
Star Attention: Efficient LLM Inference over Long Sequences

Shantanu Acharya 1 Fei Jia 1 Boris Ginsburg 1

Abstract
Inference with Transformer-based Large Lan-
guage Models (LLMs) on long sequences is both
costly and slow due to the quadratic complexity
of the self-attention mechanism. We introduce
Star Attention, a two-phase block-sparse approx-
imation that improves computational efficiency
by sharding attention across multiple hosts while
minimizing communication overhead. In the first
phase, the context is processed using blockwise-
local attention across hosts, in parallel. In the sec-
ond phase, query and response tokens attend to
all prior cached tokens through sequence-global
attention. Star Attention integrates seamlessly
with most Transformer-based LLMs trained with
global attention, reducing memory requirements
and inference time by up to 11x while preserving
97-100% of accuracy.

1. Introduction
Recent Large Language Models (LLMs) can support con-
texts up to millions of tokens in length (Gemini-Team, 2024;
Anthropic, 2024; Meta-AI, 2024; Qwen, 2025), unlocking
applications such as repository-level code analysis, multi-
document summarization, and large corpus retrieval. How-
ever, processing such long sequences with LLMs requires
substantial computational and memory resources due to the
quadratic complexity of the self-attention mechanism.

The importance of long-context capabilities has driven sub-
stantial research into addressing the computational chal-
lenges of self-attention. Some approaches focus on reducing
the need to fully materialize the attention matrix (Milakov
& Gimelshein, 2018), leading to blockwise processing tech-
niques (Dao et al., 2022; Dao, 2024; Liu & Abbeel, 2023)
and further optimization through distributed computation
across multiple compute units (Liu et al., 2024a). While

1NVIDIA. Correspondence to: Shantanu Acharya <shan-
tanua@nvidia.com>, Fei Jia <fjia@nvidia.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

these methods improve training efficiency, autoregressive
decoding during inference still requires the model to attend
to every previous token, resulting in high computational
costs for long-context sequences. Other approaches attempt
to optimize inference by segmenting long inputs into chunks,
encoding them separately, and attending to these encoded
chunks using the user query (Beltagy et al., 2020; Russak
et al., 2024; Liao et al., 2024). However, these methods of-
ten require fine-tuning the model or introducing additional
components that necessitate further training, limiting their
out-of-the-box applicability.

We introduce Star Attention1, a novel algorithm for efficient
LLM long-context inference. This method is based on the
observation that LLM inference usually has two stages: (1)
prompt encoding, where the model processes input and
stores KV vectors in the cache and (2) token generation,
where model attends to the KV cache and autoregressively
generates new tokens while updating the cache with the new
KV vectors. In many long-context tasks, the input consists
of a long context followed by a short query and a short
answer. The information needed for answering the query is
often localized within small parts of the context, meaning
context tokens need only attend to nearby tokens, while
query tokens need to attend to all prior tokens. Based on this
observation, Star Attention utilizes a two-phase approach
shown in Figure 1:

1. Context Encoding: The context is divided into con-
tiguous blocks and distributed across “context” hosts,
with each host also receiving a copy of the first block
(an “anchor block”). Hosts compute self-attention
only for their assigned blocks, without communicating
with each other, reducing attention complexity from
quadratic to linear with respect to context length. This
distributed processing is similar to Ring Attention (Liu
et al., 2024a) but without the “ring” communication
during context encoding (Figure 1a).

2. Query Encoding and Token Generation: The query
is replicated across all hosts where it initially attends
to the KV cache on each host. Global attention is then
computed by aggregating the results at a designated
“query” host by efficiently communicating a single vec-

1Code: https://github.com/NVIDIA/Star-Attention

1

Star Attention

C1 C2

KV-Cache

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

Host 1 Host 2 Host 3

Anchor

QueryC1 C2 C3

Context

C1 C1 C2

Anchor

C1 C3

C1 C3

KV-Cache

C1

KV-Cache

(a) Phase 1: Local Context Encoding with Anchor
Blocks.

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

Layer 1

Layer 2

Layer N

C1-KV L1

Host 1 Host 2
Host 3

(Query Host)

C1-KV L2

C1-KV LN

Next Token for
Auto Regressive

Decoding

Update
KV cache

Online Softmax

Online Softmax Online Softmax

Online Softmax

Query

C2-KV L1

C2-KV L2

C2-KV LN

C3-KV L1

C3-KV L2

C3-KV LN

(b) Phase 2: Query Encoding and Output Generation with Global Attention.

Figure 1. Star Attention inference flow across two phases. (a) Context Encoding: The input context is partitioned into blocks and
distributed across hosts, where each block (except the first) is prefixed with the anchor block (c1). Each host processes its assigned block
and stores the non-anchor portion of the KV cache. (b) Query Encoding and Token Generation: The query is broadcast to all hosts, which
compute local attention using cached KVs. A designated “query” host then aggregates softmax normalization statistics to compute global
attention and generates the next token.

tor and scalar per token from each context host. Only
the query host updates its KV cache during this stage
(Figure 1b).

Star Attention enables the context length to scale linearly
with the number of hosts by distributing the context process-
ing across multiple hosts. Star Attention is compatible with
most Transformer-based LLMs trained with global atten-
tion, operating seamlessly out-of-the-box without additional
model fine-tuning. Furthermore, we combine Star Attention
with Flash Attention, allowing for additional speedup en-
hancements. We evaluate Star Attention for Llama3.1-8B
and Llama3.1-70B (Meta-AI, 2024) on several long-context
benchmarks. Star Attention achieves up to 11 times faster in-
ference while maintaining 97-100% of the baseline accuracy.

2. Star Attention Algorithm
Star Attention operates in two phases: (1) Context Encoding,
where the long context is divided into contiguous blocks
and is processed with local blockwise attention, and (2)
Query Encoding and Token Generation, where the query is
processed, and answer tokens are generated using global
attention. Below, we detail each phase of the algorithm.

c1
c2
c3
c4
c5
q

Figure 2. Block sparsity pattern in Star Attention for a sequence
partitioned into 5 context blocks ci and a query block q. Each
context block attends only to itself and the “anchor block” whereas
the query attends to the entire input.

