
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING ORTHOGONAL MULTI-INDEX MODELS: A
FINE-GRAINED INFORMATION EXPONENT ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

The information exponent (Ben Arous et al. (2021)) — which is equivalent to the
lowest degree in the Hermite expansion of the link function for Gaussian single-
index models — has played an important role in predicting the sample complexity
of online stochastic gradient descent (SGD) in various learning tasks. In this work,
we demonstrate that, for multi-index models, focusing solely on the lowest degree
can miss key structural details of the model and result in suboptimal rates.
Specifically, we consider the task of learning target functions of form f∗(x) =∑P

k=1 ϕ(v
∗
k ·x), where P ≪ d, the ground-truth directions {v∗

k}Pk=1 are orthonor-
mal, and only the second and 2L-th Hermite coefficients of the link function ϕ can
be nonzero. Based on the theory of information exponent, when the lowest degree
is 2L, recovering the directions requires d2L−1 poly(P ) samples, and when the
lowest degree is 2, only the relevant subspace (not the exact directions) can be re-
covered due to the rotational invariance of the second-order terms. In contrast, we
show that by considering both second- and higher-order terms, we can first learn
the relevant space via the second-order terms, and then the exact directions using
the higher-order terms, and the overall sample and complexity of online SGD is
dpoly(P ).

1 INTRODUCTION

In many learning problems, the target function exhibits or is assumed to exhibit a low-dimensional
structure. A classical model of this type is the multi-index model, where the target function depends
only on a P -dimensional subspace of the ambient space Rd, with P typically much smaller than d.
When the relevant dimension P = 1, the model is known as the single-index model, which dates
back to at least Ichimura (1993). Both single- and multi-index models have been widely studied,
especially in the context of neural network and stochastic gradient descent (SGD) in recent years,
sometimes under the name “feature learning”(Ben Arous et al. (2021); Bietti et al. (2022); Damian
et al. (2022); Abbe et al. (2022; 2023); Damian et al. (2024); Oko et al. (2024); Dandi et al. (2024)).

In Ben Arous et al. (2021), the authors show that for single-index models, the behavior of online
SGD can be split into two phases: an initial “searching” phase, where most of the samples are used
boost the correlation with the relevant (one-dimensional) subspace to a constant, and a subsequent
“descending” phase, where the correlation further increases to 1. They introduce the concept of the
information exponent (IE), defined as the index of the first nonzero coefficient in the Taylor expan-
sion of the population loss around 0, which corresponds to the lowest degree in the Hermite expan-
sion of the link function in Gaussian single-index models. They prove that the sample complexity
of online SGD is Õ(d) when IE = 2 and Õ(dk−1) when IE = k ≥ 3. After that, various lower and
upper bounds have been established for single-index models in Bietti et al. (2022); Damian et al.
(2023; 2024). Similar results for certain multi-index models have also been derived in Abbe et al.
(2022; 2023); Bietti et al. (2023); Oko et al. (2024). In all cases, the sample complexity of online
SGD scales with dIE−1 when IE ≥ 3.1

1The sample complexity can be significantly improved with non-gradient-based methods (Chen & Meka
(2020); Troiani et al. (2024); Barbier et al. (2019)), or if we reuse the batches or preprocess the labels (Arnaboldi
et al. (2024); Dandi et al. (2024); Lee et al. (2024); Damian et al. (2024)). The latter leads to the notion of
generative exponent (Damian et al. (2024)). However, note that our next example is valid for the generative
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For multi-index models of form f∗(x) =
∑P

k=1 ϕk(v
∗
k · x), another layer of complexity arises.

In this setting, there are two types of recovery: recovering each direction v∗
k (strong recovery)

and recovering the subspace spanned by {v∗
k}k. The former notion is stronger, because once the

directions are known, the learning task essentially reduces to learning the one-dimensional ϕk :
R → R for each k ∈ [P ]. However, strong recovery is not always possible. To see this, consider
the case ϕk(z) = h2(z), where hL is the L-th (normalized) Hermite polynomial. One can show
that this corresponds to decomposing the projection matrix (a second-order tensor) of the subspace
span{v∗

k}k. If the model is isotropic in the relevant subspace, recovering the directions is impossible
due to the rotational invariance (see Section 3.1 for more discussion). In contrast, when ϕk(z) =
h2(z) + h4(z), the identifiability property of the fourth-order tensor decomposition problem allows
strong recovery via tensor power method or (stochastic) gradient descent (Ge et al. (2018); Li et al.
(2020); Ge et al. (2021)). Note that in both examples, the information exponent is 2, indicating that
information exponent alone does not distinguish between these two scenarios.

This leads to a natural question: Can we combine the above results for orthogonal multi-index
models by first using the second-order terms to recover the subspace and then using the higher-order
terms to learn the directions? Ideally, the first stage would require at most Õ(dpoly(P )) samples,
consistent with the case IE = 2, and once the subspace is recovered, later steps would also cost
at most dpoly(P ) samples.2 This would yield an overall Õ(dpoly(P )) sample (and also time)
complexity for strong recovery of the ground-truth directions. Note that the d-denpendence matches
the IE = 2 case and the strong recovery guarantee aligns with the results for IE > 2. In this work,
we prove the following theorem, providing a positive answer to this question.

Theorem 1.1 (Informal version of Theorem 2.1). Suppose that the target function is f∗(x) =∑P
k=1 ϕ(v

∗
k · x) where ϕ = h2 + h2L (L ≥ 2) and {v∗

k}Pk=1 are orthonormal, and the input x
follows the standard Gaussian distribution N (0, Id). Then, we can use online SGD (followed by a
ridge regression step) to train a two-layer network of width poly(P ) to learn (with high probability)
this target function using Õ(dpoly(P )) samples and steps.

Remark. For simplicity, we assume the link function is ϕ = h2+h2L. Our results can be extended
to more general even link function, provided their Hermite coefficients decay sufficiently fast. See
Section 2 (in particular Lemma 2.1 and Lemma 2.2) for further discussion. ♣

Organization The rest of the paper is organized as follows. First, we review the related works and
summarize our contributions. Then, we describe the detailed setting and state the formal version of
the main theorem in Section 2. In Section 3, we discuss the easier case where the training algorithm
is population gradient flow. Then, in Section 4, we show how to convert the gradient flow analysis
to an online SGD one. Finally, we conclude in Section 5. The proofs, simulation results, and a table
of contents can be found in the appendix.

1.1 RELATED WORK

In this subsection, we discuss works that are directly related to ours or were not covered earlier in
the introduction.

Along the line of information exponent, the paper most related to ours is (Oko et al. (2024)). They
show that for near orthogonal multi-index models, the sample complexity of recovering all ground-
truth directions using online SGD is Õ(PdIE−1) when IE ≥ 3. However, their results do not apply
to the case IE = 2 for the reason we have discussed earlier. Our result considers the situation where
both IE = 2 and IE ≥ 3 terms are present and show that in this case, the sample complexity of
online SGD is Õ(dpoly(P )).

During the writing of this manuscript, we became aware of the concurrent work (Ben Arous et al.
(2024)). Our main results are not directly comparable since the settings are different. They run
SGD on the Stiefel manifold which automatically prevents collapse but allow the target model to

exponent as well with some slight modifications. In other words, the generative exponent is also not sufficient
to capture the richer structure of multi-index models.

2The d factor in the second stage comes from the fact that the typical squared norm of the noise is d, so we
have to choose the step size to be O(d−1) for the noise to be reasonably small.
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have condition number larger than 1. In addition, only the lowest degree is considered in their work.
However, they also show (in a different setting) that when the second order term is isotropic, the
initial randomness can be preserved throughout training. A similar idea is used in our analysis of
Stage 1.1 (cf. Section 3.1).

Another related line of research is learning two-layer networks in the teacher-student setting (Zhong
et al. (2017); Li & Yuan (2017); Tian (2017); Li et al. (2020); Zhou et al. (2021); Ge et al. (2021)).
Among them, the ones most relevant to this work are (Li et al. (2020)) and the follow-up (Ge et al.
(2021)), both of which consider orthogonal models similar to ours and use similar ideas in the
analysis of the population process. However, they do not assume a low-dimensional structure and
only provide very crude poly(d)-style sample complexity bounds.

1.2 OUR CONTRIBUTIONS

We summarize our contributions as follows:

• We demonstrate that information exponent alone is insufficient to characterize certain structures
in the learning task and show that for a specific orthogonal multi-index model, if we consider
both the lower- and higher-order terms, the sample complexity of strong recovery using online
SGD can be greatly improved over the vanilla information exponent-based analysis.

• In the analysis, we prove that when the second-order term is isotropic, the initial randomness can
be preserved during training and the relevant subspace can be recovered using Õ(dpoly(P ))
samples. To the best of our knowledge, this has only been shown by the concurrent work
(Ben Arous et al. (2024)) in a different setting.

• As a by-product, we provide a collection of user-friendly technical lemmas to analyze difference
between noisy one-dimensional processes and their deterministic counterparts, which may be of
independent interests (see Section 4.1 and Section F.2).

2 SETUP AND MAIN RESULT

In this section, we describe the setting of our learning task and the training algorithm. Then we for-
mally state our main result. We will also convert the problem to an orthogonal tensor decomposition
task using the standard Hermite argument (Ge et al. (2018)).

Notations We use ∥·∥p to denote the p-norm of a vector. When p = 2, we often drop the subscript
and simply write ∥·∥. For a, b, δ ∈ R, a = b ± δ means |a − b| ≤ |δ| and a ∨ b = max{a, b}
and a ∧ b = min{a, b}. Beside the standard asymptotic (big O) notations, we also use the notation
fd = OL(gd), which means there exists a constant CL > 0 that can depend only on L such that
fd ≤ CLgd for all large enough d. Sometimes we also write fd ≲L gd for fd = OL(gd). The actual
value of CL can vary between lines, but we will typically point this out when it does.

2.1 INPUT AND TARGET FUNCTION

We assume the input x follows the standard Gaussian distribution N (0, Id) and the target function
has form f∗(x) =

∑P
k=1 ϕ(v

∗
k · x), where logC d ≤ P ≤ d for a large universal constant C > 0,

{v∗
k}Pk=1 are orthonormal and ϕ(z) = h2(z) + h2L(z) with L ≥ 2 and hl : R → R being the l-th

(normalized) Hermite polynomial.

Our target model and algorithm will all be invariant under rotation. Hence, we may assume without
loss of generality that v∗

k = ek where {ek}k is the standard basis of Rd. For now, we continue
writing v∗

k since most of the results in this section do not depend on the orthonormality of {v∗
k}k.

2.2 LEARNER MODEL, LOSS FUNCTION AND ITS GRADIENT

Our learner model is a width-m two-layer network f(x) := f(x;a,V ) :=
∑m

i=1 akϕ(vi ·x), where
a = (a1, . . . , am) ∈ Rm and V = (v1, . . . ,vm) ∈ (Sd−1)m are the trainable parameters. We will
call {vi}i∈[m] the first-layer neurons. We measure the difference between the learner and the target
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model using the mean-square error (MSE). Given a sample (x, f∗(x)), we define the per-sample
loss as

l(x) := l(x;a,V ) :=
1

2
(f∗(x)− f(x))

2
.

For convenience, we denote the population MSE loss with L := L(a,V ) := Ex l(x;a,V ). With
Hermite expansion, one can rewrite L as a tensor decomposition loss as in the following lemma.
The proof of this lemma is standard and can be found in, for example, Ge et al. (2018). We also
provide a proof in Appendix A for completeness.

Lemma 2.1 (Population loss). Consider the setting described above. For l ∈ N≥0, let ϕ̂l denote
the l-th Hermite coefficient of ϕ (with respect to the normalized Hermite polynomials). Then, for the
population loss, we have

L = Const.−
∞∑
l=0

P∑
k=1

m∑
j=1

aj ϕ̂
2
l ⟨v∗

k,vj⟩l +
1

2

∞∑
l=0

m∑
j1,j2=1

aj1aj2 ϕ̂
2
l ⟨vj1 ,vj2⟩

l
, (1)

where Const. is a real number that does not depend on a nor V .

Remark. The lemma does not require {v∗
k}k to be orthonormal nor ϕ = h2 + h2L. All we need is

ϕ ∈ L2(N (0, Id)) so that the Hermite expansion is well-defined. ♣

For the per-sample and population gradients, we have the following lemma, the proof of which can
also be found in Appendix A.

Lemma 2.2 (First-layer gradients). Consider the setting described above. Suppose that ϕ = h2 +
h2L and |ai| ≤ a0 for some a0 > 0 and all i ∈ [m]. Then, for each i ∈ [m], we have

∇vi
L = −2ai

P∑
k=1

⟨v∗
k,vi⟩v∗

k − 2Lai

P∑
k=1

⟨v∗
k,vi⟩2L−1

v∗
k ±2 2Lma20, (2)

where z = z′ ±2 δ means ∥z − z′∥2 ≤ δ.

Moreover, for x ∼ N (0, Id) and every direction u ∈ Sd−1 that is independent of x, there exists a
constant CL > 0 that can depend only on L such that

P
(
a−1
0 |⟨∇vi

l(x)−∇vL,u⟩| ≥ s
)
≤ CL exp

(
− 1

CL

( s

P

)1/(2L)
)
,

P
(
a−1
0 ∥∇vi

l(x)−∇vL∥ ≥ s
)
≤ CL exp

(
log d− 1

CL

(
s

P
√
d

)1/(2L)
)
,

a−2
0 E

x
⟨∇vi

l(x),u⟩2 ≤ CLP
2.

Remark on the population gradient. Note that (2) implies that when a is small, the dynamics of
different neurons are approximately decoupled. This allows us to consider each neuron separately.
The same is also true when we consider the per-sample gradient. Hence, we can often drop the
subscript i and say v := vi is an arbitrary first-layer neuron and the (population) gradient with
respect to it is given by (2). ♣

Remark on the tail bounds. We will choose m = poly(P ). In this case, in order for the RHS of
the bounds to be o(1) (after applying the union bound over all m neurons), it suffices to choose
s = ω(P log2L P ) and s = ω(Pd1/2 log2L d). Up to some logarithmic terms, this matches what
one should expect when ∇vi

l(x) is a P 2-subgaussian random vector. ♣

Remark on possible extensions. The formula (2) and the tail and variance bounds in this lemma
are essentially all the structures we need (besides the orthonormality) to establish our results. To
extend our results to general even link function whose Hermite coefficients decay sufficiently fast,
first note that the second-order and then the 2L-th order (the lowest even order that is larger than 2)
terms dominate the gradient. Moreover, since {v∗

k}k are assumed to be orthonormal, for any fixed
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even order (that is larger than 4), the minimizer of the corresponding terms matches the ground-truth
directions, and the gradient will always push the neurons toward one of the ground-truth directions.
In other words, they only help the model recover the directions. We consider only the lowest order
since it determines the overall complexity (as in the theory of information exponent).

Our tail bound is based on Theorem 1.3 of Adamczak & Wolff (2015) (cf. Theorem A.1), which
deals with polynomials of a fixed degree. Theorem 1.2 of Adamczak & Wolff (2015) deals with
general functions with controlled higher-order derivatives and can be used to extend our result to
non-polynomial link functions. See Appendix G for an empirical evidence. ♣

2.3 TRAINING ALGORITHM

Now, we describe the training algorithm. First, we initialize each output weight ai to be a0 where
a0 > 0 is a hyperparameter to be determined later and vi ∼ Unif(Sd−1) independently. Then, we
fix the output weights a and train the first-layer weight vi using online (spherical) SGD with step
size η/a0 (η > 0) for T iterations. Then, we fix the first-layer weights and use ridge regression to
train the output weights a.

Let {(xt, f∗(xt))}t∈N be our samples where {xt} are i.i.d. standard Gaussian vectors, and let ∇̃v =
(I − vv⊤)∇v denote the spherical gradient. Then, we can formally describe the training procedure
as follows:

Initialization: a0,i = a0, v0,i
i.i.d.∼ Unif(Sd−1), ∀i ∈ [m];

Stage 1:


v̂t+1,i = vt,i −

η

a0
∇̃vi l(xt;a0,Vt),

vt+1,i =
v̂t+1,i

∥v̂t+1,i∥
,

∀i ∈ [m], t ∈ [T ];

Stage 2: a = argmin
a′

1

2N

N∑
n=1

l(xT+n;a
′,VT ) + λ ∥a′∥2 .

(3)

Here, the hyperparameters are the initialization scale a0 > 0, network width m > 0, step size η > 0,
time horizon T > 0, the number of samples N in Stage 2, and the regularization strength λ > 0.

Before move on, we make some remarks here on the training algorithm. As we have seen in
Lemma 2.1 and Lemma 2.2, when the second-layer weights are small, the dynamics of the first-
layer weights are roughly decoupled. Hence, we choose to initialize each ai small and fix them at a0
in Stage 1. We rescale the learning rate with 1/a0 to compensate the fact that the first-layer gradients
are proportional to a0.

We will show that after the first stage, for each ground truth direction v∗
k, there will be some neurons

vi that converge to that direction. As a result, in the second stage, we can use ridge regression to
pick out those neurons and use them to fit the target function. The analysis of this stage is standard
and has been done in (Damian et al. (2022); Abbe et al. (2022); Ba et al. (2022); Lee et al. (2024);
Oko et al. (2024)). Hence, we will not further discuss this stage in the main text and defer the proofs
for this stage to Appendix D.

2.4 MAIN RESULT

The following is our main result. The proof of it can be found in Appendix E.
Theorem 2.1 (Main Theorem). Consider the setting and algorithm described above. Let C > 0
be a large universal constant. Suppose that logC d ≤ P ≤ d and {v∗

k}Pk=1 are orthonormal. Let
δP ∈ (exp(− logC d), 1) and ε∗ > 0 be given. Suppose that we choose a0, η, T,N satisfying

m = Ω
(
P 8 log1.5(P ∨ 1/δP)

)
, a0 = OL

(
ε2∗

mdP 2L+2 log3 d log(1/ε∗)

)
, N = ΩL

(
Pm

ε2∗δ
2
P

)
,

η = OL

(
ε4∗δP

dPL+8 log4L+1(d/δP)

)
= ÕL

(
ε4∗δP

dPL+8

)
,

T = OL

(
log d+ PL−1 + log(P/ε∗)

η

)
= ÕL

(
dP 2L+7

δPε4∗

)
.
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Then, there exists some λ > 0 such that at the end of training, we have L(a,V ) ≤ ε∗ with proba-
bility at least 1−O(δP).

3 THE GRADIENT FLOW ANALYSIS

In this section, we consider the situation where the training algorithm in Stage 1 is gradient flow
over the population loss instead of online SGD. The discussion here is non-rigorous and our formal
proof does not rely on anything in this section. Nevertheless, this gradient flow analysis will pro-
vide valuable intuition on the behavior of online SGD and also lead to rough guesses on the time
complexity.

For notational simplicity, we will assume without loss of generality that v∗
k = ek. Let v be an

arbitrary first-layer neuron. By Lemma 2.2, when we rescale the time by a−1
0 , the dynamics of v are

controlled by3

v̇τ ≈ 2

P∑
k=1

vk(I − vv⊤)ek + 2L

P∑
k=1

v2L−1
k (I − vv⊤)ek.

The second term on the RHS comes from the normalized/projection. For each k ∈ [d], we have

d

dτ
v2k ≈ 41{k ≤ P}

(
1 + Lv2L−2

k

)
v2k − 4

(
∥v≤P ∥2 + L ∥v≤P ∥2L2L

)
v2k. (4)

We further split Stage 1 into two substages. In Stage 1.1, the second-order terms dominate and
∥v≤P ∥2 / ∥v>P ∥2 grows from Θ(P/d) to Θ(1). In Stage 1.2, v converges to one ground-truth
direction.

The direction to which v will converge depends on the index of the largest v2k at the beginning
of Stage 1.2. With some standard concentration/anti-concentration argument, one can show that
maxk∈[P ] v

2
k is at least 1 + c times larger than the second-largest v2k for a small constant c > 0 with

probability at least 1/ poly(P ) at initialization (of Stage 1.1). Hence, as long as this gap can be
preserved throughout Stage 1, we can choose m = poly(P ) to ensure all ground-truth directions
can be found after Stage 1.2.

3.1 STAGE 1.1: LEARNING THE SUBSPACE AND PRESERVATION OF THE GAP

In this substage, we track ∥v≤P ∥2 / ∥v>P ∥2 and v2p/v
2
q

4 where p, q ∈ [P ] are arbitrary. The goal is
to show that ∥v≤P ∥2 / ∥v>P ∥2 will grow to a constant while v2p/v

2
q stay close to its initial value.

