Under review as a conference paper at ICLR 2025

SWIFT-FEDGNN: FEDERATED GRAPH LEARNING WITH
Low COMMUNICATION AND SAMPLE COMPLEXITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have achieved great success in a wide variety of
graph-based learning applications. To expedite training for large-scale graphs, dis-
tributed GNN training has been proposed using sampling-based mini-batch training.
However, such a traditional distributed GNN training approach is not applicable
to emerging GNN learning applications with geo-distributed input graphs, which
require the data to be kept within the site where it is generated to protect privacy.
On the other hand, federated learning (FL) has been widely used to enable privacy-
preserving training under data parallelism. However, because of cross-client links in
the aforementioned geo-distributed graph data, applying federated learning directly
to GNNs incurs expensive cross-client neighbor sampling and communication costs
due to the large graph size and the dependencies between nodes among different
clients. To overcome these challenges, we propose a new mini-batch and sampling-
based federated GNN algorithmic framework called Swift-FedGNN that primarily
performs efficient parallel local training and periodically conducts time-consuming
cross-client training. Specifically, in Swift-FedGNN, each client primarily trains
a local GNN model using only its local graph data, and some randomly sampled
clients periodically learn the local GNN models based on their local graph data
and the dependent nodes across clients. We theoretically establish the conver-
gence performance of Swift-FedGNN and show that it enjoys a convergence rate
of O (T -1/ 2) , matching the state-of-the-art (SOTA) rate of sampling-based GNN
methods, despite operating in the challenging FL setting. Extensive experiments on
real-world datasets show that Swift-FedGNN significantly outperforms the SOTA
federated GNN approaches with comparable accuracy in terms of efficiency.

1 INTRODUCTION

1) Background and Motivation: Graph neural networks (GNN5s) have received increasing attention
in recent years and have been widely used across various applications, such as social networks (Deng
et al.l 2019; |Qiu et al., 2018; [Wang et al., 2019a), recommendation systems (Ying et al., 2018
Wang et al.,[2019byd)), traffic prediction (Cui et al.,[2019} [Kumar et al.|[2019; [Li et al.,[2019), drug
discovery (Wang et al., [2022b; Do et al., 2019; [Fout et al., 2017)), and disease prediction (Ghorbani
et al.l 2022} [Kazi et al., 2023} |L1 & Zhang, [2024). GNN learns the high-level graph representations
by iteratively aggregating the neighboring features of each node, which is then used for downstream
tasks, such as node classification (Kipf & Welling, [2017; Hamilton et al., 2017}, link prediction (Yao
et al.} 2023b; Zhang & Chenl 2018]), and graph classification (Zhang et al., 2018}; |Bacciu et al., 2018)).

However, real-world graph datasets can be extensive in scale (e.g., Microsoft Academic Graph (Wang
et al.,[2020) with over 100 million nodes) and generated in a geo-distributed fashion (Yao et al.,[2023a).
Similar to traditional datasets (e.g., images), graph datasets may be collected across multiple geo-
distributed sites/devices and stored locally. Collecting the entire dataset onto a single site/device not
only incurs prohibitively high communication costs, but may also violate data protection regulations.
Unlike the traditional datasets where data is mutually independent, the nodes in graph data are usually
dependent (shown as the links between nodes in Figure[T). Such large-scale real-world graph datasets
often exceed the memory and computational capabilities of a single device (e.g., GPU), which leads
to a compelling need for developing distributed GNN training with multiple devices or machines (Fey
& Lenssen, [2019; [Zheng et al.,[2020). A common paradigm in distributed GNN training involves
subgraph sampling (Zeng et al.,|2020) and mini-batch training on each device (Luo et al.,|[2022). In

Under review as a conference paper at ICLR 2025

GNN Layer

R
~ Neighbor
1 [| [Pt
|;|;|;| Node 1000 Local Sampling Training

ol Features = Local Training node v L-th layer
ol < Cross-Client Sampling

++ Activations mmm Cross-Client Data Transferring
mmm Cross-Client Training

1-hop
neighbor

(L=1)th
layer

Time (ms)

2-hop
neighbor

1000

500
Batch Size

Figure 1: Federated GNN set- Figure 2: Per-iteration time Figure 3: Federated GNN
ting. Dashed lines show graph breakdown: local vs. cross- model. Dashed lines show com-
dependency cross-clients. client training. munication between clients.

this approach, workers on each device select training nodes, perform cross-device sampling to gather
multi-hop neighbor features as subgraphs, construct subgraphs as mini-batches, and then train on
these mini-batches in parallel. However, due to the aforementioned data privacy constraints, this
distributed GNN training paradigm is not directly applicable to geo-distributed graphs, as features
cannot be directly shared among clients.

Meanwhile, federated learning (FL) (McMahan et al.,[2017; | Yang et al., 2021} |Karimireddy et al.,
2020), which has emerged as a promising learning paradigm, enables collaborative training of a
model using geo-distributed traditional datasets under the coordination of a central server. However,
applying FL to geo-distributed graph data is highly non-trivial due to the dependencies between
the nodes in a graph and the fact that the neighbors of the node may be located on different clients,
which we refer to as “cross-client neighbors” (shown as the dashed links between nodes in Figure |T)).
Ignoring the cross-client neighbors as in (Wang et al.,|2022a; |He et al.,|2021b)) would degrade the
performance of the models and prevent them from reaching the same accuracy as the models trained
on a single device/machine, which is due to the information loss of the cross-client neighbors.

2) Technical Challenges: A naive solution to federated GNN is to leverage the server as an interme-
diary to perform subgraph sampling and part of the training operation (i.e., neighbor aggregation) to
protect data privacy. For example, consider a country that has many hospitals and one medical admin-
istrative center and needs to investigate a healthcare problem in the whole country (e.g., infection
prediction) (Zhang et al.,2021)). The residents may go to different hospitals for healthcare because of
various reasons, e.g., the locations of the hospitals. Their healthcare data (e.g., personal information,
and patient interactions) would be stored locally only at the hospitals they visit, and such data cannot
be directly shared among different hospitals due to privacy concerns and conflicts of interest. Note
that in a graph, the patients here are the nodes and the patient interactions are the edges, and the
graphs located at different hospitals may have cross-hospital edges and thus have cross-hospital
neighbors. In this situation, the medical administrative center can serve as the server in federated
GNN because it is trusted and thus has access to the graph data located at different hospitals.

However, this method introduces significant sampling and communication overhead (as shown in
Figure [I), as the server needs to communicate with all clients to perform subgraph sampling and
neighbor aggregation for each client sequentially. Figure[2)illustrates the per-iteration time breakdown
of local training (i.e., training only on the local graph of the client) versus cross-client training (i.e.,
training using both the client’s local graph and the cross-client neighbors) on the Amazon product co-
purchasing dataset (Leskovec et al., 2007) [H As observed from the figure, cross-client sampling and
data communication time dominate the total time for cross-client training, making it five times slower
than local training. Therefore, it is critical to mitigate the communication overhead in cross-client
training to enable efficient federated learning on GNNs.

While some prior works ignore the information of the cross-client neighbors (He et al.| [2021al)
or assume overlapping nodes between different clients (Wu et al., 2021) (may not hold for geo-
distributed graphs), other prior works (Zhang et al.l 2021} |Du & Wu, 2022} |Yao et al., 2023a)) address
the information loss of the cross-client neighbors by facilitating the exchange of such information
between clients. However, these approaches may lead to significant sampling and communication

1Figureuses a two-layer GNN, with sampling fanout values being 15 and 10 for the two layers, and the
network bandwidth being 1 Gbps. We ignore model synchronization time, as the model (of size 0.3 MB) takes
less than 10 ms to synchronize.

Under review as a conference paper at ICLR 2025

overhead, which is due to cross-client sampling and cross-client neighbor information transferring.
In addition, they may impose heavy memory burdens, which is attributed to the information (graph
structure and node features) storage of the cross-client neighbors on the clients. (see detailed
discussions in Section 2)).

3) Our Contributions: The key contribution of this paper is that, by addressing the above challenges,
we develop a mini-batch-based and sampling-based federated GNN framework called Swift-FedGNN.
The main results and technical contributions of this paper are as follows:

* We develop a new communication- and sample-efficient mini-batch sampling-based federated GNN
algorithm called Swift-FedGNN to train GNNs on geo-distributed graphs in a federated fashion.
To reduce the sampling and communication overhead, the clients in Swift-FedGNN primarily
conduct the efficient local training in parallel and some sampled clients only occasionally and
periodically perform the time-consuming cross-client training. The information loss of the cross-
client neighbors in the federated setting is alleviated via cross-client training. Thanks to our use of
different mini-batch training nodes at each iteration, the clients do not need to store the cross-client
neighbor information, which significantly reduces the memory overhead. To further reduce the
communication cost, the cross-client neighbor information is aggregated at remote clients before
communicating to the server and accumulated one more time before transferring to the training
client. This special design further offers the benefit of helping preserve data privacy since the
information of each node is not leaked.

* We conduct rigorous theoretical convergence performance analysis for Swift-FedGNN. It is worth
noting that the convergence analysis of our Swift-FedGNN is highly non-trivial. Unlike deep
neural networks (DNNG5s), the stochastic gradients in GNNs are biased, which poses significant
challenges on the theoretical analysis of Swift-FedGNN’s convergence guarantees. Moreover, the
structural entanglement in GNNSs (i.e., the interleaving of neighbor aggregations and non-linear
transformations across multiple layers) further complicates the performance analysis. In stark
contrast to existing works in the literature that made strong assumptions on the biases of stochastic
gradients (e.g., the unbiased stochastic gradient assumption in (Chen et al.,[2018)) and the consistent
stochastic gradient assumption in (Chen & Luss, |[2018)), etc.), for the first time in the literature,
we are able to bound the stochastic gradient approximation errors rather than resorting to these
unrealistic assumptions in practice. Such results could also be of independent theoretical interests.

Given the biased stochastic gradients in GNNs that arise from the missing cross-client neighbors
and the neighbor sampling process, we reveal an interesting theoretical insight that the stochastic
gradient approximation errors are correlated with the structure of GNNs. More specifically, our
theoretical analysis quantifies and characterizes a positive correlation with the number of layers in
the networks. We note that this is a new finding that is unique to federated GNN training. Lastly,
by putting the above insights together, we show that Swift-FedGNN achieves a convergence rate of
@) (T’l/ 2), which matches the state-of-the-art (SOTA) convergence rate of sampling-based GNN
methods (hence low communication and sample complexities), despite operating in the far more
challenging FL setting with much less frequent information exchanges among the clients.

2 RELATED WORK

In this section, we provide an overview on distributed GNNs and offer a comprehensive comparison
with the most relevant work on federated GNNSs.

