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Abstract

Using AI models in healthcare is gaining popular-
ity. To improve clinician confidence in the results
of automated triage and to provide further infor-
mation about the suggested diagnosis, an explana-
tion produced by a separate post-hoc explainability
tool often accompanies the classification of an AI
model. If no abnormalities are detected, however,
it is not clear what an explanation should be. A
human clinician might be able to describe certain
salient features of tumors that are not in scan, but
existing Explainable AI (XAI) tools cannot do that,
as they cannot point to features that are absent
from the input. In this paper, we present a defini-
tion of and algorithm for providing explanations
of absence; that is, explanations of negative classi-
fications in the context of healthcare AI.
Our approach is rooted in the concept of expla-
nations in actual causality. It uses the model as a
black-box and is hence portable and works with
proprietary models. Moreover, the computation
is done in the preprocessing stage, based on the
model and the dataset. During the execution, the al-
gorithm only projects the precomputed explanation
template on the current image.
We implemented this approach in a tool, NITO, and
trialed it on a number of medical datasets to demon-
strate its utility on the classification of solid tumors.
We discuss the differences between the theoretical
approach and the implementation in the domain
of classifying solid tumors and address the addi-
tional complications posed by this domain. Finally,
we discuss the assumptions we make in our algo-
rithm and its possible extensions to explanations
of absence for general image classifiers.

1 INTRODUCTION

There are a plethora of XAI tools which seek to provide an
explanation for a label given to an image by a model. These
often take the form of a heatmap (or a saliency landscape),
which in various ways rank the contribution of the image
pixels to a particular model output.

These XAI tools have in common that they seek features
which are local, and present in the input. This is a reasonable
strategy, as image classifiers in general domains do not
output a classification of absence: if the only object in the
image is a cat, the model outputs “cat”, but if there is no cat,
we would be surprised to get the classification “no cat”—a
typical answer would be, for example, “dog”, or “chair”,
depending on what is present in the input.

This is not true for medical imaging. A model for cancer
detection in brain MRIs may learn to find features such as
clusters of bright pixels, and/or the distortion of morpho-
logical features, indicative of certain pathologies. However,
pertinent to medical imaging, there is a class of images
which are clinically defined in terms of their absence of
features: images without pathological abnormalities. Here,
the classifications “disease” and “no disease” make sense
in a way that “cat” and “no cat” do not. In this case, it is
precisely the absence of features which defines a healthy
scan.

Existing XAI tools are not designed for this task. As illus-
trated in Figure 1 on brain tumor detectors, in the absence
of features the XAI tools typically return irrelevant explana-
tions, even often including areas outside of the brain that are
clearly not relevant or useful in providing clinicians with
any insight into why the model has determined an image to
be healthy. Explainability is crucial in the medical domain.
The EU Artificial Intelligence Act makes transparency a reg-
ulatory requirement, which is described in terms of explain-
ability: “Transparency means that AI systems are developed
and used in a way that allows appropriate traceability and
explainability...” [Madiega, 2021]. In the medical domain,



(a) Original image (b) GradCAM (c) LIME (d) SHAP (e) REX

Figure 1: A selection of explanations from popular XAI tools for a negative brain tumor classification. All explanations are
for the same image with the same model. All displayed tools highlight parts of the image which are clinically irrelevant to a
negative tumor classification. Indeed, there is no relevant region which could be highlighted.

this is applicable to all images, not just those exhibiting
abnormalities. It is particularly important in terms of estab-
lishing trust with clinicians who remain legally liable for
medical decision making: it is reasonable that they ask for
transparent decision making not only for diseased images
but also images labeled as healthy [Naik et al., 2022].

There is therefore a gap in the XAI literature addressing
the absence of features for explainability. In this paper, we
propose an approximation algorithm for constructing ex-
planations of absence based on the formal definition of
explanation in the theory of actual causality Chockler and
Halpern [2024]. Moreover, by using the definition of partial
explanations, we adopt a measure by which the quality of
our explanation of absence can be automatically assessed.
Our approach uses the model as a black-box and is hence
portable and applicable to any, even proprietary, models.

Our algorithm constructs a template for the explanations
of absence in the preprocessing stage, based on the model
and the dataset. This is done once for a given model and
a dataset. Then, during the execution, we project the pre-
computed template on the current image classified as not
having the abnormalities in question. We implemented this
approach in a tool NITO1 and trialed it on a number of medi-
cal datasets to demonstrate its utility on the classification of
solid tumors. We note that the actual execution step consists
of a simple projection, hence does not require any additional
computation time or other resources on top of the classifier.
We discuss the differences between the theoretical approach
and the implementation in the domain of classifying solid tu-
mors and address the additional complications posed by this
domain. We then apply the theory of partial explanations
to provide a means to automatically quantify the goodness
of our explanation with respect to a user-provided dataset
and show that NITO’s explanations have a high (> 85%)
sufficiency.

Why do we focus on causal explanations? Causal expla-
nations have the advantage of being based on a rigorous
definition that, in particular, ensures minimality and suffi-
ciency for the the desired classification (see Section 3). In

1From the Yiddish phrase “nit do” for “not here”.

our domain of application, this means that in an explanation
of a tumor, removing any subset of pixels results in the set of
pixels no longer being classified as a tumor. For all intents
and purposes this subset of pixels is a tumor, with respect
the model’s decision process. We use this feature in our
construction of explanations of absence. Roughly speaking,
an explanation of absence of a tumor is a subset of pixels
that does not admit this minimal tumor into the image. We
output such a subset, explaining why the model decided that
no tumor is present.

