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Abstract

Deep learning models achieve state-of-the-art performance across domains but face scala-
bility challenges in real-time or resource-constrained scenarios. To address this, we propose
Correlation of Loss Differences (CLD), a simple and scalable metric for coreset selection
that identifies the most impactful training samples by measuring their alignment with the
loss trajectories of a held-out validation set. CLD is highly efficient, requiring only per-
sample loss values computed at training checkpoints, and avoiding the costly gradient and
curvature computations used in many existing subset selection methods. We develop a gen-
eral theoretical framework that establishes convergence guarantees for CLD-based coresets,
demonstrating that the convergence error is upper-bounded by the alignment of the selected
samples and the representativeness of the validation set. On CIFAR-100 and ImageNet-1k,
CLD-based coresets typically outperform or closely match state-of-the-art methods across
subset sizes, and remain within 1% of more computationally expensive baselines even when
not leading. CLD transfers effectively across architectures (ResNet, VGG, DenseNet), en-
abling proxy-to-target selection with < 1% degradation. Moreover, CLD is stable when using
only early checkpoints, incurring negligible accuracy loss. Finally, CLD exhibits inherent bias
reduction via per-class validation alignment, obviating the need for additional stratified sam-
pling. Together, these properties make CLD a principled, efficient, stable, and transferable
tool for scalable dataset optimization.

1 Introduction

Deep learning models rely on large and diverse datasets to achieve state-of-the-art performance across a
wide range of tasks. However, training on such datasets is increasingly constrained by compute and memory
budgets, especially in real-time or resource-limited settings. This raises a fundamental question: Which
subsets of data most effectively support generalization? A natural answer is offered by coresets, compact,
representative subsets of training data that retain full-dataset performance when used for training.

Coresets support a range of applications including active learning (Coleman et al., 2020)), neural architecture
search (Na et all 2021; [Shim et al.l 2021)), dataset distillation (Cazenavette et al., [2022), and continual
learning (Aljundi et al., |2019; Borsos et al., [2020). However, most existing approaches are either based
on heuristic criteria unrelated to generalization (Toneva et al., [2018; |Belouadah et al. |2020; [Rebuffi et al.
2017)), or expensive second-order or bilevel optimization (Killamsetty et al.,|2021a; Pruthi et al., 2020; |Garg
& Royl, 2023} [Killamsetty et al., [2021b; Xia et all 2024} Borsos et al.l 2020)), limiting scalability.

We propose a simple, scalable, and theoretically grounded alternative to coreset generation using a metric we
define as the Correlation of Loss Differences (CLD). This metric quantifies how closely the loss trajectory
of a training sample aligns with the average validation loss trajectory during training (Figure|l] left). Since
the validation set reflects the test distribution, high positive CLD samples are likely to contribute positively to
generalization. Selecting such samples yields compact coresets that preserve, or even improve, test accuracy
by filtering out ambiguous or harmful examples (Figure [1} right).

Beyond simplicity, CLD provides strong theoretical guarantees. We prove that training on high-CLD samples
achieves convergence in population risk with an error bound that closely matches full-data training, where the
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Figure 1: Correlation of Loss Differences (CLD) at a glance. Left: ImageNet-1k “Tiger” samples
illustrating varying CLD scores. High-CLD samples (top row) closely track the validation loss trajectory, indi-
cating informative and representative data. Low/negative-CLD samples (bottom row) significantly deviate,
typically corresponding to atypical, ambiguous, or mislabeled examples. Right: Performance comparison
of coresets formed by selecting equal-sized subsets of the highest 10% positive, lowest 10% negative, and
10% zero-valued CLD samples of ImageNet-1k on ResNet-18. Coresets with high-positive CLD samples achieve
superior accuracy over various seeds.

excess error is explicitly governed by the sample alignment parameter x and the validation representativeness
J (see Theorem. Our theory reveals that high CLD is not just sufficient but also necessary to minimize the
convergence error-bound under coreset training.

We validate these findings across CIFAR-100 and ImageNet-1k, where CLD-selected coresets typically outper-
form or closely match state-of-the-art methods across a wide range of coreset sizes, and remain within 1% of
more computationally expensive baselines even when not leading. Unlike these methods, CLD avoids costly
gradients, pairwise similarities, or second-order statistics. It requires only per-sample loss values computed
at training checkpoints, yielding significant gains in both computational and storage efficiency.

An additional strength of CLD is its robustness; the metric remains stable when computed using sparsely
sampled training checkpoints and is consistent across random seeds, making it practical for large-scale
or budgeted deployments. Furthermore, CLD coresets transfer effectively across architectures. Coresets
computed using small proxy models (e.g., ResNet-18) generalize to larger models (e.g., ResNet-50, DenseNet)
with performance drops consistently under 1%.

Summary of contributions:

1. Correlation of Loss Differences for Coreset Selection. We introduce CLD, a simple and scalable
metric for coreset construction based on the correlation between a training sample’s loss differences
and the average validation loss trajectory, serving as a proxy for generalization, in Section [4]

2. Theoretical Guarantees. We develop a general convergence framework showing that training on
high-CLD samples yields population risk close to full-data training, with the suboptimality explicitly
governed by sample alignment and validation representativeness, in Section

3. Experimental Validation. We show that on CIFAR-100 and ImageNet-1k, CLD-selected coresets
typically outperform or closely match state-of-the-art methods across a wide range of subset sizes,
and remain within 1% of more expensive baselines when not leading, in Section @

4. Efficiency, Transferability, and Stability. CLD avoids gradient and curvature computations,
incurs minimal compute and storage cost, transfers across architectures via proxy models, and
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remains stable under checkpoint subsampling and random seeds, making it highly practical for
large-scale settings. We discuss these in Section [7] and Section

2 Related Literature

The need for scalable coreset methods has led to a variety of approaches, which can be broadly grouped into
score-based, optimization-based, and training property-based methods.

Score-based methods select training samples according to predefined metrics, often in the feature space or
based on model prediction confidence. Some methods score a sample by its distance to a class center (Rebuffi
et al.l 2017} [Castro et all, [2018}; |Belouadah et al.l [2020)), to the class feature median (e.g., Moderate (Xia
et al.,[2022))), or to other samples (Sener & Savarese,|2018|). Cal (Margatina et al.l|2021) identifies contrastive
examples via the KL divergence between predictive distributions, while Herding (Chen et al.l |2010) selects
representative samples using a kernel-based approach in Hilbert space. Other methods rely on prediction
probabilities from a (possibly proxy) model. For example, Forgetting (Toneva et al.,[2018) counts how often
a sample is misclassified after previously being correct, GraNd and EL2N (Paul et al.,2021) rank examples by
their early-training loss gradient norm or [y error norm, respectively, and AUM ([Pleiss et al., [2020) scores the
area under the margin across training to flag potential label issues. While these approaches are simple and
avoid expensive gradient or Hessian computation, they often inherit biases from their heuristic scoring rules
and offer no convergence guarantees. To mitigate bias, methods such as CCS (Zheng et al.l [2022) employ
stratified sampling for diversity, while D?-Pruning (Maharana et al., 2024) combines difficulty (prediction
variance) and diversity (feature density) in a graph-based framework. Nonetheless, such strategies often
make restrictive assumptions to avoid noisy samples (e.g., CCS discards up to 30% of data) and still lack
theoretical generalization guarantees.

Optimization-based methods formulate coreset selection as an explicit optimization problem, often with
provable convergence guarantees. CRAIG (Mirzasoleiman et al., [2020) and GradMatch (Killamsetty et al.
2021a)) select samples that align with the full-data gradient direction, while Glister (Killamsetty et al.,
2021b|) maximizes held-out validation log-likelihood. Bilevel optimization (Borsos et al., [2020) has been
used to leverage influence functions (Koh & Liang), 2017)) for selecting samples with maximal generalization
benefit, and GraphCut (Iyer et al., [2021)) uses submodular information measures as the objective. Recently,
BoundarySet-CCS (Yang et al.l [2024) minimized decision boundary reconstruction error while ensuring class
diversity. While theoretically grounded, these approaches often require repeated optimization loops, making
them computationally expensive for large datasets.

Training property-based methods exploit the dynamics of training to assess sample importance.
SloCurv (Garg & Royl 2023) uses second-order loss curvature statistics to identify samples with better
generalization potential, and TracIn (Pruthi et al., |2020) tracks gradient alignment with a validation set.
TDDS (Zhang et al) [2024) extends this idea by projecting each sample’s gradient onto the accumulated
gradient to quantify its true contribution, and by monitoring this projection across multiple iterations to
account for fluctuations in importance over time. Although effective, such methods depend on costly first-
or second-order statistics, limiting scalability.

Scalable training property-based methods reduce this overhead by measuring per-sample dynamics using
only forward-pass signals. Dyn-Unc (He et al.,|2024)) summarizes the variability of the true-class probability
over sliding windows and prunes by thresholding aggregated uncertainty after training. DUAL (Cho et al.|
2025) combines this uncertainty score with a difficulty term and uses a pruning-ratio—adaptive Beta sampling
schedule to reweight selection at high pruning ratios. In contrast, our method CLD ranks examples by how
well their loss-difference trajectories align with the class-wise validation loss trajectory, providing an explicit
generalization-alignment criterion. All three approaches admit identical minimal logging, one scalar per
example per checkpoint (probability for Dyn-Unc/DUAL; loss for CLD), so compute and storage are directly
comparable. Unlike uncertainty-only methods, however, CLD’s alignment objective supports a convergence
guarantee (Section 7 and it avoids ratio-specific sampling schedules and their hyperparameters; we report
robustness at extreme cases (e.g., coresets of size 5%) under identical logging (Section @ In short, CLD
combines the practicality of score-based metrics (low compute/storage via scalar logging) with a validation-
aligned training-dynamics signal that admits a convergence guarantee.
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3 Preliminaries and Problem Setup

We consider the supervised learning problem of learning a mapping from the input space to the output space,
X — Y, where X C R? and Y C R. The training dataset S consists of N samples drawn from an unknown
distribution D = X x Y, with each sample denoted as Z; = (Z;,y;). Thus, S = {Z1,...,2Zy}. Additionally,
we assume access to a query (held-out validation) set V.~ D% = {gi,...,dp} containing @ samples, which
represents the true distribution D.

A learning algorithm A (e.g., SGD) is used to train a model with parameters § € R? on the training set S
over T iterations. We denote the model parameters at iteration ¢ of training on S as 6%, where 63 corresponds
to the random initialization prior to the first update. The performance of the model at step ¢ on a sample
Z,, is evaluated using a loss function (6%, Z,,) : R? x R? — R, which quantifies the prediction error on Z,
at that point in training.

The goal of training is to minimize the population risk Rp(6),

argmin Rp(f) = argmin E [¢(0, 2)]. (1)
0 9 Z~D

However, since D is unknown, we instead minimize the empirical risk R(6,S),

0

argmin R(6,S) = argmm ( Z 00, Zy) ) . (2)

The gradient of the loss with respect to the parameters 6 at step ¢ for a sample Z; is denoted as Vol(0%, Z;).
The average gradient over the validation set (Gv) is,

987 q] (3)

i M@

4 Correlation of Loss Differences (CLD)

We now define the core quantity used in our method, the correlation of per-sample loss trajectories with the
validation set.

Loss Trajectories For every sample z we record the per-iteration change in loss during the model training
run, and collect these T" increments in a loss-difference trajectory

A(Z) = (005, 2) —0(6%,2), ..., 065,27 — 065", 7)) e RT. (4)

The validation-average trajectory is defined similarly as,

Q
E(Gé,q‘}) —5(98,% ) - Z s q] —K(QT 1,(7])] ERT. (5)

1
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|
Q=
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Definition 1 (Correlation of Loss Differences (CLD)). The CLD score of a training sample Zp,, € S is the
correlation between the sample’s loss trajectory A,, and the average loss trajectory of the validation set 'V :

CLD(Z,) = p (ﬁm, &’V) , (6)

where p is the correlation metric. In our experiments, we employ Pearson correlation (Pearsonl [1895) due to
its scale invariance and computational simplicity. Intuitively, the CLD metric quantifies how well a training
sample’s loss dynamics align with the aggregate loss trajectory of the validation set, which serves as a proxy
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for generalization behavior. Samples with higher CLD values are deemed more influential and can thus be
prioritized for coreset construction. We investigate this hypothesis both theoretically and empirically in the
following sections.

While Definition [I] defines CLD using a global validation trajectory, our practical implementation uses class-
specific averages to ensure semantic alignment; see Section @

4.1 Coreset Selection Procedure

We first train a source model fg on the full dataset S, recording per-epoch losses for all training and validation
samples. We then compute A,, and the class-specific average validation trajectory A/\/,c for each class c.

- 1 1

Ave=| 7 2 [0.@) —0O8.0)] - 7y D [H65.0) — 65 )] | €RT. ()
“geve L geve
where V.:={g;€V:y, =c}. (8)

In accordance with standard practice for coreset selection, we score samples within each class independently.
For a training sample Z,,, € S with label y,,, = ¢, its CLD score is the Pearson correlation between its trajectory
and the corresponding class-specific validation trajectory:

CLD(Zn) = p(A(Zn), A.) Yim i ym =c. (9)

After computing all scores, we select the top-k. training samples in each class ¢ to form a class-balanced
coreset

C =|JC. C.= Top—+h({Zn €S:ym=c} CLD), (10)

with total size fixed in advance as k = Zil k.. This per-class selection strategy ensures both label balance
and stability of dynamics within semantic categories, improving the robustness and interpretability of the
resulting coreset.

