∥∥∥∇Fm (θm
t)−∇F̃m (θm

t)

∥∥∥∥2
+

LF

2
α2

∥∥∥∥ 1

M

∑
m∈M

∇F̃m (θm
t)

∥∥∥∥2
(e)

≤ −α

2

∥∥∥∥∇L (θt)

∥∥∥∥2 + α

2

1

M

∑
m∈M

∥∥∥∥∇Fm (θm
t)−∇F̃m (θm

t)

∥∥∥∥2, (15)

where (a) follows from Lemma D.2, (b) is because of the update rule in Swift-FedGNN, (c) uses
⟨x,y⟩ = 1

2 ∥x∥
2
+ 1

2 ∥y∥
2 − 1

2 ∥x− y∥2, (d) utilizes ∥
∑n

i=1 xi∥
2 ≤ n

∑n
i=1 ∥xi∥2, and (e) is due

to the choice of α ≤ 1/LF .

When t ∈ [(nt − 1) I + 1, ntI − 1] ∩ Z, where nt = {1, 2, · · · }, Swift-FedGNN conducts local
training for all clients m ∈ M. Thus,∥∥∥∥∇Fm (θm

t)−∇F̃m (θm
t)

∥∥∥∥ =

∥∥∥∥∇Fm
full (θ

m
t)−∇F̃m

local (θ
m
t)

∥∥∥∥
≤

∥∥∥∥∇Fm
full (θ

m
t)−∇Fm

local (θ
m
t)

∥∥∥∥+∥∥∥∥∇Fm
local (θ

m
t)−∇F̃m

local (θ
m
t)

∥∥∥∥
29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a)

≤ LBr
∆G + LBl

∆G, (16)

where (a) follows from Lemmas D.6 and D.7.

When t = ntI , where nt = {1, 2, · · · }, Swift-FedGNN performs local training for clients m ∈ M\K,
and thus the inequality (16) holds for these clients. The randomly sampled clients m ∈ K conduct
cross-client training, and thus∥∥∥∥∇Fm (θm

t)−∇F̃m (θm
t)

∥∥∥∥ =

∥∥∥∥∇Fm
full (θ

m
t)−∇F̃m

full (θ
m
t)

∥∥∥∥ (a)

≤ LBf
∆G,

where (a) uses Lemma D.6.

Telescoping (15) from i = (nt − 1) I + 1 to ntI , we have

ntI∑
i=(nt−1)I+1

(L (θi+1)− L (θi))

≤ −α

2

ntI∑
i=(nt−1)I+1

∥∥∥∥∇L (θi)

∥∥∥∥2 + α

2
(I − 1)L2

(
Bl

∆G +Br
∆G

)2
+

α

2M
KL2

(
Bf

∆G

)2

+
α

2M
(M −K)L2

(
Bl

∆G +Br
∆G

)2
.

Choosing T = ntI yields

T−1∑
t=0

(L (θt+1)− L (θt))

≤ −α

2

T−1∑
t=0

∥∥∥∥∇L (θt)

∥∥∥∥2 + α

2
(T − nt)L

2
(
Bl

∆G +Br
∆G

)2
+ nt

α

2M
KL2

(
Bf

∆G

)2

+ nt
α

2M
(M −K)L2

(
Bl

∆G +Br
∆G

)2
.

Rearranging the terms and multiplying both sides by 2/α, we get

T−1∑
t=0

∥∥∥∥∇L (θt)

∥∥∥∥2

≤ 2

α

T−1∑
t=0

(L (θt)− L (θt+1)) + (T − nt)L
2
(
Bl

∆G +Br
∆G

)2
+

nt

M
KL2

(
Bf

∆G

)2

+
nt

M
(M −K)L2

(
Bl

∆G +Br
∆G

)2
.

Dividing both sides by T and choosing α =
√
M/

√
T completes the proof of Theorem 5.6.

30

	Introduction
	Related work
	Federated Graph Learning: Preliminaries
	The Swift-FedGNN algorithm
	Theoretical performance analysis
	Numerical results
	Conclusion
	List of Notations
	Single-Machine Graph Neural Networks Training
	Additional experimental details and results
	Additional experimental results
	Additional experimental details

	Proof of Theorem 5.6
	Gradient Computations in Swift-FedGNN
	Useful Propositions and Lemmas
	Errors of Stochastic Gradients
	Main Proof of Theorem 5.6