For the norm ratio, by (4), we have

d

dτ

∥v≤P ∥2

∥v>P ∥2
=

d
dτ ∥v≤P ∥2

∥v>P ∥2
− ∥v≤P ∥2

∥v>P ∥2
d
dτ ∥v>P ∥2

∥v>P ∥2

=
4 ∥v≤P ∥2

∥v>P ∥2
+

4L ∥v≤P ∥2L2L
∥v>P ∥2

−
����������������
4
(
∥v≤P ∥2 + L ∥v≤P ∥2L2L

)
∥v≤P ∥2

∥v>P ∥2

+
(((((((((((((((((((

∥v≤P ∥2

∥v>P ∥2
4
(
∥v≤P ∥2 + L ∥v≤P ∥2L2L

)
∥v>P ∥2

∥v>P ∥2
.

In particular, note that the terms coming from normalization cancel with each other. Moreover,

this implies d
dτ

∥v≤P∥2

∥v>P ∥2 ≥ 4
∥v≤P∥2

∥v>P ∥2 , and therefore, it takes only at most 1+o(1)
4 log(d/P ) =

Θ(log(d/P )) amount of time for the ratio to grow from Θ(P/d) to Θ(1). If we choose a small
step size η so that online SGD closely tracks the gradient flow, then the number of steps one should
expect is O(log(d/P )/η).

3We use τ to index the time in this continuous-time process (as t has been used to index the steps in the
discrete-time process) and will often omit it when it is clear from the context.

4A slightly different quantity will be used in the online SGD analysis, but the intuition remains the same.
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Meanwhile, for any p, q ∈ [P ], we have

d

dτ

v2p
v2q

= 4
(
1 + Lv2L−2

p

) v2p
v2q

− 4
(
∥v≤P ∥2 + L ∥v≤P ∥2L2L

) v2p
v2q

−
v2p
v2q

(
4
(
1 + Lv2L−2

q

)
− 4

(
∥v≤P ∥2 + L ∥v≤P ∥2L2L

))
= 4L

(
v2L−2
p − v2L−2

q

) v2p
v2q

.

Note that not only those terms coming from normalization cancel with each other, but also the
second-order terms. In particular, this also implies that we cannot learn the directions using only the
second-order terms. At initialization, it is unlikely that some v2k are significantly larger than all other
v2l . Hence, if we assume the induction hypothesis v2p/v

2
q ≈ v20,p/v

2
0,q , we will have v2k ≤ Õ(1/P )

and the above will become d
dτ v

2
p/v

2
q ≤ Õ(L/P )v2p/v

2
q . As a result, v2t,p/v

2
t,q ≤ (1 + o(1))v20,p/v

2
0,q

for any t ≤ Θ(log(d/P )), as long as P ≥ poly log d.

3.2 STAGE 1.2: LEARNING THE DIRECTIONS

Let v be a first-layer neuron with v21 ≥ (1 + c)max2≤k≤P v2k for some small constant c > 0 at
initialization. By our previous discussion, we know at the end of Stage 1.1, the above bound still
holds with a potentially smaller constant c > 0. In addition, since ∥v≤P ∥2 = Θ(1), we also have
v21 ≥ Ω(1/P ) at the end of Stage 1.1. We claim that v will converge to e1. The argument here is
similar to the proofs in Li et al. (2020) and Ge et al. (2021).

Again, by (4), we have

d

dτ
v21 ≈ 4

(
1− ∥v≤P ∥2 + Lv2L−2

1 − L ∥v≤P ∥2L2L
)
v21 ≥ 4L

(
v2L−2
1 − ∥v≤P ∥2L2L

)
v21 .

Assume the induction hypothesis v21 ≥ (1 + c)max2≤k≤P v2k and write

v2L−2
1 − ∥v≤P ∥2L2L = v2L−2

1

(
1− v21

)
−
(
∥v≤P ∥2 − v21

) P∑
k=2

v2k
∥v≤P ∥2 − v21

v2L−2
k .

Note that the summation is a weighted average of {v2L−2
k }k≥2 and therefore is upper bounded by(

v21/(1 + c)
)L−1 ≤ (1− cL)v

2L−2
1 for some constant cL > 0 that can only depend on L. Thus, we

have
d

dτ
v21 ≳ 4L

(
1− v21 −

(
∥v≤P ∥2 − v21

)
(1− cL)

)
v2L1 ≥ 4cLL

(
1− v21

)
v2L1 .

When v21 ≤ 3/4, this implies d
dτ v

2
1 ≥ cLLv

2L
1 . As a result, it takes at most OL(P

L−1) amount of
time for v21 to grow from Ω(1/P ) to 3/4. It is important that v21 = Ω(1/P ) instead of Ω(1/d) at
the start of Stage 1.2, since otherwise the time needed will be OL(d

L−1). After v21 reaches 3/4, we
have d

dτ (1− v21) ≤ −4cLL(3/4)
2L
(
1− v21

)
. Thus, v21 will converge linearly to 1 afterwards.

4 FROM GRADIENT FLOW TO ONLINE SGD

In this section, we discuss how to convert the previous gradient flow analysis to an online SGD
one. Our actual proof will be based directly on the online SGD analysis, but the overall idea is still
proving that the online SGD dynamics of certain important quantities closely track their population
gradient descent (GD) counterparts. Our choice of learning rate η will be much smaller than what
needed for GD to track GF — the bottleneck comes from the GD-to-SGD conversion, not the GF-
to-GD one. In other words, provided that SGD tracks GD well, the number of steps/samples it needs
to finish each substage is roughly the amount of time GF needs, divided by the step size η.

The rest of this section is organized as follows. In Section 4.1, we collect a few useful lemmas for
controlling the difference between noisy dynamics and their deterministic counterparts. The idea
behind them has appeared in Ben Arous et al. (2021) and is also used in Abbe et al. (2022). Here,
we simplify and slightly generalize their argument and provide a user-friendly interface. When used
properly, it reduces the GD-to-SGD proof to routine calculus. Then, in Section 4.2, we discuss how
to apply those general results to analyze the dynamics of online SGD in our setting.
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4.1 TECHNICAL LEMMAS FOR ANALYZING GENERAL NOISY DYNAMICS

We start with the lemma that will be used to analyze ∥v≤P ∥2 / ∥v>P ∥2. The proof of it and all other
lemmas in this subsection can be found in Section F.2.
Lemma 4.1. Let (Ω,F , (Ft)t∈N,P) be a filtered probability space. Suppose that (Xt)t is an (Ft)t-
adapted real-valued process satisfying

Xt+1 = Xt + αXt + ξt+1 + Zt+1, X0 = x0 > 0, (5)

where α > 0 is fixed, (ξt)t is an (Ft)t-adapted process, and (Zt)t is an (Ft)t-adapted martingale
difference sequence. Define its deterministic counterpart as xt = (1 + α)tx0.

Let T > 0 and δP ∈ (0, 1) be given. Suppose that there exists some δP,ξ ∈ (0, 1) and Ξ, σZ > 0
such that for every t ≤ T , if Xt = (1 ± 0.5)xt, then we have |ξt+1| ≤ (1 + α)tΞ with probability
at least 1− δP,ξ and E[Z2

t+1 | Ft] ≤ (1 + α)tσ2
Z . If

Ξ ≤ x0

4T
and σ2

Z ≤ δPαx
2
0

16
, (6)

then we have Xt = (1± 0.5)xt for all t ∈ [T ] with probability at least 1− TδP,ξ − δP.

Remark on condition (6). One may interpret Zt+1 as those terms coming from the difference be-
tween the population and mini-batch gradients and ξt+1 as the higher-order error terms. α is usu-
ally small. In our case, it is proportional to the step size η. T is usually the time needed for
Xt to grow from a small x0 > 0 to Θ(1), which is roughly α−1 log(1/x0). In other words, we
have α = Õ(1/T ). As a result, in order for (6) to hold, it suffices to have Ξ = O(x0/T ) and
σZ = O(x0/

√
T ). Note that the condition on σZ is much weaker than the condition on Ξ. Mean-

while, since ξt+1 models the higher-order error terms, we should expect it to be able to satisfy the
stronger condition Ξ ≤ O(1/T ). ♣

Remark on stochastic induction. One important feature of this lemma is that it only requires the
bounds |ξt+1| ≤ (1 + α)tΞ and E[Z2

t+1 | Ft] ≤ (1 + α)tσ2
Z to hold when Xt = (1± 0.5)xt. This

can be viewed as a form of induction. This is particularly useful when considering the dynamics
of, say, v2k. Similar to how the RHS of d

dτ v
2
τ,k = 2vτ,kv̇τ,k depends on vτ,k, the size of ξt+1 and

Zt+1 will usually depend on Xt. Hence, we will not be able to bound them without an induction
hypothesis on Xt. ♣

Remark on the dependence on δP. The dependence on δP can be improved to poly log(1/δP) if
we have tail bounds on Zt+1 similar to the ones in Lemma 2.2. We state this lemma in this simpler
form because we will only take union bound over poly(P ) events, and we are not optimizing the
dependence on P . We include in Section F.2 an example (cf. Lemma F.9 and Lemma F.10) where
this improvement is made (though that result will not be used in the proof). ♣

Proof sketch of Lemma 4.1. For the ease of presentation, we assume that |ξt+1| ≤ (1 + α)tΞ with
probability at least 1 − δP,ξ and E[Z2

t+1 | Ft] ≤ (1 + α)tσ2
Z always hold. Recursively expand the

RHS of (5), and we obtain

Xt+1 = (1 + α)t+1x0 +

t∑
s=1

(1 + α)t−sξs+1 +

t∑
s=1

(1 + α)t−sZs+1.

Divide both sides with (1 + α)t+1 and replace t+ 1 with t. Then, the above becomes

Xt(1 + α)−t = x0 +

t∑
s=1

(1 + α)−sξs +

t∑
s=1

(1 + α)−sZs.

The second term is bounded by TΞ (uniformly over t ≤ T ) with probability at least 1−TδP,ξ. Note
that (1 + α)−sZs is still a martingale difference sequence. Hence, by Doob’s L2-submartingale
inequality, the third term is bounded by x0/4 with probability at least 16σ2

Z/(αx
2
0). Thus, when (6)

holds, the RHS is (1 ± 0.5)x0 with probability at least 1 − TδP,ξ − δP. Multiply both sides with
(1 + α)t, and we complete the proof.
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Using the same strategy, one can prove a similar lemma (cf. Lemma F.8) that deals with the case
α = 0, which will be used to show the preservation of the gap in Stage 1.1. Another interesting case
is where the growth is not linear but polynomial. This is the case of Stage 1.2 in our setting. For this
case, we have the following lemma.

Lemma 4.2. Suppose that (Xt)t satisfies

Xt+1 = Xt + αXp
t + ξt+1 + Zt+1, X0 = x0 > 0,

where p > 1, the signal growth rate α > 0 and initialization x0 > 0 are given and fixed, (ξt)t is
an adapted process, and (Zt)t is a martingale difference sequence. Let x̂t be the solution to the
deterministic recurrence relationship x̂t+1 = x̂t + αx̂p

t , x̂0 = x0/2.

Fix T > 0, δP ∈ (0, 1). Suppose that there exist Ξ, σZ > 0 and δP,ξ ∈ (0, 1) such that when
Xt ≥ x̂t, we have |ξt| ≤ Ξ with probability at least 1 − δP,ξ and E[Zt+1 | Ft] ≤ σ2

Z . Then, if

Ξ ≤ x0

4T and σ2
Z ≤ x2

0δP
16T , we have Xt ≥ x̂t for all t ≤ T .

The proof is essentially the same as the previous one, except that we need to replace (1 + α)t

with
∏t−1

s=0(1+αXp−1
s ). Let xt be the version of x̂t with the initial value being x0 instead of x0/2.

Unlike the linear case, here it is generally difficult to ensure Xt ≥ xt/2 since this type of polynomial
systems exhibits sharp transitions and blows up in finite time. In fact, the difference between the
deterministic processes x̂t and xt/2 can be large. However, if one is only interested in the time
needed for Xt to grow from a small value to a constant, then results obtained from x̂t and xt differ
only by a multiplicative constant, and when α > 0 is small, both of them can be estimated using
their continuous-time counterpart ẋτ = xp

τ (cf. Lemma F.12).

4.2 SAMPLE COMPLEXITY OF ONLINE SGD

In this subsection, we demonstrate how to use the previous results to obtain results for online SGD
and discuss why the sample complexity is Õ(dpoly(P )) instead of Õ(d2L−1) even though we are
relying on the 2L-th order terms to learn the directions.

4.2.1 A SIMPLIFIED VERSION OF STAGE 1.1

As an example, we consider the dynamics of Pv2p/(dv
2
q ) where p ≤ P and q > P and assume

both of vp and vq are small and Pv2p/(dv
2
q ) ≤ 1. This can be viewed as a simplified version of the

analysis of ∥v≤P ∥2 / ∥v>P ∥2 in Stage 1.1. The analysis of other quantities/stages is essentially the
same — we rewrite the update rule to single out martingale difference terms and the higher-order
error terms, and apply a suitable lemma from the previous subsection (or Section F.2) to complete
the proof.

For the ease of presentation, in this subsection, we ignore the higher-order terms. In particular, we
assume the approximation

v̂t+1,k ≈ vt,k + 2η
(
1{k ≤ P} − ∥v≤P ∥2

)
+ ηZt+1,k, ∀k ∈ [d],

where Zt+1,k represents the difference between the population and mini-batch gradients. Then, we
compute

v̂2t+1,k ≈
(
1 + 4η

(
1{k ≤ P} − ∥v≤P ∥2

))
v2k + 2ηvkZk ± CLη

2(1 ∨ Z2
k).

Here, the last term is the higher-order term and will eventually be included in ξ. For simplicity,
we will also ignore them in the following discussion. The second term is the martingale difference
term. Its (conditional) variance depend on vk, and this necessitates the induction-style conditions in
Lemma F.6. Note that v2t+1,p/v

2
t+1,q = v̂2t+1,p/v̂

2
t+1,q . Hence, we have

v2t+1,p

v2t+1,q

≈

(
1 + 4η

(
1− ∥v≤P ∥2

))
v2p + 2ηvpZp(

1− 4η ∥v≤P ∥2
)
v2q + 2ηvqZq

.
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For any small a > 0 and small δ > 0, we have the following elementary identity: 1
a+δ =

1
a

(
1− δ

a

(
1− δ

a+δ

))
≈ 1

a

(
1− δ

a

)
. Repeatedly use this identity, and we can rewrite the above

equation as

Pv2t+1,p

dv2t+1,q

≈
P
(
1 + 4η

(
1− ∥v≤P ∥2

))
v2p

d
(
1− 4η ∥v≤P ∥2

)
v2q

1− 2ηvqZq(
1− 4η ∥v≤P ∥2

)
v2q


+

2PηvpZp

d
(
1− 4η ∥v≤P ∥2

)
v2q

1− 2ηvqZq(
1− 4η ∥v≤P ∥2

)
v2q


≈ (1 + 4η)

Pv2p
dv2q

−
Pv2p
dv2q

2ηvqZq

v2q
+

2PηvpZp

dv2q
.

Suppose that v2p ≈ v2q at initialization and assume the induction hypothesis Pv2p/(dv
2
q ) = (1 ±

0.5)(1 + 4η)tPv20,p/(dv
2
0q). Then, by Lemma 2.2, the conditional variance of the martingale dif-

ference terms (the last two terms) is bounded by OL((1 + 4η)tη2P 4/d). Using the language of
Lemma 4.1, this means σ2

Z ≤ OL(η
2P 4/d). Hence, in order for (the second condition of) (6) to

hold, it suffices to choose η ≲L δP/(dP
2). By our gradient flow analysis, the number steps Stage 1.1

needs is roughly log d/η. In other words, for Stage 1.1, the sample complexity is ÕL(dP
2/δP) (if

we ignore the higher-order error terms).

4.2.2 THE IMPROVED SAMPLE COMPLEXITY FOR STAGE 1.2

To see why the existence of the second-order terms can reduce the sample complexity from dIE−1 to
dpoly(P ), first note that after Stage 1.1, maxp∈[P ] v

2
p will be Ω(1/P ). Also note that the conditions

in Lemma 4.2 depend on the initial value. With the initial value being Ω(1/P ) instead of Õ(1/d),
the largest possible step size we can choose will be O(1)/(dpoly(P )), which is much larger than
the usual O(1/dL−1) requirement from the vanilla information exponent argument. Meanwhile, by
our gradient flow analysis, we know the number of iterations needed is O(PL−1/η). Combine these
and we obtain the dpoly(P ) sample complexity.

5 CONCLUSION AND FUTURE DIRECTIONS

In this work, we study the task of learning multi-index models of form f∗(x) =
∑P

k=1 ϕ(v
∗
k ·x) with

P ≪ d, {v∗
k}k be orthogonal and ϕ = h2 + h2L. By considering both the lower- and higher-order

terms, we prove an Õ(dpoly(P )) bound on the sample complex for strong recovery of directions
using online SGD, which improve the results one can obtain using vanilla information exponent-
based analysis.

One possible future direction of our work is to generalize our results to more general link functions
and assume the learner model is a generic two-layer network with, say, ReLU activation. Another
interesting but more challenging direction is to consider the non-(near)-orthogonal case. We con-
jecture when the target model has a hierarchical structure across different orders, online SGD can
gradually learn the directions using those terms of different order sequentially.
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and phase transitions in high-dimensional generalized linear models. Proceedings of the National
Academy of Sciences, 116(12):5451–5460, March 2019. doi: 10.1073/pnas.1802705116. URL
https://www.pnas.org/doi/10.1073/pnas.1802705116. Publisher: Proceedings
of the National Academy of Sciences.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. Journal of Machine Learning Research, 22
(106):1–51, 2021. URL http://jmlr.org/papers/v22/20-1288.html.

Gérard Ben Arous, Cédric Gerbelot, and Vanessa Piccolo. High-dimensional optimization for
multi-spiked tensor PCA, August 2024. URL http://arxiv.org/abs/2408.06401.
arXiv:2408.06401 [cs, math, stat].

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index mod-
els with shallow neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=wt7cd9m2cz2.

Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On Learning Gaussian Multi-index Mod-
els with Gradient Flow, November 2023. URL http://arxiv.org/abs/2310.19793.
arXiv:2310.19793.

Sitan Chen and Raghu Meka. Learning Polynomials in Few Relevant Dimensions. In Proceedings of
Thirty Third Conference on Learning Theory, pp. 1161–1227. PMLR, July 2020. URL https:
//proceedings.mlr.press/v125/chen20a.html. ISSN: 2640-3498.

Alex Damian, Eshaan Nichani, Rong Ge, and Jason D. Lee. Smoothing the Landscape Boosts
the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models. In
Advances in Neural Information Processing Systems, November 2023. URL https:
//openreview.net/forum?id=73XPopmbXH&referrer=%5Bthe%20profile%
20of%20Alex%20Damian%5D(%2Fprofile%3Fid%3D˜Alex_Damian1).

Alex Damian, Loucas Pillaud-Vivien, Jason D. Lee, and Joan Bruna. Computational-Statistical Gaps
in Gaussian Single-Index Models, March 2024. URL http://arxiv.org/abs/2403.
05529. arXiv:2403.05529 [cs, stat].

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural Networks can Learn Represen-
tations with Gradient Descent. In Proceedings of Thirty Fifth Conference on Learning Theory,
pp. 5413–5452. PMLR, June 2022. URL https://proceedings.mlr.press/v178/
damian22a.html. ISSN: 2640-3498.

Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborova, and Florent
Krzakala. The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks:

11

https://proceedings.mlr.press/v195/abbe23a.html
https://proceedings.mlr.press/v195/abbe23a.html
https://doi.org/10.1007/s00440-014-0579-3
https://doi.org/10.1007/s00440-014-0579-3
https://openreview.net/forum?id=DVmxh2kuqc
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f7e7fabd73b3df96c54a320862afcb78-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f7e7fabd73b3df96c54a320862afcb78-Abstract-Conference.html
https://www.pnas.org/doi/10.1073/pnas.1802705116
http://jmlr.org/papers/v22/20-1288.html
http://arxiv.org/abs/2408.06401
https://openreview.net/forum?id=wt7cd9m2cz2
http://arxiv.org/abs/2310.19793
https://proceedings.mlr.press/v125/chen20a.html
https://proceedings.mlr.press/v125/chen20a.html
https://openreview.net/forum?id=73XPopmbXH&referrer=%5Bthe%20profile%20of%20Alex%20Damian%5D(%2Fprofile%3Fid%3D~Alex_Damian1)
https://openreview.net/forum?id=73XPopmbXH&referrer=%5Bthe%20profile%20of%20Alex%20Damian%5D(%2Fprofile%3Fid%3D~Alex_Damian1)
https://openreview.net/forum?id=73XPopmbXH&referrer=%5Bthe%20profile%20of%20Alex%20Damian%5D(%2Fprofile%3Fid%3D~Alex_Damian1)
http://arxiv.org/abs/2403.05529
http://arxiv.org/abs/2403.05529
https://proceedings.mlr.press/v178/damian22a.html
https://proceedings.mlr.press/v178/damian22a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Breaking the Curse of Information and Leap Exponents. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, pp. 9991–10016. PMLR, July 2024. URL https:
//proceedings.mlr.press/v235/dandi24a.html. ISSN: 2640-3498.