A key advantage is architectural flexibility. CLD scores can be computed using a proxy model and transferred
to larger or deeper architectures. The full coreset selection procedure is summarized in Appendix [A]

5 Theoretical Analysis of CLD-Coresets

We now provide a theoretical justification for selecting high-CLD samples, showing that such coresets yield
convergence guarantees close to full-data training under the following assumptions.

Assumption 1 (L-smoothness). For every fized sample Z, define f(0) = €(0,Z2). Then f is L-smooth in 0,
i.e.,

f) < f@) + (Vi@ y-a) + 2 ly-all,  VeyeRr. (1)

Consequently, both the population risk Rp(-) and the empirical risk R() are also L-smooth.

Assumption 2 (Bounded Gradient Norm). There exists B > 0 such that, for all 6 and every training
sample Z,, € S and validation sample @ € V, ||Vol(0,Z2n)|l, < B, and ||Vol(0,d;)|, < B. Consequently, for
any index set C C {1,..., N},

<B, [Gv(Ol, < B, (12)
2

1 -
‘CT Z V9£(97 zm)

meC

Q
1
where Gy (6) = 0 Z Vol(0,q;) is the validation-average gradient.
i=1
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Assumption 3 (Validation Representativeness). With probability at least 1 — &', the validation gradient
Gv (+) at every iterate 6 encountered during training satisfies

|Gv(0) = VoRp(0)|l, <6, where §=0(B/\/Q). (13)

These assumptions mirror those commonly adopted in analyses of training dynamics (Pruthi et al., [2020;
Ilyas et al.l 2022; [Veen et al., [2020; |Clemmensen & Kjeersgaard) 2022; Zhang et all 2022)); we merely state
Assumption [3|explicitly for transparency, even though it is typically invoked implicitly and is widely regarded
as reasonable.

Remark 1 (Per-Class Validation Trajectories). In our implementation, we compute CLD using class-specific

validation trajectories E’VC rather than a single global trajectory. This refinement aligns with standard coreset
practices that enforce class balance, which reduces the variance of the correlation estimates by matching each
training sample with the validation subset most relevant to its semantic label. The theoretical guarantees stated
here continue to hold, as long as the per-class validation subsets satisfy the representativeness condition in
Assumption [ when interpreted class-conditionally.

Theorem 1 (Convergence with CLD-Coresets). Consider a gradient descent algorithm trained over T iter-
ations on a training dataset S with a held-out validation set V. Given Assumptions[1] to[3, let the learning
rate satisfy 0 <n < 1/L. Let 0% denote the parameters at iteration t when training on a coreset C.

Then, training on the coreset C, consisting of samples with high CLD scores:
C={Z,€8 :CLD(Z,) >1—¢}, e>0, e—=0, (14)

guarantees that

2[Rp(0%) — Rine] 2

. ¢ 2 D\Vc inf 2

Jmin [ VoRn(06)] < o +InB? + (B\/2m+6) , (15)
where Rine := infg Rp(0), and k > 0 is an alignment-gap term that quantifies the mismatch between the

average coreset gradient and the validation proxy gradient Gv(0) along training (see Appendm'@ for the
formal definition). Intuitively, k decreases as the selected samples’ CLD scores increase and as the coreset
grows, and kK — 0 as € — 0.

Proof Sketch. The proof is based on the observation that the change in population risk across training steps
can be approximated by the inner product between the gradient of the risk and the update direction. A high
CLD score implies a strong correlation between a sample’s loss-change trajectory and that of the validation
set, which in turn suggests consistent alignment between the sample’s gradient and the validation gradient.

Due to the L-smoothness of the loss function, this alignment persists even when training on the coreset,
allowing us to bound the cosine similarity between the average coreset gradient and the true risk gradient.
This leads to a controlled approximation error in the optimization update. The total error term (Bv/2x +§)?
is governed by three factors: the CLD scores of selected samples, the deviation between the coreset and full-
data parameter trajectories, and the quality of the validation set as a proxy for the true distribution. Full
details and supporting lemmas are provided in Appendix O

Interpreting the Theory Under the stated assumptions, training on the full dataset S yields the con-

vergence bound

2 [RD (9%) — Rinf]
nT

Theorem [I] shows that training on a high-CLD coreset achieves a similar bound, up to an additive deviation

term (B+v/2k + 6)2. This deviation captures the alignment of the coreset with the validation dynamics (k),

and the representativeness of the validation set ().

minT HVORD(etS)Hz <

LnB2. 16
(i + Ln (16)

The alignment term s reflects both the informativeness of selected samples and the size of the coreset.
Higher CLD scores indicate stronger agreement with validation loss trajectories and thus tighter gradient
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Figure 2: Test accuracy (mean over five seeds) for representative coreset selection methods on CIFAR-100
and ImageNet-1k with ResNet-18. CLD consistently matches or outperforms baselines across dataset sizes.
(X-axis uses a non-uniform coreset-size grid.) Color map: blues (score-based), oranges (optimization-based),
greens (training-property-based), black (CLD). Complete numerical results are available in Appendix

alignment, reducing «. Additionally, larger coresets more faithfully approximate full-data training dynamics,
also lowering k. When the coreset size is fixed, the theorem implies that selecting higher-CLD samples improves
convergence by minimizing this deviation. Thus, CLD-based selection emerges as a principled and necessary
criterion for preserving the optimization behavior of full-data training.

Corollary 1 (Necessity of High CLD for Good Coresets). Under the hypotheses of Theorem |1, achieving
convergence rates comparable to full-data training necessarily requires that the selected samples exhibit near-
mazimal CLD scores and that the validation set provides a reliable prozy for the true risk gradient. Fulfilling
these necessary conditions ensures the optimization dynamics induced by the coreset remain well-aligned with
those of full-data training.

6 Experimental Evaluation

We evaluate CLD empirically, focusing on its effectiveness and transferability.

Experimental Setup We benchmark on CIFAR-100 (Krizhevsky et al. 2009) and ImageNet-1k
[sakovsky et all [2015). CIFAR-100 has 50,000 training and 10,000 test images across 100 classes; ImageNet-
1k has ~ 1.28M training images and a 50,000-image validation set across 1,000 classes. For each random
seed, we form a classwise held-out validation split from the training data (10% for CIFAR-100; 1% for
ImageNet-1k), ensuring equal per-class representation; a different split is generated per seed, and the re-
sulting train/validation partitions are reused across all baselines for fairness. Unless otherwise specified,
ResNet-18 is the default architecture for CLD scoring and for training on selected coresets.
Coresets are constructed per seed in a class-balanced manner by selecting, within each class, the top-ranked
samples under CLD. Subset sizes range from 0.2%-100% on CIFAR-100 and 0.1%-100% on ImageNet-1k.
We report the mean and standard deviation over 5 independent seeds.

Baselines. We compare against representative state-of-the-art methods from three families: score-based
(Forgetting (Toneva et al., 2018), EL2N (Paul et all [2021)), and CCS (Zheng et al., [2022)) using AUM (Pleiss
et al.,[2020)), optimization-based (Glister (Killamsetty et al., 2021b), D?-Pruning (Maharana et al., 2024)),
and training-property-based (TDDS (Zhang et al., |2024), SloCurv (Garg & Roy, [2023), DUAL (Cho et al.
2025))), plus Random. We use implementations from the DeepCore @ library when available,
and otherwise rely on official GitHub repositories. All methods are run under a consistent training setup (40
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Figure 3: Transferability of CLD-based coresets across architectures on ImageNet-1k. Each subplot reports
test accuracy (mean over five runs) for target models trained on coresets of varying sizes. Transfer coresets
(dashed black, diamonds) are selected using ResNet-18; Oracle coresets (solid green, circles) are computed
by the target itself. Transferred coresets are within 1% of oracle coresets across all targets and sizes.

pretraining epochs where required), without any additional fine-tuning or regularization. To ensure fairness,
all baselines, including ours, select and train coresets using the same backbone (ResNet-18).

Transferability protocol. On ImageNet-1k we additionally test cross-architecture transfer. We compute
Transfer coresets using ResNet-18 and apply them to ResNet-34, ResNet-50, VGG-19, and DenseNet-121.
We compare this to an Oracle setting where each target model computes its own CLD scores and coresets
from its dynamics.

Results and Observations Figure[2]summarizes performance on CIFAR-100 and ImageNet-1k compared
to other methods. Across both datasets, CLD consistently matches or outperforms the strongest baselines
from each family. The most competitive alternatives are D?-Pruning and DUAL, though both degrade at very
small coreset sizes. On CIFAR-100, Glister, DUAL, CCS (AUM) can slightly edge out CLD at larger subsets
(by <1%), whereas CLD consistently leads on ImageNet-1k. At large subset sizes, CLD converges to full-data
performance with negligible deviation from the strongest baseline. Full numerical tables (and additional
methods beyond those plotted) are deferred to Appendix |C| to avoid clutter. A complementary analysis of
the subset fraction required to match full-data accuracy is presented in Appendix [D.2}

For cross-architecture transfer on ImageNet-1k, Figure[3]shows that Transfer coresets selected with ResNet-
18 closely track Oracle coresets computed by the target model itself. The gap remains below 1% across
ResNet-34, ResNet-50, VGG-19, and DenseNet-121 and across coreset sizes, including transfers across archi-
tecture families (ResNet — DenseNet/VGG).

Takeaways CLD achieves near-optimal accuracy across subset sizes while incurring the lowest compute
and storage overhead among strong baselines, and its coresets transfer effectively from lightweight proxies
to larger targets. Together, these properties make CLD a scalable, reliable choice for coreset selection in both
single-architecture and cross-architecture regimes.

7 Computational and Storage Efficiency

Beyond accuracy, a practical coreset method should keep both compute and storage costs low. CLD does so
by relying only on per-sample loss scalars that standard training already produces; no per-sample gradients,
Hessians, or pairwise similarities are required. The only extra work is a forward-only sweep over a small
held-out query set each proxy epoch (Q < N) to record query losses. In contrast, gradient/adversarial
methods incur extra backward passes, while similarity /nearest-neighbor methods require feature extraction
and large feature caches. We quantify the end-to-end compute cost (selection plus training on the selected
coreset) and the storage overhead in detail in Appendix [E| and summarize the symbolic complexity below.

Notation and setup. We measure compute in floating-point operations (FLOPs) and report storage
overheads:
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Table 1: End-to-end compute and storage overhead for CLD and baselines.

specific extras during selection only. Notation in Sectionm

Storage column lists method-

Computational cost

Storage overhead

Method (selection + coreset training) (method-specific extras)
Herding 3NTproxyf + Nf + O(Ndk) + 3kT fiarge O(Nd) [features] (+ optional
O(k?) Gram)
Forgetting  3NTeyfiarge + 3KTatefiage O(N) [per-sample counter]
AM BNTypoeyf + 36T frarge O(N) [running sums]
Cal STpoyf + Uf + O(Urd) + 3T fiage O(Ud) [proxy features]
Grald 3NToaryRfiarge + 3NTearty Rfiarge + 3hThatcflrse O(N) [scores/logs]
ELoN SNToryRfirge + 36Tatefiarge O(N) [scores]
Moderate  3NTpowf + Nf + O(Nd+ NlogN) + 3kT fiarge O(Nd) [proxy features]
D2-Pruning  3NTpowf + Nf + O(Nwd) + O(HNk) + 3kT fiwge ~ O(Nd) + O(Nr) [features +
kNN graph]
CRAIG BNTponyS + O(A(Nk+ Nlog(1/€) De) + 3kT firge ~ O(N(F+c)) [per-anchor em-
beddings]
Glister BT fiarge + O((Q + Nog(1/0)) fraree T/v) O(Q) [validation cache]
GraphCut  3NTpowf + Nf + O(N?k) + 3KT flaree O(N?) [pairwise similarities]
SloCurv BNTpowyf + 3N(R+D)f + 3kT fiange O(N)+O(Rd) [running stats
+ probe dirs]
DS 3NTpoxy/ + 3NTpoxyf + 36T fiarge O(NJ) [windowed logs]
DynUnc SNTproxyf + 3kT fiawee O(NJ) [windowed logs]
DUAL BNTpoyearty) + 36T frawge O(NJ) [windowed logs]
CLD (Ours) 3NTp o f + QTproxyf + 3kTfiarge O((N—FQ)Tpmxy) [loss logs]

» Data and epochs. N training samples, () query samples; T" epochs for the large model, T},1oxy for the
prozy; Teary (early scoring), Throxy,early (€arly proxy epochs in DUAL).

e Model cost convention. Large model forward cost fiarge, proxy forward cost f with f < fiarge. One
backward ~ 2 forwards = one training step = 3 forwards per example.

¢ Subset/problem. k coreset size; d input dimension; ¢ classes; R repeats (restarts/probes); v reselection
interval.

¢ CRAIG embeddings. F' penultimate-feature dimension; Deg = F'+c is the embedding size used by
CRAIG.

e Method-specific. J window length (Dyn-Unc/DUAL/TDDS); H message-passing rounds (D?-Pruning);
k kNN degree; U unlabeled-pool size (Cal); vanc anchor spacing and A=T},oxy/Yanc anchors (CRAIG); €
stochastic-greedy tolerance; A trade-off in GraphCut.