We implemented our algorithm and quantitative assessment
measures and present the experimental results on three dif-
ferent medical datasets: brain tumor MRI, pancreatic cancer,
and lung cancer CT images. To the best of our knowledge,
there is no baseline to compare against for computing expla-
nations of absence, therefore our experimental effort focuses
on the computability and flexibility of our algorithm.

Due to the lack of space, additional theoretical ma-
terial, additional results, and illustrations are deferred
to the appendix. All data and code for reproducibil-
ity can be found at https://figshare.com/s/
d3143215218cb2b854af.

2 RELATED WORK

The landscape of XAI tools is large and complex, and each
tool is guided by its own definition of explanation, more or
less rigorous. At present, there are no post-hoc XAI tools
adapted for the absence of features: all tools make the rea-
sonable assumption that the target to be explained is present
in the image. For the positive classification use cases, this
assumption causes no problems. As we mentioned above,
however, this assumption of presence is not very helpful to
explain to the clinician why, for instance, a model says that
an MRI slice of a brain contains no tumors.

Common XAI tools for medical images include GRAD-
CAM [Selvaraju et al., 2017], LIME [Ribeiro et al., 2016]
and SHAP [Lundberg and Lee, 2017]. SHAP adopts a game
theoretic approach to find coalitions (subsets) of the image
which, by some measure, contribute to a model returning

https://figshare.com/s/d3143215218cb2b854af
https://figshare.com/s/d3143215218cb2b854af


(a) Responsibility map for a class 1 MRI
(b) The minimal, sufficient pixels to achieve class 1.
This is a REX explanation.

Figure 2: Typical output from REX, showing the raw responsibility map in Figure 2a and the extracted explanation
in Figure 2b. The explanation is left as original color, with other pixels partially masked out.

a label. When superimposed upon the original image, this
draws the eye towards features in that image that can be said
to explain the model’s output. As Watson et al. [2022] point
out, Shapley values are the closest to a de facto standard for
XAI, but ambiguities and assumptions [Kumar et al., 2020]
muddy the waters of interpretation.

The theory of actual causality presents a precise definition
of explanations for image classifiers [Chockler and Halpern,
2024]. REX [Chockler et al., 2024] is a causal explainability
tool computing causal approximately minimal explanations.
It employs causal reasoning to identify subsets of pixels
which are sufficient to reproduce the overall model classifi-
cation. Unlike more familiar XAI tools, pixels are ranked
and also tested for sufficiency against the model itself as
oracle. REX has the same limitation as the above mentioned
tools in that it assumes the presence of features that can
be occluded in some way and that explanations are local.
Given the underlying theory is the same, it is convenient to
utilize the output of REX in our implementation (Figure 2).

Contrastive explanations [Stepin et al., 2021, Chin-Parker
and Bradner, 2017] give explanations not in terms of “Why
did P happen?”, but rather “Why did P happen and not
Q?”. Human-provided explanations seem to typically be
contrastive [Miller, 2019]. Dhurandhar et al. [2018] use per-
tinent negatives to provide counterfactual explanations for
multi-class models. They provide contrastive explanations
for MNIST and other common datasets. Their approach,
however, still requires some features to be present in order
to demonstrate that other features are missing. They do not
attempt to cover the case where there is a total absence of
features required for a given classification. Dhurandhar et al.
[2019] extend their approach to use contrastive explanations
on structured data.

It has been suggested that large language models (LLMs)
provide intrinsic explainability [Kroeger et al., 2023]. For
instance, Med-Gemini-M 1.5, a LLM for medical data, can
take an image input and return a text output [Saab et al.,

2024]. This is similar to how reports are given in the medical
domain, in which clinicians describe pertinent anatomical
features. Ostensibly, this includes healthy images, providing
an explanation of absence in a way consistent with current
practice. However, LLMs are known to hallucinate and even
if the end result is correct (i.e.no disease), there is no reason
to believe their “reasoning”, in the form of text, aligns with
relevant clinical features (or their absence).

3 BACKGROUND ON ACTUAL
CAUSALITY

While the need for explanations is recognized almost uni-
versally, there is no definition of explanation even close to
universal acceptance [Miller, 2019]. We use a definition pro-
vided by the theory of actual causality. This definition has
a number of useful properties which we use in our method.
Actual causality was first introduced in Halpern and Pearl
[2005]. The reader is referred to that paper and to Halpern
[2019] for an updated overview and more information on
actual causality (see also the supplementary material for the
formal definition of explanation in the general case). Below
we give an informal introduction to the theory and simpli-
fied definitions suitable for the case of image classification.
The definition of an actual cause is based on the concept of
causal models, which consist of a set of variables, a range
of each variable, and structural equations describing the de-
pendencies between the variables. Actual causes are defined
with respect to a given causal model, a given assignment to
the variables of the model (a context), and a propositional
formula that holds in the model in this context.

Actual causality extends simple counterfactual reason-
ing Hume [1739] by considering the effect of interventions,
which are changes of the current setting. Roughly speaking,
a subset of variables X⃗ and their values in a given context
is an actual cause of a Boolean formula φ being True if
there exists a change in the values of other values that cre-



ates a counterfactual dependency between the values of X⃗
and φ (that is, if we change the values of variables in X⃗ ,
φ would be falsified). The formal definition by Halpern and
Pearl [2005] and in its modifications, the latest of which
is by Halpern [2015], are far more complex due to the po-
tential dependencies between the variables and considering
causes of more than one element. In our setup, where we are
only interested in singleton causes and in interventions only
on the input variables, all versions of the definition of (a
part of) an actual cause are equivalent under the assumption
of independence between the input variables. This assump-
tion is far from trivial, and we discuss its implications in
Section 7.