2.1. Phase 1: Context Encoding

Given an input sequence comprising a context c followed
by a query q, the context c is divided into n contiguous
blocks: c = [c1, c2, . . . , cn], where each block ci contains b
tokens. We introduce an anchor block mechanism, in which,
each block—except the first—is prefixed with the first block
c1 of the sequence, referred to as the anchor block. This
concatenation forms an augmented context c′:

c′ = [c1, (c1 c2), (c1 c3), . . . , (c1 cn)]

where each augmented block c′i contains 2b tokens: b tokens
from the anchor block c1 followed by b tokens from the
current block ci (Figure 2). The positional indices of c1

2

Star Attention

0 1000 2000 3000
Position IDs

0.00

0.15

0.30

0.45

0.60
Av

g.
 A

ttn
. S

co
re

Attention Sink

(a) Global Attention

0 1000 2000 3000
Position IDs

0.00

0.15

0.30

0.45

0.60

Av
g.

 A
ttn

. S
co

re

Attention Sinks

(b) Blockwise Encoding

0 1000 2000 3000
Position IDs

0.00

0.15

0.30

0.45

0.60

Av
g.

 A
ttn

. S
co

re

Anchor
Block

Attention Sink

(c) Blockwise Encoding w/ Anchor Block

Figure 3. Attention distribution across the sequence during context encoding under different strategies in Phase 1. (a) Global attention
exhibits a single attention sink at the sequence start. (b) Without anchor blocks, blockwise context encoding creates multiple attention sinks
at the start of each block. (c) With anchor blocks, attention sinks shift to anchor tokens, yielding a distribution that closely approximates
global attention. The sequence is 4K tokens long and partitioned into 512-token chunks.

are preserved, ensuring that its tokens retain their original
position indices [0, 1, . . . , b− 1]. The augmented blocks are
distributed across compute hosts, where each host computes
attention over the 2b tokens from its assigned block c′i and
generates the corresponding key-value (KV) vectors. While
KVs for the anchor block c1 are discarded, the KVs for the
current block ci are retained in the cache.

We observe that, without anchor blocks—i.e., applying
blockwise attention only to the original context c—the
model fails to generate correct outputs. We conjecture this
failure is due to the incorrect approximation to the attention
patterns observed during phase 2 (Figure 3b), where multi-
ple attention spikes, known as attention sinks (Xiao et al.,
2024b), are distributed across the sequence. These spikes
occur because each block is processed independently, creat-
ing an attention sink at the start of each block. As a result,
the model struggles to effectively focus on relevant parts of
the context. To address this issue, we prefix the blocks with
the anchor block c1, shifting the attention sinks to the an-
chor tokens. By discarding the KVs of the anchor tokens the
intermediate attention sinks are removed ensuring the atten-
tion distribution of block-local attention (Figure 3c) closely
approximates global attention (Figure 3a) while maintaining
the computational efficiency of blockwise processing.

2.2. Phase 2: Query Encoding and Token Generation

In phase 2, global attention is employed to encode the query
and generate output tokens by using a distributed softmax
algorithm that eliminates the need to transfer KV cache
between hosts (Figure 1b). A designated query-host hq

coordinates this computation. The query is broadcast to all
hosts and transformed into the sequence Q ∈ Rlq×d, where
lq is the query length, and d is the attention head dimension.
Each host h computes the local attention output Ah for the
query Q using its local key-value pairs Kh, Vh ∈ Rlk×d,
where lk is the sequence length of the KV cache. The local

attention is computed as:

Ah =

 exp
(

QK⊤
h√
d

)
∑lk

k=1 exp
(

QK⊤
h,k√
d

)
Vh (1)

In addition to Ah, each host also stores the sum of the
exponents sh from the the local softmax operation (the
denominator from Equation 1):

sh =

lk∑
k=1

exp

(
QK⊤

h,k√
d

)
(2)

The query-host hq gathers the local attention Ah and the
sums of exponents sh from all hosts:

A = [A1, A2, . . . , AH]

s = [s1, s2, . . . , sH]

The global softmax denominator, sglobal, is then computed
as the sum of all local exponents:

sglobal =

H∑
h=1

sh (3)

The query-host uses sglobal to aggregate the local attentions
to compute the global attention:

Aglobal =

H∑
h=1

sh
sglobal

Ah (4)

This method ensures that the global attention scores are
normalized correctly across all hosts. It requires the com-
munication of only a single scalar sh (the local sum of
exponents) and a vector Ah (the local attention) per token.

The above formulations provide a simplified conceptual
overview. In practice, for efficient inference, we use Flash
Attention (Dao, 2024) to attend to the KV cache on each

3

Star Attention

Table 1. Accuracy and relative inference speedup of Star Attention compared to Ring Attention on RULER across sequence lengths from
16K to 128K. Accuracy is reported as the absolute difference from Ring Attention and speedup reflects relative improvements in inference
efficiency. Star Attention significantly accelerates inference with minimal accuracy loss.

Model Seq. Len. Block Size Ring-Attn Star-Attn
(K) (K) Acc.(%) ∆ Acc. ∆ Speedup

16 4 92.22 -0.94% 1.1x
32 8 87.53 +1.17% 1.2x
64 16 84.79 -1.42% 1.8x

Llama-3.1-8B-Instruct
(Meta-AI, 2024)

128 32 76.31 -1.90% 2.7x

16 4 95.09 -2.71% 1.7x
32 8 94.61 -2.55% 2.0xLlama-3.1-70B-Instruct

(Meta-AI, 2024) 64 16 88.54 -1.44% 4.7x

host and apply the log-sum-exp trick from online softmax
(Milakov & Gimelshein, 2018) to ensure numerical stability
during global attention aggregation.

Output generation and cache update. After computing
the global attention output, the query-host hq generates the
next token and its KV cache is updated with the key and
value vectors of the new token. This process is repeated for
each generated token.

This two-phase mechanism—local context encoding with
anchor blocks in Phase 1 followed by global query encoding
with token generation in Phase 2—gives significant improve-
ments in inference speed, while keeping the accuracy close
to the global attention.

3. Experiments
We empirically evaluate Star Attention using several Llama-
based models across multiple long-context benchmarks with
sequence lengths ranging from 16K to 1M tokens, assessing
both its accuracy and inference speedup relative to estab-
lished baselines. We also investigate the accuracy-speed
trade-offs as a function of block size and provide a granular
breakdown of Star Attention’s effectiveness across different
domains. Our results demonstrate that Star Attention con-
sistently achieves near-parity with full global attention in
accuracy while delivering substantial speedups, especially
on large models and long-context tasks.

