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Abstract

In recent years, deep learning models have demonstrated remarkable capabilities in various
image-related tasks, yet they are often plagued by computational complexity and suscep-
tibility to overfitting. In this paper, we propose a novel approach that leverages efficient
polygon representation through dominant points for the input images to address these chal-
lenges for image classification tasks. Our method focuses on transforming input images into
polygon representations, which are subsequently utilized for training deep neural networks.
The key contribution lies in the use of theses dominant points, which offer a concise and
flexible representation of images. By transforming images into dominant points, we signif-
icantly reduce the computational burden associated with processing large image datasets.
This reduction in calculation not only accelerates the training process but also conserves
computational resources, making our approach particularly appealing for real-time applica-
tions and resource-constrained environments. We validate our approach through extensive
experiments on benchmark datasets, showcasing its effectiveness in reducing computation.
The experimental results demonstrate that our method achieves state-of-the-art performance
across various image classification tasks, underscoring its potential on standard configura-
tion and edge computing configuration. The code for the experiments of the paper are
provided at https://anonymous.4open.science/r/PolygoNet-7374.

1 Introduction

In the burgeoning field of image classification, the efficiency of data representation and processing plays a
crucial role, especially in scenarios demanding real-time analysis and decision-making on limited-resource
platforms. Traditional image classification methods, which rely on raw image data, often face challenges
due to high computational costs and substantial memory requirements, particularly with high-resolution
images. The challenge intensifies when dealing with high-resolution images where traditional pixel-based
methods become computationally expensive and less feasible for real-time applications. This highlights an
essential quest in contemporary AI research: developing methods that not only simplify data complexity but
also retain the essential features necessary for accurate analysis. To address these limitations, we propose
an novel approach that utilizes dominant points extracted from image contours as a compact, yet effective
representation for classification tasks.

Our methodology diverges from conventional practices by implementing an implicit form of image classifica-
tion. Instead of directly analyzing pixel-level data, our approach focuses on geometrically salient features of
objects captured through their contours. This shift from explicit to implicit data representation is achieved
through the Modified Adaptive Tangential Cover (MATC) Ngo et al. (2017); Ngo (2019), which identifies
dominant points that succinctly encapsulate the essential shape information of objects within the image.

The extraction of dominant points offers a streamlined yet powerful representation, reducing the data dimen-
sionality dramatically while preserving the critical geometric attributes necessary for effective classification.
By focusing on these points, our model can efficiently process high volumes of data with reduced com-
putational overhead, making it well-suited for applications on devices with limited processing capabilities.
Furthermore, this approach enhances the model’s ability to generalize from minimal data by focusing on
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the structural essence of the images rather than getting potentially misled by background noise or color
variations that do not contribute to object recognition.

Moreover, the use of dominant points aligns with the cognitive processes observed in human visual perception,
where the human eye tends to recognize shapes and objects based on key structural features rather than the
full pixel-by-pixel analysis Biederman (1987); Koffka (2013). This biomimetic aspect of our methodology
not only improves the efficiency of the classification process but also potentially increases its accuracy by
mimicking more closely how humans perceive and categorize visual information.

In summary, our proposed method stands out by providing a robust solution to the challenges posed by
high-resolution image classification. By applying the principles of MATC for dominant point extraction and
leveraging a more abstract but representative data form, our approach promises substantial improvements
in speed and efficiency for real-time image classification tasks, paving the way for new advancements in edge
computing and mobile AI applications.

2 Related work

Image Classification. is a fundamental task in computer vision where the objective is to assign a prede-
fined label to an image. Deep learning architectures for image classification tasks are primarily based on
convolutional neural networks (ConvNets). Since the breakthrough of AlexNet (Krizhevsky et al., 2012),
ConvNets have emerged as the predominant architectural choice for computer vision (Simonyan & Zisserman,
2014; Szegedy et al., 2015; He et al., 2016b; Tan & Le, 2019). Meanwhile, with the success of self-attention
models such as Transformers Vaswani et al. (2017) in Natural language processing (Brown et al., 2020; Devlin
et al., 2018), there has been a notable trend in prior research endeavours to integrate the efficacy of attention
mechanisms into Computer Vision models (Wang et al., 2018; Bello et al., 2019; Srinivas et al., 2021; Shen
et al., 2021). Noteworthy among these efforts is the recent work on Vision Transformer (ViT) (Dosovitskiy
et al., 2020), which illustrates the compelling results achievable through the use of vanilla Transformer layers.