1) Distributed Graph Neural Networks: Distributed GNN training framework (e.g., DGL’s Dist-
DGL (Wang et al., [2019c¢} [Zheng et al.l 2020), Pytorch Geometric (Fey & Lenssen, [2019), Ali-
Graph (Zhao et al.l 2019) and Dorylus (Thorpe et al.,[2021))) have been developed to train large-scale
graph datasets that exceed the storage capacities of a single device. Each worker on the device
constructs mini-batches via cross-device sampling and communication, trains in parallel, and syn-
chronizes the model. However, in distributed GNN training, extensive graph sampling and data
communication can account for up to 80% of the total training time, substantially slowing the training
process (Gandhi & Iyer, 2021). Considerable efforts have been made to optimize distributed GNN
training, including employing strategic graph partitioning to minimize edge cuts between graph
partitions (Zheng et al., [2020), implementing static or dynamic node feature caching (Liu et al.| {2023}
Zhang et al |2023)), enhancing communication strategies (Cai et al., 2021} |Luo et al.l [2022)), and
utilizing various parallel training schemes (Gandhi & Iyer} 2021} (Wan et al.,|2022; Du et al., [2024).
However, the majority of these techniques are not directly applicable to geo-distributed graphs due

Under review as a conference paper at ICLR 2025

to privacy concerns, as they typically involve operations that require access to or the transfer of
graph data across different training devices. To our knowledge, LLCG (Ramezani et al.| [2022) is the
only distributed GNN training framework that avoids transferring node features between workers,
making it potentially applicable to geo-distributed graphs. Every worker in LLCG trains only on
its local graph partitions. To address the missing information from cross-device neighbors, LLCG
employs central server to periodically perform full-neighbor training with neighbor aggregation over
all workers. However, this method suffers significant communication overhead on the server end, as
the server needs to communicate with all workers to perform the full-neighbor training.

2) Federated Graph Neural Networks: To date, the research on federated GNNs remains in its
infancy and results in this area are quite limited. In (He et al., [2021a)), it is assumed that graphs are
dispersed across multiple clients and the information of the cross-client neighbors is ignored, which
does not align with the real-world scenarios and would degrade the performance of the trained model.
In (Wu et al.| [2021)), it is assumed that the clients’ local graphs have overlapped nodes and the edges
are distributed, which may not be true in real-world situations. The authors in (Zhang et al., [2021)
mitigate the information loss of the cross-client neighbors by exchanging such information in each
training round. However, this approach incurs considerable communication overhead and exposes
private node information to other clients. Although the algorithm in (Yao et al.l 2023a)) exchanges the
information of the full cross-client neighbors only once before the training to supplement the missing
information from the cross-client neighbors, it is not applicable to large-scale graphs because it uses
the full graph for training and incurs significant memory overhead on each client. Note that this
one-time communication only works for full graph training and is not suitable for the situations in
which clients sample different mini-batches of training nodes in each iteration since the cross-client
neighbors of these training batches are different. Furthermore, the homomorphic encryption used
in (Yao et al., |2023a)) would significantly increase the communication cost, which is at least several
times higher than communication without homomorphic encryption.

The most related work to ours can be found in (Du & Wul [2022), where the authors used sparse
cross-client neighbor sampling to supplement the lost information of the cross-client neighbors and
reduce the communication overhead. Each client periodically samples the cross-client neighbors
and exchanges the information of the sampled neighbors with other clients. In the remaining
iterations, the clients reuse the most recent sampled cross-client neighbors, which requires additional
cache for saving transferred graph data, thereby increasing memory overhead. However, as training
progresses, the frequency of information exchange increases, leading to higher communication costs.
Additionally, they relaxed the privacy constraint to allow the transfer of the graph data between clients
directly. Reusing the same sampled data across multiple iterations would cause additional bias, and
thus degrading the performance of the model. In contrast, our proposed Swift-FedGNN method limits
cross-client training to a subset of sampled clients and avoids direct graph data exchange between
clients by offloading certain operations to the central server. Before communication with the training
clients, cross-client neighbor information is aggregated twice: first at the remote clients and then on
the server—helping to preserve data privacy and significantly reduce communication costs. Since
clients perform local training in the remaining iterations, cross-client neighbor information does not
need to be stored, thereby reducing memory overhead.

3 FEDERATED GRAPH LEARNING: PRELIMINARIES

In this section, we provide the background of the mathematical formulation for training GNN's
in a federated setting. For convenience, we provide a list of key notations used in this paper in
Appendix [A] In order for this paper to be self-contained and to facilitate easy comparisons, we
provide the background for training GNNs on a single machine in Appendix

Consider a graph G (V,), where V is a set of nodes with N = |V| and £ is a set of edges. We
consider a standard federated setting that has a central server and a set of M clients with M = | M.
The graph G is geographically distributed over these clients, and each client m contains a subgraph

represented by G™ (V™,E™). Note that Uﬁf:l G™ # G due to the missing cross-client edges

between clients (Uf\:{:l E™ # £). In addition, we assume that the nodes are disjointly partitioned

across clients, i.e., U%Zl V™ =YV and ﬂfle V™ = (). Each node v € V™ has a feature vector

™ € R?, and each node v € V. corresponds to a label y™, where V™ . C V™,

Under review as a conference paper at ICLR 2025

In federated GNN training, the clients collaboratively learn a model with distributed graph data and
under the coordination of the central server. Typically, clients in FL receive the model from the server,
compute local model updates iteratively, and then send the updated model to the server. The server
periodically aggregates the models and then sends the aggregated model back to the clients. The goal
in federated GNN training is to solve the following optimization problem:

min £(0) = g Sner F7 0) = g S g Soev O (B 70))

where £ is a loss function (e.g., cross-entropy loss) at client m, V' denotes a mini-batch of training
nodes uniformly sampled from V™, and 6 := {W(l) }1L:1 corresponds to all model parameters.

GNNs aim to generate representations (embeddings) for each node in the graph by combining
information from its neighboring nodes. Recall that in federated GNNS, the neighbors of node v may
be located on its local client m(v) or on remote clients m(v) € M(v), where M (v) represents a
set of the remote clients that host the neighbors of node v, and M(v) C M\ {m(v)}. As shown in
Figure[3] to compute the embedding of node v at the I-th layer in a GNN with L layers, the client
m(v) first aggregates the neighbor information from both itself and the remote clients m(v) € M(v),
and then updates the embedding of node v, as follows:

l 1—1),m(v (v l-1),m m(v
h<N>(v)—AGG<{h§ Dm) |y e A (>(v)}u{um(v)eM(v){h,& D) e N ()(v)}}),
RO = & (W(l) . COMBINE (R{/~D:m(®), ﬁ}(v))) , 2)

where A/*(*) (v) is a set of the neighbors of node v located on its local client m(v), N(*) (v) is a set

of the neighbors of node v located on remote client m(v), hj\l/)(v) is the aggregated embedding from

node v’s neighbors, h,(f)’m(v) is the embedding of node v located on client m(v) and is initialized as

ROm) — pm() () represents the weight matrix at -th layer, o (+) corresponds to an activation
function (e.g., ReLU), AGG (-) is an aggregation function (e.g., mean), and COMBINE (-) is a
combination function (e.g., concatenation). Compared to distributed GNNs where clients can directly
transfer node features, the key difference in federated GNNss is that clients cannot do so due to privacy
concerns, requiring additional modifications.

4 THE Swift-FedGNN ALGORITHM

In this section, we propose a new algorithmic framework called Swift-FedGNN , designed to effi-
ciently solve Problem (IJ) by reducing both sampling and communication costs in federated GNN
training. The overall algorithmic framework of Swift-FedGNN is illustrated in Algorithms|[T}{3] Rather
than each client performing cross-client training in every round, the clients in Swift-FedGNN primarily
conduct the efficient local training in parallel, and a set of randomly selected clients periodically carry
out the time-consuming cross-client training. By offloading part of the graph operation to the server
and remote clients, Swift-FedGNN eliminates the need for sharing graph features among clients.

Algorithm|[I]outlines the main framework of Swift-FedGNN. Specifically, it performs parallel local
training across clients for every I — 1 iterations, followed by one iteration of cross-client training
involving randomly selected clients. In the local training iterations (¢), every client m updates the
local GNN model only using its local graph, as presented in Algorithm [3] Client m samples a
mini-batch of training nodes B;" and a subset of L-hop neighbors for the training nodes in B},

denote as S = {g O }lL;Ol, all from the local graph data. To compute the embedding of node v in

the [-th GNN layer (v € B} if | = L, otherwise v € S! (l)), client m first conducts the neighbor
aggregation for node v based on the sampled neighbors using:

R, = AGG ({ngl%m lue N™ (v) }) , 3)

where N™ (v) denotes a set of the sampled neighbors located on client m for node v, N™ (v) C
SU=1)_ and N'™ (v) € N™ (v). Then, client m updates the embedding of node v in the I-th GNN
layer based on the aggregated neighbor information and the embedding of node v from the (I —1)-th
layer, as follows:

Under review as a conference paper at ICLR 2025

Algorithm 1: Swift-FedGNN Algorithm. Algorithm 2: Client m in the ¢-th iteration: update
with local graph data and cross-client neighbors.

Input: Initial parameters 6o, learning rate «,
and correction frequency [Receive global parameter 8;" = 0,

fort =0to T — 1do Construct a mini-batch B;* of nodes

if ¢ mod I = 0 then

Randomly sample |K| clients

for m € M in parallel do

Server samples a subset of L-hop neighbors S = {S }ZL:_OI for
the training nodes in 8"

if m € K then for! =1to L do
Client update with local /* Derive [-th layer embedding of
graph data and cross- node v € By if | =L, otherwise
client neighbors using Al- veS8H v/
gorithm 2]

for Remote client m(v) € M (v) in parallel do

else Aggregate the neighbor embeddings using Eq. (5)
Client update with local s . . ~g(l)7ﬁz(v§ b
eraph data according to Send the aggregated embedding h N(w) O the server

Algorithm Server:

L Aggregate the neighbor embeddings from the remote clients
else using Eq. @

for m € M in parallel do : : o ()
Client update with local graph Send the aggregated cross-client neighbor embedding 7 N ()

data based on Algorithrn to Client m(v)
Client m(v): Compute node embeddings using Eq. (7)) and

Server:
Aggregate and update global model pa- [

rameter as:) ~ . Compute the stochastic gradient as VE™ (87") and send to the
0:11=0; —amZmeMVF (07") server

Algorithm 3: Client m in the ¢-th iteration: update with local graph data.

Receive global parameter ;" = 0
Construct a mini-batch B;* of nodes
Sample a subset of L-hop neighbors S= {§ O }ZL;Ol for the training nodes in B,
forl =1t L do
/+ Derive l-th layer embedding of node v € B, if =L, otherwise
vesW */
Compute node embeddings using Eq. (3) and

Compute the stochastic gradient VE™ (67*) and send to the server

RO = o (W0 - COMBINE(RI™D"™ R{J,,))) @)

At every I-th iteration, Swift-FedGNN allows a set of K clients, uniformly sampled from M, to
conduct cross-client training that trains the local GNN models using both their local graph data
and the cross-client neighbors. We use KC to denote the set of K clients, where C M. The
remaining clients perform local training as shown in Algorithm [3] Algorithm [2] details the cross-
client training process for client m € K. Rather than directly exchanging node features between
clients, Swift-FedGNN partitions GNN training between the clients and the server. We ofﬁoacﬂ the
aggregation of node features and intermediate activations at each GNN layer to the server and remote
clients corresponding to node v, thus reducing the communication overhead and eliminating the need
for graph data sharing. This procedure helps preserve data privacy because the clients are unaware of
the locations of neighbor nodes, and the embeddings of these neighbor nodes are aggregated before
being transmitted to the clients. Operations performed on the server and the remote clients are colored

using server and remote client respectively.