3.1. Setup

Models. We conduct experiments using both the base and
instruct variants of Llama-3.1 8B which support context
lengths up to 128K tokens (Meta-AI, 2024). To evaluate
scalability beyond this range, we use gradientai-Llama-
3-8B-Instruct-262K and gradientai-Llama-3-8B-Instruct-
1048K that extend Llama-3-8B’s context to 256K and 1M
tokens respectively (Gradient.ai, 2024). We further assess

the impact of model scale using Llama-3.1-70B-Instruct.
Across all configurations, Star Attention demonstrates in-
creasing speedup benefits with larger models and longer
sequences.

Baseline. We compare Star Attention against three strong
baselines: (i) Ring Attention (Liu et al., 2024a), a distributed
attention mechanism that computes global block-wise atten-
tion by circulating each host’s KV cache in a ring pattern
across all the hosts; (ii) StreamingLLM (Xiao et al., 2024b),
a sparse attention method that combines global sink tokens
with sliding window attention. We use a configuration hav-
ing 1000 global sink tokens along with a sliding window of
8000 tokens; and (iii) MInference (Jiang et al., 2024), which
utilizes three distinct sparse attention patterns, dynamically
selecting the optimal pattern per head in an offline search
setting. Among these, only Ring Attention is a distributed
algorithm designed to scale inference across multiple GPUs.
Since Star Attention also targets distributed efficiency, we
report speedup metrics relative to Ring Attention, while
accuracy comparisons are provided for all three baselines.

Configuration. We implement Star Attention in both
HuggingFace Transformers library (Wolf et al., 2020) and
NVIDIA’s TRT-LLM framework (NVIDIA, 2023). All
experiments are conducted on NVIDIA A100 GPUs with
bfloat16 precision. Optimization techniques such as Flash
Attention are applied uniformly across Star and Ring Atten-
tion implementations to ensure a fair comparison. Reported
results are based on the HuggingFace implementation, with
similar relative trends observed across TRT-LLM. Addi-
tional details regarding our experimental setup can be found
in Appendix B.

Evaluation Benchmarks. We evaluate our method on three
benchmarks, each testing unique aspects of long context
understanding: (i) RULER (Hsieh et al., 2024): a syn-
thetic benchmark with 13 tasks categorized into 4 domains:
Needle-in-a-Haystack (Retrieval), Multi-Hop Tracing, Ag-

4

Star Attention

70

80

90
RU

LE
R

 a
cc

ur
ac

y
(%

)
gradientai/

Llama-3-8B-Instruct-262k
gradientai/

Llama-3-8B-Instruct-1048k
meta-llama/

Llama-3.1-8B-Base

16K 32K 64K 128K

30

40

BA
BI

Lo
ng

 a
cc

ur
ac

y
(%

)

16K 32K 64K 128K

Sequence Length

16K 32K 64K 128K

Global Attention Star Attention (Ours)

Figure 4. Accuracy comparison of Star Attention and Global Attention on RULER and BABILong from 16K to 128K sequence lengths
using various models. All runs use a block and anchor block size set to one-quarter of the total sequence length. Star Attention maintains
97-100% of the accuracy of global attention, and in some cases, even outperform it.

gregation, and Question Answering. (ii) BABILong (Kura-
tov et al., 2024): a benchmark of 5 tasks requiring reasoning
over multiple supporting facts encoded in the context to
generate accurate answers. (iii) InfiniteBench (Zhang et al.,
2024): a diverse collection of 10 real-world and synthetic
tasks spanning summarization, multilingual QA, code de-
bugging, and retrieval. Further details on the benchmarks
and specific tasks can be found in Appendix C.

3.2. Results

Table 1 presents the accuracy and relative speedup of Star
Attention compared to Ring Attention (representing full
global attention in a distributed setting) on RULER, across
sequence lengths from 16K to 128K tokens. In each set-
ting, the context and the anchor block size are set to one-
quarter of the total sequence length. Star Attention main-
tains high accuracy, typically within 0-3% of global atten-
tion, while delivering significant speedups, ranging from
1.1× to 4.7×, depending on the model size and sequence
length. The speedup becomes more pronounced for larger
models. For instance, the Llama-3.1-70B-Instruct model
exhibits a 4.7× acceleration at 64K tokens with minimal
accuracy drop. This highlights Star Attention’s suitability
for high-throughput inference and its ability to preserve
model’s accuracy even with a significantly reduced context
window.

To evaluate generalization beyond RULER, we bench-
mark Star Attention on BABILong using Llama-3.1-8B-
Base, gradientai-Llama-3-8B-Instruct-262K, and gradientai-
Llama-3-8B-Instruct-1048K. As shown in Figure 4, Star At-
tention consistently achieves near-parity with full attention

across all tasks up to 128K sequence length, with an accu-
racy drop typically below 3%. However, we observe anoma-
lies for the Llama-3.1-8B base model on BABILong, likely
due to format-specific generation requirements that chal-
lenge non-instruction-tuned models, particularly at longer
sequence lengths.

3.3. Comparison with Other Sparse Attention Methods

While our primary comparison focuses on Ring Attention
(Liu et al., 2024a) due to its distributed design, we also evalu-
ate Star Attention against two strong non-distributed sparse
attention baselines: StreamingLLM (Xiao et al., 2024b)
and MInference (Jiang et al., 2024). These methods repre-
sent alternative strategies for long-context efficiency under
constrained compute budgets and provide complementary
perspectives on accuracy trade-offs.

Table 2 reports accuracy on RULER using Llama-3.1-8B-
Instruct across sequence lengths from 16K to 128K tokens.
Star Attention outperforms both the methods, with the per-
formance gap widening at longer context lengths. Notably,
Star Attention maintains accuracy closest to the baseline
(full attention) across all settings, demonstrating its robust-
ness in extended-context reasoning.

To assess generalization beyond synthetic tasks, we fur-
ther evaluate all methods on InfiniteBench. As shown in
Table 3, Star Attention achieves the highest average ac-
curacy across 10 diverse tasks spanning summarization,
multilingual QA, code debugging, and retrieval. It excels
especially in retrieval-heavy tasks such as PassKey, Num-
Retr, and KVRetr while also delivering competitive results
across other categories. These findings highlight Star Atten-

5

Star Attention

Table 2. Accuracy comparison of different methods on RULER from 16K to 128K sequence length using Llama-3.1-8B-Instruct. Star
Attention performs closest to Full Attention and outperforms others at longer sequences.