Rong Ge, Jason D. Lee, and Tengyu Ma. Learning One-hidden-layer Neural Networks with
Landscape Design. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=BkwHObbRZ.

Rong Ge, Yunwei Ren, Xiang Wang, and Mo Zhou. Understanding Deflation Process in Over-
parametrized Tensor Decomposition, October 2021. URL http://arxiv.org/abs/2106.
06573. arXiv:2106.06573 [cs, stat].

Hidehiko Ichimura. Semiparametric least squares (SLS) and weighted SLS estimation of single-
index models. Journal of Econometrics, 58(1):71–120, July 1993. ISSN 0304-4076. doi:
10.1016/0304-4076(93)90114-K. URL https://www.sciencedirect.com/science/
article/pii/030440769390114K.

Jason D. Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
polynomials with SGD near the information-theoretic limit, June 2024. URL http://arxiv.
org/abs/2406.01581. arXiv:2406.01581 [cs, stat] version: 1.

Yuanzhi Li and Yang Yuan. Convergence Analysis of Two-layer Neural Networks with ReLU
Activation. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/hash/a96b65a721e561e1e3de768ac819ffbb-Abstract.html.

Yuanzhi Li, Tengyu Ma, and Hongyang R. Zhang. Learning Over-Parametrized Two-Layer Neu-
ral Networks beyond NTK. In Jacob Abernethy and Shivani Agarwal (eds.), Proceedings of
Thirty Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning
Research, pp. 2613–2682. PMLR, July 2020. URL http://proceedings.mlr.press/
v125/li20a.html.

Ron Meir and Tong Zhang. Generalization Error Bounds for Bayesian Mixture Algorithms. Journal
of Machine Learning Research, 4(Oct):839–860, 2003. ISSN ISSN 1533-7928. URL https:
//www.jmlr.org/papers/v4/meir03a.html.

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 1 edi-
tion, June 2014. ISBN 978-1-107-03832-5 978-1-139-81478-2 978-1-107-47154-2. doi:
10.1017/CBO9781139814782. URL https://www.cambridge.org/core/product/
identifier/9781139814782/type/book.

Kazusato Oko, Yujin Song, Taiji Suzuki, and Denny Wu. Learning sum of diverse features: com-
putational hardness and efficient gradient-based training for ridge combinations. In Proceedings
of Thirty Seventh Conference on Learning Theory, pp. 4009–4081. PMLR, June 2024. URL
https://proceedings.mlr.press/v247/oko24a.html. ISSN: 2640-3498.

Yuandong Tian. An Analytical Formula of Population Gradient for two-layered ReLU network
and its Applications in Convergence and Critical Point Analysis. In Proceedings of the 34th
International Conference on Machine Learning, pp. 3404–3413. PMLR, July 2017. URL
https://proceedings.mlr.press/v70/tian17a.html. ISSN: 2640-3498.

Emanuele Troiani, Yatin Dandi, Leonardo Defilippis, Lenka Zdeborová, Bruno Loureiro, and Flo-
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A FROM MULTI-INDEX MODEL TO TENSOR DECOMPOSITION

In this section, we show that the task of learning the multi-index target function f∗(x) =∑P
k=1 ϕ(v

∗
k ·x) can be reduced to tensor decomposition. We will need the following classical result

on Hermite polynomials (cf. Chapter 11.2 of O’Donnell (2014)) and correlated Gaussian variables.
Lemma A.1 (Proposition 11.31 of O’Donnell (2014)). For k ∈ N≥0 denote the normalized Hermite
polynomials. Let ρ ∈ [−1, 1] and z, z′ be ρ-correlated standard Gaussian variables. Then, we have

E
z,z′

[hk(z)hj(z
′)] = 1{k = j}ρk.

Lemma 2.1 (Population loss). Consider the setting described above. For l ∈ N≥0, let ϕ̂l denote
the l-th Hermite coefficient of ϕ (with respect to the normalized Hermite polynomials). Then, for the
population loss, we have

L = Const.−
∞∑
l=0

P∑
k=1

m∑
j=1

aj ϕ̂
2
l ⟨v∗

k,vj⟩l +
1

2

∞∑
l=0

m∑
j1,j2=1

aj1aj2 ϕ̂
2
l ⟨vj1 ,vj2⟩

l
, (1)

where Const. is a real number that does not depend on a nor V .

Proof. By definition, we have

L =
1

2
E

x∼N (0,Id)

 P∑
k=1

ϕ(v∗
k · x)−

m∑
j=1

ajϕ(vj · x)

2

=
1

2

P∑
k1,k2=1

E
x∼N (0,Id)

{
ϕ(v∗

k1
· x)ϕ(v∗

k2
· x)
}
−

P∑
k=1

m∑
j=1

aj E
x∼N (0,Id)

{ϕ(v∗
k · x)ϕ(vj · x)}

+
1

2

m∑
j1,j2=1

aj1aj2 E
x∼N (0,Id)

{ϕ(vj1 · x)ϕ(vj2 · x)} .

The first term is independent of a and V . For the other two terms, we now use Lemma A.1 to
evaluate the expectation. Let ϕ =

∑∞
k=0 ϕ̂khk be the Hermite expansion of ϕ where the convergence

is in L2 sense. For any ρ ∈ [−1, 1] and ρ-correlated standard Gaussian variables z, z′, we have

E
z,z′

{ϕ(z)ϕ(z′)} =

∞∑
k,l=0

ϕ̂kϕ̂l E
z,z′

{hk(z)hl(z
′)} =

∞∑
k=0

ϕ̂2
kρ

k,

where the first equality comes from the Dominated Convergence Theorem and the second from
Lemma A.1. Note that v∗

k ·x and vj ·x are ⟨v∗
k,vj⟩-correlated standard Gaussian variables. Hence,

by applying the above identity to the second term, and we obtain
P∑

k=1

m∑
j=1

aj E
x∼N (0,Id)

{ϕ(v∗
k · x)ϕ(vj · x)} =

∞∑
l=0

P∑
k=1

m∑
j=1

aj ϕ̂
2
l ⟨v∗

k,vj⟩l .

Similarly, for the last term, we have

1

2

m∑
j1,j2=1

aj1aj2 E
x∼N (0,Id)

{ϕ(vj1 · x)ϕ(vj2 · x)} =
1

2

∞∑
l=0

m∑
j1,j2=1

aj1aj2 ϕ̂
2
l ⟨vj1 ,vj2⟩

l
.
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Then, we consider the population and per-sample gradient. It is well-known that any Lipschitz
function of a Gaussian variable is still subgaussian. Similar tail bounds can still be obtained when
the function is not Lipschitz but has a bounded higher-order derivative. To estimate the tail of the
per-sample gradient, we need the following result from Adamczak & Wolff (2015). As a side note,
Theorem 1.2 of Adamczak & Wolff (2015) is a more general result that deals with general non-
Lipschitz functions with controlled higher-order derivatives. That result can be used to extend our
setting to link functions with infinitely many nonzero higher-order Hermite coefficients, given that
they decay sufficiently fast.

Theorem A.1 (Theorem 1.3 of Adamczak & Wolff (2015)). Let Z ∼ N (0, Id) and f : Rd → R
be a polynomial of degree Q. Then, for any t ≥ 0, we have

P [|f(Z)− E f(Z)| ≥ t] ≤ CQ exp

(
−C−1

Q min
q∈[Q]

min
J∈Pq

(
t

∥E∇qf(Z)∥J

)2/|J|
)
, (7)

where CQ > 0 is a constant that depends only on the degree Q, Pq is the collection of partitions of
[q], and for any J ∈ Pq and A ∈ (Rd)⊗q ,

∥A∥J := sup

∑
i∈[d]q

Ai

|J|∏
l=1

X
(l)
iJl

: X(l) ∈ (Rd)⊗|Jl|,
∥∥∥X(l)

∥∥∥
F
≤ 1,∀l ∈ [|J |]

 .

Remark on the definition of ∥·∥J . The definition of ∥A∥J might look bizarre, but it has a natu-
ral functional interpretation. Given a partition J ∈ Pq , we can treat a tensor A ∈ (Rd)⊗q as a
multilinear function by grouping the indices according to J as follows. For each Jl ∈ J , we take
X(l) ∈ (Rd)|Jl| and feed them into A to obtain a real number. Similar to how the induced norm is
defined for matrices, we restrict the norm of each X(l) to be at most 1 to obtain this definition of
∥A∥J . As an example, consider A ∈ (Rd)⊗3 and J = {{1, 2}, {3}}. In this case, X(1) is a matrix
and X(2) is a vector, and we have

∥A∥{1,2},{3} = sup

 ∑
i,j,k∈[d]

Ai,j,kX
(1)
i,j X

(2)
k :

∥∥∥X(1)
∥∥∥
F
≤ 1,

∥∥∥X(2)
∥∥∥
2
≤ 1

 .

♣

Remark on the RHS of (7). Fix z ∈ Rd and f be a polynomial with degree at most Q. Suppose
that the coefficients of monomials of f are all bounded by some constant AQ > 0 that may depend
on Q. Note that f can contain at most dQ monomials. Meanwhile, for each q ∈ [Q] and i ∈ [d]q ,
[∇qf(z)]i is nonzero only if [∇qm(z)]i for some monomial m : Rd → R contained in f . Since m
has degree at most Q, ∇qm(z) can have at most Q! nonzero entries (across all different z). Thus,
the total number of possible nonzero entries in ∇qf(z) is bounded by Q!dQ and all entries of it are
bounded by Q!AQ. Thus, we have ∥E∇qf(Z)∥J ≤ C ′

Qd
Q for some constant C ′

Q > 0 that can
depend only on Q. In other words, for the RHS of (7) to be o(1), we need t = ω(C ′

Qd
Q).

The above bound might seem to be bad. Fortunately, in our case, we only need to consider f : Rd →
R of form f(x) = F (u1 · x,u2 · x,u3 · x) where F is a polynomial and u1,u2,u3 ∈ Sd−1 are
three arbitrary directions. Suppose that x ∼ N (0, Id) and define Σ ∈ R3×3 via Σi,j = ⟨ui,uj⟩.
Then, we have

f(x)
d
= F

(
Σ1/2z

)
where z ∼ N (0, I3) .

When F : R3 → R is a degree-Q polynomial with coefficients being constants that can depend
only on Q, so z 7→ F

(
Σ1/2z

)
. Thus, we can apply this theorem (with dimension being 3) and our

previous discussion to obtain

P [|f(Z)− E f(Z)| ≥ t] ≤ CQ exp

(
− t2/Q

CQ

)
,

where CQ > 0 is a constant that can depend only on Q. ♣
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Now, we are ready to prove Lemma 2.2, which we also restate bellow.
Lemma 2.2 (First-layer gradients). Consider the setting described above. Suppose that ϕ = h2 +
h2L and |ai| ≤ a0 for some a0 > 0 and all i ∈ [m]. Then, for each i ∈ [m], we have

∇vi
L = −2ai

P∑
k=1

⟨v∗
k,vi⟩v∗

k − 2Lai

P∑
k=1

⟨v∗
k,vi⟩2L−1

v∗
k ±2 2Lma20, (2)

where z = z′ ±2 δ means ∥z − z′∥2 ≤ δ.

Moreover, for x ∼ N (0, Id) and every direction u ∈ Sd−1 that is independent of x, there exists a
constant CL > 0 that can depend only on L such that

P
(
a−1
0 |⟨∇vi l(x)−∇vL,u⟩| ≥ s

)
≤ CL exp

(
− 1

CL

( s

P

)1/(2L)
)
,

P
(
a−1
0 ∥∇vi

l(x)−∇vL∥ ≥ s
)
≤ CL exp

(
log d− 1

CL

(
s

P
√
d

)1/(2L)
)
,

a−2
0 E

x
⟨∇vi

l(x),u⟩2 ≤ CLP
2.

Proof. Fix i ∈ [m]. First, by Lemma 2.1, we have

∇viL = −
P∑

k=1

ai∇vi ⟨v∗
k,vi⟩2 −

P∑
k=1

ai∇vi ⟨v∗
k,vi⟩2L +

1

2

∑
l∈{2,2L}

m∑
j=1

aiaj∇vi ⟨vi,vj⟩l

= −2ai

P∑
k=1

⟨v∗
k,vi⟩v∗

k − 2Lai

P∑
k=1

⟨v∗
k,vi⟩2L−1

v∗
k

+
1

2
ai

∑
l∈{2,2L}

l
∑

j∈[m]\{i}

aj ⟨vi,vj⟩l−1
vj + 2lai ⟨vi,vi⟩l−1

vi

 .

Note that the last line is bounded by 2Lma20. In other words,

∇viL = −2ai

P∑
k=1

⟨v∗
k,vi⟩v∗

k − 2Lai

P∑
k=1

⟨v∗
k,vi⟩2L−1

v∗
k ±2 2Lma20.

Now, consider the per-sample gradient. We write

∇vi l(x) = − (f∗(x)− f(x;a,V ))∇vif(x;a,V )

= −ai (f∗(x)− f(x;a,V ))ϕ′(vi · x)x

= −ai

P∑
k=1

ϕ(v∗
k · x)ϕ′(vi · x)x+ ai

m∑
k=1

akϕ(vk · x)ϕ′(vi · x)x

=: gi,1 + gi,2.

Let u ∈ Sd−1 be an arbitrary direction. We now estimate the tail of ⟨∇vi
l,u⟩. By Theorem A.1

(and the second remark following it), we have

P
(∣∣∣ϕ(v∗

k · x)ϕ′(vi · x) ⟨x,u⟩ − E
x′
ϕ(v∗

k · x′)ϕ′(vi · x′) ⟨x′,u⟩
∣∣∣ ≥ s

)
≤ CL exp

(
−s1/(2L)

CL

)
,

for some constant CL > 0 that can depend only on L. Hence, we have

P
(
a−1
i |⟨gi,1,u⟩ − E ⟨gi,1,u⟩| ≥ s

)
≤ CL exp

(
− (s/P )1/(2L)

CL

)
.

In particular, this implies that typical value of a−1
i gi,1 is bounded by Θ(P ). Similarly, for gi,2, we

have

P
(
a−2
0 |⟨gi,1,u⟩ − E ⟨gi,1,u⟩| ≥ s

)
≤ CL exp

(
− (s/m)1/(2L)

CL

)
, (8)
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or equivalently,

P
(
a−1
0 |⟨gi,1,u⟩ − E ⟨gi,1,u⟩| ≥ s

)
≤ CL exp

(
− (s/(a0m))1/(2L)

CL

)
.

Note that since a0m = o(1) ≪ P , the RHS of this inequality is much smaller than the RHS of (8)
when we choose the same s. Combine the above bounds together, and we obtain that for each fixed
i ∈ [m],

P
(
a−1
0 |⟨∇vi

l(x),u⟩ − ⟨∇vL,u⟩| ≥ s
)
≤ CL exp

(
− (s/P )1/(2L)

CL

)
,

for some constant CL > 0 that can depend only on L and is potentially different from the CL in (8).
As a corollary, we have

P
(
a−1
0 ∥∇vi l(x)−∇vL∥ ≥ s

)
≤ CL

d∑
k=1

P
(
a−1
0 |⟨∇vi

l(x), ek⟩ − ⟨∇vL, ek⟩| ≥ s/
√
d
)

≤ CL exp

(
log(d)− 1

CL

(
s

P
√
d

)1/(2L)
)
.

Similarly, one can show that E ⟨∇vi
l(x),u⟩2 ≤ CLa

2
0P

2 for some constant CL > 0 that can depend
only on L and is potentially different from the CL in (8).

B TYPICAL STRUCTURE AT INITIALIZATION

In this section, we use the results in Section F.1 to analyze the structure of v1, . . . ,vm at initial-
ization. Recall that we initialize vi with Unif(Sd−1) independently. Meanwhile, note that for
v ∼ Unif(Sd−1), we have v

d
= Z/ ∥Z∥ where Z ∼ N (0, Id).

We start with a lemma on the largest coordinate. This lemma ensures that ∥v∥2L2L is much smaller
than the second-order terms at least at initialization.

Lemma B.1 (Largest coordinate). Let v ∼ Unif(Sd−1). For any K ≥ 1, we have

max
i∈[d]

|vi| ≤
4
√
2K log d√

d
with probability at least 1− 4

dK
.

As a corollary, for any δP ∈ (0, 1), at initialization, we have

max
i∈[m]

∥vi∥∞ ≤
4
√
2 log(4m/δP)√

d
with probability at least 1− δP.

In particular, this implies that at initialization, at least with the same probability, for any L ≥ 2,

max
i∈[m]

∥vi∥2L2L ≤ d

(
4
√
2K log d√

d

)2L

≤ d

(
32K log d

d

)L

.

Proof. Let Z ∼ N (0, Id). Recall that Z/ ∥Z∥ follows the uniform distribution over the sphere.
By Lemma F.1 with s =

√
d/3, we have ∥Z∥ ≥

√
d/2 with probability at least 1− 2 exp(−d/18).

Then, by Lemma F.2, with probability at least 1− 2e−d/18 − 2e−s2/2, we have

maxi∈[d] |Zi|
∥Z∥

≤
√
2 log d+ s√

d/2
=

2
√
2 log d√
d

+
2s√
d
.

Let K ≥ 1 be arbitrary. Choose s =
√
2K log d and the above becomes

maxi∈[d] |Zi|
∥Z∥

≤ 4
√
2K log d√

d
with probability at least 1− 4

dK
.
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For the corollary, use union bound and choose K = log(4m/δP)/ log d, we have

max
i∈[m]

∥vi∥∞ ≤
4
√
2 log(4m/δP)√

d
with probability at least 1− 4m

dK
= 1− δP.

Suppose that we only have higher-order terms. Then, for a neuron v ∈ Sd−1 to converge to a
ground-truth direction ek in a reasonable amount of time, we need v2k to be the largest among all v2i
and there is gap between it and the second largest v2i . The following lemma ensures that when m
is large, for every ground-truth direction {ek}k∈[P ], there will be at least one neuron satisfying the
above property. Note that in our case, we only need to ensure v2k is the largest among all {v2i }i∈[P ]

instead of {v2i }i∈[d], as the second-order term will help us identify the correct subspace.
Lemma B.2 (Existence of good neurons). Let δP ∈ (0, 1) be given and c ≥ 1 a universal constant.
Suppose that the number of neurons m satisfies

m ≥ 400cP 8c2
√
logP log

(
P ∨ 1

δP

)
.

Then, at initialization, with probability at least 1− δP, we have

∀p ∈ [P ]∃i ∈ [m] such that
|vi,p|

maxq∈[P ]\{p} |vi,q|
≥ 1 + 2c

1 + c
.

Remark. In particular, note that the number of neurons we need is poly(P ) instead of poly(d). ♣

Proof. Let Z ∼ N (0, Id). Note that |vp|/|vq|
d
= |Zp|/|Zq|. Hence, it suffices to consider the

largest and the second largest among {|Zi|}i∈[P ]. Let |v|(1) and |v|(2) denote the largest and second
largest among {|vi|}i∈[P ]. By Lemma F.4 (with d replaced by P ), for any c ≥ 1, we have

P
[ |v|(1)
|v|(2)

≥ 1 + 2c

1 + c

]
≥ 1

5π(1 + 2c)

1

P 8c2
√
logP

.

Then, for each p ∈ [P ], by symmetry, we have

P
[

|vp|
maxq∈[P ]\{p} |vq|

≥ 1 + 2c

1 + c

]
≥ 1

5π(1 + 2c)

1

P 8c2
√
logP

.

Now, define the event Gp as

Gp =

{
∃i ∈ [m],

|vi,p|
maxq∈[P ]\{p} |vi,q|

≥ 1 + 2c

1 + c

}
.

Then, we compute

P[Gp] ≥ 1−
(
P
[

|vp|
maxq∈[P ]\{p} |vq|

<
1 + 2c

1 + c

])m

≥ 1−
(
1− 1

5π(1 + 2c)

1

P 8c2
√
logP

)m

≥ 1− exp

(
− 1

5π(1 + 2c)

m

P 8c2
√
logP

)
.