Specifically, client m € K samples a mini-batch of training nodes ;. Then, with the cooperation of
the server, a subset of L-hop neighbors for the training nodes in B])" is sampled and represented as

Note that the operation offloading in Swift-FedGNN only supports element-wise (e.g., mean, sum, max)
operations, e.g., GCN Kipf & Welling| (2017) and SGCN |Wu et al.| (2019). To support non-element-wise
operation, e.g., GAT |Velickovi¢ et al.| (2017), each remote client can transfer the raw graph features or activations
to the server for aggregation, instead of performing the locally partial aggregation first with Eq. @

Under review as a conference paper at ICLR 2025

S = {g(l) }f;ol. The nodes v € B} are on client m, while for v € SO with [< L, the nodes may
be on clients other than m, denoting the client storing v as m(v). The set M (v) represents remote
clients with respect to m(v), i.e., M(v) € M\ {m(v)}, where the sampled cross-client neighbors
of the training node v are located. Each remote client m(v) € M (v) may contain multiple sampled
neighbors of the training node v, and the numbers of the sampled neighbors can vary across clients.

Computing the [-th layer embedding of node v consists of four steps. Steps 1 to 3 below are used to
aggregate the neighbor information of node v, and Step 4 is used to update the node v’s embedding at
l-th GNN layer.

Step 1) Each remote client m(v) aggregates its sampled neighbors of node v in parallel, using
1),m(v 7. (1—-1),m(v Arm(v
R = AGa ({hg D) | 4 € N7 () }).)

We send only the aggregated results from each remote client m(v) to the server, which can help
preserve data privacy and reduce communication overhead.

Step 2) Upon receiving the aggregated neighbor information from all the remote clients m(v) €

M (v), the server aggregates this information from different remote clients before sending it to client
m(v) as follows:

~§\/():AGG({h |)6/\7(1})}). ©)

This approach not only helps maintain data privacy but also reduces communication costs by mini-
mizing the amount of data transmitted between clients and the server.

Step 3) Neighbor information of node v for both the sampled local neighbors and the sampled
cross-client neighbors is aggregated as follows:

R = AGG ({REDm0) | ue N0 (o) }u), 1) @

The cross-client neighbor information used here helps mitigate the information loss and reduce the
performance degradation caused by connected nodes being distributed across different clients.

Step 4) The embedding of node v in the [-th GNN layer is updated using the aggregated neighbor
information and the embedding of node v from the (I—1)-th layer as:

Z(),m(v) _ (1),m(v) 7 (1—=1),m(v) 7(1)
ROMO) = & (Wt . COMBINE (B~),hN(v))>. 8)

Using the embeddings of the training nodes in the mini-batch and the model parameters, the local
stochastic gradients VF™ (0") are computed and then used in the update of the global model
parameters shown as ;1 = 6; — awl‘ Y omem VE™(07"), where « is the learning rate.

S5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we establish the theoretical convergence guarantees for Swift-FedGNN using Graph
Convolutional Network (GCN) (Kipf & Wellingl 2017} as the GNN architecture to solve Problem
(I). The analysis of GNN convergence is significantly more challenging compared to the existing
literature on deep neural networks (DNNs). The key difficulties stem from the fact that, unlike in
DNNSs, the stochastic gradients in GNNs are inherently biased. This bias is primarily caused by the
presence of cross-client neighbors and the neighbor sampling process. The errors from missing or
unsampled neighbors propagate across layers, gradually getting amplified from the input layer to the
output layer, complicating the overall convergence behavior.

For a graph G, the structure can be represented by its adjacency matrix A € RV*N where A, = 1
if (v, u) € &, otherwise A,,, = 0. The propagation matrix can be computed as P = D~ V2AD~1/2,
where A = A + I, and D € RV*Y corresponds to the degree matrix and Dy, = 3., Ao

For subgraph G located on client m, the adjacency matrix A" can be denoted as A™ = A?_, +
AT oies Where AT corresponds to the nodes located on client m, and A}, ;. corresponds to

their cross-client neighbors located on the remote clients other than m. Then, the propagation matrix

Under review as a conference paper at ICLR 2025

can be calculated as P™ = D;Ll/z (A™ 4+ I™) D;Ll/2, and can be represented as P™ = P/ |+
P where Py, = D;'”? (AP +1I™) D;Y? and P™ = D;;\/? (A

—1/2

remote> local remote remote) Dm / .
Given GCN as the GNN architecture, for client m training using only the local graph data, Eq.
and (4) are equivalent to H\'™ = & (ﬁ(l)’mH(Fl)’

m 1),m . ..
vewl Hioeal Wi . For client m training based on

both the local graph data and the cross-client neighbors, Eq. H are equivalent to ﬁt(l)’m =
. ((ﬁ(l),mﬁ(l—l),m+15(l),7n ﬁ(l—l),m) Wt(l)ﬂn>.

local local remote**remote

Before proceeding with the convergence analysis, we make the following standard assumptions.

Assumption 5.1. The loss function ¢ (-, -) is Cj-Lipschitz continuous and L;-smooth with re-

spect to the node embedding h(F), i.e., ||€m(h§L), y) — Km(h;L), Yz < Cl||h§L) — th) |l and
m L m L L L

Ve (hi?,y) = Ven (RS, y)lls < LillAS" — k5" o.

Assumption 5.2. The activation function o (-) is C,-Lipschitz continuous and L,-smooth, i.e.,

l l 1 l l l l !

lo(z1") = o (=32 < Collzi” — 23”12 and | Vo (21") ~ Vo(z")]l2 < Loz — 232

Assumption 5.3. For any [€ [L], the norm of weight matrices, the propagation matrix, and the node

feature matrix are bounded by By, Bp and By, respectively, i.e., |[W®) |z < Bw, |P||lr < Bp,

and || X ||r < Bx. Note that this assumption is commonly used in the analysis of GNN, e.g., (Chen
et al.,[2018} |Liao et al., [2020; |Garg et al., 2020; |Cong et al., 2021; Wan et al., |[2022)

Different from DNNs with unbiased stochastic gradients, the stochastic gradients in sampling-based
GNNs are biased due to neighbor sampling of the training nodes. This is one of the key challenges
in the convergence performance analysis of Swift-FedGNN. Some existing works used strong
assumptions to deal with these biased stochastic gradients in their analysis, e.g., the authors in (Chen
et al.,[2018)) adopted the unbiased stochastic gradient assumption, and the authors in (Chen & Luss,
2018)) used the consistent stochastic gradient assumption. However, these assumptions may not hold
in reality. In this paper, without using the aforementioned strong assumptions, we are able to bound
the errors between the stochastic gradients and the full gradients in the following lemma.

Lemma 5.4. Under Assumptions[5.1H5.3| the errors between the stochastic gradients and the full
gradients are bounded as follows:

|V it (67) = VEar (07)]| | < LBAa, |[VFfun (07) = VEfun (6™)| | < LB

where VE™ . (0™) and VE™ ., (0™) correspond to the full and stochastic gradients computed
with only the local graph data, respectively. VF{,, (™) and VF},, (6™) represent the full and
stochastic gradients computed with both the local graph data and the cross-client neighbors of the
training nodes, respectively. BlAG and B£G are defined in Eq. and in Appendix@

Furthermore, the dependencies of the nodes located on different clients can lead to additional errors
in the gradient computations when client m is updated only with its local graph data, since the cross-
client neighbors are missed. This becomes another key challenge in the analysis of the convergence
of Swift-FedGNN. We prove that such an error is upper-bounded as shown in the following lemma.
Lemma 5.5. Under Assumptions[5.IH3.3| the error between the full gradient computed with both the
local graph data and the cross-client neighbors of the training nodes (denote as VFy, (6™)) and

the full gradient computed with only the local graph data (denote as VF]7. ., (0™)) is upper-bounded
as follows:

[V Efun (0™) =V Fgear (6™)]| < LBag,
where B}, is defined in Eq. (I4) in Appendix|D}

We note that all the errors mentioned in Lemmas [5.4] and are correlated with the structure of
GNN:gs, specifically showing a positive correlation with the number of layers in the networks. This
finding is unique to GNNs, where each layer involves both neighbor aggregation and non-linear
transformation. As these two operations are interleaved across multiple layers, they create a structural
entanglement that complicates the analysis.

Using Lemmas [5.4] and [5.5] we state the main convergence result of Swift-FedGNN solving an
L-layer GNN in the following theorem:

Under review as a conference paper at ICLR 2025

Theorem 5.6. Under Assumptions choose step-size o= Inin{%, ﬁ} where L is the

smoothness constant in Lemma The output of Swift-FedGNN solving an L-layer GNN satisfies:

1 2
2 IVL(O)]*<

T P vVMT
The detailed proof of Theorem[5.6|can be found in Appendix [D} We can see from Theorem [5.6] that
the convergence rate of Swift-FedGNN is O (T‘l/ 2) to a neighborhood of the exact solution, which
matches the SOTA convergence rate of sampling-based GNN algorithms, e.g., (Chen et al., 2018
Cong et al}[2021;[Ramezani et al}[2022; [Du & Wul [2022), even though Swift-FedGNN operates in
the far more challenging federated setting.

(£ (80)—L (87))+L> (BZAG+B£G)2—Q%L2 ((B£G>2 - (BZAG+B£G)2> .

Three important remarks on Theorem [5.6] are in order: (1) When choosing / =1 and K = M,
Swift-FedGNN performs fully cross-client training, ensuring no information loss in the graph data.
In this scenario, Swift-FedGNN experiences minimal residual error. Such error is caused by sampling
and is inevitable. However, Swift-FedGNN suffers from maximum sampling and communication
overhead; (2) When choosing K = 0, Swift-FedGNN conducts fully local training, resulting in
the information loss of all the cross-client neighbors. Consequently, Swift-FedGNN encounters
maximum residual error. Nonetheless, the sampling and communication overhead is minimized; and
(3) It can be shown that the last term of the convergence rate bound in Theorem|5.6]is negative. Hence,
increasing I or decreasing K would increase the residual error due to more information loss of the
cross-client neighbors. However, this would reduce the sampling and communication overhead. Thus,
there is a trade-off between the information loss and the sampling and communication overhead.

6 NUMERICAL RESULTS

In this section, we conducte experiments to eval- Table 1: Benchmark datasets and key parameters.
uate the performance of Swift-FedGNN.