Methods 16K 32K 64K 128K Average

Full Attn. 92.22 87.53 84.79 76.31 85.21

StreamingLLM 74.76 48.56 26.2 30.77 45.07
MInference 93.27 86.54 84.86 58.17 80.71
Star Attention 91.27 88.70 83.37 74.41 84.44

Table 3. Accuracy comparison of different methods on InfiniteBench using Llama-3.1-8B-Instruct. Star Attention performs closest to Full
Attention and outperforms others across all the diverse tasks.

Methods En. En. En. En. Zh. Code. Math. Retr. Retr. Retr. Avg.Sum QA MC Dia QA Debug Find PassKey Num KV

Full Attn. 31.91 25.92 69.43 21.5 31.95 16.75 24.29 99.15 99.66 60 48.06

StreamingLLM 30.15 10.15 41.05 8.5 22.38 8.63 17.71 2.71 5.93 0 14.72
MInference 31.04 22 63.76 14.5 28.7 5.33 27.43 56.78 77.12 14 34.07
Star Attention 31.85 25.92 69 22 30.37 24.37 26.29 93.22 96.27 45.8 46.51

tion’s ability to generalize beyond synthetic benchmarks and
handle real-world, instruction-heavy tasks with long-range
dependencies.

3.4. Trade-off between accuracy and speed

Figure 5a illustrates the effect of varying block size dur-
ing context encoding, with the sequence length fixed at
128K tokens. Larger block sizes lead to improved accuracy,
highlighting the benefits of increased receptive fields for
long-context comprehension.

Empirically, setting the block size to approximately one-
quarter of the total sequence length strikes an effective
trade-off between accuracy and speed. For sequence lengths
exceeding 128K, we fix the block size at 32K tokens to
prioritize inference speed. As shown in Figure 6, this config-
uration allows Star Attention to achieve substantial speedups
over Ring Attention while incurring only modest accuracy
degradation. For instance, on the RULER benchmark with
Llama-3-8B-Instruct-1048K, Star Attention achieves up to
11× speedup while retaining accuracy comparable to Ring
Attention. At 1M tokens, the speedup increases to 16.9×
with an accuracy drop of just 5.32%.

These findings demonstrate that Star Attention offers flex-
ible control over the accuracy-efficiency trade-off. Larger
block sizes allow performance to approach that of global
attention, while smaller blocks enable higher throughput for
latency-sensitive applications. The appropriate configura-
tion can thus be tuned based on available resources and task
requirements. Additional experimental details are provided

in Appendix B.

3.5. In-Depth Analysis on RULER Task Categories

To better understand the strengths and limitations of Star
Attention, we analyze its performance across different task
categories within the RULER benchmark. RULER com-
prises five categories: Single-NIAH, Multi-NIAH, Multi-
Hop Tracing, Aggregation, and Question Answering (QA).
Figure 7 reports category-wise accuracy using the Llama-
3.1-8B-Instruct model at a sequence length of 32K and a
block size of 8K. We observe consistent trends across all
sequence lengths, as detailed in Appendix D.

Star Attention performs comparably to global attention in
the Single-NIAH, Multi-NIAH, and QA categories. These
tasks typically involve localized retrieval or reasoning,
where attention primarily operates within or near a single
context block. In contrast, Multi-Hop Tracing presents a
greater challenge. It requires propagating information across
multiple hops within the sequence, demanding effective
inter-block communication. Since Star Attention restricts
KV-cache access to the local block during context encoding,
the model lacks a mechanism for long-range token-to-token
aggregation in this phase. Consequently, performance de-
grades relative to global attention.

Interestingly, Star Attention shows substantial gains in Ag-
gregation tasks, especially those involving frequency analy-
sis or summarization over distributed spans. Its chunk-wise
encoding facilitates local aggregation within blocks, which
is later synthesized during the global query phase. This

6

Star Attention

4K 8K 16K 32K
Context Block Size

60

62

64

66

68

70

72

74

76

RU
LE

R
Ac

cu
ra

cy
 (%

)

Seq Length: 128K

Global Attention
Star Attention (Ours)

(a) Accuracy vs. Context Block Size

0 1 10 100 512 1K 4K 8K 16K 32K
Anchor Block Size

75

80

85

90

95

RU
LE

R-
NI

AH
 A

cc
ur

ac
y

(%
)

Seq Length: 128K

Global Attention
Star Attention (Ours)

(b) Accuracy vs. Anchor Block Size

Figure 5. Impact of context and anchor block sizes on the accuracy of Star Attention at 128K sequence length with Llama-3.1-8B Instruct.
(a) Accuracy as a function of context block size, with anchor block size matched to it. (b) Accuracy as a function of anchor block size,
with context block size fixed at 32K. Larger block sizes yield consistent accuracy improvements, highlighting the benefit of broader
receptive fields for long-context understanding.

128K
(1/4)

256K
(1/8)

512K
(1/16)

1M
(1/32)

Seq Length
(Relative Block Size)

55

60

65

70

75

80

85

90

RU
LE

R
Ac

cu
ra

cy
 (%

) +0.96%

-0.77%

-6.73%

-5.32%

Block Size = 32K (Fixed)
Ring (Global) Attention
Star Attention (Ours)

0

5

10

15

20

St
ar

 A
tte

nt
io

n
 S

pe
ed

up
 (x

)

Star Attention Speedup (x)

Figure 6. Accuracy vs speed trade-off for Star Attention on
RULER with Llama3-8B-Instruct-1048K as sequence length in-
creases from 128K to 1M with block size fixed at 32K. Star Atten-
tion achieves up to 16.9× speedup with modest accuracy degrada-
tion.

two-phase process proves advantageous in capturing com-
mon patterns without needing full global context at once.
This analysis suggests that Star Attention is especially well-
suited for retrieval and aggregation tasks, while highlighting
opportunities for future work on cross-block communica-
tion.

4. Ablation Study
The ablation experiments focus on the Needle-in-a-Haystack
(NIAH) task, which tests a model’s ability to answer queries
based on a small, relevant piece of information (“needle”)
embedded within a large context (“haystack”). To increase
the task’s complexity, we explore three variations from the
RULER benchmark (Hsieh et al., 2024): Single-NIAH,
Multi-key NIAH, and Multi-query NIAH.

Single-NIAH Multi-NIAH Multi-Hop Agg. QA
RULER Tasks

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

+0.00% -1.63%
-6.52%

+16.15%
-1.20%

Global Attention
Star Attention (Ours)

Figure 7. Accuracy of Star Attention compared to Global Attention
across five RULER task categories using Llama-3.1-8B-Instruct at
32K sequence length with 8K block size. Star Attention matches
or improves upon the baseline in most tasks, with significant gains
in aggregation.