By union bound, we have

P

[
P∧

p=1

Gp

]
≥ 1− exp

(
logP − 1

5π(1 + 2c)

m

P 8c2
√
logP

)
.

Let δP ∈ (0, 1) be given. Choose

m ≥ 400cP 8c2
√

logP log

(
P ∨ 1

δP

)
.

Then, the above becomes P[
∧P

p=1 Gp] ≥ 1− δP.
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Lemma B.3 (Typical structure at initialization). Let δP ∈ (e− logC d, 1) be given. Suppose that
{vk}mk=1 ∼ Unif(Sd−1) independently with

m = 400P 8 log1.5 (P ∨ 1/δP) .

Then, with probability at least 1− 3δP, we have

∀p ∈ [P ]∃i ∈ [m] such that
|vi,p|

maxq∈[P ]\{p} |vi,q|
≥ 3

2
,

∀i ∈ [m], ∥vi∥∞ ≤
20
√
log(P/δP)√

d
,

∀i ∈ [m],

√
P

3
√
d
≤ ∥v≤P ∥

∥v∥
≤ 3

√
P√
d

.

Proof. The first two bounds comes directly from Lemma B.1 and Lemma B.2. By Lemma F.1, we
have

P
(
|∥Z∥ − E ∥Z∥| ≥

√
d/2
)
≤ 2e−d/8,

P
(
|∥Z≤P ∥ − E ∥Z≤P ∥| ≥

√
P/2

)
≤ 2e−P/8.

As a result, for any v ∼ Unif(Sd−1), we have with probability at least 1− 4e−P/8 that

∥v≤P ∥
∥v∥

d
=

∥Z≤P ∥
∥Z∥

=
E ∥Z≤P ∥ ±

√
P/2

E ∥Z∥ ±
√
d/2

= [1/3, 3]×
√

P

d
.

Since we assume P ≥ logC
′
d for a large C ′, we have 4e−P/8 ≤ δP/m. This gives the third

bound.

C STAGE 1: RECOVERY OF THE SUBSPACE AND DIRECTIONS

In this section, we consider the stage where the second layer is fixed to be a small value and the first
layer is trained using online spherical SGD. Let v be an arbitrary first-layer neuron. By Lemma 2.2,
we can write its update rule as5

v̂t+1 = vt +
η

a0

(
∇̃vL+ a0Zt+1

)
, vt+1 =

v̂t+1

∥v̂t+1∥
,

where Zt+1 = a−1
0 (I − vv⊤)(∇vl(x)−∇vL) and

−∇̃vL = −(I − vv⊤)∇vL

= 2a0

P∑
k=1

vk(I − vv⊤)ek + 2La0

P∑
k=1

v2L−1
k (I − vv⊤)ek ±2 2Lma20.

In particular, for each k ∈ [d], we have6

v̂t+1,k = vt,k + η
(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
)
vk + ηZt+1,k ± 2ηLma0,

where

ρ := 2

P∑
i=1

v2i + 2L

P∑
i=1

v2Li = 2 ∥v≤P ∥2 + 2L ∥v≤P ∥2L2L . (9)

In addition, we have the following lemma on the dynamics of v2k. The proof is routine calculation
and is deferred to the end of this section.

5See the remark following Lemma 2.2 for the meaning of an arbitrary first-layer neuron v. Also recall that
we assume w.l.o.g. that v∗

k = ek.
6We will often drop the subscript t when it is clear from the context.
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Lemma C.1 (Dynamics of v2k). For any first-layer neuron v and k ∈ [d], we have

v̂2t+1,k =
(
1 + 2η

(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
))

v2k + 2ηvkZk

± 300L3ηma0 ± 300L3η2
(
1 ∨ Z2

k

)
.

To proceed, we split Stage 1 into two substages. In Stage 1.1, we rely on the second-order terms
to learn the relevant subspace. We will also show that the gap between largest and second-largest
coordinates, which can be guaranteed with certain probability at initialization, is preserved through-
out Stage 1.1. These give Stage 1.2 a nice starting point. Then, we show that in Stage 1.2, online
spherical SGD can recover the directions using the 2L-th order terms.

C.1 STAGE 1.1: RECOVERY OF THE SUBSPACE AND PRESERVATION OF THE GAP

In this subsection, first we show that the ratio ∥v≤P ∥2 / ∥v>P ∥2 will grow from Ω(P/d) to Θ(1)

within Õ(dP ) iterations and during this phase. We will rely on the second-order terms and bound
the influence of higher-order terms. This leads to the desired complexity. The next goal to show
the initial randomness is preserved. In our case, we only to the gap between the largest and the
second-largest coordinate to be preserved. This ensures that the neurons will not collapse to one
single direction. Formally, we have the following lemma.

Lemma C.2 (Stage 1.1). Let v ∈ Sd−1 be an arbitrary first-layer neuron satisfying ∥v∥∞ ≤
log2 d/(2d) and ∥v≤P ∥2 / ∥v>P ∥2 ≥ 0.1P/d at initialization. Let δP ∈ (e− logC d, 1) be given.
Suppose that we choose

ma0 ≲L
1

d log3 d
and η ≲L

δP

dP 2 log4L+1(d/δP)
= Θ̃L

(
δP
dP 2

)
.

Then, with probability at least 1−O(δP), we have

∥v≤P ∥2

∥v<P ∥2
≥ 1 within T =

1 + o(1)

4η
log

(
d

P

)
= Θ̃(dP 2) iterations.

Moreover, if at initialization, v2p is the largest among {v2k}k∈[P ] and is 1.5 times larger than the
second-largest {v2k}k∈[P ], then at the end of Stage 1.1, it is still 1.25 times larger than the second-
largest {v2k}k∈[P ].

Remark. To make the above result hold uniformly over all m = poly(P ) neurons, it suffices to
replace δP with δP/m. In addition, by Lemma B.3, the hypotheses of this lemma hold with high
probability at initialization. ♣

Proof. It suffices to combine Lemma C.4, Lemma C.5 and Lemma C.6.

To prove this lemma, we will use stochastic induction (cf. Section F.2), in particular, Lemma F.6,
Lemma F.8, and Lemma F.10. For example, to analyze the dynamics of ∥v≤P ∥2 / ∥v>P ∥2, it suf-
fices to write down the update rule of ∥v≤P ∥2 / ∥v>P ∥2 and decompose it into a signal growth term,
a higher-order error term, and a martingale difference term as in Lemma F.6. Then, we bound the
higher-order error terms, and estimate the covariance of the martingale difference terms, assuming
the induction hypotheses.

The induction hypotheses we will maintain in this substage are the following:

∥vt,≤P ∥2

∥vt,>P ∥2
= Θ(1)(1 + 4η)t

∥v0,≤P ∥2

∥v0,>P ∥2
, v2p ≤ log2 d

P
.

They are established in Lemma C.4, Lemma C.9 and Lemma C.8.
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C.1.1 LEARNING THE SUBSPACE

Now, we derive formulas for the dynamics of the ratio ∥v≤P ∥2 / ∥v>P ∥2. Since we will use
Lemma F.6 to analyze it, the goal here is separate the signal terms, martingale difference terms,
and higher-order error terms.
Lemma C.3 (Dynamics of the norm ratio). Assume the induction hypotheses. Let v be an arbitrary
first-layer neuron. For any t ≤ T , we have

∥vt+1,≤P ∥2

∥vt+1,>P ∥2
=

∥v≤P ∥2

∥v>P ∥2
(1 + 4η + εv) + ξt+1

− (1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2
2η ⟨v>P ,Z>P ⟩

(1− 2ηρ) ∥v>P ∥2
+

2η ⟨v≤P ,Z≤P ⟩
(1− 2ηρ) ∥v>P ∥2

,

where εv := 4Lη ∥v≤P ∥2L2L / ∥v≤P ∥2 and for any δP ∈ (0, 1), we have with probability at least
1− δP, that

|ξt+1| ≤ CL(1 + 4η)tηP

(
ma0 ∨ ηP 3 log4L

(
1

δP

))
,

where CL > 0 is a constant that can depend on L.

Proof. Recall from Lemma C.1 that

v̂2t+1,k =
(
1 + 2η

(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
))

v2k + 2ηvkZk

± 300L3ηma0 ± 300L3η2
(
1 ∨ Z2

k

)
.

Hence, for the norms, we have (the higher order terms are changed; additional P , d factors)

∥v̂≤P ∥2 = (1 + 2η (2− ρ)) ∥v≤P ∥2 + 4Lη ∥v≤P ∥2L2L + 2η ⟨v≤P ,Z≤P ⟩

±300L3Pηma0 ± 300L3η2
(
P ∨ ∥Z≤P ∥2

)
︸ ︷︷ ︸

=: ξ≤P,t

,

v̂2t+1,k = (1− 2ηρ) ∥v>P ∥2 + 2η ⟨v>P ,Z>P ⟩
±300L3dηma0 ± 300L3η2

(
d ∨

∥∥Z2
≥P

∥∥)︸ ︷︷ ︸
=: ξ>P,t

.

For notational simplicity, put εv = 4Lη ∥v≤P ∥2L2L / ∥v≤P ∥2. Note that ∥v≤P ∥ / ∥v>P ∥ =
∥v̂≤P ∥ / ∥v̂>P ∥. Thus, we have

∥vt+1,≤P ∥2

∥vt+1,>P ∥2
=

(1 + 2η (2− ρ) + εv) ∥v≤P ∥2 + 2η ⟨v≤P ,Z≤P ⟩+ ξ≤P

(1− 2ηρ) ∥v>P ∥2 + 2η ⟨v>P ,Z>P ⟩+ ξ>P

=
(1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2

(
1− 2η ⟨v>P ,Z>P ⟩

∥v̂t+1,>P ∥2
− ξ>P

∥v̂t+1,>P ∥2

)

+
2η ⟨v≤P ,Z≤P ⟩
∥v̂t+1,>P ∥2

+
ξ≤P

∥v̂t+1,>P ∥2

=
(1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2

− (1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2
2η ⟨v>P ,Z>P ⟩
∥v̂t+1,>P ∥2

+
2η ⟨v≤P ,Z≤P ⟩
∥v̂t+1,>P ∥2

− (1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2
ξ>P

∥v̂t+1,>P ∥2
+

ξ≤P

∥v̂t+1,>P ∥2
.

Note that up to some higher-order terms, the first line contains the signal terms and the second line
contains the martingale difference terms. Now, our goal is to factor out those higher-order terms.
For the first line, first recall from (13) that ρ ≤ 4L, and then we use the fact that

1

1 + z
= 1− z ± 2z2, ∀|z| ≤ 1/2, (10)
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to obtain

(1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2
=

∥v≤P ∥2

∥v>P ∥2
(1 + 4η − 2ηρ+ εv)

(
1 + 2ηρ± 64L2η2

)
=

∥v≤P ∥2

∥v>P ∥2
(
1 + 4η + εv ± 2000L3η2

)
.

Similarly, for the second line, we write

1

∥v̂t+1,>P ∥2
=

1

(1− 2ηρ) ∥v>P ∥2

(
1− 2η ⟨v>P ,Z>P ⟩+ ξ>P

∥v̂t+1,>P ∥2

)
.

By the tail bounds in Lemma 2.2 and the union bound, for any δP ∈ (0, 1), we have

|⟨v>P ,Z>P ⟩| ≤ C2L
L P log2L

(
CL

δP

)
, |⟨v≤P ,Z≤P ⟩| ≤ C2L

L P log2L
(
CL

δP

)
,

|Zk| ≤ C2L
L P log2L

(
CLd

δP

)
, ∀k ∈ [d],

with probability at least 1− 2δP. In particular, note that the second bound also implies, with at least
the same probability, we have

|ξ≤P | ≤ 600L3ηP

(
ma0 ∨ ηC4L

L P 2 log4L
(
CLd

δP

))
,

|ξ>P | ≤ 600L3ηd

(
ma0 ∨ ηC4L

L P 2 log4L
(
CLd

δP

))
.

By our definition of Stage 1.1, we have ∥v̂t+1,>P ∥2 ≥ 1/2. Therefore, with probability at least
1− 2δP, we have

1

∥v̂t+1,>P ∥2
=

1

(1− 2ηρ) ∥v>P ∥2

(
1± C ′

LηP log2L
(

1

δP

))
,

for some constant C ′
L > 0 that can depend on L. Thus, for the ratio of the norms, we have

∥vt+1,≤P ∥2

∥vt+1,>P ∥2
=

∥v≤P ∥2

∥v>P ∥2
(
1 + 4η + εv ± 2000L3η2

)
− (1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2
2η ⟨v>P ,Z>P ⟩

(1− 2ηρ) ∥v>P ∥2

(
1± C ′

LηP log2L
(

1

δP

))
+

2η ⟨v≤P ,Z≤P ⟩
(1− 2ηρ) ∥v>P ∥2

(
1± C ′

LηP log2L
(

1

δP

))
− (1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2
ξ>P

∥v̂t+1,>P ∥2
+

ξ≤P

∥v̂t+1,>P ∥2
.

Collect the higher-order terms into ξt+1, so that the above becomes

∥vt+1,≤P ∥2

∥vt+1,>P ∥2
=

∥v≤P ∥2

∥v>P ∥2
(1 + 4η + εv) + ξt+1

− (1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2
2η ⟨v>P ,Z>P ⟩

(1− 2ηρ) ∥v>P ∥2
+

2η ⟨v≤P ,Z≤P ⟩
(1− 2ηρ) ∥v>P ∥2

.
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For the higher-order terms, we have with probability at least 1−O(δP)

|ξt+1| ≲L
∥v≤P ∥2

∥v>P ∥2
η2 +

∥v≤P ∥2

∥v>P ∥2
η| ⟨v>P ,Z>P ⟩ |

∥v>P ∥2
ηP log2L

(
1

δP

)
+

η| ⟨v≤P ,Z≤P ⟩ |
∥v>P ∥2

ηP log2L
(

1

δP

)
+

∥v≤P ∥2

∥v>P ∥2
|ξ>P |

∥v>P ∥2
+

|ξ≤P |
∥v>P ∥2

≲L
∥v≤P ∥2

∥v>P ∥2
η2 +

(
∥v≤P ∥2

∥v>P ∥3
+

∥v≤P ∥
∥v>P ∥2

)
η2P 2 log4L

(
1

δP

)

+

(
d ∥v≤P ∥2

∥v>P ∥4
+

P

∥v>P ∥2

)
η

(
ma0 ∨ ηP 2 log4L

(
d

δP

))
≲L (1 + 4η)tηP

(
ma0 ∨ ηP 2 log4L

(
d

δP

))
,

where we use the induction hypothesis ∥v≤P ∥2 / ∥v>P ∥2 = Θ((1 + 4η)tP/d) to handle the
d ∥v≤P ∥2 / ∥v>P ∥4 factor in the last line.

With the above formula, we can now use Lemma F.6 to analyze the dynamics of ratio of the norms.
Lemma C.4 (Learning the subspace). Let v be an arbitrary fixed first-layer neuron. Suppose that

ma0 ≲L
1

d log d
and η ≲L

δP

dP 2 log4L+1 (d/δP)
= Θ̃L

(
δP
dP 2

)
,

Then, throughout Stage 1.1, we have

(1 + 4η)t

2

∥v0,≤P ∥2

∥v0,>P ∥2
≤ ∥v≤P ∥2

∥v>P ∥2
≤ 3(1 + 4η)t

2

∥v0,≤P ∥2

∥v0,>P ∥2
,

and Stage 1.1 takes at most (1 + o(1))(4η)−1 log (d/P ) = ÕL

(
dP 2/δP

)
iterations. To obtain

estimates that uniformly hold for all neurons, it suffices to replace δP with δP/m.

Proof. By Lemma C.3, we have

∥vt+1,≤P ∥2

∥vt+1,>P ∥2
=

∥v≤P ∥2

∥v>P ∥2
(1 + 4η + εv) + ξt+1

− (1 + 4η − 2ηρ+ εv) ∥v≤P ∥2

(1− 2ηρ) ∥v>P ∥2
2η ⟨v>P ,Z>P ⟩

(1− 2ηρ) ∥v>P ∥2︸ ︷︷ ︸
=: H

(1)
t+1

+
2η ⟨v≤P ,Z≤P ⟩

(1− 2ηρ) ∥v>P ∥2︸ ︷︷ ︸
=: H

(2)
t+1

,

where εv := 4Lη ∥v≤P ∥2L2L / ∥v≤P ∥2 and for any δP ∈ (0, 1), we have with probability at least
1− δP/T , that

|ξt+1| ≤ CL(1 + 4η)tηP

(
ma0 ∨ ηP 2 log4L

(
T

δP

))
,

where CL > 0 is a constant that can depend on L. By our induction hypothesis v2p ≤ log2 d/P , we

εv =
4Lη

∥v≤P ∥2
P∑

p=1

v2Lp ≤ 4Lη

∥v≤P ∥2
∥v≤P ∥2L−2

∞

P∑
p=1

v2p ≤ η
4L log2L−2(d)

PL−1
=: ηδv.

In particular, note that δv does not depend on t and is o(1). For the martingale difference terms, by
Lemma 2.2, we have

E
[
(H

(1)
t+1)

2 | Ft

]
≲L η2

∥v≤P ∥4

∥v>P ∥6
E
[
⟨v>P ,Z>P ⟩2 | Ft

]
≲L η2P 2 ∥v≤P ∥4

∥v>P ∥4
,

E
[
(H

(2)
t+1)

2 | Ft

]
≲L η2

∥v≤P ∥2

∥v>P ∥4
E
[
⟨v≤P ,Z≤P ⟩2 | Ft

]
≲L η2P 2 ∥v≤P ∥2

∥v>P ∥2
.
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Put Ht+1 := H
(1)
t+1 +H

(2)
t+1. The above bounds imply that

E
[
H2

t+1 | Ft

]
≲L η2P 2 ∥v≤P ∥2

∥v>P ∥2
≲L η2P 2(1 + 4η)t

∥v0,≤P ∥2

∥v0,>P ∥2
≲L

η2P 3

d
(1 + 4η)t

where the second inequality comes from our induction hypothesis.

For notational simplicity, put Xt := ∥v≤P ∥2 / ∥v>P ∥2, x−
t = (1 + 4η)tX0 and x+

t = (1 + 4η(1 +
δv))

tX0. x± will serve as the lower and upper bounds for the deterministic counterpart of X , since

(1 + 4η)Xt + ξt+1 +Ht+1 ≤ Xt+1 ≤ (1 + 4η(1 + δv))Xt + ξt+1 +Ht+1.

Moreover, note that for any t ≤ T , we have

x+
t

x−
t

=

(
1 + 4η(1 + δv)

1 + 4η

)t

=
(
(1 + 4η(1 + δv))

(
1− 4η ± 16η2

))t
≤
(
1 + 4ηδv ± 40η2

)t
≤ exp (40ηT (δv + η)) .

Since T ≤ log d/η, the above implies

1 ≤ x+
t

x−
t

≤ exp (40 log d (δv + η)) ≤ 1 + 80 log d (δv + η) = 1 + o(1),

where the last (approximate) identity holds whenever

δv ≪ 1

log d
⇐ 4L log2L−2(d)

PL−1
≪ 1

log d
⇐ P ≫ (4L)1/(L−1) log2 d.

In particular, this implies that the (multiplicative) difference between x+
t and x−

t is small.

Now, we apply Lemma F.6 to Xt. In our case, we have

Ξ ≲L ηP

(
ma0 ∨ ηP 2 log4L

(
T

δP

))
, σ2

Z ≲L
η2P 3

d
,

α = 4(1 + o(1))η and X0 = Θ(P/d). Recall that T ≤ O(log d/η). Hence, to meet the conditions
of Lemma F.6, it suffices to choose

ηP

(
ma0 ∨ ηP 2 log4L

(
T

δP

))
≲L

X0

T
⇐


ma0 ≲L

1

d log d
,

η ≲L
1

dP 2 log4L (T/δP) log d

η2P 3

d
≲L

δPαX
2
0

16
⇐ η ≲L

δP
dP

.

To satisfy the above conditions, it suffices to choose

ma0 ≲L
1

d log d
and η ≲L

δP

dP 2 log4L+1 (d/δP)
.

Then, by Lemma F.6, we have, with probability at least 1 − Θ(δP), 0.5x−
t ≤ Xt ≤ 1.5x+

t .
Since x+

t = (1 + o(1))x−
t , this implies 0.5xt ≤ Xt ≤ 2xt. To complete the proof, it suf-

fices to note that for xt to grow from Θ(P/d) to 1, the number of iterations needed is bounded
by (1 + o(1))(4η)−1 log (d/P ).