Results and observations (compute). As summarized in Table [1, methods that score during early
training of the large model (e.g., Forgetting, EL2N, GralNd) require one or more full sweeps over all N
examples with the large network for Teany epochs (and sometimes R repeats), so their selection cost in-
cludes terms like 3NToariy R fiarge, making them compute-ineflicient even if the coreset used later is small.
Optimization-with-reselection methods (e.g., Glister) add frequent subset updates every « epochs, driving
O((kQ + Nlog(1/€)) fiarge T/v) on top of 3kT fiarge. Feature/graph-based selectors (Herding, Moderate,
D?-Pruning, Cal) pay 3NTproxy/ pPlus at least one N f encoding pass (sometimes graph/kNN work). By
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Figure 4: Efficiency summary: Accuracy vs. Compute (x-axis, log scale); bubble size is proportional to the
selection-stage storage overhead. The plot uses an illustrative setup for concreteness: selecting 10% coresets
of ImageNet-1k with a ResNet-18 proxy and training a ResNet-50 on the coreset (see Appendix . Both
CLDgq (all proxy epochs) and CLDys (first 45 proxy epochs) are shown; the latter achieves similar accuracy
at roughly half the selection compute. A similar trend is observed for DUAL when restricted to early proxy
epochs (which we discuss in Section , highlighting that early-epoch scoring can improve efficiency without
harming performance.

contrast, CLD uses only proxy training and cheap per-epoch query forwards:
ComPUtec]_,D = 3NTproxyf + QTproxyf + 3kT flargey

with no gradient/Hessian sweeps, no adversarial steps, and no pairwise similarities.

Results and observations (storage). To make storage comparisons transparent, Table 1| reports
selection-stage storage overhead only, i.e., method-specific extras beyond storing the large model’s weights.
Early-training methods (Forgetting, EL2N, GraNd, AUM) need only O(N) scalars; windowed-uncertainty
methods (Dyn-Unc, DUAL, TDDS) add O(NJ) logs. CRAIG stores O(N(F+c)) embeddings, similarity/feature
methods cache O(Nd) (plus O(Nk) graphs), and GraphCut is O(N?). CLD uses only scalar loss logs

O((N+Q)Tproxy) -

A visual summary. Figure summarizes the trade-off between accuracy (y-axis) and end-to-end compute
(x-axis, log scale), with bubble size proportional to the selection-stage storage overhead. Points in the
upper-left with small bubbles are closest to the “Pareto-efficient” frontier, combining high accuracy with
low compute and storage cost. To provide a concrete, quantitative context for these trade-offs, the plot
is generated using an illustrative setup: selecting 10% coresets of ImageNet-1k with a ResNet-18 proxy,
then training a ResNet-50 on the chosen coreset (see Appendix [E| for details). In this setting, methods
that score during early training of the large model (e.g., GraNd, EL2N) and those with frequent reselection
(e.g., Glister) appear far to the right due to large compute costs, while feature/similarity-based selectors
(Herding, Moderate, Cal, D?-Pruning) have large bubbles from O(Nd) feature caches. CLD lies near the
efficient frontier: its selection cost is proxy-only plus lightweight query forwards, and its storage is just
scalar loss logs. We also show CLDg (scores derived using loss values from all proxy epochs) and CLDy5 (first
45 epochs only); the latter cuts selection compute nearly in half while preserving accuracy (discussed in
Section . This mirrors observations for DUAL, which also achieves minimal accuracy drop by using only

10
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(a) Test accuracy when CLD is computed from early or sub- (b) Ablation on bias reduction. CCS-style stratified
sampled checkpoints. Stability holds even at coarse resolution. sampling on top of CLD consistently reduces accuracy
(X-azis uses a non-uniform coreset-size grid.) across coreset sizes on CIFAR-100.

Figure 5: Stability and bias. (a) CLD is stable under reduced temporal resolution; (b) external stratified
sampling is unnecessary, and often harmful, for CLD.

early proxy epochs, underscoring that temporal truncation can further improve efficiency without sacrificing
performance. For clarity, the figure uses shades of blue for score-based methods, shades of orange for
optimization-based methods, shades of green for training-property-based methods, and dark red for CLD.

8 Discussion
We discuss practical considerations and empirical findings that further illustrate the applicability of CLD.

Stability under temporal subsampling. We first assess robustness to reduced temporal resolution on
ImageNet-1k with ResNet-18. CLD is computed either from the first 30 or 45 checkpoints (out of 90) or from
trajectories subsampled at 2x or 3x lower frequency, while training still runs for all 90 epochs. As shown in
Figure |pal using only early checkpoints (30/45) yields accuracy nearly identical to the full-trajectory setting,
indicating that the informative signal is captured early in training. 2x subsampling preserves accuracy, and
even 3x subsampling incurs only a minor degradation due to reduced temporal resolution.

Bias reduction and stratified sampling. Several methods incorporate bias-reduction mechanisms, such
as CCS (Zheng et al., |2022)), which stratifies selection across score percentiles to promote diversity. In contrast,
CLD leverages per-class validation trajectories, yielding a generalization-aware signal that naturally balances
classes and downweights noisy or redundant samples. As shown in Figure [5b] applying CCS-style stratified
sampling on top of CLD scores consistently reduces accuracy across coreset sizes on CIFAR-100. This contrasts
with metrics like AUM, where CCS can be beneficial; for CLD, percentile quotas perturb its validation-aligned
ranking and reintroduce less informative points.

Validation proxy: composition and size matter. Our theoretical guarantees for CLD require that the
validation set be a faithful proxy for the test distribution (Assumption [3|in Section . To understand this,
we ask: How sensitive is CLD to the composition of the validation set, and does bias in this validation set affect
downstream coreset quality? To probe this, we split CIFAR-100’s 50k training set into a classwise 25k/25k
train/pool partition. From the pool, we constructed 5000 example validation sets using five heuristics based
on publicly available memorization scores (Feldman & Zhang) 2020)), denoted mem. Intuitively, low-mem points
correspond to canonical, stereotypical examples (often helpful for transfer and exploited by methods such as
SloCurv), while high-mem points surface atypical or mislabeled examples. These heuristics, therefore, let us
bias the validation set toward “typical” or “atypical” regions of the data. We trained ResNet-18 proxies on
the 25k train split, computed CLD with respect to each heuristic-based validation set, built class-balanced
coresets, and fine-tuned ResNet-18 across coreset sizes (five seeds; see Figure . As shown in Figure
the non-random heuristics yield validation sets with markedly different mem profiles. Two clear patterns
emerge. First, validation sets biased toward HIGHEST-mem examples consistently degrade performance across

11
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Figure 6: Validation proxy study on CIFAR-100: (a) distributional differences induced by mem-based heuris-
tics; (b) downstream impact on CLD coreset performance.

coreset sizes: overrepresenting atypical or mislabeled samples lowers accuracy and hinders learning. Second,
validation sets built from LOWEST-mem examples generally support stronger generalization, but retaining
some high-mem points is beneficial for capturing long-tail behavior likely present in the test distribution. In
our runs, PROPORTIONAL sampling, drawing examples according to the pool’s original mem distribution, was
the most reliable overall, and would likely improve further if mislabeled points were filtered or downweighted
(which we did not do in this study). These findings underscore that CLD’s effectiveness depends critically on
the quality of the validation signal: coresets cannot exceed the fidelity of the validation dynamics they are
aligned with. This motivates future work on principled procedures to build clean, representative validation
sets (e.g., robust to label noise) and to select validation sizes that balance reliability with efficiency.

Overall, CLD already achieves implicit bias reduction via validation alignment; external stratified sampling
is unnecessary and often counterproductive. We provide further results, including seed-wise stability (Ap-
pendix [D.1)) and connections to influence functions and training data attribution methods (Appendix , in
the appendix.

9 Limitations

While CLD is scalable and effective, it does have limitations. First, it requires access to training loss tra-
jectories across multiple checkpoints, which may not be feasible in settings where models are deployed as
black boxes or when fine-tuning from pretrained checkpoints without full retraining. Second, although CLD
requires a hold-out validation set, this reduces the number of samples for training.

10 Conclusion

We introduced Correlation of Loss Differences (CLD), a simple, scalable metric for identifying data that aligns
with generalization. By relying only on per-sample losses across training checkpoints, without gradients,
pairwise similarities, or second-order information, CLD enables principled coreset selection with low compute
and storage cost. Across CIFAR-100 and ImageNet-1k, CLD matches or outperforms state-of-the-art methods
over a wide range of subset sizes and attains full-data accuracy with substantially smaller subsets. CLD-
selected coresets also transfer across architectures (ResNet, VGG, DenseNet) with < 1% degradation, remain
stable when using only early checkpoints, and inherently reduce bias via per-class validation alignment,
obviating additional stratified sampling. Our theory further shows that the convergence gap under coreset
training is controlled by sample—validation alignment and the representativeness of the validation set. Taken
together, these properties make CLD a practical tool for large-scale, budgeted training and a principled
foundation for future work on robust validation design and budget-aware data selection.
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A CLD-Coreset Selection Algorithm

For completeness, we provide the full pseudocode for the coreset selection procedure described in Section
This algorithm computes per-class CLD scores by correlating each training sample’s loss trajectory with the
corresponding class-specific validation trajectory, and selects a fixed number of top-scoring samples per class
to form a class-balanced coreset.

Algorithm 1: Coreset Selection Using CLD (Per-Class)
Input: Training set S = {Z,,}N_,, Validation set V = {q;}_,, Class budgets {k.}S_; with k = Zc k

Jj=1 c=1 Vs

Epochs T, Initial params 63, Loss ¢, Optimizer A, Hyperparameters A
Output: Coreset C of size k
for t < 1to T do
05 < A(05",S,\) // update model
for m <+ 1 to N do
L Store £(0%, Z,) // record train loss
for j + 1 to Q do
L Store £(0%,d;) // record val loss

for m <+ 1to N do

| A(En) ¢ [0005, Zm) — L0057 Zn)]
for j < 1 to @Q do

o - 1 -\1T

| @) « [005,3) - eo5™ 3],
for c <+ 1 to C do

Sc + {Zm €S :ym = c};
Ve {g eV y; =ch

A/V,c = ﬁ Zq—jevc AG);
foreach 7,, € S. do

| CLD(Z) < p(A(Z), AY..)

| Cc <« top-k. elements of S by CLD(%,);
c+ U<, C
return C

T
t=1

B Detailed Theoretical Framework

In this appendix, we provide the complete theoretical framework supporting the results stated in Section
We first outline the detailed lemmas establishing gradient alignment and approximation properties of CLD-
selected coresets. We then conclude with a full proof of the convergence guarantee presented in Theorem

B.1 Supporting Lemmas for Theorem [1]

Lemma 1 (High CLD Implies Gradient Alignment). Consider a training sample Z,, € S with CLD(Z,,) =
p(A(,Zm), A’V) > 1— € for some small € > 0. Let 0% be the parameters obtained by running algorithm A on
S for t iterations. Let §0'~! = 0f — t9ts_1 be the parameter update at step t.

Suppose the learning algorithm is run for a sufficiently large number of iterations T'. Assume the sequence of
parameter updates {50' =}, is sufficiently varied. This means the updates are not persistently orthogonal
to any fized non-zero vector direction in the relevant parameter subspace.

—

Then, for most training steps t where Gv(0%) # 0, the sample gradient Vol(0%, Z) and the validation
gradient G (0%) are well-aligned:

cos (£ (Vgl(8Y, %), Gv(85))) > 1 — €, 17
(£ (Vol(s, Zm), Gv(fs) ¢ (17)
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where €, — 0 as € — 0.

Proof. We first analyze the idealized case where the correlation is perfect (¢ = 0) and the underlying ap-
proximations hold exactly, and then argue by continuity.

Assume the first-order Taylor expansions are exact for the loss changes:

(A(Zm)), = U0, Zm) — L0057, Z0) = (Vol(05", Z), 60 71) = (18)
Q

(B)e = & D2 (6005,3) — €05™.7)) ~ (Gv(05™).60) = . (19)
j=1

Assume perfect correlation p(Z, ) = 1.
This implies an exact positive linear relationship z; = ¢y, + K’ for all t, where ¢ = 0, /0, > 0 and K’ = T—c7.
Substituting the definitions of z; and y;:

(Vol(05, 2,),00"1) = c(Gv (0571), 601 + K. (20)

Rearranging yields:

(Vol(051, Z) — cGv (05,0001 = K. (21)
Since the mean of the loss trajectory will be smaller compared to the variance of the terms (losses eventually
reduce to 0), it is reasonable to assume K’ = 0.
Thus, fort =1,...,T:

(Vol(051, Z,) — cGv (051,000 1) = 0. (22)

Let w1 = Vol(05 ', Z) — cGv(0571).
The vector w;_; is exactly orthogonal to the update direction J8*~! at each step t.

Now, invoke the assumption that the sequence of updates {66'~1}1 ; is sufficiently varied.

This means the updates are not persistently orthogonal to any fixed non-zero direction w;_.