4.1. Position and Content of Anchor Block

In this section, we explore the role of anchor blocks during
Phase 1 that enables Star Attention to approximate global
attention behavior. As outlined in Section 2.1, anchor blocks
are crucial in managing the attention spikes generated at
the start of each context block, helping Star Attention ap-
proximate global attention (see Table 4) Drawing from
the hypotheses on sink tokens in Xiao et al. (2024b), we
consider two potential explanations for the effectiveness of
anchor blocks: (1) the model may develop a bias toward the
absolute position of the anchor block, or (2) the semantic
content of the anchor block is essential for maintaining per-
formance. To better understand how anchor blocks enable
Star Attention to approximate global attention distribution,
we test both the hypotheses. We conduct experiments on the
Llama-3.1-8B-Instruct model, varying both the position and

7

Star Attention

Table 4. Impact of anchor block position and content on Star Attention accuracy using Llama-3.1-8B-Instruct on RULER-NIAH at 64K
and 128K sequence lengths. Each configuration has the anchor block size equal to the context block. The ∆ values indicate absolute
accuracy degradation relative to global attention. Results show that anchor content is critical, while position IDs haveminor effect. Missing
or poorly constructed anchors lead to significant degradation.

Experiments RULER-NIAH (%)
64K ∆64k 128k ∆128k

Global attention 99.50 - 98.49 -

No anchor block 60.11 -39.59% 73.75 -25.12%

Content set to first-block, position IDs are:
randomly sampled from [0, current block) 96.79 -2.72% 97.16 -1.35%
same as previous block 97.35 -2.16% 96.80 -1.71%
same as first block 97.61 -1.90% 97.54 -0.96%

Position IDs set to first-block, content is:
constant token (ex: ‘ ’ or ‘ the’ or ‘.’) 0.00 -100.00% 0 -100.00%
random tokens 90.55 -8.99% 82.63 -10.15%
shuffled first block tokens 92.96 -6.57% 90.76 -3.26%
first block tokens 97.61 -1.90% 94.94 -0.96%

Previous-block used as anchor 94.20 -5.33% 96.13 -2.40%

content of the anchor block. We evaluate two configurations:
a block size of 16K for sequences of length 64K, and a block
size of 32K for sequences of length 128K, in both the cases,
with anchor block size matching the context block size.

Position of anchor block: Here, we fix the content of the
anchor block to the first context block and vary its position
IDs. We test three scenarios : (1) the position IDs are
randomly sampled from the range [0, starting position of
the current block] (e.g., for a block starting at position 32K,
position IDs are sampled from [0, 32K]); (2) the position
IDs are derived from the previous block (e.g., for a block of
size 16K starting at position 32K, position IDs are sampled
from [16K, 32K]); (3) the position IDs are fixed to the
first block (our proposed approach). As shown in Table 4,
varying the position of the anchor block has minimal impact
on accuracy.

Content of anchor block: We fix the position IDs of the
anchor block to that of the first block but vary its content.
We explore several configurations (as shown in Table 4):
(i) a single repeated token (e.g., ‘ ’, ‘ the’, or ‘.’);
(ii) random tokens; (iii) shuffling the tokens of the first
block; and (iv) using the original first block content (the
proposed approach). Our results show that the content of
the anchor block significantly impacts performance, with
the original first block content yielding the best results. This
outcome suggests that since global attention is performed
during Phase 2, it is important for the local context blocks
to attend to anchor blocks whose content reflects what the
model would see during global attention.

Previous block as anchor block: To examine the roles of
both position and content, we experiment with using the
previous block as the anchor block. For example, for a
block of size 16K starting at position 32K, the anchor block
would be the block with position IDs from 16K to 32K. This
configuration has lower accuracy comparing to using the
first block as the anchor(Table 4).

In summary, we found that while the positional placement
of the anchor block is not important , its content is critical
for optimal performance.

4.2. Size of Anchor block

As discussed in Section 3.4, larger block sizes improve the
accuracy of Star Attention. In this section, we analyze the
impact of varying anchor block size while maintaining a
fixed block size of 32K for a sequence length of 128K. As
illustrated in Figure 5b, increasing the anchor block size
enhances model accuracy, with the best performance ob-
served when the anchor block size equals the context block
size. Although Figure 3b demonstrates that attention spikes
predominantly occur in the first few tokens, reducing the
number of tokens in the anchor block leads to a substantial
drop in performance. This suggests that a larger anchor
block is critical for maintaining model accuracy, despite
attention spikes being concentrated at the beginning of the
sequence. This observation implies that the anchor block’s
effectiveness is not solely due to its role in managing atten-
tion sinks but may involve other underlying factors. These
findings remain consistent across both base and instruct
models, as well as for all sequence lengths. Further investi-

8

Star Attention

gation into why the anchor block size must be equivalent to
the context block size is left for future work.

5. Related Work
To address the computational challenges of long-context
inference in LLMs, various techniques have emerged to
mitigate memory usage and enhance inference speed.

Blockwise and Distributed Attention Computation:
Flash Attention (Dao et al., 2022; Dao, 2024) introduces
a blockwise GPU-efficient implementation of exact atten-
tion, reducing both memory footprint and runtime. Building
on this, distributed approaches such as Liu et al. (2024a)
and Shyam et al. (2024) partition the computation of self-
attention and feed-forward networks across multiple devices,
employing sophisticated communication-computation over-
lap to improve scalability. General distributed strategies
(Shoeybi et al., 2019; Huang et al., 2019; Li et al., 2023;
Meta-AI, 2021) provide frameworks for dividing the compu-
tational load effectively across multiple accelerators. These
methods, however, still compute dense global attention,
which becomes prohibitively expensive at longer sequence
lengths. Star Attention leverages the distributed nature of
these approaches but reduces attention complexity through
a two-phase block-sparse approximation that avoids com-
puting the full attention matrix.

Sparse Attention: Sparse attention methods reduce the
quadratic complexity of self-attention through structured
or learned sparsity patterns (Zhang et al., 2023; Tang et al.,
2024; Child et al., 2019), achieving linear or log-linear
scaling in sequence length (Dai et al., 2019; Qin et al.,
2024). Beltagy et al. (2020) introduced sliding window
attention combined with global tokens, which was adapted
by Xiao et al. (2024b) for streaming generation via atten-
tion sinks. Jiang et al. (2024) focuses on identifying and
leveraging dynamic sparse patterns, particularly to accel-
erate the pre-filling stage. More recently, Titans (Behrouz
et al., 2024) augment LLMs with neural memory modules
for long-horizon reasoning. Star Attention’s first phase is
conceptually similar to streaming methods, but differs by
utilizing global attention during decoding—preserving com-
patibility with pretrained models without retraining.