. . . DATASET # OF NODES # OF EDGES
1) Experiment Settings: We train a representa- OGEN-PRODUCTS TAM 618 M

tive GNN model, GraphSAGE (Hamilton et al., REDDIT 02M 114.6 M
2017), in the FL settings on two real-world node
classification datasets: 1) ogbn-products (Hu et al.| 2020), which is an Amazon product co-purchasing
graph derived from (Leskovec et al.,[2007); and 2) Reddit (Hamilton et al.,2017), which consists of
online forum posts within a month, where posts commented on by the same user are connected by an
edge. Table[T|summarizes the key statistics of the datasets. Note that Ogbn-products dataset is the
largest dataset one can find in the federated GNN literature, while the Reddit dataset is known for its
density. These datasets were chosen for their distinct and representative characteristics, ensuring a
thorough evaluation that addresses diverse scenarios in federated GNN training. In our FL simulations,
we use 20 clients for the experiments with ogbn-products dataset and 10 clients for the experiments
with Reddit dataset. Both graphs are partitioned with METIS partitioning (Karypis & Kumar,|1998).
Due to space limitations, additional experimental details and results are provided in Appendix [C}

2) Baselines: Since the goal of Swift-FedGNN is to reduce the sampling and communication time, we
compare Swift-FedGNN with the algorithms most closely related to Swift-FedGNN, which mitigates
the information loss of cross-client neighbors through periodical (sampling-based) full-neighbor
training: 1) LLCG (Ramezani et al.,[2022): A distributed GNN training framework that performs local
training on each client independently, with periodic full-neighbor training conducted on a central
server; 2) FedGNN-PNS (Du & Wu, [2022): A federated GNN training framework where each client
periodically samples cross-client neighbors with an increasing sampling frequency. In the remaining
iterations, clients reuse the most recently sampled cross-client neighbors; and 3) FedGNN-G: Naive
federated GNN training where cross-client training is performed on each client in every iteration.

3) Convergence Performance Comparisons: In Figure[d] we can see that for both the ogbn-products
dataset and the Reddit dataset, Swift-FedGNN demonstrates the fastest convergence speed compared
to the baseline algorithms, which verifies the effectiveness of Swift-FedGNN. In addition, the
validation accuracy of Swift-FedGNN is comparable to that of FedGNN-G, which trains a GNN
model on the dataset without any information loss. Specifically, when Swift-FedGNN converges,
the validation accuracy is 87.73% on the ogbn-products dataset and 95.60% on the Reddit dataset.
When FedGNN-G converges, the validation accuracy is 87.93% on ogbn-products dataset and 96.03%
on Reddit dataset. Although LLCG performs periodic cross-client training on the server, it requires

Under review as a conference paper at ICLR 2025

100 -

100 == Computation Computation
90 Sampiing & Communicaiton

90] 229% ‘Samping & Corr

Validation Accuracy (%)

8 8%

o :w\“F(dsﬂ“ﬁmﬂ—omw,ym e e .aG“me.N"“s WG
(a) ogbn-products (b) Reddit (a) ogbn-products (b) Reddit

Figure 4: Convergence performance in terms of validation Figure 5: Comp.-(sampling & comm.)
accuracy of different algorithms.

02000 50000
Wall-Clo)

ratio of different algorithms.

1001 mmm Computation

. Computation (. Computation
Sampling & Communicaiton 9 Sampling & Communcai fton

100- . Computation
% Sampling & Communicaiton

44%
535 7%

4% 79% gog,

129
3% 10/5 20/10 40/20
1 5 10 20 40 80 160 320 Number of Cross-Client [10.5] [15,10] [20,15] # of Clients /
Correction Frequency I Training Clients & Sampling Fan-Outs # of Cross-Client Training Clients

(a) correction frequencies (b) # of cross-client train- (c) # of sampled neigh- (d) # of clients (50% for
) ing clients (K) bors cross-client training)

Figure 6: Comp.-(sampling & comm.) ratio of Swift-FedGNN on ogbn-products dataset.

training over the full set of neighbors of the training nodes, leading to significant sampling and
communication overhead. For instance, when training the ogbn-products dataset, LLCG takes over
5000 ms to perform cross-client training on the server, whereas Swift-FedGNN completes cross-
client training within 200 ms due to neighbor sampling. FedGNN-PNS employs a dynamic cross-
client sampling interval throughout training, gradually reducing the interval as training progresses.
Consequently, FedGNN-PNS incurs extensive sampling and communication overhead during the
later stages of training, slowing down the convergence process.

4) Communication and Sample Costs Analysis: Figure 5]illustrates the comparison between the
ratios of the computation time and the sampling and communication time for Swift-FedGNN and the
baseline algorithms. It can be seen that Swift-FedGNN significantly reduces the computation-
(sampling & communication) ratio on the ogbn-products dataset. On the Reddit dataset,
Swift-FedGNN also significantly reduces this ratio compared to FedGNN-PNS and FedGNN-G.
While Swift-FedGNN achieves a comparable ratio to LLCG, it converges much faster and achieves
higher validation accuracy than LLCG.

5) Hyperparameter Sensitivity Analysis: We explore the impact of the important hyperparameters
in Swift-FedGNN. Figure[6a] shows that when the correction frequency I increases, the computation-
(sampling & communication) ratio increases. Figure [6b] and [6c| indicate that as the number of
cross-client training clients K, and the number of sampled neighbors increase, the computation-
(sampling & communication) ratio decreases. Figure [6d| evaluates Swift-FedGNN with different
numbers of clients. In this experiment, 50% of clients periodically conduct cross-client training
on both local and cross-client neighbors. We can see that as the number of clients increases, the
computation-(sampling & communication) ratio decreases. These findings align with our expectations
since sampling and communication overhead is significantly greater than computation overhead in
GNN training.

7 CONCLUSION

In this paper, we proposed the Swift-FedGNN algorithm, which is a mini-batch-based and sampling-
based federated GNN framework, for efficient federated GNN training. Swift-FedGNN reduces the
cross-client neighbor sampling and communication overhead by periodically sampling a set of clients
to conduct the local GNN training on local graph data and cross-client neighbors, which is time-
consuming. The rest clients in these periodical iterations and all the clients in the remaining iterations
perform efficient parallel local GNN training using only local graph data. We theoretically proved that
the convergence rate of Swift-FedGNN is O (T -1/ 2) , matching the SOTA rate of sampling-based
GNN methods, even in the more challenging federated settings. We conducted extensive numerical
experiments on real-world graph datasets and verified the effectiveness of Swift-FedGNN.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual graph markov model: A deep and
generative approach to graph processing. In International conference on machine learning, pp.
294-303. PMLR, 2018.

Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. DGCL: An Efficient
Communication Library for Distributed GNN Training. In Proc. of EuroSys, pp. 130-144, 2021.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942-950. PMLR, 2018.

Jie Chen and Ronny Luss. Stochastic gradient descent with biased but consistent gradient estimators.
arXiv preprint arXiv:1807.11880, 2018.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On the importance of sampling in training
gcns: Tighter analysis and variance reduction. arXiv preprint arXiv:2103.02696, 2021.

Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic learning and
forecasting. IEEE Transactions on Intelligent Transportation Systems, 21(11):4883-4894, 2019.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for predicting
social events. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1007-1016, 2019.

Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical
reaction prediction. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 750-760, 2019.

Binggian Du and Chuan Wu. Federated graph learning with periodic neighbour sampling. In 2022
IEEE/ACM 30th International Symposium on Quality of Service (IWQoS), pp. 1-10. IEEE, 2022.

Binggian Du, Jun Liu, Ziyue Luo, Chuan Wu, Qiankun Zhang, and Hai Jin. Expediting Distributed
GNN Training with Feature-only Partition and Optimized Communication Planning. In Proc. of
IEEE INFOCOM, 2024.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric. In
Proc. of ICLR, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

Swapnil Gandhi and Anand Padmanabha Iyer. P3: Distributed Deep Graph Learning at Scale. In
Proc. of OSDI, pp. 551-568, 2021.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419-3430. PMLR,
2020.

Mahsa Ghorbani, Anees Kazi, Mahdieh Soleymani Baghshah, Hamid R Rabiee, and Nassir Navab.
Ra-gen: Graph convolutional network for disease prediction problems with imbalanced data.
Medical image analysis, 75:102272, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang
He, Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. arXiv preprint arXiv:2104.07145, 2021a.

Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and Salman Avestimehr.
Spreadgnn: Serverless multi-task federated learning for graph neural networks. arXiv preprint
arXiv:2106.02743, 2021b.

11

Under review as a conference paper at ICLR 2025

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132-5143. PMLR, 2020.

George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359-392, 1998.

Anees Kazi, Soroush Farghadani, Iman Aganj, and Nassir Navab. Ia-gcn: Interpretable attention
based graph convolutional network for disease prediction. In International Workshop on Machine
Learning in Medical Imaging, pp. 382-392. Springer, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269-1278, 2019.

Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The Dynamics of Viral Marketing.
ACM Transactions on the Web (TWEB), 1(1):5—es, 2007.

Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia Pan. Predicting
path failure in time-evolving graphs. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1279-1289, 2019.

Sihui Li and Rui Zhang. A novel interactive deep cascade spectral graph convolutional network with
multi-relational graphs for disease prediction. Neural Networks, pp. 106285, 2024.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua Peng, Hongzheng
Chen, Hongzhi Chen, and Chuanxiong Guo. BGL: GPU-Efficient GNN Training by Optimizing
Graph Data I/0 and Preprocessing. In Proc. of NSDI, pp. 103-118, 2023.

Ziyue Luo, Yixin Bao, and Chuan Wu. Optimizing Task Placement and Online Scheduling for
Distributed GNN Training Acceleration. In Proc. of IEEE INFOCOM, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Proc. of NeurlIPS, 2019.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Modeling
influence locality in large social networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’18), 2018.

Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Mahmut Kandemir, and Anand Sivasubrama-
niam. Learn locally, correct globally: A distributed algorithm for training graph neural networks.
In International Conference on Learning Representations, 2022.

John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei,
Keval Vora, Ravi Netravali, Miryung Kim, et al. Dorylus: Affordable, Scalable, and Accurate
GNN Training with Distributed CPU Servers and Serverless Threads. In Proc. of USENIX OSDI,
2021.

12

Under review as a conference paper at ICLR 2025

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. arXiv preprint arXiv:1710.10903, 2017.

Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and Yingyan Lin.
PipeGCN: Efficient full-graph training of graph convolutional networks with pipelined feature
communication. In International Conference on Learning Representations, 2022.

Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. Graphfl: A federated learning framework
for semi-supervised node classification on graphs. In 2022 IEEE International Conference on Data
Mining (ICDM), pp. 498-507. IEEE, 2022a.

Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, and Wen Su.
Mcne: An end-to-end framework for learning multiple conditional network representations of
social network. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 1064—1072, 2019a.

Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and
Zhongyuan Wang. Knowledge-aware graph neural networks with label smoothness regularization
for recommender systems. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 968-977, 2019b.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft Academic Graph: When Experts Are Not Enough. Quantitative Science Studies, 1(1):
396413, 2020.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang,
Chao Ma, et al. Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019c.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat: Knowledge graph
attention network for recommendation. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 950-958, 2019d.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279-287,
2022b.

Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn: Federated graph
neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861-6871. PMLR, 2019.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation
in non-IID federated learning. In International Conference on Learning Representations, 2021.

Yuhang Yao, Weizhao Jin, Srivatsan Ravi, and Carlee Joe-Wong. Fedgcn: Convergence-
communication tradeoffs in federated training of graph convolutional networks. Advances in
Neural Information Processing Systems, 36, 2023a.

Yuhang Yao, Mohammad Mahdi Kamani, Zhongwei Cheng, Lin Chen, Carlee Joe-Wong, and
Tiangiang Liu. Fedrule: Federated rule recommendation system with graph neural networks. In
Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation,
pp- 197-208, 2023b.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974-983,
2018.

Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
environments. volume 35, pp. 25464-25477, 2022.

13

Under review as a conference paper at ICLR 2025

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph Sampling Based Inductive Learning Method. In Proc. of ICLR, 2020.

Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. Subgraph federated learning with
missing neighbor generation. Advances in Neural Information Processing Systems, 34:6671-6682,
2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Zhe Zhang, Ziyue Luo, and Chuan Wu. Two-Level Graph Caching for Expediting Distributed GNN
Training. In Proc. of INFOCOM, pp. 1-10. IEEE, 2023.

Kun Zhao, Wencong Xiao, Baole Ai, Wenting Shen, Xiaolin Zhang, Yong Li, and Wei Lin. AliGraph:
An Industrial Graph Neural Network Platform. In Proc. of SOSP Workshop on Al Systems, 2019.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng Zhang,
and George Karypis. DistDGL: Distributed Graph Neural Network Training for Billion-Scale
Graphs. In IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms, 2020.

14

Under review as a conference paper at ICLR 2025

A LIST OF NOTATIONS

g, &)
v

&
N =
M

M = |M|
gmym,.Eem
pm

em

™ ¢ RY

VI

m

Yo

om

VE

6 = {W(l)}lL:I
m(v)

m(v)

M(v)

N M) (v)
N (1)
h1:m(v)

R

w®

a()

AGG ()
COMBINE (-)
B
§=1{s"y)
N (v)

K

K = K|
M(v)

m(v)

VE™ (07)
«

A c RNXN
P

Graph

Set of nodes

Set of edges

Number of nodes

Set of clients

Number of clients

Subgraph at client m

Set of nodes at client m

Set of edges at client m

Feature vector of node v at client m

Label of node v at client m

Loss function (e.g., cross-entropy loss) at client m
Mini-batch of training nodes

Set of trainable model parameters

Local client of node v

Remote client of node v

Set of the remote clients that host the neighbors of node v
Set of the neighbors of node v located on local client m(v)

Set of the neighbors of node v located on remote client
m(v)

Embedding of node v located on client m(v)
Aggregated embedding from node v’s neighbors
Weight matrix at [-th layer

Activation function (e.g., ReLU)

Aggregation function (e.g., mean)

Combination function (e.g., concatenation)

Mini-batch of training nodes at client m

Subset of L-hop neighbors for the training nodes in B3;)"
Set of the sampled neighbors located on client m for node v
Set of sampled clients for cross-client training

Number of sampled clients for cross-client training

Set of remote clients that host the sampled cross-client neigh-
bors of the training node v

Remote client with respect to m(v)
Stochastic gradient

Learning rate

Adjacency matrix of graph G

Propagation matrix

15

Under review as a conference paper at ICLR 2025

D Degree matrix
A™ Adjacency matrix of subgraph G™
I al Adjacency matrix corresponds to the nodes located on client

m

AT ote Adjacency matrix corresponds to the cross-client neighbors
located on the remote clients other than m

D™ Degree matrix of client m

P™ Propagation matrix of client m

B Propagation matrix corresponds to the nodes located on
client m

P e Propagation matrix corresponds to the cross-client neigh-

bors located on the remote clients other than m

B SINGLE-MACHINE GRAPH NEURAL NETWORKS TRAINING

We consider a graph G (V, £), where V is a set of nodes with N = |V| and € is a set of edges. Each
node v € V is associated with a feature vector z, € R%, where d is the dimension of the feature
vector. Each node v € V;,.4;y, has a corresponding label y,,, where Vipqin C V.

GNNs aim to generate representations (embeddings) for each node in the graph by combining
information from its neighboring nodes. Consider a GNN that consists of L layers. The embedding

of node v at [-th layer, which is represented by th) , can be obtained through neighbor aggregation
and node update, which are formulated as follows:

@ _ -1 n _ 1 1-1) ¢ ()
R = AGG ({RI™) [ueN (@) }), A =0 (WD . COMBINE(R! ™D, (),
where hE,O) is initialized as the feature vector x,,, N (v) denotes the set of neighbors of node v,

hﬁ\lf)(v) is the aggregated embedding from node v’s neighbors aggregated neighbor embedding for

node v, W represents the weight matrix at [-th layer, o (+) corresponds to an activation function
(e.g., ReLU), AGG (-) is an aggregation function (e.g., mean), and COMBINE (+) is a combination
function (e.g., concatenation).

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

C.1 ADDITIONAL EXPERIMENTAL RESULTS

100 100
90 90

80 X 80

60
50
10

— Swift-FedGNN
—— FedGNN-G

—— Swift-FedGNN
—— FedGNN-G
FedGNN-PNS 2 FedGNN-PNS
—— LLCG 10 —— Lce

Validation Accuracy (%)
Validation Accuracy (

20
10

0 250 500 750 1000 1250 1500 0 250 500
Training Steps Training Steps

(a) ogbn-products (b) Reddit
Figure 7: Convergence performance (validation accuracy versus training steps) of different algorithms.

Table 2: Communication overhead per iteration when communication occurs.

Swift-FedGNN LLCG FedGNN-PNS FedGNN-G
OGBN-PRODUCTS 19.5 MB 378.3 MB 78.0 MB 78.0 MB
REDDIT 90.4 MB 619.6 MB 180.7 MB 180.7 MB

16

Under review as a conference paper at ICLR 2025

Figure[/|shows that the numbers of iterations required by all algorithms in comparison are similar,
which is due to the fact that they share the same convergence rate result. However, since Swift-
FedGNN minimizes the sampling and communication overhead, it achieves the lowest wall-clock
time for convergence, making it the most efficient in terms of practical implementation.

Table 2] shows the communication overhead per iteration when cross-client sampling and commu-
nication occur for different algorithms. We can see that Swift-FedGNN significantly reduces the
communication overhead compared to all baselines across both datasets. Specifically, on the ogbn-
products dataset, Swift-FedGNN incurs 19.5 MB of overhead per iteration, which is approximately
20 times less than LLCG and 4 times less than both FedGNN-PNS and FedGNN-G. Similarly, for
the Reddit dataset, due to its dense inter-node connections and larger feature size, Swift-FedGNN’s
overhead is 90.4 MB, which is still about 7 times less than LLCG and 2 times less than both FedGNN-
PNS and FedGNN-G. This highlights the efficiency of Swift-FedGNN in reducing communication
costs during cross-client training.

C.2 ADDITIONAL EXPERIMENTAL DETAILS

Implementation and testbed. We implement Swift-FedGNN using Python on DGL 2.0.0 (Wang
et al.} 2019c) and PyTorch 2.2.1 (Paszke et al., 2019) with 1241 LoC. Our implementation includes a
custom GPU-based sampler built on top of DGL’s native sampler, which is designed to sequentially
sample local and remote neighbors for each client at every layer. Additionally, we customized the
GraphSAGE layer (Hamilton et al.,[2017) to facilitate model-parallel training within Swift-FedGNN .
In this setup, the server handles the sampling and aggregation of node features and intermediate
activations, while the clients are responsible for executing the nonlinear computations associated with
the GraphSAGE layer.

We simulate a real-world federated learning scenario using a single machine equipped with NVIDIA
Tesla V100 GPUs and 64GB memory. In our setup, both the clients and the server operate on the
GPU, and data communication between them is simulated using shared memory. We monitor the
data transfer size between the server and clients and set a simulated cross-client network bandwidth
at 1Gbps, aligning with real-world measurements reported in (Yuan et al., 2022).

GNN Model. We train a two-layer GraphSAGE model with a hidden dimension of 256. Uniform
sampling is employed for neighbor sampling, with fan-outs—i.e., the number of sampled neigh-
bors—set according to the official training script provided by the DGL team. The fan-outs for both
the ogbn-products dataset and the Reddit dataset are set to be [15, 10]. The training mini-batch size is
set at 256. For optimization, we use the Adam optimizer with a learning rate of 0.001 and a weight
decay of 5 x 1074

D PROOF OF THEOREM

D.1 GRADIENT COMPUTATIONS IN Swift-FedGNN

Recall that Swift-FedGNN uses GCN (Kipf & Welling,2017) as the architecture of GNN to prove the
convergence performance. When client m performs local training that updates the local GNN model
using only the local graph data, Each sampling-based GCN layer executes one feature propagation
step, defined as:

H(l mo__ |:f(l (H(l 1),m W(l)) A o ((l)7 H(l 1)7mw(l) >:|

local — local local local

Using the chain rule, the stochastic gradient can be computed as VE™ (™) {G l)’m}lzl, where

local

am _ vwf(l),m (f)(l),m FU-1m WO,)

local local » “"local
@Omgg=1)m} " {),m (1),m
|:‘F)local Hloca :| local © Vo (Zlocal) :l ’

DO _ iy, fltDm (D”“) HO™

local local local

W(H—l),m)

17

Under review as a conference paper at ICLR 2025

local local local

|:P(l+1),m:| pU+Hm oVo(l+1),m) |:W(l+1),m:|T:|

local local local local local > local local

in which Z0'™ = pW-m =Dy @m pLm _ gom (H(L) mym) JOH™)™ and o
represents Hadamard product.

Similarly, when client m conducts cross-client training that updates the local GNN model based on
the local graph data and the cross-client neighbors, each sampling-based GNN layer can be defined
as:

ﬁ}glflm — {f(u,m (ﬁ}g—”n,m’ Wm,m) 2. ((P(“ mEDm pOm ﬁ(l—l)ﬂn) W(z>,m>} '

local local emote®*remote

Using the chain rule, the stochastic gradient can be calculated as VF™ (™) {G%’l}n }zL:v where

=),) m ! -1 m
G;iﬁ” = VWf(l) (D})ZT,H](C u)m wi)

(1>

local local emote™ " remote u

l),m l),m l—1),m l),m ~(),m
(B H L+ PO H } b\ ova(z})”)},

D;l)” _|v f(z+1), (}Hl),m H(l)’m)W(lH),m)

1>

local emote

T
[P(ZH) +Pr(l+1) } D}ﬂj}” 0oVo (Z}quul))[W<l+1>,m}]

in which Z{0 = (BUSHG T+ PO L) WO, and DM =
ot (H)(”ull qull) /aH)(”ull

D.2 USEFUL PROPOSITIONS AND LEMMAS

Proposition D.1. Under Assumption[5.3) the inequalities in Table[3|and Table [are hold.