Shape and contour analysis. Early efforts in contour classification relied on handcrafted features to
represent shapes. Approaches such as Shape context (Belongie et al., 2002) and Fourier descriptors (Kuhl
& Giardina, 1982) are classical methods that capture global and local information in contours. These ap-
proaches laid the foundation for contour representation and classification, focusing on the extraction of
discriminative features from the contour only. With the rise of deep learning, several studies have explored
the application of neural networks to contour and shape classification, CNNs have been adapted to pro-
cess contour information Baker et al. (2018; 2020), demonstrating improved performance in tasks such as
handwritten digit recognition and object classification based on boundary information. These approaches
leverage the hierarchical features learned by deep networks for effective contour representation.

Self-attention mechanism. It represents the core building block of the Transformers architecture which
allows the model to learn attention patterns over its input tokens without being limited in extent to a local
receptive field as with CNNs. The first use of Attention module was proposed by (Bahdanau et al., 2014) for
the neural machine translation, it allows the model to assess the importance of individual tokens within the
input sequence relative to the others and to integrate information that can be far away from the current token.
This capability enhances the model’s capacity to grasp long-range contextual information more effectively.
Since then, attention mechanisms have been successfully applied in various natural language processing tasks,
including image captioning (Xu et al., 2015) and sentiment analysis. While attention mechanisms initially
gained prominence in natural language processing, their application has extended to computer vision tasks.
(Wang et al., 2018) introduced a new approach that combines CNN-like architecture while leveraging self-
attention for capturing long-range dependencies in images. This is achieved through non-local operations
that compute the response at a position as a weighted sum of the features at all positions. This enables the
network to account for global information, which is beneficial for several computer vision tasks considered
by the authors. The work of (Dosovitskiy et al., 2020) adapted the Transformer architecture to vision,
where the image are treated analogous to text sequences. In Vision Transformers (ViT), an image is split
into patches, and these patches are processed as if they were words in a sentence. This approach leverages
the inherent capability of the Transformer to model interactions between distant elements, thus capturing
complex dependencies across the entire image. By using self-attention, ViT can focus on relevant parts of the
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image irrespective of their spatial position, enhancing the model’s ability to perform a variety of computer
vision tasks with remarkable efficiency and accuracy.

Combination of CNN with self-attention. The fusion of convolutional neural networks (CNNs) with
self-attention mechanisms has sparked significant interest due to its transformative impact across various
domains. This innovative approach enhanced image classification by integrating self-attention with CNN fea-
ture maps, as outlined by (Bello et al., 2019). Additionally, it has been effectively applied in object detection,
as demonstrated in studies by (Hu et al., 2018) and (Carion et al., 2020), and extends to video processing,
where (Wang et al., 2018) and (Sun et al., 2019) have made notable contributions. The synergy between
CNNs and self-attention also advances image classification techniques, exemplified by (Wu et al., 2020), and
facilitates unsupervised object discovery, as seen in the work of (Locatello et al., 2020). Furthermore, this
combination has proven crucial in bridging text and vision task, with significant advancements reported by
(Chen et al., 2020; Lu et al., 2019; Li et al., 2019), underscoring the broad and impactful applications of
merging CNNs with self-attention mechanisms.

Our work leverages this potent combination of self-attention mechanisms with convolutional neural net-
works. As stated above, self-attention is efficient for combining features that are far apart from the input
representation but also presents the interest of being able to deal with variable input size. As detailed in
the method section, encoding shapes with dominant points produce variable sized inputs, a complex shape
requiring more points than a simple shape to be efficiently encoded.

3 Method

3.1 Data Preprocessing using Adaptive Tangential Cover

The Modified Adaptive Tangential Cover (MATC) approach is integral to our data preprocessing, particularly
for accurately approximating contours (Ngo, 2019). This method is grounded in the concept of blurred
segments and tangential cover, defined as a sequence of blurred segments of varying thickness ν, which
adjusts dynamically based on local noise levels along a digital curve (Kerautret et al., 2012). The strength
of MATC lies in its ability to handle noise and imperfections inherent in digital curves, thus maintaining the
integrity and reliability of the approximated contours.

Dominant points, pivotal for representing the geometric characteristics of contours, are identified within the
smallest common zones induced by successive blurred segments. These points are characterized by the small-
est angle of curvature, making their detection a straightforward process of measuring angles. Our application
of MATC begins with the computation of an adaptive tangential cover using a local noise estimator to de-
termine meaningful segment thickness, which dynamically adjusts based on local noise estimations along the
curves. This refined approach to determining segment widths, by emphasizing the most frequent meaningful
thickness, enhances the handling of localized noise variations and improves accuracy around complex contour
details. MATC targets enhancements in the polygonal approximation of digital curves, especially in noisy
corners, ensuring a higher fidelity representation. By identifying dominant points within these optimally
adjusted segments, we can reconstruct a polygonal representation that captures the essence of the curve’s
geometry with remarkable fidelity, particularly in areas of intricate detail and significant curvature. The
Figure 1 illustrates the preprocessing steps.