If w;_; were non-zero, the variation in updates would eventually yield a 66*~! such that (w;_1,86° 1) # 0.
Since the inner product is exactly zero for all ¢ in our idealized case, the only possibility consistent with the
sufficient variation assumption is that @;_; must be the zero vector. Thus:

Wy = Vel(05 ", Z) — cGv (05 = 0. (23)
This signifies that the sample gradient is exactly a positive scalar multiple (¢ > 0) of the validation gradient:
Vgﬂ(ﬁtsfl, Zm) = cGV(Htsfl). (24)

Consequently, the vectors are perfectly collinear and point in the same direction (assuming GV(Gtsfl) #0).
The angle v;—1 between them is exactly 0. Therefore, in this idealized case:

cos(y—1) = cos (£ (Vgﬁ(@ts_l, Zm), Gv(05 1)) = 1. (25)

This derivation holds under the ideal conditions (e = 0, exact Taylor approx., K’ = 0).
Since the involved operations are continuous, when the conditions are only approximately met (i.e., p > 1—¢
with € — 0, Taylor approx. is good, K’ is small), the resulting cosine similarity will be close to 1.
We express this conclusion as
cos(ye-1) = 1 — €y, (26)

where the error €,_; — 0 as e — 0.
Assuming this alignment holds for most steps ¢ (implying alignment at step ¢ relies on properties at ¢t — 1),
the lemma statement follows. O

Remark 2 (On Update Sequence Variation). The assumption regarding the update sequence {661} is that
it exhibits enough variation over the trajectory to ensure that no fixed non-zero vector can remain orthogonal
to all updates. This property is weaker than requiring the updates to span the entire parameter space, but it
is sufficient for the argument. It essentially prevents the gradient difference vector from hiding in a direction
that the optimization process mever explores. Stochastic optimization methods accumulating updates over
many iterations (large T') are often expected to satisfy this sufficient variation condition.
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Lemma 2 (Stability of Gradient Alignment). Suppose the conditions in Theorem |1| hold: specifically, L-
smoothness and bounded gradients (||Vl(0,2)|y < B for all Z). Consider a coreset C constructed by selecting
samples with high CLD scores:

C={%,€S:CLD(Zy) >1—¢€}, with |Cl=k,e>0,e—0. (27)

Assume that during training, the difference between the parameter trajectories satisfies ||0g — 05|, = [|0¢|5
at step t.

Then, for each sample Z,, € C, the cosine similarity between its gradient and the average validation gradient
at step t is lower bounded by
cos (£ (Vol(0g, Zn), Gv(0g))) > 1 — K, (28)

where k = €, + 2L ||6,]|, + 22 H§t|\§7 and €, — 0 as e — 0.

Proof. Let wy, = Vol(05,Zn) — Vel(0s, Z,) and wy = Gy (0%) — Gv(0%) denote the deviations between
gradients evaluated on the coreset trajectory and the full dataset trajectory.

By L-smoothness of £(-, Z,,) and of the validation-average loss Ry () = Z 1 £(0,q;), we have:
lwmlly < L{I9¢]l, (29)
lwwlly < LIt - (30)

Expanding the inner product:

(Vol(0g, Zm), Gv(06)) = (Vol(05, Zm) + wim, Gv (05) + wv) (31)
= (Vol(05, Zmn), Gv (05)) + (wm, Gv (05)) + (Vol(05, Zm),wv) + (Wm,wv).  (32)

Applying Cauchy—Schwarz inequality and the bounded gradient norm ||V€(8, 2)||, < B, we have:

(wm, Gv (b)) > *Ilwmll2||Gv (03)]|, = —LBl6¢, , (33)
(Vol(0s. Zm),wv) = —[[Vol(05, Zn) ||, llov [l = —LB 1]l . (34)
<wm,wv> —llwmlly llovlly > =L 18113 - (35)
Thus,
(Vol(0, Zm), Gv(06)) = (Vol(05, Zn), Gy (05)) — 2LB |64, — L* [|5¢15 - (36)

The denominator is upper bounded by:

[Vol(6, Zm) ||, [|Gv (06|, < (B + LI6:,)>. (37)

Combining this result with Lemma [I} we can conclude:

. . , AL 302
cos (£ (Vol(0g, Zn),Gv(0E))) =1 — (e + 5 10¢1]5 + B 16:]15 ) =1 — &, (38)

where €} captures the initial alignment error when training on S. This completes the proof. O

Remark 3. Lemma |4 shows that if a sample’s gradient is well-aligned with the validation gradient during
training on the full dataset (i.e., €, is small), then this alignment is preserved when training on a coreset C,
as long as the parameter trajectories 0 and 0 remain close. The degradation in alignment is bounded by
terms that are linear and quadratic in ||0¢|,. Thus, as long as the coreset trajectory stays near the full dataset
trajectory, the generalization-relevant properties captured by CLD remain stable. This stability is crucial for
ensuring that CLD-based coresets maintain the training dynamics of the full dataset.
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Remark 4 (Influence of Coreset Size on k). It is important to explicitly consider how the coreset size k = |C|
(as specified in Lemma @) influences the components of k = €, + 4|16, + 2 ||5,5||2

o The term €,, representing the initial alignment error derived from Lemma |1, is affected by k. A
smaller coreset size k allows for a more stringent selection criterion for samples based on their CLD
scores. Specifically, one can choose only samples with CLD(Z,,) very close to 1, which corresponds
to a smaller € in the selection rule CLD(Z,) > 1 — € (from Theorem[1] and Lemma[d). A smaller e
naturally leads to a smaller €.

o Conversely, the terms in r that depend on ||&;]|, = ||0 — 05, (the deviation between coreset and full-
data parameter trajectories) are also influenced by k. While a smaller k allows for higher individual
sample quality, a very small k might result in a coreset that is less representative of the full dataset
S. This reduced representativeness can lead to a larger divergence ||0¢||, during training, as the
optimization trajectory on the small coreset may differ more substantially from that on the full data.
An increase in ||0¢]|, would, in turn, increase the overall value of k.

Therefore, the selection of an appropriate coreset size k involves an inherent trade-off. A smaller k can be
beneficial for the €, component of k by enabling the selection of higher-quality samples. However, if k is too
small, it could adversely affect the components of k related to ||6¢||y by making the coreset insufficiently rep-
resentative. The stability discussed in Remark@ relies on ||0¢|, remaining small, highlighting the importance
of k being chosen to adequately approzimate the full dataset’s training dynamics while leveraging the benefits
of high CLD scores.

Lemma 3 (Subset-Gradient Approximation). Suppose the conditions in Theorem 1| hold, including L-
smoothness, bounded gradients, and validation representativeness as described in Section[5]

Define the average coreset gradient at step t as

t_

meC

Then, for every training step t, we have
v& — VoRp(05)|, < BV2k + 0, (40)

where Kk captures the alignment error and satisfies Kk — 0 as € — 0.

Proof. We decompose the error using the triangle inequality:

he = Voln (60|, < |ve = Gv(6c)], + [|Gv(c) — Volin(60)]), (41)

The second term [|Gv (0%) — VoRp(05)||, is bounded by & by the validation representativeness assumption.
To bound the first term ||7& — Gv ()], we apply Jensen’s inequality:

2
1 .
I — G (5)|; = | @ > (Vol(06: Zn) — Gv(08)) (42)
meC
< 1Q Z IV6b(0%, Zm) — Gy (05)]]5 - (43)
meC

Define ¢!, as the angle between Vol(6L, Z,,) and G (6%). By Lemma 2} we have cos !, > 1 — & for all m.

Expanding the squared distance:
V00, 2n) = Gv (06)5 = [Vol(0, Zn) |5 + |GV (05) |5 — 2V el(0, Zn), G (05)) (44)
= [IVot(0s, Znll, 2 + |GV BL); — 21| Vol (O, Zm)l, [ Gy (86)|, cos o, (45)
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Since |[Vol(0g, Zm)ll, » |Gv(0E) |, < B and cos ¢!, > 1 — k, we have

IVob(0%, Z) — Gv(05) |5 < 2B%k. (46)

Substituting back into the Jensen bound,

2
|ve — Gv(0%)]]; < 2B?k. (47)
Taking square roots gives
It~ Gy (#5)]], < BV2R. (48)
Thus, combining the two bounds,
76 = VoRp(0)[|, < BV26 +4, (49)
as claimed. O]

Remark 5. Lemma [3 shows that under mild conditions, the average gradient computed over a coreset
selected based on CLD remains close to the true risk gradient throughout training. The deviation is controlled
by two sources: the alignment error Kk arising from the selection of high-CLD samples, and the validation
approximation error § due to finite sample size. Consequently, optimization over CLD-coresets closely tracks
the gradient flow of the full dataset, ensuring that convergence and generalization properties are preserved.
This result is crucial for connecting loss trajectory dynamics with practical coreset construction.

B.2 Proof for Theorem [1]

Proof. Define

1 o
Ry :=Rp(05),  Gi=VeRp(0&), 6= Y Vol Zn). (50)
|C| meC
By L-smoothness of (), and in extension Rp(-), and n < 1/L,
L 2
Rip1 < Ry + (Gy, 05" — 05) + 9 Hggrl - 96”2' (51)
Substituting the model update 05" — 05 = —nvé:
L772 2
Rip1 < Ry — (G, ve) + > HVEHQ : (52)
Rearranging,
t LnQ t 112
(Ge,ve) < Be — Riy1 + - el - (53)
Decomposing the inner product using the true gradient G; we get,
(Gi,76) = (G G+ (76 — Go)) = ||Gull3 + (G e — G- (54)
Substituting this back,
Ln? 2
|Gy < Be = Ry = 0(Geve = Go) + =5 |1, - (55)

Let Ey = ||[v& — Gillo-
Lemma [3| under the stated assumptions gives the bound F; < B2k + 4.
By Cauchy—Schwarz inequality,

—{(Gr,76 — Gi) < nllGelly |ve — Gill, = nllGelly Er. (56)
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Young’s inequality states that ab < a?/(27y) +vb?/2, Va,b >0 and v > 0.
By using this inequality with v =1,

n
—1(Gi,ve — Gi) < 5 ||Gt||2 E2 (57)
Substituting this into the inequality in Equation (55]),
L 2
2 2 n t 112
nlIGelly < Re — Rer + 4 HGtH2+%E?+—2 el - (58)

Since all gradients are bounded by B, their average ||v&||, is also bounded by B

Ln?
S NG < Re— Revi+ 3 B} + < B2 (59)
Summing from ¢t =0 to T — 1:
. T-1 T-1 Lp?
1Y Nl < (o )+ 3 (E2+ B8 (60)
t=0 t=0
Let Rin¢ = infyg Rp(f). Then Ry — Rr < Rg — Rins. Substituting the bound E; < Bv/2k + 4:
T-1
I NGl < Rp(62) = Rins + T3 (BV2 +6)* + T ;7 B. (61)

The sum on the left is lower bounded by 7" times the minimum term, i.e., ZtT:_Ol HGtHg > T -ming<i<7 |Gy Hg

T i 1G> < Rp(6%) — Rint + T2 (BV2r +6)% + TL—’72 B (62)
T2 o<i<r ! N2 = c " 2 2
Since n,T > 0,
2 [RD(Q%) - Rinf] 2 2
01313[ IGl5 < T + (BV2k +96)° + LnB~. (63)
This proves the theorem. O

C Datasets, Models, and Experimental Details

We evaluate our method on two standard image classification benchmarks: CIFAR-100 (Krizhevsky et al.
2009) and ImageNet-1k (Russakovsky et al.l 2015). CIFAR-100 consists of 50,000 training and 10,000 test
images across 100 classes and is publicly available without licensing restrictions. For ImageNet-1k, we use the
official release from https://image-net.org/download.phpl which is provided under a standard academic
research license and requires user agreement to the terms of access.

Architectures. Our experiments employ the following CNN backbones:

o ResNet-18, ResNet-34, and ResNet-50 He et al.| (2016]) from https://pytorch.org/vision/
stable/models/resnet.html (BSD-3-Clause license).

e VGG-19 with batch normalization [Simonyan & Zisserman| (2014]) from https://pytorch.org/
vision/stable/models/vgg.html (BSD-3-Clause license).

e DenseNet-121 Huang et al| (2017) from https://pytorch.org/vision/stable/models/
densenet.html (BSD-3-Clause license).

For baseline comparisons, we use the DeepCore library |Guo et al.| (2022)) (https://github.com/PatrickZH/
DeepCore), which provides standardized implementations of several coreset selection techniques and is li-

censed under MIT. All training and evaluation code was implemented in PyTorch; dependencies including
torchvision are MIT/BSD licensed.
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Training Setup for CIFAR-100. All networks were trained using SGD [Bottoul (2010) for 164 epochs with
an initial learning rate of 0.1, decayed by a factor of 0.1 at epochs 81 and 121. Nesterov momentum [Sutskever
et al.| (2013) with momentum 0.9 was used, along with weight decay 5 x 10~%. Standard augmentations
included resizing to 32 x 32, random cropping with padding = 4, random horizontal flips, and normalization.

Training Setup for ImageNet-1k. Training followed standard ImageNet protocols: all models were
trained with SGD for 90 epochs, with a learning rate of 0.1 decayed by 0.1 at epochs 30 and 60. Nesterov
momentum with coefficient 0.9 and weight decay 10~* were used. Data augmentations included random
resized cropping to 224 x 224, horizontal flipping, and normalization.

Reproducibility. No fine-tuning or additional regularization was applied to any method, including ours,
ensuring fairness in coreset comparisons. All methods used the same validation split as the validation proxy,
and the same train split as the full training set available for each seed when scoring training samples. Each
experiment was repeated across 5 independent runs with distinct seeds; reported results reflect the mean
and standard deviation.