Table 3: Upper-bound for the norms of the propagation matrix and the node feature matrix.

PROPAGATION MATRIX NODE FEATURE MATRIX
FULL GRAPH [Pruull» < Bp [Xsuullz < Bx
LOCAL GRAPH | Pocatll p < Bp < Bp || Xiocalll p < B < Bx
CROSS-CLIENT NEIGHBORS || Premotellp < Bp < Bp || Xremotellp < Bx < Bx

Table 4: Relationships for the norms of the propagation matrix and the node feature matrix before
and after sampling.

PROPAGATION MATRIX NODE FEATURE MATRIX
FULL GRAPH ‘Pfull — Pfu” < BAP ‘Xfull — Xfu” S ng
LocAL GRAPH ‘ -I:)local ljlocal < BAP ’ Xlocal - Xlocal S BZAX

CROSS-CLIENT NEIGHBORS ‘

Y r
P’remote - Premote HF S BAP HXr'emote - X'r'emoteHF S BAX

Lemma D.2. [Lemma 1 in (Cong et all |2021)] An L-later GCN is L p-Lipschitz smooth, i.e.,
VL (01) = VL(62)|lp < Lr (|61 — 02 .

Lemma D.3. UnderAssumptions and for anyl € [L), the Frobenius norm of node embedding
matrices, gradient passing from the l-th layer node embeddings to the (I — 1)-th are bounded, i.e.,

1),m O™ l @, HW: f
’Hlocal ’ local lF < BH’ HHfullnH fullmH < BH’

OR pHm l ¢ o, f
HDlocaT ‘ local S BD’ HDfullmH DfulllnHF S BD7

where

BH,BH = 1r£lax (Cs BPBW) By, BD,BD = 1rgax (BpBwC,) C’l.

18

Under review as a conference paper at ICLR 2025

Proof.

HH(Z)J”

local

), (I-1), 1),m
:H (‘PlocaTHlocal mW())HF

(a)
S CD'BW HP(Z)v (l 1)7mHF S CJBW HP(l)v

(1-1),m
local local local H’Hlocal HF
(b) (I-1),m l m
< C,BwBp |H' < (CoBwBp) | X
©)
< (CUBwBP) Bx < IEaX (C Bpr) By,
where (a)—(c) results from Assumptions[5.2]and[5.3]
5 1 1-1), 0,
‘ loial ’ H (I)l(ozal Hl(oca b W()m)HF
(a)
S CUBW H‘F)l(olcal Hl(olcall) mH < C BW H‘l:)lolzal ’ HHl(écall) mH
< 0B By [HLD™| < (CoBwBe) X,
(c)
S (CUBV[/BP) BX < mlax (C Bpr) Bx,
where (a)—(c) follow from Assumptions[5.2]and [5.3]
(1),m l),m l),m
e = |l (P g w o)
l—1)m m
@ OUBPBWHH}W> | < (CoBeBw) IX™
(b)

< (CUBPBV(/) Bx < mlax (O BpBw) By,

where (a) and (b) are because of Assumptions[5.2and[5.3]

(H,m l Tr(l—1),m l T7r(l—1),m 1)
HHfIle H = H ((‘F.l(ozal Hl(ocal) P’rge?moteH'r'emote) W()H
< C. By HP(z mpp(=Hm | pOm pri-1)m

local local remote~ " remote

0,mpy(-1)
—O BWHPf 1 Hfull

®) (I-1),m
< C,BwBp Hfull
(0

S (CngBp) BX < 113&)((C Bpr) Bx,

- (CoBwBp)' | X™

where (a)—(c) follow from Assumptions[5.2]and 5.3}

T
l),m I+1)m I+1),m +1), 1 R
l(ocal H P)l(ocal) Dl(ocal) oVo (Zl(ocal)) |:W(+) mi|
F

(a) m I+1),m

= local H HDlocal H

(b)

S BPBWC local (BPBWC L : H‘DloLc)a;nH

(c)

< (BPB[/VCU) Cl < 1IéllaX (BPBWC) L=t y,

19

Under review as a conference paper at ICLR 2025

where (a)—(c) are because of Assumptions[5.1H5.3]

~(l) m

H B, m DM oo (Z(H—l),m) [W(Hl),m} T

local local local local
F
l+1),mH H l+1),mH
local local
(b) (l+1),m L l (L),m
Dlocal (BPBWO Dlocal F
(0) L—1 L1
< <
< (BpBwCo)" (1 < A (BpBwC,)" " (4,
where (a)—(c) follow from Assumptions[5.1H5.3]
T
),m I+1 1+1),m I+1 1+1),m
E‘ull H H Pf(ull) D;ull) oVo (Zj(‘ull)) |:W(+1) :|
F
@ (1+1), L=l || p(L),
< BeBwCy |DfI"| | < (BrBwe) ™ D",
(b)

< (BpBwC,) " 'y < max (BpBwC,)" ' Cy,

where (a) and (b) use Assumptions [5.1H5.3]

HE}ZZTHF _ H [ﬁ(l+1),m+P(l+1),m} D™ o (l+1),m> {W(H-l),m}—r

local remote full full
F
T T
_ (1+1),m ~(+1),m Z7(1+1),m I+1),m
= H {Pfull } Dfull oVo (quu) [W(+) } .
+1),m L—1 L),m
oD < BeBweo B

(®)
§ (BPBch) Cl < Iillax (BpBWC’) Cl,

where (a) and (b) utilize Assumptions [5.1H5.3]
O

Lemma D.4. Under Assumptions and for any | € [L], the errors caused by sampling are
bounded, i.e.,

((1),m l o5 0,m ¥
HHlocal _Hlocal ‘ S BAH) HHfu” _Hfull H < BAH’
(ORC 0,m ! 0),m (1),m f
HDlocal - Dlocal ‘ < Bap: HDfull - Dfull H < Bap,

where

By = max, ((C BwBYyBhp) + (C’,,BWBP)lBlAX),

Bly = max, <(C’,,BWBI’;B£P) +(CyBw Bp)! B£X> :

Bip = max, ((Bw BYCyBi p + Bl Bp B Ly By B p + BY BLBL Ly B)"

+(BwBpCy)" ™! LZBLH) :

20

Under review as a conference paper at ICLR 2025

f foo gl 2 i1 gipl > prpfr gl)\
Bap = max ((BWBDCUBAP + By BpBpLo By Bap + BWBPBDLUBAH)

+(BwBpC,)" ! LlBgH) :

Proof.
Tr),m 1),m
HHl(o)cal - Hl(o)cal ‘F
= o (Pl B WO o (R HD) WO

local local local local

(a) - N
< C,Bw HP(l),mH(lfl),m . P(l),mH(lfl),mHF

local local ocal local local local

< C,Bw HE%;TE(Z@?”" _ P(zxmﬁ(z_l),mHF 4O, By le(z),mﬁu_n,m _ pWm pp(i-1)m

(b) ~
< CoBu By | P — PO

ocal local

local local

‘ + C,BwBp Hﬁ(zq),m _ H(zq),mH
F 7 F
local local

©) N
< C,BwBY B\ p + C,BwBp HH(Z’””” _ H(l’l)’mH
F

! —~
< (CG-BWB%BlAP) + (CUBWBP)Z X;Z}cal - ngcal

F
@ 1 pl ! ! pl
l
< max ((CoBw By Bhp)' + (CoBwBp) Bax)., ©)

~I<ILL

where (a) uses Assumptions[5.2]and[5.3] (b) is because of Assumption [5.3]and Lemma[D.3] and (c)
and (d) follow from Proposition

77 (1),m 0),m
HHfull _Hfull HF

= o (BB + PO AL D) wom) — o (Pl E) W
(a) ~ _

O),mzr(l-1),m @),m pyr(l-1),m
< CoBw HPfull Hfull _Pfull Hfull HF

full Al full Al Full Al

< C, By Hﬁﬁirﬁﬁzg)’m_P(l)7mﬁ(l71)7mHF +C,Bw HP(l)Jnﬁ(lfl),m_P(l),mH(lfl)meHF

(b) . i o
= CUBWBIJ;HPJE% —P}Ql’l HF+CUBWBP’HJ(CZUH1)7 _HJ(clulll)’ HF

(©) _
< C,Bw BB, + C,BywBp ’ (=D g Dm

full full F
l —
< (C’UBWB};BLD) +(CyBwBp)' HX?ZU — X ‘F
(d) Faf) L pf
< (CUBWBHBAP> + (CoBwBp) Bay
rpr \! I pf
S1I£lza<XL CoBwByBap) +(CoBwBp) Bax | » 10)

where (a) follows from Assumptions[5.2]and[5.3] (b) is due to Assumption[5.3]and Lemma[D.3] and
(¢) and (d) are because of Proposition

local local

|~ D

F

- H [Eg;})m} T DWHLM Ly, (Z(l+1),m) [W(l+1)7m}T

local local

21

F

Under review as a conference paper at ICLR 2025

[1)u+1xnﬂ DU ((1+1),m) {vv(b+nﬂn}T

local local local
F
@ (+)m] T By m = (1+1),m (+1),m] Ty (+1),m (I+1),m
— BW |:13local lor'al (Zlocal) - ['F)local :| Dlocal oVa (Zlocal)

local local local local local

SBWH

T
+ Bw ’ [l((f;%)’m

(I+1),m (I+1),m
+ BW ’ [Ijlocal Dlocal oVo local local local

< BBy, |[BED™ — B+ BuBeC, | DD - DI,
- mmesh v (Z020™) - va (2027,
< By ByC, | B - BUD™| o+ By BeC, D™ - DL
J’_B{Q/VBPBZDLU I)l(olgal ‘l’_Il(cl)caLll)7 _I)l(olgal Hl(é;czll)7m F

Bl By By - Dl

+B{2/VBPBlDLo— P(l),mH(l 1),m _P(l),mH(lfl),m

local local local local P

+ B‘Q/VBPBZDL P(l) mH(l 1)m P(l) mH(l—l),m

local local local local F

P(l+1)mH + BwBpC, ﬁ(l+1), _Dl+1)mH

local local local local

H(—1),m H(l 1),m

local local

P(l mo P(l),m

local local

(e)
< BwBLC, BZAP + B}, BpBY L,BYy B\ p + B3, BB, L, By

D(l+1),mH

local local
< (BwB%C,B\p + B}, BpBY, L, By B\ p + B, B3 BL, L, Bh)
+ (BprCg)Lil Hﬁ(L)’ - D L),mH

local local

j + B%, B%BL L,

L—1

(f) —1

(BwBPC L lLl HHl(oLcal Hl(oLcalmH
(9)

< (BwBpCyBip + Biy BpBp L, By Byp + Biy B Bp Lo Biy)
+(BwBpCy)' ™ LiB\y

< max ((BWBEC’UBZAP + B}, BpBY L, By By p + B}y, B3 BY, L, Bh)

+ (BwBpC,)F! LlBlAH) ,

L—1

L—1

follows from Assumptions and @ (d) utilizes Assumption

P(l+1)’ :|T D(H—l),m oVo (Z(l—i-l),nL) |:P(l+1),’m:| T D(H—l),m oVo (Z(H-l),m)
T
I+1),m I+1), I+1),m I+1),m
:| l(ocal oVao (l(ocal) |:‘Pl(ocal) :| Dl(ocal) oV (

Z(+1),) - {P(lJrl),m}TD(lJrl), (

local
(l+1
local

Z(z+1)

local

F

and Lemma|[D3] (e) results from

where (a) uses Assump%%ﬂ (b) is because of Assumptior% and [5.3] and Lemma [D.3] (c)
(

Eq. (©) and Proposition

0),m
full — Dy H

22

f) is because of Assumption[5.1] and (g) is due to Eq. (9).