In the context of image classification, following Chockler
and Halpern [2024], we take endogenous variables to be
the set V⃗ of pixels that the image classifier gets as input,
together with an output variable that we call O. The variable
Vi ∈ V⃗ describes the color and intensity of pixel i; its value
is determined by the exogenous variables. The equation for
O determines the output of the neural network as a function
of the pixel values. As mentioned above, we assume that
there are no dependencies between the feature variables,
thus, the causal network has depth 2. While, in general, this
assumption is not true in practice, in the context of MRI and
CT scans it is reasonably accurate, as tumors can appear in
most parts of an affected organ. Assuming independence
makes the algorithms much simpler.

Chockler and Halpern [2024] proved that for a causal model
corresponding to an image classifier N , the following defi-
nition is equivalent to the definition of explanation in actual
causality.

Definition 1 (Explanation) X⃗ = x⃗ is an explanation of
O = o iff the following conditions hold:

EX1 Setting X⃗ to x⃗ results in the classification O = o for
all images in the dataset;

EX2 For all images I in which X⃗ = x⃗ and O = o, at
least one conjunct X = x in X⃗ = x⃗ is a (part of) an
actual cause of O = o; in other words, there exists a
(possibly empty) set of variables Y⃗ , a value x′, and a
set of values y⃗′ such that setting X to x′ together with
setting Y⃗ to y⃗′ results in O ̸= o;

EX3 X⃗ is minimal, that is, no subset of X⃗ satisfies the
conditions above.

“Folded” in Definition 1 is the definition of an actual cause of
O = o, which, using the notation in EX2, would be ({X} ∪
Y⃗ = {x}∪ y⃗). The notion of responsibility quantifies actual
causality and is defined for X = x as above as 1/(|Y⃗ |+ 1),
where Y⃗ is the smallest set satisfying EX2.

To facilitate a dialog between the clinician and the AI sys-
tem, we also use the definition of a partial explanation for
image classifiers by Chockler and Halpern [2024].

Definition 2 [Partial Explanation] X⃗ = x⃗ is a partial ex-
planation of O = o with goodness (α, β), where α, β > 0,
relative to a set of imagesK if the following conditions hold:

PEX1 setting X⃗ to x⃗ results in the classification O = o for
all images in the dataset with probability at least β;

PEX2 the probability of X⃗ = x⃗ to be a (part of an) actual
cause of O = o in an image I in the dataset is at least
α;

PEX3 X⃗ is minimal.

4 EXPLANATIONS OF ABSENCE

Consider an AI model N that classifies medical images as
having or not having solid tumors. We start with a theoreti-
cal analysis with simplifying assumptions and then discuss
whether these assumptions hold for real AI models and the
implications of relaxing them.

4.1 THEORETICAL FOUNDATIONS

Recall that we assume independence between the pixels
of the image. We now add the assumption that tumors are
equally likely in all areas of the scan.

Lemma 1 Under the assumptions above, CN can only de-
tect tumors based on the number of pixels with values (color
and intensity) matching those of tumors, that is, the size of
a potential tumor on an image.

Proof. The proof is based on the observation that due to the
assumptions, the effect of changing each pixel in an input
image is the same. Hence, N ’s decisions rely only on the
number of the pixels with values matching those of tumors,
that is, the size of a potential tumor.

The following lemma explains why responsibility maps are
useless for explanations of absence, as illustrated in Figure 1.
As only REX uses a formal definition of responsibility for
its pixel ranking map, we use this definition in the lemma.

similar.

Lemma 2 If none of the pixels in an input image I have
values consistent with a tumor, the responsibility of each
pixel of an input image I for the negative classification of
N is the same and is equal to 1/k, where k is the size of a
smallest tumor recognized by N .

Proof. The proof is based on the observation above that un-
der our simplifying assumptions,N can only use the size of
a candidate tumor to decide whether to classify I as having
a tumor. Hence, by EX2 of Definition 1, the responsibility
of each pixel (X = x) for the negative classification of I by



N is the same and is 1/k, where k is the size of a smallest
set of pixels required to change the negative classification
to a positive one (aka “there is a tumor”).

Corollary 1 The responsibility of all pixels of an input im-
age I classified as having no tumors for its classification is
not an informative measure for explaining the classification.

Based on Lemma 1, the following construct is an explana-
tion of absence of tumors in an input image I according to
Definition 1.

Definition 3 [Absence grid] For an image I classified as
not having tumors by an AI model N , a subset of pixels
G⃗ ⊆ I and their values G⃗ = g⃗, is an absence grid for I
and N if:

AG1 G⃗ = g⃗ is a grid of clusters of pixels;

AG2 The distance between any two clusters in G⃗ is smaller
than the size of a smallest tumor recognized by N ;

There exists a cluster of pixels C ⊆ I in the explanation
that is (a part of) an actual cause of classifying I
as not having tumors; that is, all pixels in C have
the value that is incompatible with being a part of a
tumor, and there exists another set of pixels T ⊆ I
such that changing the values of C ∪ T changes the
classification of I to having a tumor, but changing the
values of C alone does not change the classification
(of “no tumor”).

AG3 G⃗ = g⃗ is minimal.