Memory Optimization: Maintaining the KV cache during
autoregressive decoding is a major memory bottleneck. KV
cache compression (Ge et al., 2024; Munkhdalai et al., 2024;
Sun et al., 2024; Liu et al., 2024b; Wu et al., 2024) and low-
rank approximation methods (Hu et al., 2022) have been
proposed to trade precision for reduced memory. Recent sys-
tems explore eviction-based memory management strategies
that allow LLMs to operate over virtually infinite contexts
(Zhao et al., 2024; Han et al., 2024; Xiao et al., 2024a),
often requiring architecture changes or specialized runtime

support. Star Attention is orthogonal to these methods and
can be integrated with them to further enhance inference
efficiency.

6. Conclusion
In this paper, we introduced Star Attention, a novel block-
sparse attention mechanism designed to enable efficient
inference on long sequences in transformer-based LLMs.
The method operates in two phases: (1) context tokens are
processed using blockwise-local attention, with the context
segmented into blocks where each block is prefixed with an
anchor block; and (2) then the query and response tokens
attend to all prior cached tokens through sequence-global
attention. Star Attention delivers up to 11x speedup over
Ring Attention while maintaining 97-100% accuracy, sig-
nificantly enhancing both memory efficiency and inference
speed. Despite these advances, several open questions re-
main. The role and optimal size of anchor blocks relative
to context blocks require further exploration. Additionally,
while Star Attention performs effectively with block sizes
set to one-quarter of the sequence length, accuracy degrades
when using smaller blocks on longer sequences. Future
work will focus on refining the anchor block mechanism
and improving performance on more complex long-context
tasks to enhance the scalability and robustness of Star At-
tention.

Acknowledgements
We thank Kefeng Duan, Santiago Akle, Vahid Noroozi,
Somshubra Majumdar, Jocelyn Huang, Zhiyuan Jerry Lin
and NVIDIA Long Context team for helpful discussion and
feedback.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Anthropic. The Claude 3 model family: Opus, Sonnet,

Haiku, 2024. URL https://www-cdn.anthropi
c.com/de8ba9b01c9ab7cbabf5c33b80b7bb
c618857627/Model_Card_Claude_3.pdf.

Behrouz, A., Zhong, P., and Mirrokni, V. Titans: Learning to
memorize at test time. arXiv preprint arXiv:2501.00663,
2024.

Beltagy, I., Peters, M. E., and Cohan, A. Long-

9

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Star Attention

former: The long-document Transformer. arXiv preprint
arXiv:2004.05150, 2020.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and
Salakhutdinov, R. Transformer-XL: Attentive language
models beyond a fixed-length context. In Proceedings of
the 57th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2019.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. In International Conference on
Learning Representations (ICLR), 2024.

Gemini-Team. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

Gradient.ai. RULER vs. Gradient’s 1M context length
Llama-3-70B, 2024. URL https://gradient.ai/
blog/ruler-vs-gradient-s-1m-context-
length-llama-3-70b.

Han, C., Wang, Q., Peng, H., Xiong, W., Chen, Y., Ji, H.,
and Wang, S. Lm-infinite: Zero-shot extreme length
generalization for large language models. In Proceedings
of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), 2024.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., and Ginsburg, B. RULER: What’s the real context
size of your long-context language models? In First
Conference on Language Modeling (COLM), 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations (ICLR), 2022.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. GPipe:
Efficient training of giant neural networks using pipeline
parallelism. In Advances in Neural Information Process-
ing Systems, 2019.

Jiang, H., Li, Y., Zhang, C., Wu, Q., Luo, X., Ahn, S., Han,
Z., Abdi, A. H., Li, D., Lin, C.-Y., Yang, Y., and Qiu, L.
MInference 1.0: Accelerating pre-filling for long-context
LLMs via dynamic sparse attention. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Kuratov, Y., Bulatov, A., Anokhin, P., Rodkin, I., Sorokin,
D., Sorokin, A., and Burtsev, M. BABILong: Testing
the Limits of LLMs with Long Context Reasoning-in-a-
Haystack. arXiv preprint arXiv:2406.10149, 2024.

Li, S., Xue, F., Baranwal, C., Li, Y., and You, Y. Sequence
parallelism: Long sequence training from system per-
spective. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), 2023.

Liao, Z., Wang, J., Yu, H., Wei, L., Li, J., Wang, J., and
Zhang, W. E2llm: Encoder elongated large language
models for long-context understanding and reasoning.
arXiv preprint arXiv:2409.06679, 2024.

Liu, H. and Abbeel, P. Blockwise parallel transformers for
large context models. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Liu, H., Zaharia, M., and Abbeel, P. Ringattention with
blockwise transformers for near-infinite context. In Inter-
national Conference on Learning Representations (ICLR),
2024a.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V.,
Chen, B., and Hu, X. KIVI: A tuning-free asymmetric
2bit quantization for KV cache. In The Twelfth Interna-
tional Conference on Learning Representations (ICML),
2024b.

Meta-AI. Fully sharded data parallel: faster AI training with
fewer GPUs, 2021. URL https://engineering.
fb.com/2021/07/15/open-source/fsdp/.

Meta-AI. Introducing Llama 3.1: Our most capable models
to date, 2024. URL https://ai.meta.com/blog
/meta-llama-3-1.

Milakov, M. and Gimelshein, N. Online normalizer cal-
culation for softmax. arXiv preprint arXiv:1805.02867,
2018.

Munkhdalai, T., Faruqui, M., and Gopal, S. Leave no con-
text behind: Efficient infinite context Transformers with
infini-attention. arXiv preprint arXiv:2404.07143, 2024.

NVIDIA. Tensorrt-llm: An optimized library for large
language models, 2023. URL https://github.c
om/NVIDIA/TensorRT-LLM.

10

https://gradient.ai/blog/ruler-vs-gradient-s-1m-context-length-llama-3-70b
https://gradient.ai/blog/ruler-vs-gradient-s-1m-context-length-llama-3-70b
https://gradient.ai/blog/ruler-vs-gradient-s-1m-context-length-llama-3-70b
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://ai.meta.com/blog/meta-llama-3-1
https://ai.meta.com/blog/meta-llama-3-1
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM

Star Attention

Qin, Z., Sun, W., Li, D., Shen, X., Sun, W., and Zhong, Y.
Lightning attention-2: A free lunch for handling unlim-
ited sequence lengths in large language models. arXiv
preprint arXiv:2401.04658, 2024.