Under review as a conference paper at ICLR 2025

local remote

H put.m P(l+1),m:| D§l+”1 0 Vo (l+1),){W(Hl),m}T

T
+1),m +1),m +1),m +1),m
- 13; ll) D; ll) oVo (ZJ(C ”)) 1%% (+1),

F
~ T
BWH[P]ELJIFll)m} D;l;?ll%m Vo (Z(l+1) m) [P(z+1) m} pEHDM T, (Z(l+1) m)

Full Full Full Full
F
.
(+1).m] " FU+.m (1+1),m 1+1),m 1+1),m (1+1),m
H{Pfull } full oVo (full) |:P]£ull } D;ull oVao (qull)
F
(+1),m] " = +1),m (I+1),m (+1),m] " pl+! 1+1),m
+BW’ Py } D, oVo (qull) { ull) } Fu zz) (Zj(fuzz)
F
pUHD, (14+1), (14+1), (1+1),m] T A1), 41
+BWH Full m} Di " o Va (quu m) [Pfuu l} D™ (Z}u”)m>
F
(b)
< BwBLC, | P = P+ BuBeC, || DD - DEED™ ‘F
+ B 7o (3507) -0 1507
(c) ~
<BWB Cs ‘Pfi;ll) _PJELerll) ‘ + BwBpCy DYL”’ —D%zl) ‘F
2 f H(+1),m 7y (), (I+1),),
+ Biy BpBp Lo || Py meuz;n*Pfuu meullm »
p(l41),m (I+1),m ~(1+1),m (I4+1),m
Pfull - Pfull Dfull - Dfull F
2 S5I+1),m 5 (),m 1+1), l),m
+BWBPB£L0 P Hfull _P;ull) HI)(CH).” »
14+1),m 77 (l),m 1+1), D,
+Bx2/VBPB£L Pf(ull) Hﬁiu _Pf(ull) chiu P
(d)
< Bw Full P}Ezan + Bw BpCy D;ﬁzl)m D%;ll)mH
+ By BB} L, B, HP}L?# - PO+ B BRBLL, [HT - =T
(e)
< BwB},C,BL, + B3 BpB},L,Bl, B, + B4, B:B) L, BL,,
l+1),m (I4+1),m
full _Dfull H
L1

< (BWB,’;C(,BL, + BYyBpBhLo B By + By BABLL,BLy)

+ (B BpC,) " | DY = DY

() L—1
< (BwB}Co By + Bl BrBL Lo B} BL, + By BEBLL,BL 1)

L l L),m
+ (B BeCo) " L||HE™ - HD™|

—~
~

g L—1

< (BwBhCoBLp + Bl BrBL L, BY BL, + By BRBHL,BL)

(BwBpCy) "' L;BL
L—1

N+

max ((BwBLC B p + Biy BrBY Lo Bl BL p + By By BL L, BL)

+ (BwBpC,)" ™" LlB£H>,

23

Under review as a conference paper at ICLR 2025

where (a) is because of Assumption[5.3] (b) results from Assumptions[5.2]and [5.3|and Lemma[D.3]
(c) uses Assumptions [5.2]and [5.3] (d) is due to Assumption [5.3|and Lemma|[D.3] (e) follows from Eq.
(T0) and Proposition (f) utilizes Assumption[5.1] and (g) is because of Eq. (I0).

O

Lemma D.5. Under Assumptions and for any l € [L), the errors caused by the information
loss of the cross-client neighbors are bounded, i.e.,

,m (1y,m r ,m (,m
H‘Hlocal - Hfull HF < BAH’ HDlocal - Dfull H < BAD’
where
l
I pr
By = max, <(CUBWBP) BY + (CUBWB};BP) > :
L—l
Bap = max ((BwBbCoBp + BYy By B] L, By + By BRB L, Bay)
+ (BwBpCo)"™! LlBgH) .
Proof.
1),m _ @),m gy(l-1),m l),m @),m gr(l-1),m l),m
HHlocal Hfull HF - H (‘Ploral Hl()('al) W() -0 (Pfull Hfull) W() HF

(a)
< C.Bw HP”)

local local

-1 l),m I—1),m
H(b _PJS)ll HJ("ull) HF

u

local local local

< C,Bw HP(Z),mH(l—l),m P(l),mH](C[ulll),m

l)v (lil)’ l)a (l 1)vm
+ CyBw HP Hfull P Hfull H

local

SCUBWBPHHU P =G| coBw Bl || PO - PR

local local

local

< C,BwBp ’ HI D™ - Hfluzzl)’mH +C, Bw B}, HPr(émote

Y BWBPHH

local

- H, ™| +CoBw Bl By
< (CoBw Bp) | X — Xfiall + (CoBw B B5).

) . I !

< (C,BwBp) By + (C,Bw Bl Bp)

l
< max ((C(,BWBP)ZB}} + (CUBWB{IBP)) , (11

where (a) uses Assumptions [5.2] and [5.3] (b) is because of Assumption [5.3] and Lemma [D.3] (c)
follows from Assumption[5.3] and (d) is due to Proposition [D-1]

|picii - Dﬁfiﬁ”H
H lochClP D)™ oV (Zl(éjall))[v[/(lﬂ),m}T
_ [PJEL‘ZDJVL} D™ 5 g, (Zﬁul)’m) {W(zﬂ)m]T F
< b |[RUD] iz o v (2 < [P0 DY v (250)
F
< o | [Ral] pisn e o (i) - [P DL (2400)
F

24

Under review as a conference paper at ICLR 2025

local local full full local

T - T
hw H [P}Ell)’m} DM o (Z(z+1),m) - P(l+1),m:| DM (Z(z+1),m

local

T - T
+ By H [P}fjﬂm} D™ o Ve (Z(l+1)’m> - _P;l;{ll)’m} D™ o Vg (Z}ij;})m

< By ByLC, |[PUI™ P 4By BeCo D™D
+ BwBrBh Vo (2050™) - vo (2050

< By BlLC, P =P +BwBeCo| DI -DEED™ |
+ Biy BB Lo | Py " Hyg — Pl " H" |

< BwB,C, Pzg;})’m_Pﬁ:{lD’m F+BWBPOO" Dl((l)j;z)’m_D,;ﬁll)’m »
+ Biy BrBY Lo | Py Hygy — Pl " Hiuw |

+ Biy BrBh Ly || Pl " Higl — Ppy " Higl |

@
S BWBDCO'

P(Hl)’m—P;i:zrll)’mHF-FBWBPCUHD(HD’T”—D(l+1)’mHF

local local full

local

+ B%, BpB) L,BY HP(Hl)’m - P;ZJ{ll)MHF + By BbBLL, || Hy), Full

H(l)vm _ H(l)vm‘

F

© 1 2 p2 nf 1 2 p2 of ”

+ BwBpCo D)™~ DYP™|
L—1
< (BWBgCUBP + B2, BLBLL,BY + B?,VBI%B};LUBTAH)
L—1 L),m L)ym
J’_(BWBPCJ) HDl(oc)al _D;u)ll HF
@) l 2 p2pf l 2 p2 pf -\
< (BWBDCUBP + B2, BLBLL,BY + BWBPBDL(,B’AH)

+ (Bw BpCo)™ ™ L | H — HLG™

local

F

—~
~

g L—1

< (BWBEC‘,BP + B2, BLBLL,BY + B?,VBI%B};LC,BTAH)

(BwBpCo)" ™' LBy
L—1

IN -+

max < (BWBZDCUBP + B2, BLBLL,BY + B%VBI%B{)LJBZH)

)

F

).

where (a) follows from Assumption[5.3] (b) uses Assumptions %nd@ and Lemma[D.3] (c) is

because of Assumptions[5.2]and[5.3] (d) results from Assumption
Assumption [5.3]and Eq. , () utilizes Assumption[5.1] and (g) uses Eq. (T1).

D.3 ERRORS OF STOCHASTIC GRADIENTS

and Lemma[D.3] (e) is due to

O

Lemma D.6. Under Assumptions[5.1H3.3| the errors between the stochastic gradients and the full

gradients are bounded as follows:

|V i (07) = Vi (0™)|| < LBhG, | VFfin (07) = VEf (0™ < LBLe,

25

Under review as a conference paper at ICLR 2025

where
Bho = Jnax. ((BL,Cy + BpBYy By, Lo Bw) By Bhp + BpByCyBh
+ (BLCy + BpBYyBY L, By) BPBZAH) (12)
Blg = max ((BLCo + BeBBLL,Bw) BB + BrBLC.BL
f f nf f
+(BpCs + BpBy B Lo Bw | BPBay (13)
Proof.
~ 0).m
HGlocal - Glocal P
pOmE-1.m] " HOm ZU pOmppi=1.m] " pOm 70
|: local local] local © Vo (local) |: local local] local © Vo (local)
F
T T
Tr(l—1),m ~(1),m (l 1),m ~(),m
< H |: local Hlocal] Dlocal Vo (local) |:13local local] Dlocal Vo (Zlocal)
F
P(l l 1),m T D(l)’ v Z P(llv H(l 1),m T D(l)v Z(l)vm
local local] local © VO (local { local local] local Vo (local) »
T
@)ym gr=1),m 0),m ZzW,m @),m gr(—=1),m),m (1),m
H ‘Plocal local :| Dlocal oVo (local) |:13local Hlocal :| ‘Dlocal oVo (Zlocal)
F
), 1), s l
< Bl l(ogal Hl(ocal) - P)l(ogal Hlocal H + BPBHC local - Dl(olzal lF
+ BpBYy B, ‘ vo (Zi) - ve (2l
p(1),mr-1),m @);m gr(l—=1),m (1),m
‘Ploral Hl()('al Plocal Hlocal H lor'al - Dlor'al F
+ BPBHBDL BW ‘ IDl(c}cglnHl(tﬁcall)’ - ‘lDl(olgélTHl((icall),m H
S (BDCU + BPBHBDLUBW) F)l(olgal Hl(zicall) - F)l(lgal Hl(ol;(zll)’m"
+ (Bl)CO' + BPBl’—IBlDLUBW) H‘ljl(olZaTlnHl(icall) . ‘F)l((JIZQTlnHl(icall) . F
r(1).m (1),m
Dlocal - Dlocal lF
) m
(BDO +BPBHBDL BW BH H‘Plolz@l _IDl((nl():lzl ‘ lé)clal _Dl(i)clal ’F