It is easy to see that an absence grid is an explanation for the
negative classification of I by N , according to Definition 1.
We also note that the location of the pixels on an absence
grid as defined in Definition 3 depends only on N and is
independent of I and of the dataset. The only thing that
depends on I is the values of these pixels. Therefore, an
absence grid can be constructed in advance and projected on
a given image I to get an explanation of absence of tumors.

4.2 APPLYING THE THEORY TO PRACTICE

In practice, the assumption that solid tumors are equally
likely in all areas on the scan does not quite hold, as tumors
are more likely to appear in some areas than in others. More-
over, tumors might be non-homogeneous, which makes it
harder to measure their size. Indeed, while the assumption
of independence of pixels is a good approximation in this
domain, an AI model N might also take into account an
outline of a suspected tumor, rather than just its size, to
decide whether there is a tumor on the scan.

An absence grid defined in Definition 3 is, thus, impossible
to construct precisely; in particular, the size of a smallest

tumor may depend on the location on the scan and its shape.
We therefore construct an approximation of this grid instead,
as defined below.

Definition 4 [Partial Absence Grid] For an image I classi-
fied as not having tumors by an AI model N and a dataset
K, a subset of pixels G⃗ ⊆ I and their values, G⃗ = g⃗ is a
partial absence grid with goodness (α, β), where α, β > 0
for I and N in context K if:

PAG1 G⃗ = g⃗ is a grid of clusters of pixels, such that all
pixels have values incompatible with tumors;

PAG2 The distance between any two clusters in G⃗ is
smaller than the smallest explanation, X⃗ = x⃗, of a
tumor in the set K, recognized by N ,

There exists a cluster of pixels C ⊆ I in the explanation
that is (a part of) an actual cause of classifying I
as not having tumors; that is, all pixels in C have
the value that is incompatible with being a part of a
tumor, and there exists another set of pixels T ⊆ I
such that changing the values of C ∪ T changes the
classification of I to having a tumor, but changing the
values of C alone does not change the classification
(of “no tumor”).

PAG3 G⃗ = g⃗ is minimal.

Note that, in particular, all pixels in G⃗ must have values
inconsistent with a tumor. This may take the form of healthy
value interpolation, or a neutral interpolation value. We dis-
cuss this choice in more detail in Section 6 and compare the
results against taking an out-of-distribution neutral value.

For a partial absence grid G⃗ = g⃗ as defined in Definition 4,
let 0 ≤ α, β ≤ 1 be such that:

• probability of X⃗ = x⃗ to be a (part of an) actual cause
of O = o in an image I in the dataset is at least α;

• setting X⃗ to x⃗ results in the classification O = o for
all images in the dataset with probability at least β.

We are now ready to state our main result.

Theorem 1 A partial absence grid is a partial explanation.
That is, for an image I classified as not having tumors by an
AI modelN and a datasetK, the partial absence grid G⃗ = g⃗
in Definition 4 is a partial explanation of absence of tumors
in I wrt N and a set of contexts K with (α, β)-goodness,
where α and β are as defined above.

The proof follows from Definition 2.

Theorem 1 allows us to quantitatively assess the quality of
explanations of absence, constructed as in Definition 4. It
is important to note that a partial absence grid is always
defined with respect to a particular model and dataset: a



Algorithm 1 NITO(x,N , U, δ, r, Pr)

INPUT: input image x, modelN , set of images U , density
δ, radius r, Pr (a probability distribution over U )
OUTPUT: a gridded image x′, a tuple (α, β)

1: φ← N (x)
2: K ← neighborhood ofx ∈ U
3: if K = ∅ then
4: return x, 1, 0
5: end if
6: E ← causal explanations ofK
7: eE ← find smallest explanation ∈ E
8: grid← calculate_grid(eE , δ, r)
9: if grid = ∅ then

10: return x, 1, 0
11: end if
12: β ← 0.0
13: for s ∈ K do
14: o← N (s)
15: o′ ← N (grid(s))
16: o ̸= o′ ? : β = β + Pr(s)
17: end for
18: return grid(x), (1, β)

bad model and/or a poor dataset would produce low-quality
explanations. However, with the definitions provided above,
we emphasize that there is no sense in which an explanation
can be “wrong”: a human might disagree with the output, but
a causal explanation is sufficient to reproduce the original
class. In Section 7 we discuss how these explanations can
support a dialog between an AI model and a clinician.

5 NITO

Algorithm 1 is the main NITO algorithm. The set U is the full
dataset, containing scans from different slices of the organ
under examination. For a given input x (a single image),
we define K as all scans similar to x. The similarity can be
defined parametrically; for this implementation, we define
it as images of the same slice, for example the same part of
the brain for MRIs of brains. The probability distribution
over K is a parameter and is assumed uniform by default.
As the dataset grows with each new examined patient, the
set U grows as well, with more similar scans to the current
input. In the future, the concept of similarity can be extended
to include external parameters affecting the scans, such as
biological sex, age, etc. We note that if K is empty, we
cannot say anything useful about the current input image
x. In what follows, we assume class 0 to mean “no tumor”,
and class 1 to mean “tumor”.

The algorithm first calculates an approximation of a small-
est explanation for a tumor in K by executing REX (see

Appendix B for an overview of REX). Note that an explana-
tion of an object is typically smaller than the object itself,
representing just a part of it [Chockler et al., 2024]: if an ex-
planation of a tumor cannot be made to fit between the grid
then the tumor itself certainly cannot. Note that we assume
a reasonably regular shape of explanations: it is possible in
theory to have tumors that fit neatly between the nodes of
the grid, thus avoiding detection, while being overall quite
large, however in practice tumor shapes are reasonably close
to convex.