C.1.2 PRESERVATION OF THE GAP

Now, we show that the gap between the largest coordinate and the second-largest coordinate can be
preserved in Stage 1.1. Let p = argmaxi∈[P ] v

2
i (0) and consider the ratio v2p/v

2
q , where q ∈ [P ]

is arbitrary. The proof is conceptually very similar to the previous one, except that we will use
Lemma F.8 instead of Lemma F.6. However, there is still some technical subtlety that is not involved
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in the previous analysis. When v2q is close to 0, the dynamics of v2p/v
2
q can be unstable, violating

the conditions of Lemma F.8. Intuitively, this should not cause any fundamental issue, since we are
only interested in the square of largest and second-largest coordinates, both of which should be at
least Ω(1/d) throughout Stage 1.1. To handle this technical issue, we will partition q ∈ [P ] based
on the initial value v20,q . When v20,q = Ω(1/d), we consider the dynamics of the ratio v2p/v

2
q directly.

If v20,q is small, we will use Lemma C.7 and Lemma C.8, and bound the ratio in a more direct way.

Lemma C.5 (Gap between large and small coordinates). Consider p, q ∈ [P ]. There exists a uni-
versal constant cv > 0 such that if v20,p ≥ 1/d and v20,q ≤ cv/d, and we choose the hyperparameters
according to Lemma C.7 and Lemma C.8, then we have with probability at least 1 − O(δP), that
v2p ≥ 2v2q throughout Stage 1.1.

Proof. By Lemma C.7, we have

v2t,p ≥ 1

2
(1 + 4η)tv20,p ≥ 1

2
(1 + 4η)t

1

d
,

with probability at least 1−O(δP). Meanwhile, by Lemma C.8, we have

v2t,q ≤ 2C(1 + 4η)t
cv
d
,

with probability at least 1 − O(δP). Hence, as long as cv ≤ 1/(8C), we have v2t,q ≤ v2t,p/2
throughout Stage 1 with probability at least 1−O(δP).

Lemma C.6 (Gap between large coordinates). Consider p, q ∈ [P ] and let cv > 0 be the universal
constant in the previous lemma. Suppose that v20,p ≥ v20,q ≥ cv/d. Let εR ∈ (0, 1) be given.
Suppose that the hyperparameters satisfy the conditions in Lemma C.7 and

ma0 ≲L
εR

d log3 d
, P ≳L

log3 d

εR
, η ≲L

εR
√
δP

dP 2 log2L+2 (d/δP)
.

Then, we have
∣∣v2p/v2q − v20,p/v

2
0,q

∣∣ ≤ εR throughout Stage 1.1 with probability at least 1−Θ(δP).

Proof. First, note that by Lemma C.7, we have v2t,q ≥ cv/(2d) throughout Stage 1.1 with probability
at least 1−O(δP). Recall from Lemma C.1 that for any k ≤ P , we have

v̂2t+1,k =
(
1 + 2η

(
2Lv2L−2

k + 2− ρ
))

v2k + 2ηvkZk ±300L3ηma0 ± 300L3η2
(
1 ∨ Z2

k

)︸ ︷︷ ︸
=: ξk

.

Hence, for any p, q ∈ [P ], we have

v2p,t+1

v2q,t+1

=

(
1 + 2η

(
2Lv2L−2

p + 2− ρ
))

v2p + 2ηvpZp + ξp(
1 + 2η

(
2Lv2L−2

q + 2− ρ
))

v2q + 2ηvqZq + ξq

=
v2p
v2q

−
v2p
v2q

2ηvqZq

(1 + 2η (2− ρ)) v2q + 4Lηv2Lq
+

2ηvpZp(
1 + 2η

(
2Lv2L−2

q + 2− ρ
))

v2q

− 2ηvpZp(
1 + 2η

(
2Lv2L−2

q + 2− ρ
))

v2q

2ηvqZq + ξq
v̂2q,t+1

+
v2p
v2q

2ηvqZq

(1 + 2η (2− ρ)) v2q + 4Lηv2Lq

2ηvqZq + ξq
v̂2q,t+1

+
ξp + 4Lηv2Lp

v̂2q,t+1

+
v2p
v2q

4Lηv2Lq + ξq

v̂2q,t+1

.

The first line contains the signal term and the martingale difference terms. The other three lines
contain the higher-order error terms. First, for the martingale difference terms, by our induction
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hypotheses and the variance bound in Lemma 2.2, we have

E

(v2p
v2q

2ηvqZq

(1 + 2η (2− ρ)) v2q + 4Lηv2Lq

)2 ∣∣∣∣ Ft

 ≲L η2P 2
v4p
v6q

≲L η2dP 2 log4 d,

E

( 2ηvpZp(
1 + 2η

(
2Lv2L−2

q + 2− ρ
))

v2q

)2 ∣∣∣∣ Ft

 ≲L η2P 2
v2p
v4q

≲L η2dP 2 log2 d

where we have used the induction hypotheses v2q ≥ Θ(1/d) and v2p/v
2
q = Θ(v20,p/v

2
0,q) =

O(log2 d). Using the language of Lemma F.8, these imply

σ2
Z ≲L η2dP 2 log4 d. (11)

Then, for the higher-order terms, first by the tail bounds in Lemma 2.2, we have for any δP,ξ ∈ (0, 1),
that

|Zp| ∨ |Zq| ≤ C2L
L P log2L

(
CL

δP,ξ

)
with probability at least 1− 2δP,ξ.

In particular, this implies that with at least the same probability, we have

|ξp| ∨ |ξq| ≲L ηma0 ∨ η2P 2 log4L
(

1

δP,ξ

)
.

Suppose that η ≤ 1/d. Then, we have∣∣∣∣∣ξp + 4Lηv2Lp
v̂2q,t+1

+
v2p
v2q

4Lηv2Lq + ξq

v̂2q,t+1

∣∣∣∣∣ ≲L log2 d

(
|ξp|+ |ξq|

v2q
+ η

(
1 +

v2p
v2q

)(
v2L−2
p + v2L−2

q

))

≲L ηma0d log
2 d+ η

log2L d

PL−1
+ η2dP 2 log4L+2

(
d

δP

)
,

and ∣∣∣∣∣ 2ηvpZp(
1 + 2η

(
2Lv2L−2

q + 2− ρ
))

v2q

2ηvqZq + ξq
v̂2q,t+1

∣∣∣∣∣
≲L

η2|vpZp|
v3q

|Zq|+
η|vpZp|

v4q
|ξq|

≲L η2dP 2 log4L+1

(
d

δP

)
+ η3d1.5P 3 log6L+1

(
d

δP

)
+ η2d1.5P log2L+1

(
d

δP

)
ma0,

and, similarly,∣∣∣∣∣v2pv2q 2ηvqZq

(1 + 2η (2− ρ)) v2q + 4Lηv2Lq

2ηvqZq + ξq
v̂2q,t+1

∣∣∣∣∣
≲L

v2pη|Zq|
|vq|5

(η|vqZq|+ |ξq|)

≲L η2dP 2 log4L+2

(
d

δP

)
+ η3d1.5P 3 log6L+2

(
d

δP

)
+ η2d1.5P log2L+2

(
d

δP

)
ma0.

Suppose that η ≤ 1/(dP 2), which is implied by the condition of Lemma C.4. Then, using the
language of Lemma F.8, we have

Ξ ≲L ηma0d log
2 d+ η

log2L d

PL−1
+ η2dP 2 log4L+2

(
d

δP

)
. (12)

Combine this with (11), recall Tη = O(log d), apply Lemma F.8, and we obtain∣∣∣∣∣v2pv2q −
v20,p
v20,q

∣∣∣∣∣ ≲L Tηma0d log
2 d+ Tη

log2L d

PL−1
+ Tη2dP 2 log4L+2

(
d

δP

)√
δ−1
P Tη2dP 2 log4 d

≲L ma0d log
3 d+

log2L+1 d

PL−1
+ ηdP 2 log4L+3

(
d

δP

)√
δ−1
P ηdP 2 log5 d,
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throughout Stage 1.1 with probability at least 1−Θ(δP). For the RHS to be bounded by εR ∈ (0, 1),
it suffices to require

ma0 ≲L
εR

d log3 d
, P ≳L

log3 d

εR
, η ≲L

εR
√
δP

dP 2 log2L+2 (d/δP)
.

C.1.3 OTHER INDUCTION HYPOTHESES

First, we verify the induction hypothesis: v2p ≤ log2 d/P for all p ∈ [P ]. This condition is used to
ensure the influence of the higher-order term is small compared to the influence of the second-order
terms.

Lemma C.7 (Bounds for moderately large v2p). Let v be an arbitrary first-layer neuron. Suppose
that p ∈ [P ] and cv/d ≤ v20,p ≪ c′v log

2 d/d for some small cv, c′v > 0. Then, if we choose

ma0 ≲L
cv

d log d
and η ≲L

cv(1 ∧ cv)δP

dP 2 log4L+1 (d/δP)
,

then there exists a universal constant C ≥ 1 such that with probability at least 1−O(δP), we have

1

2
(1 + 4η)tv20,p ≤ v2t,p ≤ 3C

2
(1 + 4η)tv20,p, ∀t ≤ T.

In particular, this implies v2t,p ≤ log2 d/P throughout Stage 1.1.

Proof. First, by Lemma C.1, for any p ≤ P , we have

v̂2t+1,p ≤
(
1 + 4η + 4Lηv2L−2

p

)
v2p + 2ηvpZp + 300L3ηma0 + 300L3η2

(
1 ∨ Z2

p

)
≤

(
1 + 4η

(
1 + L

(
log2 d

P

)L−1
))

v2p + 2ηvpZp + 300L3ηma0 + 300L3η2
(
1 ∨ Z2

p

)
,

where the second line comes from the induction hypothesis v2p ≤ log2 d/P . For notational sim-

plicity, put δv = L
(
log2 d/P

)L−1
(as in the proof of Lemma C.4) and ξt+1,p = 300L3ηma0 +

300L3η2
(
1 ∨ Z2

p

)
, so that the above can be rewritten as

v2t+1,p ≤ v̂2t+1,p ≤ (1 + 4η(1 + δv)) v
2
p + 2ηvpZp + ξp.

By the tail bound in Lemma 2.2, there exists some constant CL > 0 that may depend on L such that
for any δP,ξ ∈ (0, 1), we have

|Zp| ≤ C2L
L P log2L

(
CL

δP,ξ

)
with probability at least 1− δP,ξ.

Meanwhile, for the martingale difference term, by our induction hypothesis on vp and the variance
estimate in Lemma 2.2, we have

E
[
(2ηvpZp)

2 | Ft

]
≤ 4CLη

2v2pP
2 ≲L (1 + 4η(1 + δv))

t
η2v20,PP

2

≲L (1 + 4η(1 + δv))
t
η2

P 2 log2 d

d
.

Using the language of Lemma F.6, these mean

Ξ ≲L η

(
ma0 ∨ ηP 2 log4L

(
1

δP,ξ

))
, σ2

Z ≲L η2
P 2 log2 d

d
.

Put xt = (1 + 4η(1 + δv))
tv20,p where x0 = v20,p ≥ cv/d. By the proof of Lemma C.4, we know

(1 + 4η)T = Θ(d/P ). In particular, this implies ηT = 1+o(1)
4 log(d/P ). Then, by Lemma F.6, we
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have v2p ≤ (1± 0.5)xt with probability at least 1− 2δP, as long as ma0 and η are chosen so that

η

(
ma0 ∨ ηP 2 log4L

(
T

δP

))
≲L

x0

4T
⇐


ma0 ≲L

cv
d log d

,

η ≲L
cv

dP 2 log4L+1 (d/δP)

η2
P 2 log2 d

d
≲L

δPαx
2
0

16
⇐ η ≲L

δPc
2
v

dP 2 log2 d
.

To complete the proof, we now estimate xt. Clear that xt ≥ (1 + 4η)tx0. Meanwhile, we have(
1 + 4η(1 + δv)

1 + 4η

)T

=

(
1 +

4ηδv
1 + 4η

)T

≤ (1 + 4ηδv)
T

≤ exp (4ηTδv) ≤ exp

(
(1 + o(1))δv log

(
d

P

))
≤ (d/P )2δv .

When P ≥ log3 d, the last term is bounded by a universal constant C > 0. As a result, we have

xt ≤ (1 + 4η(1 + δv))
tx0 =

(
1 + 4η(1 + δv)

1 + 4η

)t

(1 + 4η)tx0 ≤ C(1 + 4η)tx0.

Lemma C.8 (Upper bound for small v2q ). Let v be an arbitrary first-layer neuron. Suppose that
q ∈ [P ] and v2q ≤ cv/d for some cv > 0. Then, if we choose

ma0 ≲L
cv

d log d
and η ≲L

cv(1 ∧ cv)δP

dP 2 log4L+1 (d/δP)
,

then there exists a universal constant C ≥ 1 such that with probability at least 1−O(δP), we have

v2t,q ≤ 2Ccv
(1 + 4η)t

d
, ∀t ≤ T.

Proof. The proof is essentially the same as the previous one. It suffices to use Lemma F.7 in place
of Lemma F.6.

The following lemma is not used in our proof. It serves as an example of using Lemma F.10 to
obtain poly log dependence on δP.
Lemma C.9. There exists a constant CL > 0 that may depend on L such that if we choose

ma0 ≤ log d

CLd
and η ≤ 1

CLdP log2L+3
(

Tmd
δP

) ,
then with probability at least 1− δP, we have

sup
i∈[m]

sup
r>P

sup
t≤T

v2i,t,r ≤ log2 d

d
.

Proof. We will use Lemma F.10. Fix a first-layer neuron v and r > P . Assume the induction
hypothesis v2r ≤ Kv/d where Kv > 0 is a parameter to be determined later. Recall from Lemma C.1
that

v2t+1,r ≤ v̂2t+1,r = (1− 2ηρ) v2r + 2ηvrZr ± 300L3ηma0 ± 300L3η2
(
1 ∨ Z2

r

)
.

Let ξt+1,r denote the last two terms. Then, we can write

v̂2t+1,r ≤ v2r + 2ηvrZr + ξr.

By the tail bound in Lemma 2.2, for any δP ∈ (0, 1),

|Zr| ≤ C2L
L P log2L

(
T

CLδP

)
with probability at least 1− δP/T .
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Hence, with probability at least 1− δP/T , we have

|ξr| ≤ 300L3ηma0 + 300L3η2C2L
L P log2L

(
T

CLδP

)
≤ 600L3C2L

L η

(
ma0 ∨ ηP log2L

(
T

CLδP

))
=: Ξ.

Meanwhile, for the martingale difference terms, Zr satisfies the tail bound (15) with a = CL,
b = P−1/(2L), c = 1/(2L), and σ2

Z = CLP
2. Hence, by Lemma F.10, we have

sup
t≤T

∣∣v2t,r − v20,r
∣∣ ≤ TΞ +

2KvηCc

d

√√√√√T

σ2
Z +

1

b2/c
+

log1/c
(

aT
bσZδP

)
b1/c

 log

(
T

δP

)

≤ C ′
LTη

(
ma0 ∨ ηP log2L

(
T

CLδP

))
+

Kv

d
C ′

L

√
η2TP logL+1

(
CLPT

δP

)
,

with probability at least 1 − 2δP, for some constant C ′
L > 0 that may depend on L. Recall that

T ≤ η−1 log d. Therefore,

sup
t≤T

∣∣v2t,r − v20,r
∣∣ ≤ C ′

L log d

(
ma0 ∨ ηP log2L

(
T

δP

))
+

Kv

d
C ′

L

√
η log dP logL+1

(
PT

δP

)
,

with probability at least 1 − 2δP. Thus, apply the union bound over all neurons and all r > P ,
replace δP with δP/(2md), and we obtain

sup
i∈[m]

sup
r>P

sup
t≤T

∣∣v2i,t,r − v2i,0,r
∣∣ ≤ C ′′

L log d

(
ma0 ∨ ηP log2L

(
Tmd

δP

))
+

Kv

d
C ′′

L

√
η log dP logL+1

(
PTmd

δP

)
,

with probability at least 1 − δP. Finally, recall that we assume supi∈[m] supr>P supt≤T v2i,0,r ≤
log2 /(2d). Choose Kv = log2 d. Then, we have supi∈[m] supr>P supt≤T v2i,t,r ≤ log2 d/d with
probability at least 1− δP as long as

C ′′
L log d

(
ma0 ∨ ηP log2L

(
Tmd

δP

))
≤ log2 d

2d
⇐


ma0 ≤ log d

2C ′′
Ld

η ≤ log d

2C ′′
LdP log2L

(
Tmd
δP

)
Kv

d
C ′′

L

√
η log dP logL+1

(
PTmd

δP

)
≤ log2 d

2d
⇐ η ≤ 1

4(C ′′
L)

2P 2 log2L+3
(

PTmd
δP

) .

C.2 STAGE 1.2: RECOVERY OF THE DIRECTIONS

Let v be an arbitrary first-layer neuron. Assume w.l.o.g. that v21 is the largest at initialization and
v20,1/max2≤k≤P v20,k ≥ 1 + cg for some small constant cg > 0. By Lemma C.2, we know this gap
can be approximately preserved. In other words, we may assume that v2T1,1

/max2≤k≤P v2T1,k
≥

1 + cg for some small constant cg > 0 that is potentially smaller than the previous cg . In this
subsection, we show that v21 will grow from Ω(1/P ) to 3/4 and then to close to 1. Formally, we
prove the following lemma.
Lemma C.10 (Stage 1.2). Let v ∈ Sd−1 be an arbitrary first-layer neuron satisfying v2T1,1

≥ c/P

and v2T1,1
/max2≤k≤P v2T1,k

≥ 1+c for some small universal constant c > 0. Let δP ∈ (e− logC d, 1)
and εv > 0 be given. Suppose that we choose

ma0 ≲L
εv

dP 2L log(1/εv)
and η ≲L

ε2vδP

dPL+3 log4L(d/δP)
.
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Then, with probability at least 1−O(δP), we have v21 ≥ 1−εv within OL

((
PL−1 + log(1/εv)

)
/η
)

iterations.

Proof. It suffices to combine Lemma C.12 and Lemma C.13.

Lemma C.11 (Dynamics of v21). We have

v2t+1,1 = v21

(
1 + 4Lηv2L−2

1 − 4Lη ∥v∥2L2L
)
+

2ηv1Z1 − 2η ⟨v,Z⟩
1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

+ ξt+1

where ξt satisfies |ξt| ≤ CLηd
(
ma0 ∨ ηP 2 log4L

(
d

δP,ξ

))
, with probability least 1− δP,ξ for some

constant CL > 0 that can depend on L.

Proof. Recall from Lemma C.1 that

v̂2t+1,1 =
(
1 + 2η

(
2Lv2L−2

1 + 2− ρ
))

v21 + 2ηv1Z1

±300L3ηma0 ± 300L3η2
(
1 ∨ Z2

k

)︸ ︷︷ ︸
=: ξ1,t+1

= v21
(
1 + 2η (2− ρ) + 4Lηv2L−2

1

)
+ 2ηv1Z1 + ξ1,t+1,

where ρ := 2 ∥v≤P ∥2 + 2L ∥v≤P ∥2L2L. Meanwhile, we also have

∥v̂t+1∥2 =

d∑
k=1

(
1 + 2η

(
2Lv2L−2

k + 2− ρ
))

v2k + 2η ⟨v,Z⟩+ ⟨1, ξ⟩

= 1 + 2η (2− ρ) + 4Lη ∥v∥2L2L + 2η ⟨v,Z⟩+ ⟨1, ξ⟩ .

Then, we compute

v2t+1,1 =
v21
(
1 + 2η (2− ρ) + 4Lηv2L−2

1

)
+ 2ηv1Z1 + ξ1,t+1

1 + 2η (2− ρ) + 4Lη ∥v∥2L2L + 2η ⟨v,Z⟩+ ⟨1, ξ⟩

= v21
1 + 2η (2− ρ) + 4Lηv2L−2

1

1 + 2η (2− ρ) + 4Lη ∥v∥2L2L + 2η ⟨v,Z⟩+ ⟨1, ξ⟩

+
2ηv1Z1

1 + 2η (2− ρ) + 4Lη ∥v∥2L2L + 2η ⟨v,Z⟩+ ⟨1, ξ⟩
+

ξ1,t+1

∥v̂t+1∥2

=: Tmp1 + Tmp2 + Tmp3.

For notational simplicity, we define N2
v := 1 + 2η (2− ρ) + 4Lη ∥v∥2L2L. Meanwhile, by the tail

bound in Lemma 2.2, for each k ∈ [d] and any δP,ξ ∈ (0, 1), we have

|Zk| ≤ CL
2LP log2L

(
CL

δP,ξ

)
with probability at least 1− δP,ξ.