Given an input image I ∈ RH×W ×C , where H, W, and C represent the height, width, and number of color
channels respectively, the process to extract a set of N dominant points, D, starts by converting the RGB
image to grayscale. This simplifies the data while preserving essential visual information. A threshold is
applied to the grayscale image to create a binary image, and filters are used to remove noise and enhance
the clarity of shapes. Contours C = {ci ∈ R2} are then extracted from the processed image. The Modified
Adaptive Tangential Cover (MATC) process is applied to these contours to identify and extract the different
dominant points D. It is important to note that the number and positions of these dominant points can
vary significantly from one image to another, reflecting the unique features and structural variations present
in each image. These dominant points D are represented as a N × 2 matrix where each row corresponds to
the (x, y) coordinates of a dominant point on the image plane:
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Figure 1: The encoding of the shape is performed by first thresholding the image, extracting its contour,
and then computing the dominant points with the Modified Adaptive Tangential Cover algorithm. Note the
number of dominants is shape dependent and not the same for every image.

D =


x1 y1
x2 y2
...

...
xN yN

 , D ⊆ C

The pseudo-code 3.1 describes the different steps of the data preparation.

Algorithm 1 Extraction of Dominant Points from Image
Require: Input image I ∈ RH×W ×C ▷ e.g. Flavia Image size: (1600× 1200× 3)
Ensure: Matrix of dominant points D with dimensions N × 2 ▷ Avg dimension of D: (60× 2)

1: Ig ← Grayscale(I) ▷ Converts I to grayscale
2: Ib ← Threshold(Ig) ▷ Thresholds the grayscale image to produce a binary mask of the shape
3: C ← ExtractContours(Ib) ▷ Extract contour points from Ib

4: D ← ApplyMATC(C) ▷ Apply Modified Adaptive Tangential Cover on C
5: return D ▷ Return the matrix of dominant points

3.2 Networks

Baseline. To compare with our approach, we used ResNet (He et al., 2016a) architecture as a baseline
CNN which involves images as input. Although the ResNet use RGB images, this has been trained on the
same data used to extract the dominant points for our approach. This ensures that the training is conducted
on identical data and the metrics are calculated consistently. For the different experiments we evaluated
several versions of ResNet (18, 34, 50) and have chosen to report on the version that delivered the best
performance. While ViTs Dosovitskiy et al. (2020) have shown remarkable performance in various domains
especially when it comes to large datasets, we selected ResNet as our baseline due to its well-established
architecture, ease of implementation, and lower computational requirements. Additionally, ResNet-50 is more
suitable for scenarios with limited data, ensuring a more straightforward and fair comparison for evaluating
the effectiveness of our approach. For the different experiments ResNet uses 3 channel images and takes
advantage of the rich color information in RGB images, which enhances feature representation by capturing
detailed color variations, textures, and contextual cues that are often critical for distinguishing between
visually similar objects.

PolygoNet An overview of the approach is depicted in Figure 2. To address the challenge of processing
dominant points of varying lengths extracted from the original input images, our approach introduces a novel
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adaptation of the self-attention mechanism, inspired by the transformer model from the pioneering work of
Dosovitskiy et al. (2020). This methodology allows our model to focus dynamically across the input space
and effectively process sets of points regardless of their quantity. By leveraging the self-attention capabilities,
the model assigns appropriate weights to each dominant point, capturing the geometric nuances inherent to
the dataset. In self-attention mechanisms, the model computes attention scores using the scaled dot-product
of queries, keys, and values, which allows it to weigh the importance of each input token relative to others.
This strategy ensures that the features extracted are reflective of the essential characteristics of the geometric
figures, facilitating the consolidation of critical information within a structured feature space for subsequent
analysis.

Our model further refines the extracted features through the incorporation of 1D convolutional blocks. These
blocks serve to process the feature vector output from the attention mechanism, enhancing the model’s ability
to discern intricate geometric patterns within the dominant points data.