Size and color of the grid The procedure on line 8 of
Algorithm 1, calculate_grid(x, eE , δ, r), receives the input
image x, a smallest explanation eE of a tumor in the set K,
and optionally the density δ and radius r, and constructs
a grid with each node being of radius r and the distance
δ between the nodes over the image x. If δ and r are not
given, the procedure calculates them using a binary search,
constructing the least dense grid that satisfies Definition 4.
We assume convexity of explanations, hence the calculation
of δ is based on the size of a minimal bounding box for
eE . The radius r of each node is determined as the smallest
that satisfies PAG2 of Definition 4 and is, again, determined
using a binary search.

We also allow the option of receiving δ and r from the user,
in case a user with domain knowledge is able to provide
hints to the algorithm. An example is shown in Figure 4.
The grid pixel values should be the same as in x, but in
practice this often does not provide enough contrast, due
to the quality and color scheme of the image. We therefore
also allow the option of having out-of-distribution neutral
values, and we compare these approaches in Section 6.

Calculating α and β The probability that an image in K
has both X⃗ = x⃗∧ φ is given by α. For simplicity, let us say
that φ means “tumor”. X⃗ = x⃗ then will be a set of pixels
and their values. Even if we ignore the spatial dimension
of of pixels, the chances of X⃗ = x⃗ being the same in a
different image for which φ holds is very slim. Explanations
are rarely identical between images. If we take into account
the spatial dimension as well, then α is likely to be near 0
on any dataset. If we are interested in G⃗ = g⃗, our absence
grid, then we can approximately control the value of α if
either K does not contain any healthy slices (in which case
α = 1), or we use a neutral, constant, masking value for the
grid. In either case, α does not reveal as much information
about our grid as we would like.

We present a simple visual example of a β-goodness cal-
culation (Figure 6), with the absence grid only partially
applied for clarity. Causal explanations, by virtue of their
minimality, tend not to be robust. Hence, the explanation
of the smallest tumor is itself a partial explanation. Future
work will examine the usefulness of explanation vs. partial
explanation of tumor on grid calculation from the point of



(a) An MRI slice with a tumor (b) The grid in black (c) A grid in real colors

Figure 3: A MRI slice with tumor (upper right quadrant of brain) with two grid overlays: with nodes in black Figure 3b, and
in the original color of the image Figure 3c. Note that the grid does not respect physical features of the brain. In practice,
having the grid in the original colors of the image does not provide sufficient contrast to change the classification, whereas
having the grid in black (or other high-contrast color) does.

(a) Insufficiently dense grid for class 0 (b) A denser grid, but still insufficient (c) A sufficient grid for class 0

Figure 4: The grid is refined by search (here shown over an entire slice for clarity). The grids in Figure 4a and Figure 4b are
insufficiently dense to change the class of the image from 1 to 0. The final grid, sufficient to change the class, is in Figure 4c.

view of the clinician.

Quantitative evaluation of partial explanations The α
value is the fraction of images in K classified as “no tumor”
and for which X⃗ = x⃗, represented as probability. In our
experiments, there was only one healthy image per slice (the
explanandum), thus α = 1. We discuss general computation
of α in Section 5. β measures the effect of setting G⃗ to
g⃗ in K. For example, let |K| = 5, where G⃗ = g⃗ is an
absence grid for 3 out of all 5 images. Assuming a uniform
distribution over these images, we have β = 0.6, as 3 images
change their classification under G⃗← g⃗.

The definition of β assumes equal weight for all elements in
K. However, given thatN is an AI model, we can weight the
calculation by the model’s confidence in the classification.
We consider two options for this weighting: βa denotes the
parameter weighted by the confidence over all classifications
in K when G⃗← g⃗, and βp considers only the confidence of
images where changing G⃗ to g⃗ does not change the classifi-
cation (otherwise 1).

Dialog with a clinician Given a stable, unchanging,
dataset, the grid is entirely computable off-line. Changes to
the dataset mean that the grid needs to be recomputed for
the appropriate slices only. This is unlikely to occur during

deployment. As a result, NITO supports a dialog with a clin-
ician in real time. Figure 7 illustrates the following scenario.
An input MRI slice is classified as class 0 by the model (Fig-
ure 7a) but with relatively low confidence. A clinician might
choose this slice for closer examination. There is an area,
highlighted in red (Figure 7b), of slightly increased density.
The clinician can take the grid for the appropriate slice and
superimpose it over the suspicious area. The suspicious area
fits reasonably neatly inside the grid (Figure 7c). As the grid
was calculated from the smallest explanation in the dataset
at that slice, this indicates that, from the model’s perspec-
tive, there is no evidence of a tumor present. Of course, a
clinician may disagree, in which case there is an argument
for retraining or refining the model by adding this image to
the training data.

6 EXPERIMENTAL RESULTS

We implemented the NITO algorithm and present the results
of evaluation of the explanations of absence produced by our
implementation on three different models over three differ-
ent, publicly available, datasets: one MRI and two CT scans.
While there is nothing in our definition that is model or
dataset dependent, we are interested to see both the variance



(a) class 0 (b) absence grid (c) excluded tumor (d) excluded tumor (e) excluded tumor

Figure 5: The grid prevents an explanation of a tumor from fitting into the image. As a causal explanation is approximately
minimal and is recognized as class 1 by the model, this means that, modulo the dataset, no tumor can be present in the
image. We cannot lose parts of the explanation to make it fit, as a smaller collection of pixels will no longer be recognized as
tumor by the model.