All experiments were conducted on a private compute cluster with access to NVIDIA A40 GPUs (48 GB

memory, 300W TDP). All training and evaluation runs were performed in full precision using PyTorch.

Results. Performance results for CIFAR-100 and ImageNet-1k coreset experiments are shown in Tables
and [5] Cross-architecture transferability results for CLD coresets, as discussed in Section [6] are shown
in Table [6l
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Table 2:

Performance (top-1 accuracy) of score-based coreset methods on CIFAR100 trainsplit. The coresets

were selected and finetuned on ResNet-18. The full trainset performance was 70.95 4+ 0.68. The mean
accuracy over 5 runs, along with their standard deviation, is reported.

Coreset CLD
Random Herding Forgetting Cal EL2N Moderate CCS(AUM) D2-Pruning

Sizes (Ours)

0.2% 3.66 2.57 3.52 5.24 3.9 3.8 4.1 4.6 5.67

+0.41 +0.52 +0.16 +041 +045 +0.47 +0.5 +0.52 +0.36

7;);1(7707”6703””3745 77777 512 746 62 6 69 T4 751

+0.28 +0.49 +0.53 +0.28 £0.41 +0.44 +0.42 +0.46 +0.59

7{).&7707”6&?””470? 77777 68 912 87 84 82 86 ¢ 8.91

+0.27 +0.41 +0.18 +0.27 +04 +0.42 +0.38 +0.43 +041

7;).;(7707”77976””571z1 77777 842 1019 98 102 105 105  10.56

+0.79 +0.7 +0.38 +0.79 £0.48 +0.49 +0.55 +0.5 +0.24

7 71?%7 | 938 m32 1153 1373 132 127 121 131 13.04

+0.41 +0.33 +0.44 +041 +0.46 +0.45 +0.49 +0.47 +0.54

772?%""&?4””8725 77777 159 1645 17 163 164 175  17.05

+0.28 +0.45 +0.21 +0.28 +0.43 +0.43 +0.46 +0.45 +0.22

773?%” 1658 923 1824 2005 211 20 203 213 2185

+0.95 +0.52 +0.32 +0.95 +0.5 +0.46 +0.52 +0.49 +0.85

7 74?%7 1999 1152 2382 2297 245 232 239 241 2401

+1.04 +1.16 +0.86 +1.04 £0.47 +0.44 +0.5 +0.46 +0.24

775?%77 k72§ 4117771376767777567378777721137777577877772617777577177777§8747777§772767

+0.54 +1.35 +0.85 +0.54 +0.44 +0.41 +0.44 +0.43 +0.83

776?%” | 2366 1549 2816 2693 209 284 204 308 3124

+0.49 +0.92 +0.62 +0.49 +0.4 +0.39 +04 +04 +0.19

7 77?%7 [ 2836 1852 3095 2737 32 303 315 317 3237

+0.85 +0.56 +0.66 +0.85 +0.38 +0.36 +0.38 +0.37 +0.71

778?%”W36§57”7187572””517874””2§§2”§3T277”316””?:276””75279””55517

+1.12 +0.39 +0.23 +1.12 +0.36 +0.34 +0.36 +0.35 +0.68

779?%” 3212 1852 3279 2019 344 33 338 341 3404

+1.48 +0.98 +0.94 +148 +0.34 +0.33 +0.35 +0.34 +0.74

77107?;7 3275 1954 3304 3102 358 342 35 354 3581

+1.02 +0.85 +0.65 +1.02 £0.32 +0.31 +0.33 +0.32 +0.21

7 ;(;9; | 3563 3514 3712 3524 396 387 401 412 3915

+0.99 +1.06 +0.85 +0.81 +0.28 +0.27 +0.29 +0.28 +0.57

775&;7 | 4317 4414 4578 4218 472 46 83 49 4618

+1.02 +0.4 +0.41 +0.69 +0.24 +0.23 +0.25 +0.24 +0.13

77752%?7Wﬁgifﬁ667172””667172””6?;65”657877”651””6679””76778””655617

+0.5 +0.46 +0.61 +0.41 +0.2 +0.19 +0.21 +0.2 +0.82
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Table 3: Performance (top-1 accuracy) of optimization and training property-based coreset methods on
CIFARI100 trainsplit. The coresets were selected and finetuned on ResNet-18. The full trainset performance
was 70.95 + 0.68. The mean accuracy over 5 runs, along with their standard deviation, is reported.

Coreset CLD
Random CRAIG Glister GraphCut SloCurv TDDS Dyn —Unc DUAL

Sizes (Ours)

0.2% 3.66 3.5 3.43 5.8 3.62 3.7 2.1 2 5.67

+0.41 +0.42 +0.32 +0.24 +0.44 +0.44 +0.55 +0.56 +0.36

;;10/;7”66377733377721?9{”"77077"”75}16”"6 77777 35 34  T51

+0.28 +0.4 +0.37 +0.39 +0.36 +0.41 +0.5 +0.52 £0.59

76.&7707k76§77777?377777745777787976777777.2147777872 77777 5.1 5 891

+0.27 +0.39 +0.61 +0.31 +0.2 +0.4 +0.48 +049 +0.41

’éléoj;f”779767"55""876577"973797"”9.56”"161””7””75"16576’

+0.79 +0.47 +0.47 +0.81 +0.42 +0.48 +0.53 +0.54 +0.24

’71?%” 938 122 904 1186 1217 128 95 104 13.04

+0.41 +0.44 +0.43 +0.47 +0.3 +0.45 +0.5 +0.51 +0.54

’72:70” 1274 159 1454 1695 1335 165 142 158 17.05

+0.28 +0.42 +0.41 +0.55 +0.42 +0.43 +0.47 +0.48 £0.22

’ 737%7 [ 1658 196 1747 1921 2267 203 189 205 21.85

+0.95 +0.46 +0.32 +0.57 +0.8 +0.47 +0.5 +0.5 +0.85

’74;707 [ 1999 23 2399 2133 2197 237 227 243  24.01

+1.04 +0.44 +0.58 +0.71 +0.55 +0.45 +0.48 +0.47 +£0.24

’75?%" 2241 258 2483 2631 2344 266 258 275 2726

+0.54 +0.4 +0.73 +0.58 +0.71 +0.42 +0.44 +0.43 +0.83

’76:%” | 2366 281 2657 3035 2541 289 282 30 31.24

+0.49 +0.38 +0.69 +0.68 +0.43 +0.39 +0.41 +0.4 +0.19

- 2836 30  27.57 3163 2745 308 303 321 32.37

+0.85 +0.36 +0.84 +0.71 +0.6 +0.37 +0.38 +0.38 +0.71

’78:%” 3075 313 2879 3222 2917 32 317 334 3331

+1.12 +0.34 +0.8 +0.48 +0.47 +0.35 +0.36 +0.35 £0.68

o 3202 327 3022 3302 3071 334 33 348 34.04

+1.48 +0.32 +0.32 +0.83 +0.57 +0.33 +0.34 +0.33 +0.74

’ ;(;7; [ 3275 341 3122 3441 3317 347 344 362 35.81

+1.02 +0.3 +1.33 +0.96 +1.16 +0.31 +0.32 +0.31 +0.21

o | 35.63 382 3649 3802  37.23 390 388 405 39.15

+0.99 +0.26 +0.47 +0.52 +0.81 +0.27 +0.28 +0.27 +0.57

;(;7; | 4317 456 4181 4523 4519 465 458 475  46.18

+1.02 +0.22 +0.88 +0.42 +0.42 +0.23 +0.24 +0.23 £0.13

. 6321 648 6385 6518 6653 659 645 662 68.01

+0.5 +0.19 +1.02 +0.32 +0.61 +0.2 +0.2 +0.19 +0.82

25



Under review as submission to TMLR

Table 4: Performance (top-1 accuracy) of score-based coreset methods on ImageNet-1k trainsplit. The
coresets were selected and finetuned on ResNet-18. The full trainset performance was 69.91 + 0.01. The
mean accuracy over 5 runs, along with their standard deviation, is reported.

C;)irzesset Random Herding Forgetting Cal EL2N Moderate CCS(AUM) D?-Pruning CLD
0.1% 0.7 0.31 0.64 1.13 0.88 0.85 1.52 1.95 1.96
+0.03 +0.01 +0.01 +0.12 +0.25 +0.2 +0.5 +0.4 +0.7
76.;(7;7 | 398 139 . 478 684 58 475 704 72 7.16
+0.19 +0.17 +1.01 +0.13 +0.1 +0.5 +0.1 +0.25 +0.63
771?%77k7778767777473§777771276777777151777157.2777711?:2777717478677771670717777155327
+0.43 +0.62 +0.51 +0.22 +0.5 +1.03 +0.25 +0.4 +0.41
7 75?%7 [ 3978 1536 4486 37.65 4043 3895 4404 4575 465
+0.23 +0.18 +0.74 +1.3 +0.03 +0.25 +0.1 +0.5 +0.19
771(;(7;7 | 5124 2684 5319 4416 4516 4456 5201  50.65  53.81
+0.04 +0.05 +0.06 +0.78 +0.4 +0.1 +0.2 +0.3 +0.23
773(;07;7 | 6087 4661 o 60.9 5441 5322 5529 6184  60.75  62.91
+0.13 +0.87 +0.05 +045 +0.25 +0.1 +0.5 +0.1 +0.51
774(;0/;7 | 6213 5388 6239 5845 5645  60.08 6248  61.04 6351
+0.38 +0.23 +0.91 +0.92 +0.1 +0.15 +0.02 +0.5 +0.75
775(;7;7 | 6411  59.14 6318  60.11 5946 6258 6431 6492  65.78
+0.12 +0.41 +0.05 +0.6 +0.45 +0.25 +0.04 +0.65 +1.03
7765:%?7W65§177764727377777657274777762141277671.72§777641§877776571?77776’77071777687627
+0.03 +0.2 +0.02 +0.01 +0.25 +0.1 +0.1 +0.1 +0.38
777(;?;7 | 6881 6522 6785  66.57 6423 6518 6881 6891 6891
+0.04 +0.02 +0.9 +0.03 +0.89 +0.03 +0.1 +0.01 +0.01
77570/;7 | 6841 6742 6801  67.12 6545  67.13  69.01 6942  69.42
+0.02 +0.01 +0.1 +0.02 +0.2 +0.03 +0.03 +0.05 +0.05
778(;(?;7 | 6812  68.02 6881 6815 66.95 689  69.93 6993  69.93
+0.03 +0.02 +0.5 +0.03 +0.25 +0.01 +0.02 +0.02 +0.02
77857(%7 | 6875 6801 6881 6891 6717 689 6991 6993  69.93
+0.05 +0.03 +0.5 +0.04 +0.1 +0.2 +0.25 +0.02 +0.02
;(;7;7 | 691 6992 7004 6923 6881  69.01 7012 7012 7012
+0.78 +0.4 +0.52 +0.5 +0.3 +0.2 +0.03 +0.03 +0.03
779‘;07;7 6991 69.91 6991 7012 6991 7012  69.91  70.12  70.12
+0.06 +0.04 +0.04 +0.01 +0.04 +0.03 +0.1 +0.03 +0.03
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Table 5: Performance (top-1 accuracy) of optimization and training property-based coreset methods on
ImageNet-1k trainsplit. The coresets were selected and finetuned on ResNet-18. The full trainset perfor-
mance was 69.91 4+ 0.01. The mean accuracy over 5 runs, along with their standard deviation, is reported.

Coreset ]
Sizes Random CRAIG Glister GraphCut SloCurv TDDS Dyn—Unc DUAL CLD
0.1% 0.7 0.94 0.86 1.09 1.23 1.04 0.45 0.41 1.96
+0.03 +0.1 +0.01 +0.09 +0.06 +0.2 +0.9 +1.06 +0.7
’ E);(V; | 398 641 555 727 589 564 145 134 7.16
+0.19 +0.25 +0.05 +0.03 +0.07 +0.03 +1.05 +0.87 +0.63
) 71:%7 | 786 1556 1245  14.27 1417 1405 392 485 15.92
+0.43 +0.05 +0.01 +0.31 +0.02 +0.1 +0.8 +0.75 +£0.41
) 752%7 [ 3978 39.95 4219 398 401 4054 1598 162  46.5
+0.23 +0.01 +0.03 +0.6 +0.14 +0.05 +0.5 +0.4 +0.19
’ ;(;9; | 5124 4676 501 4827 4639 4645 2078 50.75 53.81
+0.04 +0.1 +0.01 +1.02 +0.5 +0.25 +0.6 +0.5 +0.23
) ;)(;7; | 60.87 5541 5853  61.23 5719 5724  50.16  60.19 62.91
+0.13 +0.05 +0.05 +0.01 +0.01 +0.1 +0.5 +0.03 +£0.51
’ 216(7; | 6213 5655 6172 63.23 6211 6223 60.25 6345 63.51
+0.38 +0.02 +0.02 +0.08 +0.67 +0.5 +0.2 +0.25 +0.75
) ;6(7; | 6411 5856 6341 6517 6478  63.96 6317 6521 65.78
+0.12 +0.5 +0.51 +0.05 +0.13 +0.81 +0.1 +0.04 +£1.03
’ 765:%7 | 6521 6341 6583 6791 6581 6519 6598 6831 68.02
+0.03 +0.2 +0.02 +0.54 +0.02 +0.1 +0.25 +0.01 +£0.38
) ;(;(7; [ 6881 6521  67.91 6852  67.18 6725 6632  68.76 68.91
+0.04 +0.01 +0.03 +0.04 +0.03 +0.01 +0.1 +0.5 +0.01
’ }517; | 6841 6801 6854 6881 6803 6814 6819  69.92 69.42
+0.02 +0.5 +0.46 +0.02 +0.15 +0.25 +0.01 +0.01 =4+0.05
) é(;%: [ 6812 6801 6878 6912 691 6891 6819  69.92 69.93
+0.03 +0.5 +0.02 +0.05 +0.14 +0.2 +0.01 +0.01 +0.02
’ 785;; | 6875 6878 6878 7001  69.1 6891  69.93  69.93 69.93
+0.05 +0.02 +0.02 +0.28 +0.02 +0.25 +0.2 +0.2 +0.02
7 tt)(;‘?; | 691 6848  69.18 7012 69.68 69.68  70.12  70.12 70.12
+0.78 +0.25 +0.34 +0.43 +0.03 +0.03 +0.03 +0.03 +0.03
) 7957(7; ] 6991 6991 69.91 7012 69.91  69.68  70.12  70.12 70.12
+0.06 +0.04 +0.04 +0.43 +0.04 +0.03 +0.03 +0.03 +£0.03
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Table 6: Cross-architecture performance of coresets of different sizes of ImageNet-1k identified by CLD. Each

cell reports mean test accuracy (top) and standard deviation (bottom) over 5 runs.