Then, by union bound, with at least the same probability, we have

| ⟨v,Z⟩ | ∨max
k∈[d]

|Zk| ≤ C2L
L P log2L

(
2CLd

δP,ξ

)
.

As a result, with at least the same probability, we have

|ξ1| ≤ 600L3η

(
ma0 ∨ ηC4L

L P 2 log4L
(
2CLd

δP,ξ

))
,

| ⟨1, ξ⟩ | ≤ 600L3ηd

(
ma0 ∨ ηC4L

L P 2 log4L
(
2CLd

δP,ξ

))
.

Now, we are ready to analyze each of Tmpi (i ∈ [3]).
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First, for the signal term Tmp1, we write

1 + 2η (2− ρ) + 4Lηv2L−2
1

1 + 2η (2− ρ) + 4Lη ∥v∥2L2L + 2η ⟨v,Z⟩+ ⟨1, ξ⟩

=
1 + 2η (2− ρ) + 4Lηv2L−2

1

1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

(
1− 2η ⟨v,Z⟩+ ⟨1, ξ⟩

N2
v + 2η ⟨v,Z⟩+ ⟨1, ξ⟩

)

=
1 + 2η (2− ρ) + 4Lηv2L−2

1

1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

(
1− 2η ⟨v,Z⟩

N2
v

(
1− 2η ⟨v,Z⟩+ ⟨1, ξ⟩

∥v̂t+1∥2

)
− ⟨1, ξ⟩

∥v̂t+1∥2

)

=
1 + 2η (2− ρ) + 4Lηv2L−2

1

1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

(
1− 2η ⟨v,Z⟩

N2
v

± 4η2 ⟨v,Z⟩2 ± | ⟨1, ξ⟩ |
)
.

For the first factor, by (10), we have

1 + 2η (2− ρ) + 4Lηv2L−2
1

1 + 2η (2− ρ) + 4Lη ∥v∥2L2L
=
(
1 + 2η (2− ρ) + 4Lηv2L−2

1

) (
1− 2η (2− ρ)− 4Lη ∥v∥2L2L ± 160L2η2

)
= 1 + 4Lηv2L−2

1 − 4Lη ∥v∥2L2L ± 300L2η2.

As a result, we have

Tmp1

v21
=
(
1 + 4Lηv2L−2

1 − 4Lη ∥v∥2L2L ± 300L2η2
)(

1− 2η ⟨v,Z⟩
N2

v

± 4η2 ⟨v,Z⟩2 ± | ⟨1, ξ⟩ |
)

= 1 + 4Lηv2L−2
1 − 4Lη ∥v∥2L2L − 2η ⟨v,Z⟩

N2
v

±OL(1)ηd

(
ma0 ∨ ηP 2 log4L

(
d

δP,ξ

))
.

Then, we consider the (approximate) martingale difference term Tmp2. We have

Tmp2 =
2ηv1Z1

N2
v

(
1− 2η ⟨v,Z⟩+ ⟨1, ξ⟩

∥v̂t+1∥2

)

=
2ηv1Z1

N2
v

±OL(1)ηd

(
ma0 ∨ ηP 2 log4L

(
d

δP,ξ

))
.

Thus, we have

v2t+1,1 = v21

(
1 + 4Lηv2L−2

1 − 4Lη ∥v∥2L2L
)
− 2η ⟨v,Z⟩

N2
v

+
2ηv1Z1

N2
v

±OL(1)ηd

(
ma0 ∨ ηP 2 log4L

(
d

δP,ξ

))
.

Lemma C.12 (Weak recovery of directions). Suppose that we choose

ma0 ≤ cg,L
dP 2L

and η ≤ cg,LδP

dPL+3 log4L (d/δP)
.

Then within OL(
PL−1

ηcg,L
) iterations, we will have v21 ≥ 3/4 with probability at least 1−O(δP).

Proof. By Lemma C.11, we have

v2t+1,1 = v21

(
1 + 4Lηv2L−2

1 − 4Lη ∥v∥2L2L
)
+

2ηv1Z1 − 2η ⟨v,Z⟩
1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

+ ξt+1
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where ξt satisfies |ξt| ≤ CLηd
(
ma0 ∨ ηP 2 log4L

(
d

δP,ξ

))
, with probability least 1− δP,ξ for some

constant CL > 0 that can depend on L. Meanwhile, by the variance bound in Lemma 2.2, we have

E

( 2ηv1Z1 − 2η ⟨v,Z⟩
1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

)2 ∣∣∣∣ Ft

 ≲L η2P 2.

For the signal term, we write

v2L−2
1 − ∥v≤P ∥2L2L = v2L−2

1 − v2L1 −
P∑

k=2

v2Lk

= v2L−2
1

(
1− v21

)
−
(
∥v≤P ∥2 − v21

) P∑
k=2

v2k
∥v≤P ∥2 − v21

v2L−2
k .

Note that the last summation is a weighted average of {v2L−2
k }2≤k≤P . Similar to the proof in

Section C.1.2, we can maintain the induction hypothesis v21/max2≤k≤P v2k ≥ 1 + cg/2
7, which

gives
P∑

k=2

v2k
∥v≤P ∥2 − v21

v2L−2
k ≤

(
max

2≤k≤P
v2k

)L−1

≤
(

v21
1 + cg/2

)L−1

=
v2L−2
1

1 + cg,L
,

where cg,L > 0 is a constant that depend on L and cg . Therefore,

v2L−2
1 − ∥v≤P ∥2L2L ≥ v2L−2

1

(
1− v21

)
−
(
∥v≤P ∥2 − v21

) v2L−2
1

1 + cg,L

=
v2L−2
1

1 + cg,L

(
1− ∥v≤P ∥2 + cg,L

(
1− v21

))
≥ cg,L

1 + cg,L
v2L−2
1

(
1− v21

)
.

As a result, for the signal term, we have

v21

(
1 + 4Lηv2L−2

1 − 4Lη ∥v∥2L2L
)
≥ v21

(
1 + 4Lη

cg,L
1 + cg,L

v2L−2
1

(
1− v21

))
= v21 + 4Lη

cg,L
1 + cg,L

v2L1
(
1− v21

)
≥ v21 + η

cg,LL

1 + cg,L
v2L1 ,

where the last line comes from the induction hypothesis v21 ≤ 3/4. Thus, using the notations of
Lemma F.11, we have

α = η
cg,LL

1 + cg,L
, Ξ = CLηd

(
ma0 ∨ ηP 2 log4L

(
d

δP,ξ

))
, σ2

Z = CLη
2P 2,

for some large constant CL > 0 that may differ from the previous one. Meanwhile, by Lemma F.12
and the assumption x0 = v21 ≥ Ω(1/P ), we have

T ≲
1

xL−1
0 α

≤ PL−1

α
≲L

PL−1

ηcg,L
.

Thus, to meet the conditions of Lemma F.11, it suffices to choose

Ξ ≤ x0

4T
⇐ ma0 ≤ cg,L

dPL
, η ≤ cg,L

dPL+2 log4L (d/δP)
,

σ2
Z ≤ x2

0δP
16T

⇐ η ≲L
δPcg,L
PL+3

.

7The only difference is that now the 2L-th order terms cannot be simply ignored as we no longer have the
induction hypothesis v2p ≤ log2 d/P . To handle them, it suffices to note that if v21 ≥ v2q , then those 2L-th order
terms are also larger for v21 , which will even lead to an amplification of the gap. In fact, this is why we can
recover the directions using them.
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Lemma C.13 (Strong recovery of directions). Let v ∈ Sd−1 be an arbitrary first-layer neuron. Let
δP and ε∗ be given. Suppose that we choose

ma0 ≲L
ε∗

d log(1/ε∗)
and η ≲L

ε2∗δP

dP 2 log4L (d/δP)
.

Then, with probability at least 1−O(δP), we have v21 ≥ 1− ε∗ within OL(log(1/ε∗)/η) iterations.

Proof. Again, by Lemma C.11, we have

v2t+1,1 = v21

(
1 + 4Lηv2L−2

1 − 4Lη ∥v∥2L2L
)
+

2ηv1Z1 − 2η ⟨v,Z⟩
1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

+ ξt+1

where ξt satisfies |ξt| ≤ CLηd
(
ma0 ∨ ηP 2 log4L

(
d

δP,ξ

))
, with probability least 1− δP,ξ for some

constant CL > 0 that can depend on L. Meanwhile, by the proof of the previous lemma, we have

v21

(
1 + 4Lηv2L−2

1 − 4Lη ∥v∥2L2L
)
≥ v21

(
1 + 4Lη

cg,L
1 + cg,L

v2L−2
1

(
1− v21

))
= v21 + 4Lη

cg,L
1 + cg,L

v2L1
(
1− v21

)
≥ v21 + 4Lη

cg,L
1 + cg,L

(
3

4

)2L (
1− v21

)
.

This implies

1− v2t+1,1 ≤
(
1− v21

)(
1− 4Lη

cg,L
1 + cg,L

(
3

4

)2L
)

− 2ηv1Z1 − 2η ⟨v,Z⟩
1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

− ξt+1

For the martingale difference term, also by the previous proof, we have

E

( 2ηv1Z1 − 2η ⟨v,Z⟩
1 + 2η (2− ρ) + 4Lη ∥v∥2L2L

)2 ∣∣∣∣ Ft

 ≲L η2P 2.

Let ε∗ > 0 denote our target accuracy. Hence, in the language of Lemma F.6,8 we have

α = −4Lη
cg,L

1 + cg,L

(
3

4

)2L

, ηT = OL(log(1/ε∗)),

σ2
Z = OL(1)η

2P 2, Ξ = OL(1)ηd

(
ma0 ∨ ηP 2 log4L

(
Td

δP

))
.

To meet the conditions of Lemma F.6, it suffices to choose

Ξ ≤ ε∗
4T

⇐ ma0 ≲L
ε∗

d log(1/ε∗)
, η ≲L

ε∗

dP 2 log(1/ε∗) log
4L (d/δP)

,

σ2
Z ≤ δP|α|ε2∗

16
⇐ η ≲L

δPcg,Lε
2
∗

P 2
.

Then, with probability at least 1 − O(δP), we have v21 ≥ 1 − ε within T = OL(log(1/ε∗)/η)
iterations.

C.3 DEFERRED PROOFS IN THIS SECTION

Proof of Lemma C.1. Recall that

v̂t+1,k = vt,k + η
(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
)
vk + ηZt+1,k + ηOt+1,k,

8When α is negative, it suffices to replace x0 with our target ε∗.
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where |Ot+1,k| ≤ 2Lma0. Then, we compute

v̂2t+1,k =
((
1 + η

(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
))

vk + ηOk + ηZk

)2
=
(
1 + 2η

(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
))

v2k + 2ηvkZk + 2ηvkOk

+ η2
(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
)2

v2k

+ 2η2
(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
)
vkZk

+ 2η2
(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
)
vkOk

+ η2O2
k + η2Z2

k + 2η2ZkOk.

The last four lines, which we denote by Tmp(2) for notational simplicity, contain terms that are
quadratic in η. The first term is the second line is the “signal term” that corresponds to the GD
update, the second term forms a martingale difference sequence and the second term captures the
influence of other neuron and shrinks with a0.

First, we bound the second-order terms. For ρ, we have the following naı̈ve upper bound:

ρ = 2
P∑
i=1

v2i + 2L

P∑
i=1

v2Li ≤
(
2 + 2Lmax

j≤P
v2L−2
j

)
∥v≤P ∥2 ≤ 2 + 2Lmax

j≤P
v2L−2
j ≤ 4L, (13)

where the last inequality comes from the fact L ≥ 2. Similarly, we also have 2 + 2Lv2L−2
k ≤ 4L.

Hence, we have ∣∣1{k ≤ P}
(
2 + 2Lv2L−2

k

)
− ρ
∣∣ ≤ 2 + 2Lv2L−2

k + ρ ≤ 8L.

Thus, for the second-order terms (last four lines), we have
|Tmp(2)| ≤ 64L2η2v2k + 16Lη2|vkZk|+ 16Lη2|vkOk|+ η2O2

k + η2Z2
k + 2η2ZkOk

≤ 100L2η2v2k + 10Lη2Z2
k + 10Lη2O2

k

≤ 300L3η2
(
v2k ∨ Z2

k ∨m2a20
)
,

where we use the inequality ab ≤ a2/2+ b2/2 in the second line to handle the cross terms. In other
words, we have

v̂2t+1,k =
(
1 + 2η

(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
))

v2k + 2ηvkZk + 2ηvkOk

± 300L3η2
(
v2k ∨ Z2

k ∨m2a20
)
.

Meanwhile, for the last term in the first line, we have |2ηvkOk| ≤ 4Lηvkma0. Thus,
v̂2t+1,k =

(
1 + 2η

(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
))

v2k + 2ηvkZk

± 4Lηvkma0 ± 300L3η2m2a20 ± 300L3η2
(
v2k ∨ Z2

k

)
=
(
1 + 2η

(
1{k ≤ P}

(
2 + 2Lv2L−2

k

)
− ρ
))

v2k + 2ηvkZk

± 300L3ηma0 ± 300L3η2
(
1 ∨ Z2

k

)
.

D STAGE 2: TRAINING THE SECOND LAYER

Lemma D.1. Suppose that for each p ∈ [P ], there exists a first-layer neuron vip with v2ip,p ≥ 1−εv

for some small positive εv = O(1/P ), then we can choose a∗ ∈ Rm with ∥a∗∥ =
√
P such that

L(a∗,V ) := E (f∗(x)− f(x;a∗,V ))
2 ≤ 10LP 2εv.

Proof. Choose one vip for each p ∈ [P ]. Then, we set the ip-th entries of a∗ to be 1 and all other
entries 0. Then, we write

(f∗(x)− f(x;a∗,V ))
2
=

(
P∑

k=1

(ϕ(xk)− ϕ(vik · x))

)2

=

P∑
k,l=1

(ϕ(xk)− ϕ(vik · x)) (ϕ(xl)− ϕ(vil · x)) .
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Recall from the proof of Lemma 2.1 (cf. Section A) that for any v,v′ ∈ Sd−1, we have

E
x∼N (0,I)

[ϕ(v · x)ϕ(v′ · x)] = ⟨v,v′⟩2 + ⟨v,v′⟩2L .

Hence, for k = l, we have

E (ϕ(xk)− ϕ(vik · x))2 = Eϕ2(xk) + Eϕ2(vik · x)− 2Eϕ(xk)ϕ(vik · x)
= 4− 2

(
v2ik,k + v2Lik,k

)
≤ 4Lεv.

Meanwhile, for k ̸= l, we have

E (ϕ(xk)− ϕ(vik · x)) (ϕ(xl)− ϕ(vil · x))
= Eϕ(xk)ϕ(xl) + Eϕ(vik · x)ϕ(vil · x)− Eϕ(xk)ϕ(vil · x)− Eϕ(vik · x)ϕ(xl)

≤ ⟨vik ,vil⟩
2
+ ⟨vik ,vil⟩

2L
.

Note that

⟨vik ,vil⟩
2 ≤ 2v2il,k + 2 ⟨vik − ek,vil⟩

2 ≤ 2εv + 2 ∥vik − ek∥2 = 2εv + 4 (1− vik,k) ≤ 6εv.

As a result, ⟨vik ,vil⟩
2
+ ⟨vik ,vil⟩

2L ≤ 10εv . Combining these two cases, we obtain

E (f∗(x)− f(x;a∗,V ))
2 ≤ 4PLεv + 10P 2εv ≤ 10LP 2εv.

Now, we are ready to prove the following generalization bound for Stage 2. The proof of it is adapted
from Section B.8 of Oko et al. (2024), which in turn is based on (Damian et al. (2022); Abbe et al.
(2022); Ba et al. (2022)).

Lemma D.2. Suppose that for each p ∈ [P ], there exists a first-layer neuron vip with v2ip,p ≥ 1−εv
for some small positive εv = O(1/P ). Then, there exists some λ > 0 such that the ridge estimator
â we obtain in Stage 2 satisfies

∥f(·; â,V )− f∗∥L1(D) ≤
8 ∥a∗∥

√
m√

NδP
+
√
10LP 2εv,

with probability at least 1− 2δP.

Proof. For notational simplicity, let D = N (0, 1) and D̂ = 1
N

∑N
n=1 δxT+n

denote the empirical
distribution of the samples we use in Stage 2. In addition, we write fa for f(·;a,V ) where V is the
first-layer weights we have obtained in Stage 1 and X = (xT+n)

N
n=1.

Let a∗ ∈ Rm denote the second-layer weights we constructed in Lemma D.1 and â ∈ Rm denote
the ridge estimator obtained via minimizing a 7→ ∥f∗ − fa∥2L2(D̂) + λ ∥a∥2. By the equivalence
between norm-constrained linear regression and ridge regression, there exists λ > 0 such that

∥f∗ − fâ∥2L2(D̂) ≤ ∥f∗ − fa∗∥
2
L2(D̂) and ∥â∥ ≤ ∥a∗∥ .

Choose this λ and let F := {f(·;a) : ∥a∥ ≤ ∥a∗∥} be our hypothesis class. Note that fâ ∈ F .
Moreover, we have

∥fâ − f∗∥L1(D) =
(
∥fâ − f∗∥L1(D) − ∥fâ − f∗∥L1(D̂)

)
+ ∥fâ − f∗∥L1(D̂)

≤ sup
a : ∥a∥≤∥a∗∥

(
∥fa − f∗∥L1(D) − ∥fa − f∗∥L1(D̂)

)
+ ∥fâ − f∗∥L1(D̂)

≤ sup
a : ∥a∥≤∥a∗∥

(
∥fa − f∗∥L1(D) − ∥fa − f∗∥L1(D̂)

)
+ ∥fa∗ − f∗∥L2(D̂) ,

where we used the fact that ∥fâ − f∗∥L1(D̂) ≤ ∥fâ − f∗∥L2(D̂) ≤ ∥fa∗ − f∗∥L1(D̂) in the last line.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Now, we bound the first term. Let σ := (σn)
N
n=1 be i.i.d. Rademacher variables that are also

independent of everything else. By symmetrization and Theorem 7 of Meir & Zhang (2003), we
have

E
X

[
sup

a : ∥a∥≤∥a∗∥

(
∥fa − f∗∥L1(D) − ∥fa − f∗∥L1(D̂)

)]

≤ 2 E
X,σ

sup
a : ∥a∥≤∥a∗∥

1

N

N∑
t=1

σt |fa(xT+n)− f∗(xT+n)|

≤ 2 E
X,σ

sup
a : ∥a∥≤∥a∗∥

1

N

N∑
t=1

σt (fa(xT+n)− f∗(xT+n))

≤ 2

N
E

X,σ
sup

a : ∥a∥≤∥a∗∥

N∑
t=1

σtfa(xT+n) +
������������:0

2 E
X,σ

1

N

N∑
t=1

σtf∗(xT+n).

Note that the first term is two times the Rademacher complexity RadN (F) of F (see, for example,
Chapter 4 of Wainwright (2019)). By (the proof of) Lemma 48 of Damian et al. (2022), we have

RadN (F) ≤ ∥a∗∥√
N

√
E

x∼N (0,Id)
∥ϕ(V x)∥2 =

∥a∗∥√
N

√√√√ m∑
k=1

E
x∼N (0,Id)

ϕ2(vk · x)

=
∥a∗∥

√
m√

N

√
E

x1∼N (0,1)
ϕ2(x1)

=
2 ∥a∗∥

√
m√

N
.

In other words, we have

E sup
a : ∥a∥≤∥a∗∥

(
∥fa − f∗∥L1(D) − ∥fa − f∗∥L1(D̂)

)
≤ 4 ∥a∗∥

√
m√

N
.

Hence, for any δP ∈ (0, 1), by Markov’s inequality, we have

sup
a : ∥a∥≤∥a∗∥

(
∥fa − f∗∥L1(D) − ∥fa − f∗∥L1(D̂)

)
≤ 4 ∥a∗∥

√
m√

NδP
,

with probability at least 1 − δP. Apply the same argument to ∥fa∗ − f∗∥L2(D̂) and recall from

Lemma D.1 that ∥fa∗ − f∗∥2L2(D) ≤ 10LP 2εv , and we obtain

∥fâ − f∗∥L1(D) ≤
8 ∥a∗∥

√
m√

NδP
+
√
10LP 2εv,

with probability at least 1− 2δP.