Table 1: PolygoNet architecture. Conv1d(n) denotes a 1D convolutional layer with n output channels. Each
convolution is followed by batch normalization and a ReLU activation function. N denotes the number of
dominant points

Input tensor of shape (Features, Sequence Length)

Input size (N, 2)
Attention Custom attention mechanism
Layer1: Conv1d(64), BatchNorm, ReLU, Dropout(0.1)
Layer2: Conv1d(128), BatchNorm, ReLU
Layer3: Conv1d(256), BatchNorm, ReLU
Layer4: Conv1d(512), BatchNorm, ReLU
Layer5: Conv1d(1024), BatchNorm, ReLU
Output: Classifcation head with num_classes, followed by activation

Output tensor of shape (num_classes)

The architecture comprises layers of multiheaded self-attention (MSA), as utilized in Dosovitskiy et al.
(2020), and Conv1D blocks. Normalization layer is applied before each block. Our model fundamentally
enhances the traditional multi-head attention mechanism to better cater to the geometrical properties of
data. For the different experiments, fθ showed in Figure 2 represents a block of 2 Conv1D, each layer is
followed by a Normalization layer and ReLU as activation function. The MLP Head represents a simple
linear layer with number classes as a parameter.

The use of 1D convolutional (Conv1D) layers is particularly effective in this context due to their capacity
for capturing local dependencies and patterns along the sequence of points and for computational efficiency,
thereby augmenting the attention mechanism’s global perspective with localized feature extraction. This
sequential application of self-attention followed by Conv1D processing allows our model to enhance model’s
performance by effectively capturing both global dependencies and local patterns within the dominant point
coordinates. The proposed method integrates global attention mechanisms with localized convolutional
processing to effectively extract variable-length geometric features, addressing associated challenges with
improved precision and robustness.

Positional embeddings are incorporated with dominant points coordinates to preserve positional data. In the
context of our approach, the positional embedding refers to the ordered sequence that defines the form and
structure of the shapes, enabling the model to incorporate the sequential arrangement into its understanding
and processing. There are several choices of positional embedding, our method uses 1D learnable positional
embedding as a standard approach which is based on the sine and cosine function of different frequencies
Vaswani et al. (2017).
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Figure 2: PolygoNet pipeline. The input colored image is converted to grayscale before being thresholded
with Otsu. The dominant points are extracted using the MATC approach from the extracted contour.
This variable size sequence of dominant points is then processed for classification by PolygoNet. Note that
the complexity of the contour impacts the number of computed dominant points that will be processed by
PolygoNet.

This integration is achieved using a standard approach based on sine and cosine functions, which provide
unique positional encoding for different positions. This enables the model to distinguish between points
based on their position in the sequence. Each position pos in the sequence is encoded using a combination
of sine and cosine functions of varying frequencies, allowing the model to capture both the absolute and
relative positions of the points. The positional encoding for a given position pos and dimension i is defined
as follows:

PE(pos,2i) = sin
( pos

100002i/d

)
(1)

PE(pos,2i+1) = cos
( pos

100002i/d

)
(2)

By leveraging these positional encoding, our model can effectively retain the sequential and spatial rela-
tionships among the dominant points, enhancing its ability to capture the geometric the structure of the
shapes.

4 Experiments

In this section, we explore the usage of our proposed approach for image classification task. We show results
on three different datasets.

4.1 Setup

Dataset. To explore the model performances and robustness, we use several image classification datasets:
FashionMNIST (Xiao et al., 2017) with 10 classes and 70.000 grayscale (28×28) images, Flavia dataset (Wu
et al., 2007) with 32 leaf classes and 1.9k colored images where each image has a resolution of (1600× 1200),
Folio dataset (Munisami et al., 2015) with 32 plant classes, each class contains 20 RGB images with a
resolution of (4160× 3120). For all these datasets, the objet to be classified is well segmented on a uniform
background making it easy to extract the contour and further apply our pipeline. The Flavia dataset is
particularly challenging due to the subtle differences between classes. The Folio dataset contains images
of 32 different types of leaves taken from different plants with varying lighting conditions and scales. This
dataset tests the adaptability and effectiveness of the model under less controlled imaging conditions.

Implementation details For all the experiments presented in the paper, we use Adam (Kingma & Ba,
2014) as optimizer with β1 = 0.9 and β2 = 0.999, a base learning rate of 10−5, we apply a weight decay
of 0.0001. The loss is cross-entropy. For regularization, a dropout layer is inserted with a probability of
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10% to mask a neuron. For the ResNet-50 architecture, which processes image data, we employed a series
of data augmentation techniques including rotations, flipping. With our approach PolygoNet, which deals
with dominant points coordinates, we used data augmentation applied for coordinates, such as rotation and
flipping of coordinates. The baseline network is trained for 150 epochs, in contrast, our model is trained for
300 epochs. We implement the proposed approach with PyTorch Ansel et al. (2024), using a single NVIDIA
RTX 3090, and we used CPU for some experiments to highlight the effectiveness of the proposed framework.
For the different experiments we use early-stopping, and report the best validation metrics achieved during
training. For the edge computing part, we used a Nvidia Jetson Orin Nano.