Minimal accuracy

drop (< 1%) is observed when transferring coresets from a smaller ResNet-18 model to larger or different

architectures.

Coreset size (% of dataset)

Target Model Source Model

5% 10% 25% 40% 50% 75% 80% 100%

46.91 54.83 60.21 66.83 6893 71.12 73.04 73.21

ResNet-34  ResNet-18 +£003 £005 +£012 £048 £0.01 £001 £0.05 =+0.01
47.01  54.75 60.98 67.26 69.03 71.06 73.04 73.21

ResNet-34  ResNet-34 +£002 £035 £07 +£0.10 +£004 £002 £001 =£0.01
4719  56.14 62.83 68.14 71.15 73.04 7495 75.81

ResNet-50 ResNet-18 +£001 £005 =013 £0.01 £003 £007 £0.02 =+£0.05
48.10 57.03 63.14 6891 71.25 73.57 7495 7581

ResNet-50  ResNet-50 £005 £003 =002 £005 £004 £001 +£0.02 =+£0.05
45.18  55.18 61.19 67.34 71.02 71.85 73.85  74.90

DenseNet-121  ResNet-18 +037 £061 +£0.01 +£004 083 £004 +£0.02 +£0.37
46.07  55.88 62.01 67.91 71.36 72.18 74.04  74.90

DenseNet-121 DenseNet-121 £+ 0.02 +0.03 +£0.72 £ 0.61 =£0.10 +0.07 +0.04 =+ 0.37
43.12  53.18 60.12 66.17 70.37 72.01 73.98  74.70

VGG-19(bn) ResNet-18 +£004 £003 +£0.02 £0.07 £001 £004 £037 £0.71
44.01  54.12 61.01 67.09 70.25 7258 74.05 74.70

VGG-19(bn) VGG-19(bn) +0.50 +047 +£031 +£0.16 +£0.25 +0.02 £004 £0.71

D Additional Ablations

D.1 Stability across random seeds

We measure sensitivity to random initialization by computing per-example CLD scores across five independent
seeds on ImageNet-1k (ResNet-18). The pairwise mean absolute error (MAE) between score vectors is
consistently below 10~°, indicating negligible variance and high reproducibility; see Figure

x10-¢

0.0e+-00 [EXTERI 8.5e-06 8.5e-06
0.0e-+-00
R.7e-06 UKERSVVE 5.4e-06

Seed 1
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Seed 2

8.3e-06

Seed 3

8.4e-06

8.5e-06 8.4e-06 [MUVEEEI]

8.4e-06

Seed 4

8.6e-06 8.3e-06 0.0e+00 -

Seed 5

Seecl 1 Seed 2 Seec 3 Seed 4 Seed 5

(a) Seed reproducibility. Pairwise MAE of CLD
scores across 5 seeds (lower is better).

Figure 7: Seed-wise stabilit,

70

G

e --®- Random —e— TDDS
= —&— CCS (AUM) —#- DUAL
64 V4 —+ - ELON —# - 5loCurv
V4 —= - Forgetting == CLD
. /./ —=— (Glister Full ace. £0.5%
i Y3
s —#- D*Pruning

Mean Top-1 accuracy over 5 seeds (%)

e e e e
70% 75% 80% 85% 90% 95% 100%

Coreset size (% of full dataset)

G5%

(b) Subset size vs. accuracy. ImageNet-1k, ResNet-18. The
shaded band marks the 0.5% tolerance below full-data accuracy.

y and subset-size trade-offs on ImageNet-1k.
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D.2 Minimum subset size for full-data accuracy

We quantify the subset fraction required to recover near full-data performance on ImageNet-1k (ResNet-18).
As shown in Figure CLD attains test accuracy within 0.5% of the full-data model using only 75% of the
training set, on par with D2-Pruning and DUAL, and superior to other baselines we evaluated.

E Detailed Explanation of Compute and Storage Cost of Coreset Methodologies

Recap of Notation We denote the number of training samples by N (S ~ D) and the number of query
(held-out validation) samples by @ (V ~ D®). The model is trained for T epochs. Certain TDA metrics
have hyperparameters (denoted A;) used to compute the TDA metric 7, which may influence computational
cost.

We measure computation in floating-point operations (FLOPs). Let fiarge be the cost of a single-example
forward pass for the large model with piarge Parameters, and approximate the backward-pass cost as 2 fiarge-
When a proxy (smaller) model is used, we write its per-example forward cost and parameter count as f and
b, with f < flarge and P Plarge-

R is the number of model retrainings (when applicable). k is the coreset size; d is the feature dimensionality;
and B is the minibatch size (used during training but not appearing in per-example FLOP counts). Some
methods perform subset reselection during training; when used, we denote the reselection interval (in epochs)

by 7.

Reference: full-data training (large model) Training the large model on all N points for T epochs
costs SNT flarge FLOPs and stores piage parameters (ignoring optimizer state). Totals below are the end-
to-end cost to (i) select a coreset of size k and (ii) train the large model on that coreset.

Example scenario (used for all plug-in estimates). To further illustrate the computational efficiency
of CLD, we provide approximate cost values by substituting the values of the parameters for finding and
training a 10% coreset on the ImageNet-1k dataset.

e N=1,268,355 (99% of train), @=12,812 (remaining 1%), d=224x224x3, ¢=1000.

e Size of coreset k=126,836.

e Proxy encoder: ResNet-18 with p=11,689,128 and per-example forward FLOPs f=1,818,228,160.
o Large model: ResNet-50 with piarge=25,557,032 and fiarge~8,178,000,000.

» We use the standard ImageNet recipe of T'=T}0x,=90 epochs (Yang), [2017)).

o When a method has additional parameters, we use the paper’s choice (e.g., in Glister, y=20).

E.1 Score-based Methods

E.1.1 Kernel Herding (Herding)

Herding (Chen et al., 2010) iteratively constructs a representative subset by approximating the data distri-
bution in an RKHS. At iteration t, it selects

Z*t = arginax <’LU1;_1, ¢(Z)>7
zZes
where ¢(-) is the kernel feature map and w;_; is an RKHS weight vector. Repeating for k iterations yields
a size-k coreset.

Execution. One-time selection prior to training the large model (a proxy encoder is used to obtain features):

i) Train proxzy encoder: train a proxy model for Tproxy epochs (forward cost f, parameters p).
ii) Encode full dataset: extract features for all N points using the trained proxy (N f FLOPs).
iii) Herding selection: for t=1:k, update candidate scores and select z*! using inner products in feature
space (explicit features of dim. d give O(Nd) per iteration, i.e., O(Ndk) total).
iv) Train on coreset: train the large model on the selected k points for Tiate epochs (here Tiate=T).
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End-to-end compute (selection + coreset training).

Computeyerasng = 3N Tproxy f + Nf + O(Ndk) + 3k Tate frarge
—— —~ ——
train proxy feature extraction iterative herding updates train large on coreset

Selection-stage storage overhead. Storing explicit features dominates; caching a kxk Gram among
selected points is optional:

StorageOverheadye,qing = O(Nd) (+ O(k?) optional Gram)

Example scenario values (ImageNet-1k; Tiate=90, Tproxy=90).

Computeye,aing (PFLOPs only) ~ 622.663 + 2.306 + 280.061 = 905.031 PFLOPs,
— -~ —_—
3NTproxyf Nf 3k5Tlate flarge

(negligible herding updates)

StorageOverhead float32) ~ Nd x 4 = 763.692 GB (features only).

Herding (

E.1.2 Example Forgetting (Forgetting)

Forgetting (Toneva et all [2018) measures, for each training sample, how many times it transitions from
being correctly classified to incorrectly classified during training (“forgetting events”). Examples with higher
forgetting counts are ranked as more informative.

Execution. One-time selection prior to training the large model on the coreset. Let Teapy be the number
of early epochs run on the full dataset to collect forgetting statistics, and Tiate =7 — Tcarly the remaining
epochs used to train on the selected coreset:

i) Train on all N points for Tca.y epochs while tracking, per example, the previous correctness bit and
a forgetting counter (constant-time update per visit).
ii) Select the top k examples by forgetting count; train the large model on this coreset for Tj,te epochs.

End-to-end compute (selection + coreset training).

ComputeForgetting = 3N Tearly flarge + 3k Tlate flarge
N————’
collect forgetting on full data train large on coreset

Selection-stage storage overhead. Streaming the metric requires only one scalar counter (and one
correctness bit) per training example:

StorageOverhead, O(N) (per-sample counter/bit)

Forgetting =

Example scenario values (ImageNet-1k; Teariy=10, T1ate=80).
Computer,,gersing (PFLOPs only) ~  311.178  + 248.943 = 560.122 PFLOPs,

3NTearly flarge Bkﬂate flarge

StorageOverhead float32) ~ N x 4 = 5,073,420 B = 0.005 GB.

Forgetting(

E.1.3 Area Under Margin (AUM)

AUM (Pleiss et al., 2020) scores each training sample by aggregating its margin over training (e.g., logit of
the true class minus the max non-true logit), producing the area under the margin across epochs/updates.
Higher absolute AUM indicates more consistently confident predictions; lower AUM can flag ambiguous or
noisy samples. We compute AUM with a proxy model and then train the large model on the selected coreset.

Execution. One-time selection with a proxy; the large model then trains on the coreset for all T epochs:
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i) Train proxzy & log margins: train a proxy for Tphroxy epochs on all N samples (per-example for-
ward cost f, parameters p), recording each sample’s margin as it appears in training (no extra
forward /backward beyond training).

ii) Compute AUM & select: for each sample, aggregate (e.g., sum/average) its logged margins to obtain
AUM and select a size-k coreset according to the desired criterion (e.g., highest AUM, or filter low-
AUM points).

iii) Train large on coreset: train the large model on the selected k samples for T epochs.

End-to-end compute (selection + coreset training).

Compute,yy = 3N Throxy f + 3T fiarge
—_———
train proxy (margin logging piggybacks) train large on coreset

Selection-stage storage overhead. AUM can be streamed with a running sum/count per sample:

‘ StorageOverhead,yy = O(N) (running sums) ‘

Example scenario values (ImageNet-1k; Tproxy=90, T=90).

Compute,y, (PFLOPs only) ~ 622.663 + 280.061 = 902.724 PFLOPs,
3NTproxyf 3kT flarge

StorageOverhead,y, (float32) ~ N x 4 = 5,073,420 B = 0.005 GB.

E.1.4 Contrastive Active Learning (Cal)

Cal (Margatina et al., |2021) acquires unlabeled examples that are near labeled ones in feature space yet
differ in predictive probabilities (contrastive pairs), using nearest neighbors over encoder features and a
simple divergence-based ranking.

Execution. A one-time selection stage is performed prior to training the large model:

i) train a prozxy model from scratch on the (growing) labeled set up to size k (per-example forward
cost [ < flarge)§
ii) encode all U unlabeled points with the trained proxy (here U=N);
iii) run kNN-style neighbor search between the unlabeled pool and the labeled set (size k), and select a
coreset of size k.

(The divergence computation is much cheaper than (ii)-(iii) and is absorbed into big-O.)

Overall compute (select once, then train-on-coreset).

Computegy = 3k Tproxy f + Uf +  OWkd) +  3kT fiarge
——— —_———
train proxy encode unlabeled pool kNN over features train large on coreset

Selection-stage storage overhead. Storage overhead is due to the cached features for the unlabeled pool

‘ StorageOverheada,; = O(Ud) (proxy features) ‘

Example scenario values: ImageNet-1k; U=N).

Computey,; (PFLOPs only) ~ 62.267 + 2.306 + 280.061
3kTproxyf  Uf (U=N)  3kT fiarge
— 344.634 PFLOPs,

StorageOverheadg,; (float32) ~Ud x 4 = 763.739 GB.
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E.1.5 Gradient and Error L2 Norm-based Data Pruning (GraNd, EL2N)

GraNd (Paul et al., |2021)) ranks training examples by the (expected) per-example gradient norm early in
training:
o o2
Grath(z’m) = EOt Hvat g(eh Zm) ||27

averaged over multiple random initializations and early epochs, then retains the top-k examples.