E PROOF OF THE MAIN THEOREM

Theorem 2.1 (Main Theorem). Consider the setting and algorithm described above. Let C > 0
be a large universal constant. Suppose that logC d ≤ P ≤ d and {v∗

k}Pk=1 are orthonormal. Let
δP ∈ (exp(− logC d), 1) and ε∗ > 0 be given. Suppose that we choose a0, η, T,N satisfying

m = Ω
(
P 8 log1.5(P ∨ 1/δP)

)
, a0 = OL

(
ε2∗

mdP 2L+2 log3 d log(1/ε∗)

)
, N = ΩL

(
Pm

ε2∗δ
2
P

)
,

η = OL

(
ε4∗δP

dPL+8 log4L+1(d/δP)

)
= ÕL

(
ε4∗δP

dPL+8

)
,

T = OL

(
log d+ PL−1 + log(P/ε∗)

η

)
= ÕL

(
dP 2L+7

δPε4∗

)
.

Then, there exists some λ > 0 such that at the end of training, we have L(a,V ) ≤ ε∗ with proba-
bility at least 1−O(δP).
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Proof. First, by Lemma B.3, we should choose m = 400P 8 log1.5 (P ∨ 1/δP). Meanwhile, by
Lemma D.2, to achieve target L1-error ε∗ with probability at least 1−O(δP), we need

N ≳
Pm

ε2∗δ
2
P
, εv = OL

(
ε2∗
P 2

)
.

Then, to meet the conditions of Lemma C.2 and Lemma C.10 (uniformly over those P good neu-
rons), we choose

a0 = OL

(
ε2∗

mdP 2L+2 log3 d log(1/ε∗)

)
, η = OL

(
ε4∗δP

dPL+8 log4L+1(d/δP)

)
.

By Lemma C.2 and Lemma C.10, the numbers of iterations needed for Stage 1.1 and Stage 1.2
are OL(log(d/P )/η) and OL

((
PL−1 + log(1/εv)

)
/η
)
, respectively. Thus, the total number of

iterations is bounded by

T = OL

(
log d+ PL−1 + log(P/ε∗)

η

)
= ÕL

(
dpoly(P )

ε4∗δP

)
.

F TECHNICAL LEMMAS

F.1 CONCENTRATION AND ANTI-CONCENTRATION OF GAUSSIAN VARIABLES

In this subsection, we first present several concentration and anti-concentration results for Gaussian
variables. While almost all of them have been proved in the past in different papers and textbooks
such as (van Handel (2016); Wainwright (2019)), we provide proofs of most of them for easier
reference.
Lemma F.1 (Concentration of norm). Let Z ∼ N (0, Id). Then, we have

P (|∥Z∥ − E ∥Z∥| ≥ s) ≤ 2e−s2/2.

Remark. ∥Z∥ follows the chi distribution χd, whose expectation is
√
2Γ((d+1)/2)/Γ(d/2). With

Stirling’s formula, one can show that for any large d,
√
d ≥ E ∥Z∥ =

√
d− 1

(
1− 1

4d
+

O(1)

d2

)
=

√
d

(
1− 2

d

)
.

♣

Proof. We will use without proof the following result: if Z ∼ N (0, Id) and f : Rd → R is 1-
Lipschitz, then f(Z) is 1-subgaussian. We apply this result to the 1-Lipschitz function ∥·∥. This
gives P (∥Z∥ − E ∥Z∥ ≥ s) ≤ e−s2/2. Apply the same result to −∥·∥ yields the lower tails.

Lemma F.2 (Upper tail for the maximum). Let Z1, . . . , Zd ∼ N (0, 1) be independent. We have the
upper tail

P
(
max
i∈[d]

|Zi| ≥
√

2 log d+ s

)
≤ 2e−s2/2, ∀s ≥ 0.

Proof. For notational simplicity, put Z∗ = maxi∈[d] Zi. By union bound and the Chernoff bound,
we have for each s, θ > 0,

P(Z∗ ≥ s) = P

(
d∨

i=1

Zi ≥ s

)
≤ dP(Z1 ≥ s) ≤ d

E eθZ1

eθs
= deθ

2/2−θs.

Choose θ = s to minimize the RHS, and we obtain P(Z∗ ≥ s) ≤ elog d−s2/2. Replace s with√
2 log d+ s2 and this becomes

P
(
Z∗ ≥

√
2 log d+ s

)
≤ P

(
Z∗ ≥

√
2 log d+ s2

)
≤ e−s2/2.

Use the fact −mini∈[d] Zi
d
= maxi∈[d] Zi and we complete the proof.
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Lemma F.3 (Lower tail for the maximum). Let Z1, . . . , Zd ∼ N (0, 1) be independent. Let c > 0
be any universal constant. We have

P
[
max
i∈[d]

Zi ≥ (1 + c)
√

2 log d

]
≥ 1

8π(1 + c)

1

d(1+c)2−1
√
log d

.

Proof. First, we prove a general result on the integral I(x) =
∫∞
x

e−y2/2dy. Make the change of
variable y = xτ to obtain I(x) = x

∫∞
1

e−x2τ2/2dτ . Since the integrand decays very fast as τ

grows, we expand τ2/2 around as τ2/2 = 1/2 + (τ − 1) + (τ − 1)2/2. This gives

I(x) = xe−x2/2

∫ ∞

1

e−x2(τ−1)e−x2(τ−1)2/2dτ = xe−x2/2

∫ ∞

0

e−x2τe−x2τ2/2dτ

For the second factor, we have∫ ∞

0

e−x2τe−x2τ2/2dτ ≤
∫ ∞

0

e−x2τdτ =
1

x2
,∫ ∞

0

e−x2τe−x2τ2/2dτ ≥
∫ ∞

0

e−x2τ

(
1− x2τ2

2

)
dτ =

1

x2

(
1− 1

x2

)
.

Combining these bounds together, we obtain

e−x2/2

x

(
1− 1

x2

)
≤ I(x) ≤ e−x2/2

x
. (14)

With this estimation, we are ready to prove this lemma. Let c > 0 be a constant. Note that by our
previous tail bound, maxi∈[d] Zi ≥ (1 + c)

√
2 log d =: θ is a rare event. We have

P
[
max
i∈[d]

Zi ≥ θ

]
= 1−

(
1− I(θ)√

2π

)d

≥ d

2

I(θ)√
2π

≥ d

4
√
2π

e−θ2/2

θ
=

1

8π(1 + c)

1

d(1+c)2−1
√
log d

.

Lemma F.4 (Gap between the largest and the second largest). Let Z1, . . . , Zd ∼ N (0, 1) be in-
dependent. Consider an arbitrary universal constant c ≥ 1/

√
2. Define the good and bad events

as

G :=

{
max
i∈[d]

|Zi| ≥ (1 + 2c)
√
2 log d

}
,

B :=
{
∃i ̸= j ∈ [d], min{|Zi|, |Zj |} ≥ (1 + c)

√
2 log d

}
.

We have
P(B)

P(G)
≤ 8π(1 + 2c)

√
log d

d1−2c2
→ 0 as d → ∞.

Let |Z|(1) and |Z|(2) be the largest and second-largest among |Z1|, . . . , |Zd|. We have

P
[ |Z|(1)
|Z|(2)

≥ 1 + 2c

1 + c

]
≥ P [G ∧ ¬B] ≥ (1− o(1))P(G) ≥ 1

5π(1 + 2c)

1

d4c+4c2
√
log d

.

Proof. Let 0 < c1 < c2 be two universal constants to be determined later. By Lemma F.3, we have

P(G) := 2P
[
max
i∈[d]

Zi ≥ (1 + c2)
√
2 log d

]
≥ 1

4π(1 + c2)

1

d(1+c2)2−1
√
log d

.
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Meanwhile, we have

P(B) := P
[
∃i ̸= j ∈ [d], min{|Zi|, |Zj |} ≥ (1 + c1)

√
2 log d

]
≤ 2

(
d

2

)(
P
[
Z1 ≥ (1 + c1)

√
2 log d

])2
≤ d2 exp

(
−2(1 + c1)

2 log d
)

= d−2(1+c1)
2+2.

Combine these bounds together, we obtain

P(B)

P(G)
≤ 4π(1 + c2)d

(1+c2)
2−1

√
log d

d2(1+c1)2−2
=

4π(1 + c2)
√
log d

d2(1+c1)2−1−(1+c2)2
.

Suppose that c21 = c2 > 1/2 and choose c2 = 2c1. Then, the above becomes

P(B)

P(G)
≤ 4π(1 + 2c)

√
log d

d1−2c2
.

F.2 STOCHASTIC INDUCTION

Our proof is essentially a large induction. When certain properties hold, we know how to analyze
the dynamics and can show certain quantities are bounded with high probability. Meanwhile, certain
properties hold as long as those quantities are still well-controlled. In the deterministic setting, this
seemingly looped argument can be made formal by either mathematical induction (in discrete time)
or the continuity argument (in continuous time). In this subsection, we show the same can also be
done in the presence of randomness and derive a stochastic version of Gronwall’s lemma and its
generalizations.

We start with an example where Doob’s submartingale inequality can be directly used. Let
(Ω,F , (Ft)t,P) be our filtered probability space and (Zt)t be a martingale difference sequence.
Suppose that E[Z2

t+1 | Ft] is uniformly bounded by σ2
Z . Then, by Doob’s submartingale inequality,

for any M > 0 and T > 0, we have

P

[
sup
t≤T

∣∣∣∣∣
t∑

s=1

Zs

∣∣∣∣∣ ≥ M

]
≤ M−2 E

(
T∑

s=1

Zs

)2

=
Tσ2

Z

M2
.

In particular, this implies that when M = ω(σZ

√
T ), we have supt≤T

∣∣∣∑t
s=1 Zs

∣∣∣ ≤ M with high
probability.

Note that there is no need to any kind of “induction” in the above example. However, things become
subtle if instead of assuming E[Z2

t+1 | Ft] is bounded by σ2
Z , we assume it is bounded by σ2

Z as long

as sups≤t |
∑s

r=1 Zr| ≤ M . Intuitively, since M is chosen so that supt≤T

∣∣∣∑t
s=1 Zs

∣∣∣ ≤ M holds

with high probability, the bounds E[Z2
t+1 | Ft] ≤ σ2

Z should also hold with high probability and we
can still use Doob’s submartingale inequality as before. Now, we formalize this argument.
Lemma F.5. Let (Zt)t be a martingale difference sequence. Suppose that there exists M,σZ > 0
such that if sups≤t |

∑s
r=1 Zs| ≤ M , then we have E[Z2

t+1 | Ft] ≤ σ2
Z . Then, we have

P

[
sup
t≤T

∣∣∣∣∣
t∑

s=1

Zs

∣∣∣∣∣ > M

]
≤ Tσ2

Z

M2
.

Note that this bound is the same as the one we obtained with the assumption that E[Z2
t+1 | Ft] ≤ σ2

Z
always holds.

Proof. Consider the stopping time τ := inf{t ≥ 0 :
∣∣∣∑t

s=1 Zs

∣∣∣ > M}. By definition, we have

sups≤t |
∑s

r=1 Zs| ≤ M for all t ≤ τ . Then, we define Yt+1 = Zt+11{t < τ}. Note that (Yt) is
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a martingale difference sequence with E[Y 2
t+1 | Ft] ≤ σ2

Z . As a result, by Doob’s submartingale

inequality, we have P
[
supt≤T

∣∣∣∑t
s=1 Ys

∣∣∣ > M
]
≤ Tσ2

Z/M
2. To relate it to (Zt)t, we compute

P

[
sup
t≤T

∣∣∣∣∣
t∑

s=1

Zs

∣∣∣∣∣ > M

]
= P

[
sup
t≤T

∣∣∣∣∣
t∑

s=1

Zs

∣∣∣∣∣ > M ∧ τ ≤ T

]
= P

[∣∣∣∣∣
τ∑

s=1

Zs

∣∣∣∣∣ > M ∧ τ ≤ T

]

= P

[∣∣∣∣∣
τ∑

s=1

Ys

∣∣∣∣∣ > M ∧ τ ≤ T

]

≤ Tσ2
Z

M2
,

where the first and second identities comes from the definition of τ and the third from the fact
Zt = Yt for all t ≤ τ .

Now, we consider a more complicated case, where is process of interest is not a pure martingale.
Suppose that the process (Xt)t satisfies

Xt+1 = (1 + α)Xt + ξt+1 + Zt+1, X0 = x0 > 0,

where the signal growth rate α > 0 and initialization x0 > 0 are given and fixed, (ξt)t is an
adapted process, and (Zt)t is a martingale difference sequence. In most cases, (ξt)t will represent
the higher-order error terms.

Our goal is control the difference between Xt and its deterministic counterpart xt = (1+α)tx0. To
this end, we recursively expand the RHS to obtain

Xt+1 = (1 + α)2Xt−1 + (1 + α)ξt + ξt+1 + (1 + α)Zt + Zt+1

= (1 + α)t+1x0 +

t∑
s=1

(1 + α)t−sξs+1 +

t∑
s=1

(1 + α)t−sZs+1.

Divide both sides with (1 + α)t+1 and replace t+ 1 with t. Then, the above becomes

Xt(1 + α)−t = x0 +

t∑
s=1

(1 + α)−sξs +

t∑
s=1

(1 + α)−sZs.

Note that ((1 + α)−tZt)t is still a martingale difference sequence. Ideally, |ξt| should be small as
it represents the higher-order error terms, and we have bounds on the conditional variance of Zt so
that we can apply Doob’s submartingale inequality to the last term. Unfortunately, in many cases,
since ξt+1 and Zt+1, particularly their maximum and (conditional) variance, can potentially depend
on (Xs)s≤t, we may only be able to assume |ξt+1| ≤ (1 + α)tΞ with probability at least 1 − δP,ξ
(for each t) and E[Z2

t+1 | Ft] ≤ (1 + α)tσ2
Z for some ξP,ξ, Ξ and σ2

Z when, say, Xt = (1± 0.5)xt.
Still, we can use the previous argument to estimate the probability that Xt /∈ (1 ± 0.5)xt for some
t ≤ T .

Let τ := inf{t ≥ 0 : Xt /∈ (1 ± 0.5)xt} and then ξ̂t+1 = ξt+11{t ≤ τ}, and Ẑt+1 =

Zt+11{t ≤ τ}. Clear that τ is a stopping time, ξ̂ is adapted, and Ẑ is still a martingale difference
sequence. Moreover, we have |ξ̂t| ≤ (1+α)tΞ with probability at least 1−δP,ξ and E

[
Ẑ2
t+1 | Ft

]
≤

(1 + α)tσ2
Z for all t ≥ 0. As a result,∣∣∣∣∣

t∑
s=1

(1 + α)−sξ̂s

∣∣∣∣∣ ≤ Ξt ≤ TΞ with probability at least 1− TδP,ξ,

E

(
t∑

s=1

(1 + α)−sẐs

)2

=

t∑
s=1

(1 + α)−2s EE
[
Ẑ2
s | Fs−1

]
≤

t∑
s=1

(1 + α)−sσ2
Z ≤ σ2

Z

α
.

Then, by Doob’s submartingale inequality, we have

P

[
sup
t≤T

∣∣∣∣∣
T∑

s=1

(1 + α)−sẐs

∣∣∣∣∣ ≥ x0

4

]
≤ 16σ2

Z

αx2
0

.
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Hence, for any δP ∈ (0, 1), if we assume

Ξ ≤ x0

4T
and σ2

Z ≤ δPαx
2
0

16
,

then with probability at least 1− δP − TδP,ξ, we have∣∣∣∣∣
t∑

s=1

(1 + α)−sξ̂s +

t∑
s=1

(1 + α)−sẐs

∣∣∣∣∣ ≤ x0

2
, ∀t ∈ [T ].

Then, similar to the previous argument, we have
P [∃t ∈ [T ], Xt /∈ (1± 0.5)xt] = P [∃t ∈ [T ], Xt /∈ (1± 0.5)xt ∧ τ ≤ T ]

= P [Xτ /∈ (1± 0.5)xτ ∧ τ ≤ T ]

= P

[∣∣∣∣∣
τ∑

s=1

(1 + α)−sξs +

τ∑
s=1

(1 + α)−sZs

∣∣∣∣∣ ≥ x0

2
∧ τ ≤ T

]

= P

[∣∣∣∣∣
T∑

s=1

(1 + α)−sξ̂s +

T∑
s=1

(1 + α)−sẐs

∣∣∣∣∣ ≥ x0

2
∧ τ ≤ T

]
≤ 1− δP − TδP,ξ.

Namely, we have proved the following discrete-time stochastic Gronwall’s lemma.
Lemma F.6 (Stochastic Gronwall’s lemma). Suppose that (Xt)t satisfies

Xt+1 = (1 + α)Xt + ξt+1 + Zt+1, X0 = x0 > 0,

where the signal growth rate α > 0 and initialization x0 > 0 are given and fixed, (ξt)t is an adapted
process, and (Zt)t is a martingale difference sequence. Define xt = (1 + α)tx0.

Let T > 0 and δP ∈ (0, 1) be given. Suppose that there exists some δP,ξ ∈ (0, 1) and Ξ, σZ > 0
such that for every t ≥ 0, if Xt = (1± 0.5)xt, then we have |ξt+1| ≤ (1 + α)tΞ with probability at
least 1− δP,ξ and E[Z2

t+1 | Ft] ≤ (1 + α)tσ2
Z . Then, if

Ξ ≤ x0

4T
and σ2

Z ≤ δPαx
2
0

16
,

we have Xt = (1± 0.5)xt for all t ∈ [T ] with probability at least 1− δP − TδP,ξ.

Remark. With only the dependence on α and x0 kept, then conditions become Ξ ≤ O(αx0) and
σZ ≤ O(

√
αx0). When α is small, the second condition is much weaker than the first one. ♣

Remark. The above argument can be easily generalized to cases where we have multiple induction
hypotheses. For example, if we have another process X ′

t+1 = (1 + α′)X ′
t + ξ′t+1 + Z ′

t+1 and we
need both Xt = (1 ± 0.5)xt and X ′

t = (1 ± 0.5)x′
t for the bounds on |ξt+1|, |ξ′t+1|, E[Z2

t+1 | Ft],
E[(Z ′

t+1)
2 | Ft] to hold. In this case, the final failure probability will be bounded by T (δP,ξ +

δP,ξ′) + 2δP. ♣

If we are interested only in the upper bound, the above lemma can be used instead. In this lemma,
the dependence on the initial value is more lenient.
Lemma F.7. Suppose that (Xt)t satisfies

Xt+1 = (1 + α)Xt + ξt+1 + Zt+1, X0 = x0 > 0,

where the signal growth rate α > 0 and initialization x0 > 0 are given and fixed, (ξt)t is an adapted
process, and (Zt)t is a martingale difference sequence. Define x+

t = (1 + α)tx+
0 , where x+

0 is any
value that is at least x0.

Let T > 0 and δP ∈ (0, 1) be given. Suppose that there exists some δP,ξ ∈ (0, 1) and Ξ, σZ > 0
such that for every t ≥ 0, if Xt = (1± 0.5)xt, then we have |ξt+1| ≤ (1 + α)tΞ with probability at
least 1− δP,ξ and E[Z2

t+1 | Ft] ≤ (1 + α)tσ2
Z . Then, if

Ξ ≤ x+
0

4T
and σ2

Z ≤ δPα(x
+
0 )

2

16
,

we have Xt ≤ 2x+
t for all t ∈ [T ] with probability at least 1− δP − TδP,ξ.
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Proof. Similar to the previous proof, we still have

Xt(1 + α)−t = x0 +

t∑
s=1

(1 + α)−sξs +

t∑
s=1

(1 + α)−sZs.

Instead of requiring the last two terms to be bounded by x0/2, we can simply require them to be
bounded by x+

0 /2 where x+
0 is any value that is at least x0. Then, to complete the proof, it suffices

to repeat the previous argument.

The above lemmas will be used in Stage 1.1 to estimate the growth rate of the signals. The next
lemma considers the case where α is 0 and will be used to show the gap between the largest and the
second-largest coordinates can be preserved during Stage 1.1.
Lemma F.8. Suppose that (Xt)t satisfies

Xt+1 = Xt + ξt+1 + Zt+1, X0 = x0 > 0,

where the signal growth rate α > 0 and initialization x0 > 0 are given and fixed, (ξt)t is an adapted
process, and (Zt)t is a martingale difference sequence.

Let T > 0 and δP ∈ (0, 1) be given. Suppose that there exists some δP,ξ ∈ (0, 1) and Ξ, σZ > 0

such that for every t ≤ T , if |Xt − x0| ≤ TΞ +
√
Tσ2

Z/δP, then |ξt| ≤ Ξ with probability at least
1− δP,ξ and E[Z2

t+1 | Ft] ≤ σ2
Z . Then, we have

sup
t≤T

|Xt − x0| ≤ TΞ +

√
Tσ2

Z

δP
with probability at least 1− TδP,ξ − δP.