(a) Healthy slice (b) Approximate location (c) Initially calculated grid (d) ¬ flip 1

(e) Flip 1 (f) ¬ flip 2 (g) Flip 2 (h) Flip 3

Figure 6: A example of a grid, approximate location of the explanation superimposed on the healthy brain (Figure 6b) and
K. K consists of Figures 6a and 6d to 6h. In this example, only Figure 6a is in the set (X⃗ = x⃗)φ ⊆ K, so α = 1.0. Of the
five slices where we apply the intervention (d - h), 3 change classification, so β = 3

5 or 0.6.

in β-goodness on real-world data and the effect of different
masking values. The model for the MRI data is a pretrained
CNN based on the ResNet50 architecture [Legastelois et al.,
2023, Blake et al., 2023]. Brain magnetic resonance imaging
(MRI) data was obtained from The Cancer Imaging Archive,
as published by Buda et al. [2019] and publicly available on
Kaggle2. 3,929 slices were extracted from 110 scans, each
slice either containing tumor or having no tumor. As they
were gathered from five distinct US institutions, the instru-
mentation and acquisition protocols may have varied. The
data for the lung and pancreatic cancer dataset was obtained
from ’The Medical Segmentation Decathlon’ challenge – a
publicly available dataset designed to be more difficult than
many existing publicly available medical datasets [Antonelli
et al., 2022]. From this, 17,657 slices were extracted from 96
CT scans and 26,719 slices from 420 CT scans respectively.
From these slices, we chose 4000 healthy images uniformly
at random for evaluation. Both datasets were included in the

2https://www.kaggle.com/datasets/
mateuszbuda/lgg-mri-segmentation

Datasets
Masking Values

0 real

β βp βa β βp βa

Brain 0.87 0.87 0.85 0.44 0.43 0.4
Lung 0.96 0.94 0.85 0.96 0.93 0.83

Pancreas 0.89 0.88 0.62 0.81 0.79 0.66

Table 1: β-goodness of grids over three different databases,
using two different grid color values.

challenge for the small size of the tumors. For both datasets,
a ResNet18 model was trained. For all three datasets, we
created a causal explanation database using REX. All expla-
nations were saved to sql database for efficient querying. All
the models were trained as binary classifiers (tumor or no tu-
mor). These models are not designed to be clinically useful:
our goal is to generate and automatically assess the quality
of explanations for absence. Hence, we did not attempt to

https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation


(a) A class 0 brain (b) A suspicious area (c) A local grid application

Figure 7: Suppose a clinician finds an area of a brain suspicious (Figure 7b). With the pre-calculated grid at the appropriate
slice, the clinician can superimpose the grid over the area of interest. Here, the suspicious area sits is able to fit inside
the grid, so it falls below the model’s information requirements. This explains why the model gave class 0, but does not
necessarily indicate health in the patient.

optimize the performance of our models nor make them
generalizable to out-of-distribution data. Explanations of
absence is not computationally expensive. All experiments
were run on an Ubuntu 20.04 server with an Nvidia A40
GPU. With the explanations cached in advance, an individ-
ual grid calculation and β-goodness evaluation takes in the
order < 1 second.

Table 1 summarizes the results. A masking value of 0 per-
forms well on all datasets and models. The real values paint
a more mixed picture. Interestingly, the model which per-
forms least well on real values in the brain dataset. As this
is the only dataset in true color, this suggests that the model
is more sensitive to exact pixel values than models for lung
and pancreas cancers. Both lung and pancreas datasets are
CT data, treated as pseudo-RGB for the purposes of REX.

The parameters β, βp, and βa assess the quality of provided
explanations wrt the model and the dataset. β does not take
model confidence into account, hence it just shows the frac-
tion of inputs in K for which superimposing the partial
absence grid changes the classification from 1 to 0. β ≤ 1,
and it is lower than one due to the approximations of mini-
mal explanations and the assumption location independence.
On images where superimposing the grid does not change
the classification, there must be sufficient information left
in the image for the model to still classify it as positive.

Considering model confidence has a significant effect on
some of the models. While βp, on these datasets, is gener-
ally similar to β, βa indicates that the pancreas model is
less confident about its predictions, as can be seen by the
relatively low βa ≈ 0.64, compared to β on both masking
values. This βa may be of more use for models returning
low confidence classifications.

7 DISCUSSION

While our theoretical definitions are based on the assump-
tions of pixel independence and equal probability of tumors,

the NITO algorithm circumvents them by finding minimal
explanations of tumors on real scans for computing the
absence grid. The experimental results show that NITO com-
putes high quality explanations on different datasets. An
important assumption on which all XAI tools rely is locality
of explanations. This is also why in this work we evaluated
NITO on solid tumors: other abnormalities can be distributed
over the image, for example as a texture or a general change
in size. Tumors are a good example of objects with local
explanations and hence also lend themselves to computable
explanations of absence.

We note that as NITO relies on the size of the dataset to com-
pute minimal explanations of tumors, its accuracy depends
on the quality of the dataset. An important advantage of
NITO is its efficiency. The computation of a smallest expla-
nation is done as a preprocessing step, and requires only one
additional REX call on adding a new image to the dataset.
For an image classified as “no tumors”, NITO only needs
to superimpose the precomputed grid on top of the image,
without any computation.