EL2N (Paul et all) [2021)) ranks examples by the (expected) L2 error of predictions early in training:
EL2Nt(Zm) = Eﬂt Hp@(fm) - YmH2>

where py are class probabilities and y,, is the one-hot label. Scores are computed at small ¢ and optionally
averaged over R runs.

Execution. One-time selection prior to training the large model. Let T¢..1y be the number of early epochs
used for scoring and Tjate =1 — Tearly the remaining epochs used to train on the coreset:

i) For each of R initializations, train on all N points for Teary epochs (costing 3NTearly fiarge) While
logging per-example predictions.
(a) EL2N: compute scores directly from the logged predictions (no extra passes).

(b) GraNd: run an additional scoring sweep to obtain per-sample gradients (one forward + one
backward pass per example per early epoch).
ii) Average scores across runs; keep the top k; train the large model on the coreset for Tj,t. epochs.

End-to-end compute (selection + train-on-coreset).

ComputeELzN = 3N Tearly R flarge + 3k CZ—‘late flarge )
—_———— —_———
early training (errors reused) train large on coreset
ComPU-tecraNd =3N Tearly R flarge + 3N Tearly R flarge + 3k Tiate flarge
—_— —_———— —_———
early training extra per-sample gradient sweeps train large on coreset

Selection-stage storage overhead. During scoring, a running vector of N scalar scores need to be stored:

StorageOverheadg; .y = O(N),
StorageOverheadg,yg = O(N).

Example scenario values (ImageNet-1k; R=10, Teariy=10, T1ate=80).

Computeg; oy (PFLOPs only) =~ 3,111.782 + 248943 = 3,360.725 PFLOPs,

SNTearlyR flarge 3kTate flarge

Computegyq (PFLOPs only) ~ 3,111.782 +  3,111.782  + 248943 = 6,472.507 PFLOPs,
———— ——— S~——

early training extra gradient sweeps 3kTate flarge

StorageOverhead (float32) & N x 4 = 0.005 GB for each.

E.1.6 Using Class Feature Medians (Moderate)

Moderate (Xia et al., [2022) builds a representative coreset by selecting, within each class, the samples whose
feature-to-center distances are closest to that class’s median distance (thus avoiding both easy near-center
redundancies and far-out outliers). We compute class centers and distances in a proxy feature space.

Execution. One-time selection with a proxy, then train the large model on the coreset for all T epochs:
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i) Train prozy: train a proxy encoder on all N samples for Tproxy epochs (per-example forward cost f,
parameters p).

i) Encode dataset: extract proxy features for all N samples (cost N f FLOPs).

iii) Class-median selection: for each class, compute the class center and all sample distances, then
select the per-class quota of samples whose distances are closest to the class-wise median (distance
computation O(Nd); median/quantile selection O(N log N) or linear-time selection).

iv) Train large on coreset: train the large model on the selected k samples for T' epochs.

End-to-end compute (selection + coreset training).

Computey,gerate = 3N Tproxy f + Nf + O(Nd+ NlogN) + 3T fiarge
—_——— ~— ———
train proxy feature extraction class centers, distances, medians train large on coreset

Selection-stage storage overhead. The main storage overhead is from caching the features during selec-
tion

‘ StorageOverheadyogerare = O(Nd) (proxy features) ‘

Example scenario values (ImageNet-1k; Toroxy=90, 7=90).

Computeyygerate (PFLOPs only) ~ 622.663 + 2.306 + 280.061 = 905.031 PFLOPs,
— <~ —_—
3NTproxyf Nf 3kT flarge

StorageOverheady,gerate (10at32) = Nd x 4 = 763.739 GB.

E.1.7 Message Passing (D? — Pruning)

D?Pruning (Maharana et al., 2024) selects a coreset by balancing difficulty and diversity via message passing
on a dataset graph built from proxy features. Initial per-sample difficulty scores (from the proxy) are diffused
over a kNN graph so that each example’s score incorporates information from its neighbors; a graph-based
sampler then selects a subset that covers diverse yet difficult regions.

Execution. One-time selection with a proxy, then train the large model on the coreset for all T epochs:

i) Train prozy: train a proxy encoder on all N samples for Tpyoxy epochs (per-example forward cost f,
parameters p).

ii) Encode dataset: extract proxy features for all N samples (cost N f FLOPs).

iii) Build graph: construct a kNN graph over the features (e.g., ANN); cost O(N kd) (or O(N dlog N)).

iv) Message passing & sampling: run H rounds of (forward/reverse) message passing on the N x k
edges to update difficulty-aware scores, then sample a size-k coreset (cost O(H N k) plus linear-time
sampling).

v) Train large on coreset: train the large model on the selected k samples for T epochs.

End-to-end compute (selection + coreset training).

Computepzpyyning = 3N Tproxy | + Nf + ONkd)+OHNE) + 3kT fiarge
—_——— ~—~ ———

train proxy feature extraction graph build & message passing train large on coreset

Selection-stage storage overhead. Caching proxy features dominates; the kNN adjacency is linear in N
and smaller in practice:

StorageOverheadpzpyyping = O(Nd) + O(Nk) (features + kNN graph)

Example scenario values (ImageNet-1k; Tproxy=90, T=90).

Computepepyyning (PFLOPs only) ~ 622.663 + 2.306 + 280.061 = 905.031 PFLOPs, (excluding graph terms)
3NTproxyf Nf 3kT flarge

StorageOverheadpzp,yning (floatd2) ~ Nd x 4 = 763.692 GB.
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E.2 Optimization-based Methods
E.2.1 Gradient Matching Optimization (CRAIG)

CRAIG (Mirzasoleiman et al., [2020)) selects a subset whose (aggregated) gradients closely match those of
the full dataset across training, typically using a submodular (stochastic-greedy) objective over per-sample
gradient embeddings at selected anchor epochs. We compute embeddings with a proxy model and then train
the large model on the coreset for all T' epochs.

Execution. One-time selection with a proxy, then train the large model:

i) Train prozy: train a proxy network on all N samples for T}, oxy epochs (per-example forward cost
f, parameters p).

ii) Per-sample gradient embeddings at anchors: every vanc epochs (anchors A=Toxy/Yanc), compute
for each sample the last-layer gradient embedding using only forward-pass outputs:

g = (P (@) —yi) ® by (@),
where hy is the penultimate representation (dim. ') and ps —y; € R is the class-probability error;
this avoids backward passes (piggybacks on training). Selection then runs stochastic-greedy on these
embeddings per anchor.

iii) Select & train large: union the anchor-wise selections to a size-k coreset and train the large model
on it for all T epochs.

End-to-end compute (selection + coreset training).

Computeggyre = 3N Toroxy f + O(A (NE + Nlog(1/e)) Deﬁ') + 3kT fiarge
—_——— ———
train proxy (embeddings piggyback) stochastic-greedy over anchors train large on coreset

Here Deg ~ F+C is the embedding dimensionality (penultimate features and class-probability error); the
submodular arithmetic is negligible in FLOPs relative to training and is kept in big-O.

Selection-stage storage overhead. We stream anchor processing so only a single anchor’s embeddings
need be cached at once:

StorageOverheadggy;q = O(N(F+C)) (per-anchor embeddings, streamed per anchor)

Example scenario values (ImageNet-1k; Tproxy=90, T=90, F'=512, C=1000).
PFLOP ly; ludi ig- lecti ~ 622. 280.061 = 2.724 PFLOP
Computeggae ( OPs only; excluding big-O selection) ~ 622.663 + 280.06 902.7 OPs,

3NTproxy f 3ET fiarge

Storagecgare (floatd2) ~ N(F+C) x4 = 7.671 GB.

E.2.2 Generalization-based Data Subset Selection for Efficient and Robust Learning (Glister)

Glister (Killamsetty et al., [2021b)) selects S; of size k via a mixed discrete—continuous bi-level objective:

argmax Ly(0*(S;)) where 6*(S;) =argmax Ls(6;S;).
S;CS, |8;[<k 0

Execution. Glister replaces the training loop: it interleaves training on the current subset with periodic
re-selection every « epochs (using stochastic-greedy with a Taylor approximation).

Overall compute (train-on-coreset). Training on the coreset over T" epochs costs 3kT" fiarge. Selection

(kmmog(i/é)) flmgeT> Hence

across 1" epochs at frequency -y costs (’)(

Computeclister = 3kT flarge + O

< (kQ + N1og(1/€)) fiarge T)
v
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Selection-stage storage overhead. Storage overhead is from validation caches:

StorageOverheadg ;orer = O(Q) (validation cache) ‘

Example scenario values:

Computeg ;sper ~ 280.061 + 60,017.420
— —_——
KT fiarge (PFLOPS) T (k04 Nlog(1/¢)) fiarse (PFLOPSs; €=0.01, y=20)
= 60,297.481 PFLOPs,

StorageOverheadg;sper ~ @ X 4 = 51,248 B~ 5.1 x 1075 GB (~ 0.05 MB).

E.2.3 GraphCut-based Data Subset Selection (GraphCut)

GraphCut (Lyer et all |2021) selects S; via the generalized graph-cut function

FS) =2 stm,g) = > s(iga), A>2.

meS jES; J1,J2€8S;

Execution. GraphCut adds a one-time selection stage prior to training (it does not replace training). The
procedure is:

i) train a proxy model;
ii) extract features for all N training points using the trained proxy (per-example cost f < fiarge);
iii) run (stochastic-)greedy selection to build a size-k subset.

(Similarity operations are typically much cheaper than (ii)-(iii), so we absorb them into big-O.)

Overall compute (train-on-coreset). One-time selection (including proxy training) + large-model train-
ing:

— 2
Computeg apncat = 3N Tproxy | + Nf + O(N°k) + 3kT fiarge
—_———— ~—~ ———
train proxy feature extraction greedy selection train large on coreset

Selection-stage storage overhead. Storage overhead is from storing pairwise similarities

StorageOverheadg,apncus = O(N %) (pairwise similarities / kernel)

Example scenario values:

Computeg,apncyr (PFLOPs only) ~ 622.663 + 2.306 + 280.061
3NTproxy f Nf 3KT flarge
= 905.031 PFLOPs,

StorageOverheadg,apncys (float32) @ full kernel peak ~ 6,434.944 GB,
half kernel peak ~ 3,217.493 GB.

E.2.4 Reconstructing the Decision Boundary (BoundarySet-CCS)

BoundarySet-CCS (Yang et al., [2024)) selects samples near the model’s decision boundary and then enforces
coverage across distance bands. Distance-to-boundary is approximated per sample by the minimum number
of PGD steps required to flip its prediction; CCS (coverage-centric sampling) then allocates the coreset budget
across bands to preserve distribution coverage.

Execution. One-time selection with a proxy, then train the large model on the coreset for all T epochs:
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i) Train proxzy: train a proxy network on all N samples for Tproxy epochs (per-example forward cost
f, parameters p).

ii) Distance-to-boundary (PGD): for each sample, run projected gradient steps until misclassification
(cap at Kpmax steps). If the stopping step is k, define d(z) = k. Each PGD step requires one forward
& one backward; we use 3f per step in our convention. Let K < K., be the average steps per
sample.

iii) CCS selection: partition samples by d(z) € {0,..., Kmax} and allocate the size-k budget across
bands (linear-time bucketting and sampling).

iv) Train large on coreset: train the large model on the selected k points for all T epochs.

End-to-end compute (selection + coreset training).

Computegyyngaryset-ces = 3N Tproxy f + INK f + 3kT flarge
%/_/ —
train proxy PGD distance-to-boundary sweeps train large on coreset

Selection-stage storage overhead. Storage is mainly through the scalar distance per sample during
selection:

StorageOverheadg,yngaryses-ccs = O(N) (per-sample distance)

Example scenario values (ImageNet-1k; Tproxy=90, Kmax=50 so K~50, T=90).
CompUtesoumaaryses-ccs (PFLOPs only) &~ 622.663 + 345.924 + 280.061 = 1,248.648 PFLOPs,
NTpeoryf  3NKf KT frarge

StorageOverheadg,ypgaryses-ces (loatd2) ~ N x 4 = 0.005 GB.

E.3 Training Property-based Methods
E.3.1 Samples with Low Loss Curvature (SloCurv)

SloCurv (Garg & Roy, 2023 scores each training sample by an input-loss curvature proxy computed at the
end of (proxy) training. For a sample Z,, with model parameters §7 and random Rademacher directions v,
scaled by h, the score is

R
Curv(z,; 1) = %Z ||Vz[f(9T,Zm +ho) = (07, 2 )] H;
r=1

Samples with the lowest curvature are retained to form a size-k coreset.
Execution. One-time selection prior to training the large model; a proxy model is used for scoring:

i) Train prozy: train a proxy encoder with per-example forward FLOPs f and parameters p for Tproxy
epochs on all N points.

ii) Curvature scoring: at the end of proxy training, for each sample compute Curv(z,,;6%) using R
Hutchinson repeats. This requires (R+1) gradient evaluations per sample (one at Z,, and one for
each Z,,+hv,), each costing = (1 fwd + 1 bwd) ~ 3f in our convention.

iii) Train on coreset: select the k lowest-curvature samples and train the large model on this coreset for
Tate=1 epochs.

End-to-end compute (selection + coreset training).