Proof. Recursively expand the RHS, and we obtain

Xt = x0 +

t∑
s=1

ξs +

t∑
s=1

Zs.

Consider the stopping time τ := inf
{
t ≥ 0 : |Xt − x0| > TΞ +

√
Tσ2

Z/δP

}
. Define ξ̂t+1 =

1{t < τ}ξt+1 and Ẑt+1 = 1{t < τ}Zt+1. Clear that

sup
t≤T

∣∣∣∣∣
t∑

s=1

ξ̂t

∣∣∣∣∣ ≤ TΞ with probability at least 1− TδP,ξ.

Meanwhile, by Doob’s submartingale inequality, we have

P

[
sup
t≤T

∣∣∣∣∣
t∑

s=1

Ẑs

∣∣∣∣∣ ≥ M

]
≤ Tσ2

Z

M2
.

In other words,

sup
t≤T

∣∣∣∣∣
t∑

s=1

ξ̂t +

t∑
s=1

Ẑt

∣∣∣∣∣ ≤ TΞ +

√
Tσ2

Z

δP
with probability at least 1− TδP,ξ − δP.

Finally, we compute

P

sup
t≤T

|Xt − x0| > TΞ +

√
Tσ2

Z

δP

 = P

sup
t≤T

|Xt − x0| > TΞ +

√
Tσ2

Z

δP
∧ T ≥ τ


= P

∣∣∣∣∣
τ∑

s=1

ξt +

τ∑
s=1

Zt

∣∣∣∣∣ > TΞ +

√
Tσ2

Z

δP
∧ T ≥ τ


= P

∣∣∣∣∣
τ∑

s=1

ξ̂t +

τ∑
s=1

Ẑt

∣∣∣∣∣ > TΞ +

√
Tσ2

Z

δP
∧ T ≥ τ


≤ 1− TδP,ξ − δP.
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The above proofs are all based on Doob’s L2-submartingale inequality. In other words, it only uses
the information about the conditional variance, whence the dependence on δP is

√
δP. It is possible

to get a better dependence (of form poly log(1/δP)) if we have a full tail bound similar to the ones
in Lemma 2.2. This can be useful when we need to use the union bound. To this end, we need
the following generalization of Freedman’s inequality. The proof of it is deferred to the end of this
section. In short, we truncate Zt at M , apply Freedman’s inequality to the truncated sequence,
and estimate the error introduced by the truncation. This and the next lemmas will not be used in
the proof of our main results. We include them here to explain a possible strategy to improve the
dependence on δP.
Lemma F.9 (Freedman’s inequality with unbounded variables). Let (Zt)t be martingale difference
sequence with E[Z2

t | Ft−1] ≤ σ2
Z . Suppose that Zt satisfies the tail bound

P [|Zt| ≥ s | Ft−1] ≤ a exp (−bsc) , ∀s > 0, (15)

for some a ≥ 1 and b, c ∈ (0, 1]. Then, there exists a constant Cc that may depend on c such that
for any δP ∈ (0, 1), we have, with probability at least 1− δP that∣∣∣∣∣

T∑
t=1

Zt

∣∣∣∣∣ ≤ Cc

√√√√√T

σ2
Z +

1

b2/c
+

log1/c
(

aT
bσZδP

)
b1/c

 log

(
1

δP

)
.

Remark. Similar bounds hold for a wider range of parameters. We will only use lemma in the
proof of Lemma C.9, where the martingale difference sequence is (Zt)t satisfies the tail bound in
Lemma 2.2 (without the logm introduced by the union bound). In other words, we have a = CL,
b = P−1/(2L), c = 1/(2L), and σ2

Z = CLP
2. In particular, note that both 1/b2/c and σ2

Z have order
P 2. ♣

With this lemma, we can obtain the following variant of Lemma F.8. Our goal here is to replace√
Tσ2

Z/δP with
√
Tσ2

Z/ poly log δP. The proof is essentially the same as the proof of Lemma F.8,
and is therefore deferred to the end of this section. An example of applying is lemma can be found
in the proof of Lemma C.9.
Lemma F.10. Suppose that (Xt)t satisfies9

Xt+1 = Xt + ξt+1 + htZt+1, X0 = x0 > 0,

where the signal growth rate α > 0 and initialization x0 > 0 are given and fixed, (ξt)t, (ht)t are
adapted processes, and (Zt)t is a martingale difference sequence.

Let T > 0 and δP ∈ (0, 1) be given. Suppose that there exists some δP,ξ ∈ (0, 1) and Ξ, σZ , h
∗ > 0

such that for every t ≤ T , if

|Xt − x0| ≤ TΞ + Cch
∗

√√√√√T

σ2
Z +

1

b2/c
+

log1/c
(

aT
bσZδP

)
b1/c

 log

(
T

δP

)
, (16)

then |ξt| ≤ Ξ with probability at least 1 − δP,ξ, |ht| ≤ h∗, E[Z2
t+1 | Ft] ≤ σ2

Z , and Z2
t+1 satisfies

the tail bound (15). Then, with probability at least 1− TδP,ξ − δP, (16) holds for all t ∈ [T ].

Now, we consider the case where the signal grows at a polynomial instead of linear rate. This lemma
will be used in Stage 1.2, where the 2L-th order terms dominate.
Lemma F.11. Suppose that (Xt)t satisfies

Xt+1 = Xt + αXp
t + ξt+1 + Zt+1, X0 = x0 > 0, (17)

where p > 1, the signal growth rate α > 0 and initialization x0 > 0 are given and fixed, (ξt)t is
an adapted process, and (Zt)t is a martingale difference sequence. Let x̂t be the solution to the
deterministic relationship

x̂t+1 = x̂t + αx̂p
t , x̂0 = x0/2.

9Since we require b ≤ 1 in (15), we need to “normalize” Zt+1 here and use ht to keep its size.
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Fix T > 0, δP ∈ (0, 1). Suppose that there exist Ξ, σZ > 0 and δP,ξ ∈ (0, 1) such that when
Xt ≥ x̂t, we have |ξt| ≤ Ξ with probability at least 1− δP,ξ and E[Zt+1 | Ft] ≤ σ2

Z . Then, if

Ξ ≤ x0

4T
and σ2

Z ≤ x2
0δP
16T

,

we have Xt ≥ x̂t for all t ≤ T .

Proof. Similar to our previous argument, we can assume w.l.o.g. that the bounds on |xt| and the
conditional variance of Zt+1 always hold.

Note that we can rewrite (17) as Xt+1 = Xt(1 + αXp−1
t ) + ξt + Zt and view it as the linear

recurrence relationship in Lemma F.6 with a non-constant growth rate. This suggests defining the
counterpart of (1 + α)t as

Ps,t :=

{∏t−1
r=s(1 + αXp−1

r ), t > s,

1, t = s.

Then, we can inductively write (17) as

X1 = X0

(
1 + αXp−1

0

)
+ ξ0 + Z0,

X2 =
(
X0

(
1 + αXp−1

0

)
+ ξ0 + Z0

)(
1 + αXp−1

1

)
+ ξ1 + Z1

= X0

(
1 + αXp−1

0

)(
1 + αXp−1

1

)
+
(
1 + αXp−1

1

)
(ξ0 + Z0) + ξ1 + Z1

= X0P0,2 + P1,2 (ξ0 + Z0) + ξ1 + Z1,

X3 = X2

(
1 + αXp−1

2

)
+ ξ2 + Z2

= (X0P0,2 + P1,2 (ξ0 + Z0) + ξ1 + Z1)
(
1 + αXp−1

2

)
+ ξ2 + Z2

= X0P0,3 + P1,3 (ξ0 + Z0) + P2,3 (ξ1 + Z1) + ξ2 + Z2.

Continue the above expansion, and eventually we obtain

Xt = X0P0,t +

t∑
s=1

Ps,t (ξs−1 + Zs−1) .

By our induction hypothesis, we have P0,s ≥ 1. Hence, we can divide both sides with P0,t and then
the above becomes

P−1
0,t Xt = X0 +

t∑
s=1

P−1
0,t Ps,t (ξs−1 + Zs−1) = X0 +

t∑
s=1

P−1
0,s ξs−1 +

t∑
s=1

P−1
0,sZs−1.

For the second term, we have ∣∣∣∣∣
t∑

s=1

P0,sξs−1

∣∣∣∣∣ ≤
t∑

s=1

P0,s|ξs−1| ≤ TΞ,

for all t ≤ T with probability at least 1− TδP,ξ. By our assumption on Ξ, this is bounded by x0/4.
For the last term, by Doob’s submartingale inequality, for any M > 0, we have

P

[
sup
r≤t

∣∣∣∣∣
t∑

s=1

P−1
0,sZs−1

∣∣∣∣∣ ≥ M

]
≤ M−2

t∑
s=1

E
[
P−2
0,sZ

2
s−1

]
≤ σ2

ZT

M2
.

Choose M = x0/4 and the RHS becomes 16σ2
ZT/x

2
0, which is bounded by δP by our assumption on

σZ . Thus, with probability at least 1− TδP,ξ − δP, we have Xt ≥ P0,t(x0/2) for all t. In particular,
this implies Xt ≥ x̂t with at least the same probability.

The above coupling lemma, when combined with the following estimation on the growth rate of the
deterministic process x̂t, gives an upper bound on the time needed for Xt to grow from a small value
to Θ(1).
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Lemma F.12. Suppose that (xt)t satisfies xt+1 = xt + αxp
t for some x0 ∈ (0, 1) and p > 2 and

α ≪ 1/p. Then, we have xt must reach 0.9 within O(1/(xp−1
0 α)) iterations.

Proof. Consider the continuous-time process ẏτ = (1 − δ)ypτ where y0 = x0 and δ > 0 is a
parameter to be determined later. For y, we have the closed-form formula

yτ =

(
1

xp−1
0

− (p− 1)(1− δ)τ

)−1/(p−1)

.

Now, we show by induction that xt ≥ ytα. Clear that this holds when t = 0. In addition, we have

xt+1 − y(y+1)α = xt − yt +

∫ α

0

(
xp
t − (1− δ)yptα+β

)
dβ.

Note that since xt ≥ ytα and ytα+β ≤ y(t+1)α, it suffices to ensure ytα ≥ (1 − δ)y(t+1)α. By our
closed-form formula for yτ , we have

ytα ≥ (1− δ)y(t+1)α

⇔ 1

xp−1
0

− (p− 1)(1− δ)tα ≤ (1− δ)1−p

(
1

xp−1
0

− (p− 1)(1− δ)(t+ 1)α

)

⇔ (1− δ)p−1 ≤ 1− (p− 1)(1− δ)α
1

xp−1
0

− (p− 1)(1− δ)tα
.

We are interested in the regime where 1

xp−1
0

− (p−1)(1− δ)tα ≥ cp for some small constant cp > 0

that may depend on p. In this regime, we have

(p− 1)(1− δ)α
1

xp−1
0

− (p− 1)(1− δ)tα
≤ cppα.

As a result, if cppα ≤ 0.1, then in order for ytα ≥ (1−δ)y(t+1)α in this regime, it suffices to choose

(1− δ)p−1 ≤ 1− cppα ⇐ (1− δ)p−1 ≤ e−2cppα

⇐ 1− δ ≤ e−4cpα ⇐ δ ≥ 8cpα.

Let 1 be our target value for xt. To reach C∗, we need 1

xp−1
0

− (p− 1)tα ≤ 1. Choose cp = 1. Then

the above implies that xt ≥ ytα with ẏτ = (1− 8α)ypτ when xt ≤ 1. Combine this with the closed
formula for yτ , and we conclude that xτ must reach 1/2 within O(1/(xp−1

0 α)) iterations.

F.3 DEFERRED PROOFS OF THIS SECTION

Proof of Lemma F.9. In this proof, Cc > 0 will be a constant that can depend on c and may change
across lines. Let M > 0 be a parameter to be determined later. Write

Zt = Zt1{|Zt| ≤ M} − E [Zt1{|Zt| ≤ M} | Ft−1]

+ E [Zt1{|Zt| ≤ M} | Ft−1] + Zt1{|Zt| > M}.

Let Ẑt denote the two terms in RHS of the first line. Note that (Ẑt)t is a martingale difference
sequence with conditional variance bounded by σ2

Z . Moreover, every Ẑt is bounded by 2M . Thus,
by Freedman’s inequality, we have

P

[∣∣∣∣∣
T∑

t=1

Ẑt

∣∣∣∣∣ ≥ s

]
≤ 2 exp

(
− s2

2T (σ2
Z +M)

)
, ∀s ≥ 0. (18)

Now, we estimate the expectation E [Zt1{|Zt| ≤ M} | Ft−1]. Since E [Zt | Ft−1] = 0, it is equal
to E [Zt1{|Zt| > M} | Ft−1], for which we have

|E [Zt1{|Zt| > M} | Ft−1]| ≤ E [|Zt|1{|Zt| > M} | Ft−1]

=

∫ ∞

M

P [|Zt| ≥ s] ds ≤ a

∫ ∞

M

exp (−bsc) ds.
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Apply the change-of-variables y = s/M and then z = yc. Then, the above becomes

|E [Zt1{|Zt| > M} | Ft−1]| ≤
aM

c

∫ ∞

1

exp (−bM cz) z1/c−1 dz

≤ aM

c

∫ ∞

1

exp

(
−bM cz +

(
1

c
− 1

)
log z

)
dz.

Note that log z ≤
√
z ≤ z for all z ≥ 1. Hence, as long as M c ≥ 2(1/c− 1)/b, we will have

|E [Zt1{|Zt| > M} | Ft−1]| ≤
aM

c

∫ ∞

1

exp (−bM cz/2) dz

≤ 2a

bc
exp ((1− c) logM − bM c/2) .

Note that there exists some constant Cc > 0 that depends on c such that logM ≤ M c/2 for all
M c ≥ Cc. Suppose that M is at least Cc. Then, as long as M c/2 ≥ 4(1− c)/b, we will have

|E [Zt1{|Zt| > M} | Ft−1]| ≤
2a

bc
exp (−bM c/4) .

In other words, for any ε0 > 0, we have |E [Zt1{|Zt| > M} | Ft−1]| ≤ ε0/T if

M c ≥ Cc ∨
2(1/c− 1)

b
∨ 16(1− c)2

b2
∨ 4

b
log

(
2aT

ε0bc

)
= Cc

(
1

b2
∨ 1

b
log

(
aT

ε0b

))
.

Meanwhile, by union bound and our tail bound on Zt, we have

P [∃t ∈ [T ], Zt1{|Zt| > M} ≠ 0] ≤
T∑

t=1

P [|Zt| > M ] ≤ Ta exp (−bM c) .

Combine the above bounds with (18), and we obtain

P

[∣∣∣∣∣
T∑

t=1

Zt

∣∣∣∣∣ ≥ ε0 + s

]
≤ P

[∣∣∣∣∣
T∑

t=1

Zt

∣∣∣∣∣ ≥ s

]
+ P [∃t ∈ [T ], Zt1{|Zt| > M} ≠ 0]

≤ 2 exp

(
− s2

2T (σ2
Z +M)

)
+ Ta exp (−bM c) ,

where M > 0 satisfies

M c ≥ Cc

(
1

b2
∨ 1

b
log

(
aT

ε0b

))
.

Let δP ∈ (0, 1) be our target failure probability. We have

Ta exp (−bM c) ≤ δP
2

⇐ M c ≥ 1

b
log

(
2Ta

δP

)
,

2 exp

(
− s2

2T (σ2
Z +M)

)
≤ δP

2
⇐ s2 ≥ 2T (σ2

Z +M) log

(
4

δP

)
.

Thus, for any δP ∈ (0, 1), we have with probability at least 1− δP, we have∣∣∣∣∣
T∑

t=1

Zt

∣∣∣∣∣ ≤ ε0 +

√
2T (σ2

Z +M) log

(
4

δP

)
where M c ≥ Cc

(
1

b2
∨ 1

b
log

(
aT

ε0bδP

))
.

To remove the parameter ε0, we choose ε0 =

√
2Tσ2

Z log
(

4
δP

)
. Then, the above becomes, with

probability at least 1− δP, we have∣∣∣∣∣
T∑

t=1

Zt

∣∣∣∣∣ ≤ 2

√
2T (σ2

Z +M) log

(
4

δP

)
where M c ≥ Cc

(
1

b2
∨ 1

b
log

(
aT

bσZδP

))
.
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Proof of Lemma F.10. As in the proof of Lemma F.8, we write Xt = x0+
∑t

s=1 ξs+
∑t

s=1 hs−1Zs,
define

τ := inf

t ≥ 0 : |Xt − x0| > TΞ + Cc

√√√√√T

σ2
Z +

1

b2/c
+

log1/c
(

aT
bσZδP

)
b1/c

 log

(
T

δP

) ,

and ξ̂t+1 = ξt+11{t < τ}, Ẑt+1 = 1{t < τ}Zt+1. By construction, we have

sup
t≤T

∣∣∣∣∣
t∑

s=1

ξ̂t

∣∣∣∣∣ ≤ TΞ with probability at least 1− TδP,ξ.

For the martingale difference term, first note that htẐt+1/h∗ satisfies (15). Hence, by Lemma F.9,
with probability at least 1− δP, we have∣∣∣∣∣

t∑
s=1

htẐt

∣∣∣∣∣ ≤ Cch∗

√√√√√T

σ2
Z +

1

b2/c
+

log1/c
(

aT
bσZδP

)
b1/c

 log

(
1

δP

)
.

Replace δP with δP/T , apply the union bound, and we obtain

sup
t≤T

∣∣∣∣∣
t∑

s=1

htẐt

∣∣∣∣∣ ≤ Cch∗

√√√√√T

σ2
Z +

1

b2/c
+

log1/c
(

aT
bσZδP

)
b1/c

 log

(
T

δP

)
,

with probability at least 1− δP. In other words, we have

sup
t∈[T ]

∣∣∣∣∣
t∑

s=1

ξ̂t +

t∑
s=1

htẐt

∣∣∣∣∣ ≤ TΞ + Cch
∗

√√√√√T

σ2
Z +

1

b2/c
+

log1/c
(

aT
bσZδP

)
b1/c

 log

(
T

δP

)
,

with probability at least 1− TδP,ξ − δP. To complete the proof, it suffices to repeat the final part of
the proof of Lemma F.8.

G SIMULATION

We include simulation results for Stage 1 in this section. The goal here is to provide empirical
evidence that (i) if we have both the second- and 2L-th order terms, then the sample complexity
of online SGD scales linearly with d, (ii) the same also holds for the absolute function (which is a
special case of the setting in Li et al. (2020)) and (iii) without the higher-order terms, online SGD
cannot recovery the exact directions.

The setting is the same as the one we have described in Section 2. We choose the hyperparameters
roughly according to Theorem 2.1. To reduce the needed computational resources, we choose m =
Θ(P 2) instead of Ω̃(P 8). Note that by the Coupon Collector problem, we need m = Ω(P logP )
to ensure that for each p ∈ [P ], there exists at least one neuron v with v2p ≥ maxq≤P v2q . Since we
are mostly interested in the dependence on d, for the learning rate, we choose η = c/d, where c is a
tunable constant that is independent of d but can depend on everything else. T is chosen according
to Theorem 2.1 and we early-stop the training when for all p ∈ [P ], there exists a neuron with
v2p ≥ 0.95 (in the moving average sense).
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Figure 1: Recovery of directions. The above plots show the evolution of the correlation with each of
the ground-truth directions. We fix the relevant dimension P = 5 and vary the ambient dimension
d. Different colors represent different d. For each color, one curve represents maxv v

2
p for one

p ∈ [P ]. In the first row, the link function is ϕ = h2 + h4, a function that is covered by our
theoretical results. In the left plot, we use the algorithm (3), while in the right plot, we train both
layers simultaneously. We claimed that our theoretical results can be extended to other link functions
with reasonably regular Hermite coefficients. The plots in the second row, where the link functions
are h2 + h4 and the absolute value function, respectively, provides an empirical evidence for this.
We can see that in all cases, online SGD successfully recover all ground-truth directions, and the
number of steps/samples it needs scales approximately linearly with d.

Figure 2: Necessity of the higher order terms. In these two figures, we choose P = 10 and d = 100.
The left plot shows the maximum correlation each of the ground-truth directions (also see Figure 1).
We can see that in the isotropic case, whether online SGD can recover the ground-truth directions
is determined by the presence/absence of the higher-order terms. The right plot shows the change
of maxv v

2
p/ ∥v≤P ∥2 for each p ∈ [P ] in Stage 1 when the link function is h2. One can observe

that they are almost unchanged throughout training. This, together with the left plot, shows that the
increase of the correlation is caused by learning the subspace instead of the actual directions.
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