+ (BDCU + BPBHBDLUBW BP ’ Hl(olcall) Hl(ocal

(d)
< (B),Cy + BpBYy Bl Ly Bw) By BAp + BpBl,Cy Bh
+ (BLCy + BpBYy By L, Bw) BpBhy

< max ((BLCy + BpBy B, Ly Bw) By Bhp + BpByCoBh
+ (BL,Cy + BpBYy B Ly Bw) BPBIAH> .= B\,

where (a) follows from Assumptions[5.2]and [5.3]and Lemma[D.3] (b) is because of Assumptions|[5.2]
and%(c) uses Assumption [5.3]and Lemma and (d) results from Lemma [D.4] and Proposi-
tion

26

Under review as a conference paper at ICLR 2025

When client m performs local training with only its local data, the error between the stochastic
gradient and the full-gradient can be bounded as:

= LBL.

m m 1, 1)
HVFlocal (9) v‘Flocal 0 H Z HGl(o)cal - Gl(ocal

~ (0),m
HGfull fill H
1), l—1),m l 1—1),m l 1),
= ’ |:P(b H() + Pr(e)7noteH7Eemo)te i| D;)ll o Vo < j(‘izll)

local local

[5 (),m gy(1—1),m 1)
- _P}Eu)ll Hj(fulz) } DS‘ull OVU full H

~ T
< “Pf(gumH](fl lll) m] foiﬁ”ov (Z](fl)um) [PJEWH}ZHU m] fo%nov (Z](fgzzm)
F
-
l,m ~(1),m l),m l),m -1),m l),m ~(1),m
H P]Sull full) } D}q)m OV"(}Lz) [Pjgu)u H](”ull } D}q)uz oVo (Zj(flu)HF
0 T a Dom pp(i—1),m] T I
H P]Sull H}(‘ull) } Df 1 OVU(f)ll)_ [P}u)ll H}(‘ull) } Df n oVo (Z}Zu) .
= (i-1), (0),m z7(1—1),),
fult H g " P; LHfull mH full — Dful;nH
l),m l),m
- HVU (i) = vo (200,
(®) I—1),m l),m -1),m),),m
fu)ll J(f u) _P;u)ll Hj(fuzl H fq)uz _quilz H

+ BPB};B-};LJBW HP,SLl’zmH}("luilll)’m - P;Qiz H}("lulll)’mH
< (BLCq + BrB B L, Bw) | PLGHL ™ — PR HD™ |
+ (BhCs + Bpr BlLoBw) | Pl H ™ = PR HED™|
full D;lul;nH
pm

c) ~
< (B{)Cg + BPB[J;B{)LO'BW> B HP,Sfl)zzm - P H + Bp

+ Bp

l),m
full D;ull H
+ (Béca + BPB{—[BgLUBW) Bp ‘ Hj(fluul),m . H}(Clu”leH
(d)
< (BLC, + BrBl B L, Bw) B BAp + BrB},C,BL
+ (BLCo + BrB B L, Bw) BrBLy

< max < (BLCo + BeBBLL,Bw) BB p + BrBLC.BL

+ (BLCo + BpBY B L, By) BpBgH) = B,

where (a) results from Assumptions[5.2]and[5.3]and Lemma[D.3] (b) uses Assumptions[5.2]and[5.3]
(c) is due to Assumption[5.3]and Lemma|D.3] and (d) is because of Lemma [D.4]and Proposition|D.]]

When client m conducts cross-client training using its local data and the cross-client neighbors, the

error between the stochastic gradient and the full-gradient can be bounded as:

L
m m ~m m l El ~ l ’
HVFfull (™) = VFf, (6)HF = Z HGEW)UT - G;BATHF = LBQG'
1=1

27

Under review as a conference paper at ICLR 2025

O

Lemma D.7. Under Assumptions[5.1H3.3] the error between the full gradient computed with both the
local graph data and the cross-client neighbors and the full gradient computed with only the local
graph data is upper-bounded as follows:

HVF}Z” (0™) = VE g (Hm)HF < LBxg»

where
Big = max ((BIDCC, + BPBIJ;B};LC,BW> BpBiy + BpBLC, B,
n (Bgcg n BPB;}B{.,LUBW) B{_IBP) (14)
Proof.
l),m l),m
HGZ(O)('al - G}ill H
1—1),m] " @) 0 1—1),m] " @) 0
H local l(ocal)] Dl(ocal (Zl(ocal) |: ull](”ull b] D;ull (Zj(cull)
F
T T
O);m gr(-1),m @, (O),m gr(=1),m 0, (1),m
S H ‘Plocal Hlocal] Dlocal Vo (ZZOCII?) {Pfull Hfull] Dloc;’; oVo (Zlocal) »
T T
l,m l 1),),m (H,m l),m -1),m l7
H P]Sull } lo)cal OV"’(lo)cal) |:P]Sull Hj(fuu } fq)uz Vo (Zloca) -
1) ,m (H,m l),m 1—-1), l),m
H P]Sull full) } Dfull OVU(lolal) |:P)Sull HJ(‘ull) } full ; oVa (Z,(fuu) -

< Byo, | ROraL I - PO ED"| +BeBho, DU - D
+ BeBY B ||[Vo (2i00) - vo (Z0)
< O rl D~ PO+ Beshe, D - D
+ BBl Bl Lo By | PO HD ™ - PR HD mH
< (BhCo + BeBl B L Bw) | PO HI D™ — PO HED™|

(BDC + BeBY B Lo B) PO ™ = PR HED™|

local - foiﬁ” P

(BDC + BpBY Bl L, B) Br | H{ ™ —H}lu”l)mH

+ (BoCo + BeBY B Lo Bw) B || PO - P Dii =D

(d)
< (Bgcg + BPBIJ;B};LUBW) BpBiy + BpBLC, B,
+ (Bgca n BPB;}B};LUBW) Bl Bp

< max < (Bchc, + BPB};B{)LJBW) BpBiy + BpBLC, B,

+ (BLCs + BpBY B L, By) B,{,Bp> = Big,

where (a) is because of Assumptions@an@ and Lemma[D.3] (b) uses Assumptions|5.2] and
D.5

follow from Assumption [5.3]and Lemma and (d) results from Assumption[5.3]and Lemma

28

Under review as a conference paper at ICLR 2025

The error between the full gradient computed with both the local graph data and the cross-client
neighbors and the full gradient computed with only the local graph data is bounded as follows:

m m l)m l r
HVFfull (0) vF‘local Z HGl(o)cal G;)ll HF S LBAG'

D.4 MAIN PROOF OF THEOREM[3.6]

Theorem D.8. Under Assumptions choose step-size o = min {\/ M/VT,1/L F} where
L is the smoothness constant given in Lemma The output of Swift-FedGNN with a L-layer
GNN satisfies:

T
7 3 IVE@I < o (00— @)+ (17) 1 (Bho+Bae) 1y (Ao

Proof.

L(0p41) — L(6:)

(a) LF 2
<A(VL(6:),0001 — 61) + — 0111 — 04|

@_a<w 61, Z VE™ (07) > Le 2

Z VE™ (87

rnE./\/l mEM
2
(¢) « m m a 1 e m
= 5|V | -5 ;AVF O || +5||VLO) 57 ;vzv (0
1 2
——a?||— > VE™(6]")
Mme./\/l
« ? all 1 —m (gm 2 all 1 m [gm —m (gm 2
=—5|vewn| -S| X vEmem|| +5|5 X (Ve - vEr o)
meM meM
1 2
== > VE™ (6
MmEM
(i) « £ 0 ? «]' —m em 2 « m Om —m em 2
< —5|VE®) ng;MVF(t) +§MZMVF — VE™(6]")
1 2
——a?||— > VE™(6]")
MmeM
(©) 2 a1l m /gm —m m 2
< = vc(at) +537 VE™(07") — VF™ (0") (15)

meM
where (a) follows from Lemma[D.2] (b) is because of the update rule in Swift-FedGNN, (c) uses

o n 2 n :
(@) =S lz)*+ 5 lyl* = 3 = —) (@ utilizes |7, @]|° < n 320, |||, and (o) is due
to the choice of « < 1/Lp.

When ¢t € [(ny —1)I +1,n,JJ — 1] N Z, where ny = {1,2,---}, Swift-FedGNN conducts local
training for all clients m € M. Thus,

VE™ (gm) va 0m H HVFfull 0) VF’local (em) H

< HV% 6") -V E, (Bl”)H Hv i (67— VEL W)H

29

Under review as a conference paper at ICLR 2025

(@)
< LBj¢ + LBig: (16)
where (a) follows from Lemmas[D.6and[D.7]

When ¢ = n.I, where ny = {1,2, - -}, Swift-FedGNN performs local training for clients m € M\K,

and thus the inequality (T6)) holds for these clients. The randomly sampled clients m € K conduct
cross-client training, and thus

]wm o) -V () H _ HV% 6) — VER, (07)

(a) f

S LBAG7
where (a) uses Lemma[D.6|
Telescoping from i = (n; — 1) I + 1 to n.I, we have

nyl
> (L(6i1) - L(6:)
i=(n—1)I1+1

nyl 2

« « 2/l o2 « 2 (nf \2
<-3 > |[VL®) | + 50 =1L (Bhe +Bag) + 577 KL (BAG)
i=(ny—1)I+1
o N
+ oM~ K)L? (Bhg + BAg) -
Choosing T' = n.I yields
T-—1
> (L(Brs1) — L(61))
t=0
o= 2 a 2 a 52
<3 X |[VE@) | 45T ne)L? (Bhg + Bac)” +nigi KL? (BLg)
o N
g (M~ K)L? (Bh¢ + Bag)

Rearranging the terms and multiplying both sides by 2/, we get

T—1 2
> (VE®)
t=0
9 T—1 2 ny . 2
< = (£(8) = £ (011) + (T = ne)L? (Bhg + Bag) + 2- KL? (ng)
@ t=0
+ % M — K)L* (Bhg + Bag)”.

Dividing both sides by 7" and choosing ov = v/M /+/T completes the proof of Theorem

30

	Introduction
	Related work
	Federated Graph Learning: Preliminaries
	The Swift-FedGNN algorithm
	Theoretical performance analysis
	Numerical results
	Conclusion
	List of Notations
	Single-Machine Graph Neural Networks Training
	Additional experimental details and results
	Additional experimental results
	Additional experimental details

	Proof of Theorem 5.6
	Gradient Computations in Swift-FedGNN
	Useful Propositions and Lemmas
	Errors of Stochastic Gradients
	Main Proof of Theorem 5.6