Computeg, gury = 3N Throxy | + 3N (R+1) f + 3k Thate flarge
— —_— —
train proxy curvature scoring at end of proxy training train large on coreset

Selection-stage storage overhead. Storage overhead is from keeping a track of the running curvature
values and the directions probed.

StorageOverheadg) ooury = O(N) + O(Rd) (running stats + R probe dirs) ‘
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Example scenario values (ImageNet-1k; Tproxy=90, Tiate=90, R=10).

Computegy ooyry (PFLOPs only) &~ 622.663 + 76.103 + 280.061 = 978.827 PFLOPs,
3N Tproxy f 3N(R+1)f 3kTate flarge

StorageOverheadg; jaur, (float32) & N x 4+ Rd x 4 = 11,094,540 B = 0.011 GB.

E.3.2 Temporal Dual-Depth Scoring (TDDS)

TDDS (Zhang et al., [2024) builds a coreset by combining two temporal depths of signal from training with a
prozy model. Depth 1 computes, for each epoch, the projection of each sample’s per-sample gradient onto
the epoch’s accumulated gradient direction. Depth 2 then aggregates these per-epoch contributions over a
sliding window of length J and emphasizes their temporal variability (e.g., windowed variance). We maintain
windowed statistics in a streaming manner (constant-time updates), so full trajectories need not be stored.

Execution. One-time selection with a proxy; the large model then trains on the coreset for the full T'
epochs:

i) Train proxy: train a proxy for Tproxy epochs on all N samples (per-example forward FLOPs f,
parameters p); accumulate the epoch gradient direction.

ii) Per-sample gradients: after each proxy epoch, run a scoring sweep to compute per-sample gradients
and their projections onto the epoch direction (costing one forward+backward per sample); update
the J-length windowed statistics and TDDS score (streaming).

iii) Select & train large: rank by TDDS and keep the top-k; train the large model on these k samples for
all T epochs.

End-to-end compute (selection + coreset training).

Computerypg = 3N Throxy [+ 3N Throxy f + 3kT fiarge
—_———— ——
train proxy per-sample gradient sweeps for TDDS train large on coreset

Selection-stage storage overhead. Streaming TDDS requires a J-length buffer of scalar contributions per
example (and a temporary epoch-direction vector):

‘ StorageOverheadp,s = O(NJ) (windowed logs) ‘

Example scenario values (ImageNet-1k; 7=90, Tproxy=90, J=10).

Computegys (PFLOPs only) ~ 622.663 -+ 622.663 + 280.061 = 1,525.387 PFLOPs,
3NTproxy f per-sample gradient sweeps 3ET flarge

StorageOverheadpps (float32) ~ NJ x 4 = 50,734,200 B = 0.051 GB.

E.3.3 Using Prediction Uncertainty with a Proxy (Dyn-Unc, DUAL)

Dyn-Unc (He et al| [2024)) measures prediction uncertainty via a sliding window of length J over per-example
target-class probabilities and averages the windowed uncertainty across proxy training.

DUAL (Cho et al), [2025)) combines uncertainty with difficulty (window-mean prediction) and computes scores
from an early stage of proxy training.

Execution. One-time selection with a proxy; the large model then trains on the coreset for the full T’
epochs:

i) Train prozy: train a proxy with per-example forward FLOPs f and parameters p for Tphroxy epochs;
maintain sliding-window statistics (length J) via O(1) updates per visit.
ii) Score € select:
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o Dyn-Unc: use windowed uncertainty (variance over the last J predictions), averaged over all proxy
epochs Tproxy-
e DUAL: use the product of windowed uncertainty and difficulty (window mean), averaged over the

early proxy epochs Tproxy,carly < Tproxy-
o Beta sampling (DUAL): apply pruning-ratio—adaptive sampling based on a Beta distribution to
stabilize extreme pruning. This adds negligible compute and storage.
iii) Train on coreset (large model): train for all T epochs on the top-k points.

End-to-end compute (selection + coreset training).

ComputeDyn_Unc = 3N Tproxy f + 3k T flarge 5
—_——— N———
train proxy + logging train large on coreset

Computepyy, = 3N Tproxy,carly f + 3kT fiarge
—_— —

early proxy scoring train large on coreset

Selection-stage storage overhead. Only require a scalar window of values per example.

StorageOverheadp,, g, = O(NJ),
StorageOverheadyy,, = O(NJ).

Example scenario values (ImageNet-1k; 7=90, Tproxy=90, Tproxy,early=50, J=10).

Computepy, y,. (PFLOPs only) ~ 622.663 + 280.061 = 902.724 PFLOPs,
BNTpeoryf  3KT fiasge

Computepy,; (PFLOPs only) ~  345.924 4 280.061 = 625.985 PFLOPs,
3NTproxy,early f 3ET flarge

StorageOverhead (float32) =~ NJ x 4 = 0.051 GB for each.

E.4 Our Method - Correlation of Loss Differences (CLD)

CLD builds a coreset by leveraging only loss values over training: it records the per-epoch losses of all training
points and a small held-out query set, then ranks training examples using the correlation of loss differences
across epochs between train and query. No gradients or Hessians are required.

Execution. One-time selection with a proxy, followed by large-model training:

i) Train proxy: train a proxy model for Tproxy epochs on all N samples (per-example forward cost f,
parameters p).

ii) Collect losses: during proxy training, record per-epoch losses for all N training samples (no extra
compute beyond the training pass), and run a forward pass on all @ query samples each epoch to
record their losses (Qf FLOPs per epoch).

iii) Score € select: compute CLD scores (correlations of loss differences over epochs) and select a size-k
coreset. The arithmetic for correlations/ranking is linear-time in the number of stored losses and is
negligible compared to FLOPs above.

iv) Train on coreset: train the large model on the selected k points for T epochs.

End-to-end compute (selection + coreset training).

Computegy = 3N Tproxy [+ QToroxy f + 3kT fiarge (FLOPs)
—_——— ——— ———
train proxy query loss collection train large on coreset
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Selection-stage storage overhead. We store loss scalars for all N training and ) query samples across

Toroxy epochs:

StorageOverheadgp, = O((N4Q)Tproxy) (loss logs)

Example scenario values (ImageNet-1k; Tproxy=90, T=90).

Computeg, (PFLOPs only) ~ 622.663 + 2.097 + 280.061 = 904.821 PFLOPs,
3NTproxyf QTproxyf 3kTate flarge

StorageOverheadyp (float32) =~ (N4+Q)Tproxy X 4 = 461,220,120 B = 0.461 GB.

F Comparison of CLD with Influence

The impact measured by CLD closely aligns with the “influence" of individual training samples on a model’s
predictions that are measured by Training Data Attribution (TDA) methods. TDA methods have been widely
employed for tasks such as debugging datasets, interpreting models, and optimizing training efficiency [Koh
& Liang] (2017); Yeh et al.| (2018); Feldman & Zhang] (2020).

The earliest TDA methods utilized Leave-One-Out (LOO) training, which involves retraining the model
after removing specific data points and observing the changes in performance. While straightforward, LOO
retraining is computationally prohibitive for modern deep learning models due to the need for multiple
retraining cycles [Koh & Liang| (2017)). Recent TDA metrics, such as FZ-Influence (Infl) |Feldman & Zhang
(2020) and Datamodels |Ilyas et al.| (2022), have gained popularity owing to precomputed scores for widely-
used datasets in computer vision. These methods, however, face scalability challenges.

A prominent alternative that arose was Influence Functions, which estimated the effect of downweighting
individual samples using first-order (gradient) and second-order (Hessian) computations Koh & Liang] (2017));
Basu et al.| (2021)) performed at the end of training. Methods like RandSelect Wojnowicz et al. (2016]) and
Arnoldi iterations Schioppa et al.| (2022)) improved computational efficiency by approximating the Hessian.
Similarly, TRAK |Park et al.| (2023) combined random projections, gradient-based methods, and ensembling
to estimate the influence of training samples. However, these approaches often rely on strong assumptions,
such as convergence to a unique optimal solution, which limits their applicability to neural networks. Ad-
ditionally, Hessian computations introduce significant computational overhead. To address these challenges,
unrolling-based methods that observe the learning process across training iterations have been proposed.
These techniques approximate the impact of samples by differentiating through the optimization trajec-
tory [Hara et al.| (2019)). Among these, TracIn|Pruthi et al.|(2020) is a highly efficient method that estimates
influence using gradients tracked throughout training. Its practical implementation, TracInCP, uses inter-
mediate checkpoints to alleviate computational burdens. While effective, unrolling methods require storing
intermediate training states, leading to high storage and computational costs.

In contrast, CLD solely relies on loss trajectories rather than first- or second-order quantities (e.g., gradients
and Hessians).

In order to measure the “influence” of a training sample Z,, on an individual unseen (or query) sample Z,
we modified Definition [I] slightly to be

CLDinfl (Zm7 gq) =p (Ama &q) (64)

We will now compare the impact measured by this metric (CLDipe1) to the influence measured by TDA
metrics, by utilizing the linear datamodeling score (LDS) introduced by [Park et al.|(2023). LDS measures the
correlation between group-level attribution scores (CLD;n¢y or influence) and their observed impact on model
predictions when subsets of training data are used.

LDS definition For a query data point z,, random subsets {S; }jczl are sampled from the training dataset,
where each subset S; contains [aN] points, with a € (0,1) as the sampling ratio. Each subset S; is used
to retrain the model R times with different initializations {&,.}? | and training parameters \, resulting in
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(a) Linear datamodeling scores (LDS) of existing TDA (b) Prediction brittleness of CLD and TDA metrics on
metrics compared to CLDins1. The scores were evaluated CIFAR-10 with ResNet-9. The top-k influential training
on CIFAR-10, ResNet-9 with 200 (randomly selected) samples were removed, and the average prediction flips
query samples evaluated over 100 subsets. for 200 query samples over 5 seeds are shown.

Figure 8: Comparison of CLD to TDA metrics. (Best viewed in color.)

the model ng,&. This trained model is then used to compute a measurable quantity f(Z;, 9:*;,7&). A group
attribution score, g-(Zy,S;,S), is calculated as g,(Z;,S;,S) = desj 7(Zy, Z,S), where 7(Z, 2, S) is the
attribution score for a training point Z° with respect to Z;. The LDS is then obtained using Spearman’s
rank [Spearman)| (1904) correlation (ps):

C

LDS(Zg, o) = ps ( { ! Z ! (5:17 efgj,&) } {9- (Zq,Sj,S)}fl) (65)

j=1

=

Experimental Setup: We compared the LDS scores of CLD;ps against those of TRAK, Arnoldi, TraclIn,
Infl, and Datamodels. Precomputed scores for Infl and Datamodels were used for the CIFAR-10
dataset [Krizhevsky et al.| (2009) with ResNet-9 (2016), while 10 models were trained for TRAK,
Arnoldi, TracIn, and CLD;ys1. The evaluation employed C' = 100 random subsets, sampling ratios « rang-
ing from 0.3 to NJ; 1 a query set of 200 samples, and R = 10 seeds. The measurable quantity was the
accuracy of query samples.

Results and Observations: The results presented in Figure [8al reveal that while the impact captured by

CLD;ys is distinct from the influence measured by traditional TDA metrics, it aligns closely with methods

such as TracIn and TRAK in terms of behavior while being resource-efficient. Notably, the performance gap

between these computationally intensive methods and CLD;,¢; narrows as « increases. The drop in LDS scores
N—1

at o = =5~ is due to the stochastic nature of model retrainin

Takeaways: Although CLDj,s; (and in essence CLD) fundamentally differs from influence-based TDA met-
rics, it mirrors their trends at higher sampling ratios while maintaining superior computational efficiency,
solidifying its utility as a practical tool for analyzing training dynamics.

F.1 Importance of the Top-k Samples

We demonstrate that the samples identified by CLD are indeed pivotal for generalization, addressing the
question: “Are the training samples with the top-k scores truly the most critical for forming a coreset?” This
is evaluated using the prediction brittleness metric. This is also mentioned briefly in Section

Experimental Setup: To quantify the influence of top-k samples, we systematically removed the most
impactful data points identified by their CLD scores, from the training set and retrained the model. The
metric of interest was the fraction of prediction flips observed in a held-out query set after retraining. If
these samples are truly critical for generalization, their removal should cause substantial prediction changes.
This experiment also included a comparative analysis with the top-k influential samples identified by TDA

1This observation is consistent with the findings of previous research |Karthikeyan & Sanard| q2021D; |Bae et al.| q2024[).
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scores, discussed in this section. Experiments were performed on the CIFAR-10 dataset using a ResNet-9
architecture, with a randomly selected query set of 200 samples. For each configuration, once the top-k
samples were excluded, the model was retrained 5 times to account for randomness, and the average fraction
of prediction flips was recorded.

Results and Observations: The results, summarized in Figure [8b] illustrate that the top-k samples
identified by CLD have a comparable influence on prediction outcomes to those identified by TDA-based
metrics such as TracIn and TRAK. Notably, removing the top-800 samples of CIFAR-10, which constitutes
just 1.6% of the dataset, results in prediction flips for over half of the query set. This highlights the significant
role of the samples identified by CLD in supporting model generalization. While metrics like Datamodels and
Infl exhibit greater impact, they are computationally prohibitive, rendering them unsuitable for large-scale
coreset generation.

Takeaways: CLD emerges as an effective and computationally efficient approach for identifying training
samples critical to generalization, making it a practical tool for coreset selection in large-scale machine
learning pipelines.
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