We modeled a possible dialog with a clinician based on the
NITO output, but we did not address the problem of false
negatives, that is, images that are classified by a model as
healthy, despite containing tumors. This is a crucial problem,
and we will address it in future work. Finally, an extension
of this work to general images is highly non-trivial, as the
pixel independence assumption does not hold for general
images.
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A FORMAL DEFINITIONS OF CAUSES
AND EXPLANATIONS

The material in this section is largely taken from Chockler
and Halpern [2024], and the reader is referred to that paper
for more context.

Causal models capture the way some variables causally
influence others. This influence is modeled by a set of struc-
tural equations. The variables are typically split into two
sets: exogenous variables, whose values are determined by
factors outside the model, and the endogenous variables,
whose values are determined by the exogenous variables.
The structural equations describe how these values are deter-
mined. We also assume acyclicity. In other words, given the
values of exogenous variables, we can propagate these val-
ues according to the structural equations and get a complete
valuation of all variables in the model.

Formally, a causal model M is a pair (S,F), where S
is a signature, which explicitly lists the endogenous and
exogenous variables and characterizes their possible val-
ues, and F defines a set of (modifiable) structural equa-
tions, relating the values of the variables. A signature S
is a tuple (U ,V,R), where U is a set of exogenous vari-
ables, V is a set of endogenous variables, and R asso-
ciates with every variable Y ∈ U ∪ V a nonempty set
R(Y ) of possible values for Y (i.e., the set of values
over which Y ranges). For simplicity, we assume here
that V is finite, as is R(Y ) for every endogenous vari-
able Y ∈ V . F associates with each endogenous variable
X ∈ V a function denoted FX (i.e., FX = F(X)) such that
FX : (×U∈UR(U))× (×Y ∈V−{X}R(Y ))→ R(X). This
mathematical notation just makes precise the fact that FX
determines the value of X , given the values of all the other
variables in U ∪ V .

The structural equations define what happens in the presence
of external interventions. Setting the value of some variable
X to x in a causal model M = (S,F) results in a new
causal model, denoted MX←x, which is identical to M ,
except that the equation for X in F is replaced by X = x.

We can also consider probabilistic causal models; these
are pairs (M,Pr), where M is a causal model and Pr is a
probability on the contexts in M .

The dependencies between variables in a causal modelM =
((U ,V,R),F) can be described using a causal network(or
causal graph), whose nodes are labeled by the endogenous
and exogenous variables in M , with one node for each
variable in U ∪V . The roots of the graph are (labeled by) the
exogenous variables. There is a directed edge from variable
X to Y if Y depends on X; this is the case if there is some
setting of all the variables in U ∪ V other than X and Y
such that varying the value of X in that setting results in
a variation in the value of Y ; that is, there is a setting z⃗ of
the variables other than X and Y and values x and x′ of X
such that FY (x, z⃗) ̸= FY (x

′, z⃗).

We call a pair (M, u⃗) consisting of a causal model M and a
context u⃗ a (causal) setting. A causal formula ψ is true or
false in a setting. We write (M, u⃗) |= ψ if the causal formula
ψ is true in the setting (M, u⃗). Finally, (M, u⃗) |= [Y⃗ ← y⃗]φ
if (MY⃗=y⃗, u⃗) |= φ, where MY⃗←y⃗ is the causal model that
is identical to M , except that the equations for variables
in Y⃗ in F are replaced by Y = y for each Y ∈ Y⃗ and its
corresponding value y ∈ y⃗.

A standard use of causal models is to define actual causa-
tion: that is, what it means for some particular event that
occurred to cause another particular event. We briefly review
the relevant definitions below.

The events that can be causes are arbitrary conjunctions of
primitive events (formulas of the form X = x); the events
that can be caused are arbitrary Boolean combinations of
primitive events. an arbitrary formula ϕ.

Definition 5 [Actual cause] X⃗ = x⃗ is an actual cause of φ
in (M, u⃗) if the following three conditions hold:

AC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= φ.

AC2. There is a a setting x⃗′ of the variables in X⃗ , a (possi-
bly empty) set W⃗ of variables in V − X⃗ ′, and a setting
w⃗ of the variables in W⃗ such that (M, u⃗) |= W⃗ = w⃗

and (M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬φ, and moreover

AC3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such
that X⃗ ′ = x⃗′′ can replace X⃗ = x⃗′ in AC2, where x⃗′′

is the restriction of x⃗′ to the variables in X⃗ ′.

To define explanation, we need the notion of sufficient cause
in addition to that of actual cause.

Definition 6 [Sufficient cause] X⃗ = x⃗ is a sufficient cause
of φ in (M, u⃗) if the following four conditions hold:

SC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= φ.

SC2. Some conjunct of X⃗ = x⃗ is part of an actual cause
of φ in (M, u⃗). More precisely, there exists a conjunct
X = x of X⃗ = x⃗ and another (possibly empty) con-
junction Y⃗ = y⃗ such that X = x∧ Y⃗ = y⃗ is an actual
cause of φ in (M, u⃗).



SC3. (M, u⃗′) |= [X⃗ = x⃗]φ for all contexts u⃗′ ∈ R(U).

SC4. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such
that X⃗ ′ = x⃗′ satisfies conditions SC1, SC2, and SC3,
where x⃗′ is the restriction of x⃗ to the variables in X⃗ ′.

The notion of explanation builds on the notion of sufficient
causality, and is relative to a set of contexts.