Qwen. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2025.

Russak, M., Jamil, U., Bryant, C., Kamble, K., Magnuson,
A., Russak, M., and AlShikh, W. Writing in the margins:
Better inference pattern for long context retrieval. arXiv
preprint arXiv:2408.14906, 2024.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-LM: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Shyam, V., Pilault, J., Shepperd, E., Anthony, Q., and Mil-
lidge, B. Tree attention: Topology-aware decoding for
long-context attention on gpu clusters. arXiv preprint
arXiv:2408.04093, 2024.

Sun, Y., Dong, L., Zhu, Y., Huang, S., Wang, W., Ma,
S., Zhang, Q., Wang, J., and Wei, F. You only cache
once: Decoder-decoder architectures for language models.
arXiv preprint arXiv:2405.05254, 2024.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han,
S. Quest: query-aware sparsity for efficient long-context
llm inference. In The Twelfth International Conference
on Learning Representations (ICML), 2024.

Wolf, T., Debut, L., Sanh, V., et al. Transformers: State-of-
the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020.

Wu, J., Wang, Z., Zhang, L., Lai, Y., He, Y., and Zhou, D.
Scope: Optimizing key-value cache compression in long-
context generation. arXiv preprint arXiv:2412.13649,
2024.

Xiao, C., Zhang, P., Han, X., Xiao, G., Lin, Y., Zhang, Z.,
Liu, Z., and Sun, M. Infllm: Training-free long-context
extrapolation for llms with an efficient context memory.
arXiv preprint arXiv:2402.04617, 2024a.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
In The Twelfth International Conference on Learning
Representations (ICML), 2024b.

Zhang, X., Chen, Y., Hu, S., Xu, Z., Chen, J., Hao, M., Han,
X., Thai, Z., Wang, S., Liu, Z., and Sun, M. ∞Bench:
Extending long context evaluation beyond 100K tokens.
In Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), 2024.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Re, C., Barrett, C., Wang, Z., and
Chen, B. H2o: Heavy-hitter oracle for efficient genera-
tive inference of large language models. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Zhao, Y., Wu, D., and Wang, J. Alisa: Accelerating large
language model inference via sparsity-aware kv caching.
In 51st Annual International Symposium on Computer
Architecture (ISCA), 2024.

11

Star Attention

A. Star Attention Pseudo-code

Algorithm 1 Star Attention - Phase 1: Context Encoding

Require: Context c, Block size b
1: L← length(c)
2: Split c into n = ⌈L/b⌉ blocks, such that c = [c1, c2, . . . , cn]
3: for i = 2 to n do
4: c′i ← (c1, ci)
5: end for
6: for each host concurrently do
7: Initialize an empty list kv
8: end for
9: Distribute augmented blocks [c′1, c

′
2, . . . , c

′
n] across all hosts

10: for each host concurrently do
11: for each assigned block c′i do
12: Compute attention over 2b tokens in c′i
13: Generate KV cache for c′i
14: Discard KV cache for anchor block c1
15: Append remaining KV cache (for ci) to kv
16: end for
17: end for

Algorithm 2 Star Attention - Phase 2: Query Encoding and Token Generation

Require: Query tokens q, number of output tokens no, KV cache kvh of each host from Phase 1
1: Designate one host as the query-host hq

2: Broadcast query tokens q to all hosts
3: Initialize input tokens← q
4: Initialize output tokens← []
5: for i = 1 to no do
6: for each transformer layer do
7: for each host h concurrently do
8: Compute query, key, and value vectors (Q,K, V) using input tokens
9: if h = hq then

10: Append the new K and V vectors to kvhq

11: end if
12: Compute local attention scores Ah for query Q using the local KV cache kvh
13: Compute local log-sum-exp sh (logarithm of the softmax denominator)
14: end for
15: Gather all Ah and sh from hosts: s = [s1, s2, . . . , sH], A = [A1, A2, . . . , AH]
16: Initialize sglobal ← s1, Aglobal ← A1

17: for h = 2 to H do
18: Update global log-sum-exp sglobal using online softmax:

sglobal ← sglobal + log (1 + exp(sh − sglobal))

19: Update global attention scores:
Aglobal ← exp(sh − sglobal) ·Aglobal + exp(Ah − sglobal) ·Ah

20: end for
21: end for
22: Generate the next output token and append it to output tokens
23: Set input tokens← [new output token]
24: end for
25: return output tokens

12

Star Attention

Table 5. Accuracy versus speed trade-off for Star Attention compared to Ring Attention on RULER. The ∆ for star attention shows the
absolute accuracy degradation and the relative speedup compared to the baseline. When the block size remains fixed and the sequence
length increases, Star Attention achieves exponential speedup over Ring Attention at the cost of slightly more accuracy degradation.

Model Seq. Len. Block Size Ring-Attn Star-Attn
(K) (K) Acc. (%) ∆ Acc. ∆ Speedup

128 32 77.39 +0.96% 2.7x
256 32 74.44 -0.77% 10.8x
512 32 69.30 -6.73% 16.2x

Llama3-8B-Instruct, 1048K
(Gradient.ai, 2024)

1024 32 63.70 -5.32% 16.9x

64 16 88.54 -1.44% 4.7xLlama-3.1-70B-Instruct, 128K
(Meta-AI, 2024) 128 16 65.29 -7.47% 8.7x

Table 6. Time per sample (seconds) for Llama3.1-8B-Instruct model with dense, ring, and star attention, using 8 A100 GPUs. Vanilla
autoregressive generation encounters out-of-memory (OOM) at 128K sequence length. It performs best in short context scenarios (i.e.
sequences upto 32K tokens) but in long context scenarios, star attention demonstrates significant speedup.

Seq. Length Time Per Sample (s)
(K) Vanilla Ring Star

16 7 10 9
32 10 12 10
64 18 22 12
128 OOM 53 20

B. Experiment Details
B.1. Baseline Comparison

Our implementation utilizes the HuggingFace Transformers library (Wolf et al., 2020), which currently lacks support
for multi-node inference. As a result, when performing inference with the Llama-3.1 8B model using standard causal
autoregressive generation on sequences exceeding 64K tokens with bfloat16 precision across 8 A100 GPUs, we encounter
out-of-memory (OOM) errors. Given these limitations, we adopt Ring Attention as a practical and relevant baseline for
evaluating Star Attention’s performance on sequences up to 1 million tokens in length.

Table 5 shows speedup obtained by Star Attention over the baseline on sequences over 128K tokens. For such long sequences,
we freeze the block size to 32K sequences to optimize for speed. This setting shows upto 16.9x inference speedup with
just 5.32% accuracy degradation compared to the baseline. Table 6 presents the time per sample for vanilla autoregressive
generation, Ring Attention, and Star Attention across sequence lengths ranging from 16K to 128K. The results indicate that
both Ring and Star Attention can process sequences up to 128K tokens on 8 A100 GPUs, whereas vanilla autoregressive
inference encounters OOM issues beyond 64K tokens. For sequence lengths below 32K, vanilla inference is faster than the
distributed attention mechanisms, primarily due to the GPU communication overhead incurred in the distributed setups.
However, in long context scenarios i.e. on sequence lengths exceeding 32K tokens, Star Attention begins to demonstrate
clear performance advantages. As demonstrated in Table 5, the speedup achieved by Star Attention increases significantly
with longer sequence lengths.

B.2. Hardware for Inference Speed

We use A100 GPUs to run all our inference speedup experiments. Table 7 describes the number of GPUs and the number of
parallel workers used to obtain the inference speed numbers for Ring Attention and Star Attention for each sequence length.
In all these experiments, the anchor block size in Star Attention was kept same as the context block size.

13

Star Attention

Table 7. Resources used for the speedup experiments

Model Size Seq. Length # GPUs # Workers

8B
16K - 128K 8 4

256K - 512K 16 8
1M 32 16

70B
16K - 32K 8 4

64K 16 4
128K 32 8

B.3. Prompt Templates

Prompt template for base models:

1 {context}{query}{answer prefix}

Prompt template used for Llama-3 and Llama-3.1 Instruct models:

1 <|begin of text|><|start header id|>system<|end header id|>
2

3 You are a helpful assistant.<|eot id|><|start header id|>user<|end header id|>
4

5 {context}{query}<|eot id|><|start header id|>assistant<|end header id|>
6

7 {answer prefix}

The portion in blue is processed during Phase 1 for blockwise context encoding, while the remaining text in gray is
processed in Phase 2 for query encoding and token generation. The {context} and {query}{answer prefix} denote the
context and the query portion of the input prompt, respectively. The {answer prefix} is only relevant for the RULER
benchmark.

C. Evaluation Benchmarks
RULER: This benchmark comprises 13 tasks covering domains such as Needle-in-a-Haystack (Retrieval), Multi-Hop
Tracing, Aggregation, and Question Answering. Each task comprises 500 samples. For the ablations, we choose four
Needle-In-A-Haystack (NIAH) tasks where Paul Graham essays serve as the distractor text (haystack): Single 2, Single 3,
MultiKey 1, and MultiQuery. In these tasks, a key-value pair is concealed within a long context, and the model must identify
the value corresponding to the key based on the provided input query. Table 8 presents the configurations of all the tasks in
RULER.

BABILong: In BABILong, we choose 5 tasks (shown in Table 9), each containing a 1000 samples. These tasks are generated
by simulating a set of characters and objects engaged in various movements and interactions across multiple locations. Each
interaction is represented by a factual statement, and the objective is to answer questions based on the facts derived from the
current simulation.

InfiniteBench: This benchmark comprises 10 real-world and synthetic tasks, each crafted to assess different aspects of
language processing and comprehension in extended contexts. Details of each task is shown in 10

14

Star Attention

Table 8. Configuration of RULER tasks

Task Haystack Keys ValuesCategory Name Type Type # Type # # Outputs

Single 1 noise words 1 numbers 1 1
Single 2 book words 1 numbers 1 1
Single 3 book words 1 uuids 1 1
MultiKey 1 book words 4 numbers 1 1
MultiKey 2 line words ∞ numbers 1 1
MultiKey 3 kv uuids ∞ uuids 1 1
MultiValue book words 1 numbers 4 1

NIAH
(Retrieval)

MultiQuery book words 4 numbers 1 4

Multi-Hop
Tracing Variable Tracking –

Common Words Extraction –Aggregation Frequent Words Extraction –

Question QA 1 (squad) –
Answering QA 2 (hotpotqa) –

Table 9. Configuration of tasks in BABILong

Task Name # Facts per task

qa1 single supporting fact 2 - 10
qa2 two supporting facts 2 - 68
qa3 three supporting facts 4 - 32
qa4 two arg relations 2
qa5 three arg relations 2 - 126

Table 10. Configuration of tasks in InfiniteBench

Avg. input Avg. outputTask name Context # samples tokens tokens

En.Sum Fake Book 103 171.5k 1.1k
En.QA Fake Book 351 192.6k 4.8
En.MC Fake Book 229 184.4k 5.3
En.Dia Script 200 103.6k 3.4
Zh.QA New Book 175 2068.6k 6.3
Code.Debug Code Document 394 114.7k 4.8
Code.Run Synthetic 400 75.2k 1.3
Math.Calc Synthetic 50 43.9k 43.9k
Math.Find Synthetic 350 87.9k 1.3
Retrieve.PassKey Synthetic 590 122.4k 2.0
Retrieve.Number Synthetic 590 122.4k 4.0
Retrieve.KV Synthetic 500 89.9k 22.7

15

Star Attention

D. RULER Analysis

S-N
IAH

M-NIAH

Mult
i-H

op Agg
. QA

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Seq Length: 16K

S-N
IAH

M-NIAH

Mult
i-H

op Agg
. QA

Seq Length: 32K

S-N
IAH

M-NIAH

Mult
i-H

op Agg
. QA

Seq Length: 64K

S-N
IAH

M-NIAH

Mult
i-H

op Agg
. QA

Seq Length: 128K

Global Attention Star Attention (Ours)

Figure 8. Accuracy of Star Attention using Llama-3.1-8B-Instruct on the 5 categories of tasks in RULER on sequence lengths of 16K,
32K, 64K, and 128K. In all experiments, the block size and anchor block size are set to one-quarter of the total sequence length. For the
NIAH and QA tasks, Star Attention retains upto 97-100% accuracy of the baseline. The Multi-Hop Tracing task is notably challenging
because it requires inter-block communication, which leads to expected performance degradation. Interestingly, Star Attention performs
better with sequence lengths of 128k on this task, but this may be due to noise given the suboptimal baseline. In aggregation tasks, Star
Attention show significant improvement as distributed local attention helps the model in such summarization tasks.

16