Definition 7 [Explanation] X⃗ = x⃗ is an explanation of φ
relative to a set K of contexts in a causal model M if the
following conditions hold:

EX1. X⃗ = x⃗ is a sufficient cause of φ in all contexts in K
satisfying (X⃗ = x⃗) ∧ φ. More precisely,

• If u⃗ ∈ K and (M, u⃗) |= (X⃗ = x⃗) ∧ φ, then
there exists a conjunct X = x of X⃗ = x⃗ and
a (possibly empty) conjunction Y⃗ = y⃗ such that
X = x∧Y⃗ = y⃗ is an actual cause of φ in (M, u⃗).
(This is SC2 applied to all contexts u⃗ ∈ K where
(X⃗ = x⃗) ∧ φ holds.)

• (M, u⃗′) |= [X⃗ = x⃗]φ for all contexts u⃗′ ∈ K.
(This is SC3 restricted to the contexts in K.)

EX2. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such
that X⃗ ′ = x⃗′ satisfies EX1, where x⃗′ is the restriction
of x⃗ to the variables in X⃗ ′. (This is SC4).

EX3. (M,u) |= X⃗ = x⃗ ∧ φ for some u ∈ K.

The requirement that the first part of condition EX1 as given
here holds in all contexts in K that satisfy X⃗ = x⃗ ∧ ϕ and
that the second part holds in all contexts inK is quite strong,
and often does not hold in practice. We are often willing
to accept X⃗ = x⃗ as an explanation if these requirements
hold with high probability. Given a set K of contexts in
a causal model M , let Kψ consist of all contexts u⃗ in K
such that (M, u⃗) |= ψ, and let K(X⃗ = x⃗, φ,SC2) consist
of all contexts u⃗ ∈ K that satisfy X⃗ = x⃗ ∧ φ and the first
condition in EX1 (i.e., the analogue of SC2).

Definition 8 [Partial Explanation] X⃗ = x⃗ is a partial ex-
planation of φ with goodness (α, β) relative to K in a prob-
abilistic causal model (M,Pr) if

EX1′. α ≤ Pr(K(X⃗ = x⃗, φ, SC2) | KX⃗=x⃗∧ϕ) and β ≤
Pr(K[X⃗=x⃗]ϕ).

EX2′. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such
that α ≤ Pr(K(X⃗ ′ = x⃗′, φ, SC2) | KX⃗′=x⃗′∧ϕ) and
β ≤ Pr(K[X⃗′=x⃗′]φ), where x′ is the restriction of x⃗ to
the variables in X .

EX3′. (M,u) |= X⃗ = x⃗ ∧ φ for some u ∈ K.

B EXPLANATIONS IN REX

REX is a causal explainability tool that produces a respon-
sibility landscape. From this landscape, it extracts causal
explanations: sets of pixels, possibly disjoint, that are suf-
ficient to reproduce the original model classification. We
show a typical example in Figure 2 and another for lung
data in Figure 9. The tool itself is available at https:
//github.com/ReX-XAI/ReX. While the full algo-
rithm is rather complex, broadly speaking, REX creates
mutants of an initial input image by subdividing it into 4
superpixels. These superpixels are created by random parti-
tioning. The model is queried on all combinations of these
superpixels, with “non-active” superpixels set to a masking
value (by default 0). The causal responsibility is calculated
for these combinations. Combinations with non-zero respon-
sibility are further broken down into more (smaller) super-
pixels and the process repeated. Once superpixels reach a
predefined size limit, the algorithm quits. This procedure
is repeated many times to avoid the issue of a poor initial
partitioning. The effect of multiple iterations is to smooth
the final responsibility map. The map then provides a pixel
ranking from which REX greedily extracts an explanation.
Pixels are added into an initially blank image, from high-
est responsibility to lowest, until the pixels are sufficient to
obtain the same class as the initial class prediction.

C NEUTRALITY OF NEUTRAL GRID

The effect of the user-colored grid is not entirely neutral
on the confidence of the model on a given image. On the
brain MRI data, for example, in a small number of cases
(15) in the brain data, the calculated grid actually changes
the classification from negative to positive. In general, the
model confidence on these 15 images is low, with a mean
value of 0.83, with the lowest confidence for the no-tumor
classification being just 0.54. It is, of course, possible to
set a β-goodness as a target rather than as a byproduct of
the grid. We envisage this being the actual use case for
clinicians. If a user required an explanation of absence to
have a β of 1 then it would simply be the case of changing
the density and radius of the grid until this is achieved. This
procedure could form part of a dialogue between user and
model, strengthening trust in the model, or revealing its
weaknesses.

Figure 10 shows a representative sample of these flipped
classifications. Further investigation is required to discover
why the grid changes the class in this year. Likely this is
due to a disruption, by the grid, of some learned concept.

https://github.com/ReX-XAI/ReX
https://github.com/ReX-XAI/ReX


(a) A pancreas CT slice (b) 1 iteration (c) 10 iterations (d) 30 iterations

Figure 8: The smoothing of the responsibility map over multiple iterations, here shown on a slice from an CT image of a
pancreas (Figure 8a). REX extracts explanations using the responsibility pixel ranking.

(a) A lung CT slice with a tumor (b) Heatmap of responsibility

Figure 9: REX also produces heatmaps of the responsibility map. We have manually marked the location of the lung tumor
in Figure 9b. The heatmap includes the tumor, but seems to be localizing slightly to the left of the main lump.

(a) A healthy brain with
0.54 confidence

(b) The grid changes the
classification to 1

(c) A healthy brain with
0.99 confidence

(d) An explanation for a
healthy brain

Figure 10: A selection of images and their actual causal explanations where the grid changed the classification from no-tumor
to tumor. To the human eye, at least, there is no obvious reason why the grid has had the effect of a counterfactual. The
explanations are unusually large.
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