Metrics. For the different experiments, we used two mainly quantitative metrics to evaluate the quality
and the performance of our approach including accuracy and F1-score. By including the F1-score in our
evaluation metrics, we ensure that our model’s performance was thoroughly assessed, taking into account
the balance between precision and recall.

5 Results

In this section, we evaluate our approach using three different datasets and compare it to a baseline model.
The datasets used for this evaluation include FashionMNIST, Flavia, and Folio. Each dataset tests the
robustness and efficiency of our model across diverse domains. The results on the test fold are summarized in
Table 2. Additionally, we compare the processing time including the inference time in different configuration
such as server and edge computing systems.

Table 2: Comparison of Model Performance on Various Datasets
Dataset Method F1-score ↑ Accuracy ↑ FLOPs ↓
FashionMNIST Our 0.90 0.78 8.52 M

ResNet-50 0.93 0.90 80.38 M
Flavia Our 0.90 0.79 8.67 M

ResNet-50 0.90 0.91 21.47 G
Folio Our 0.88 0.78 8.66 M

ResNet-50 0.84 0.86 21.47 G

5.1 Evaluation on FashionMNIST Dataset

In our experiments, we used a standard split of 60, 000 training images and 10, 000 test images. The baseline
model was trained with a batch size of 64 for 150 epochs. Our model was trained with the same batch
size for 300 epochs. PolygoNet, achieved a F1-score of 0.90 and an accuracy of 78%, which are particularly
noteworthy given the model’s lower computational complexity, which is quantified at 8.52 million FLOPs.
In contrast, ResNet-50, a more computationally intensive model, achieved a higher accuracy of 90% but at
a significantly greater computational cost of 80.38 million FLOPs. The F1-score value for ResNet-50 on
FashionMNIST was 0.93, indicating a slightly better ability to match the class labels accurately.

5.2 Evaluation on Flavia Dataset

For the baseline model we resized the images to 512x512 to fit in GPU. PolygoNet demonstrated robust
performance on the Flavia dataset with a F1-score of 0.90 and an accuracy of 79%, while keeping the
computational cost relatively low at 8.67 million FLOPs. The ResNet-50 model, although achieving a higher
accuracy of 91% and a F1-score of 0.90, again showed its computationally expensive nature with 21.47 billion
FLOPs
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5.3 Evaluation on Folio Dataset

On the Folio dataset, PolygoNet achieved a F1-score of 0.88 and an accuracy of 78% with only 8.66 million
FLOPs, showcasing its efficiency. The more resource-intensive ResNet-50 managed a slightly higher accuracy
of 86% and a F1-score of 0.84, but at a cost of 21.47 billion FLOPs.

5.4 Evaluation of Processing time

Figure 3: Inference Time by Dataset and Approach on Edge computing configuration. The plot compares
the inference times for three different datasets using two approaches: Our Approach (orange) and ResNet-50
(blue). The y-axis is on a logarithmic scale to highlight the differences in performance.

The benchmarking results for processing time of the two pipelines, PolygoNet and ResNet-50, across three
datasets (FashionMNIST, Folio, and Flavia) and two device configurations (Server and Edge Computing) are
summarized in Table 3. These results provide a comprehensive comparison of the computational efficiency
and practicality of each pipeline under different configurations.

For the FashionMNIST dataset, PolygoNet significantly outperforms ResNet-50 in terms of total processing
time. On the server configuration, PolygoNet completes the entire process in 9.66 ms, whereas ResNet-50
requires 17.06 ms. This trend is even more pronounced in edge computing, where PolygoNet takes 62.43 ms,
while ResNet-50 demands a substantial 116.25 ms. The efficient contour extraction and MATC processing
steps of PolygoNet contribute to its lower overall processing time.

For the Folio dataset, PolygoNet showcases a remarkable reduction in processing time, highlighting its
superior efficiency compared to ResNet-50. This difference is even more stark on edge computing devices,
underscoring PolygoNet’s suitability for resource-constrained environments.

Similarly, for the Flavia dataset, PolygoNet demonstrates superior efficiency over ResNet-50 on both server
and edge computing devices. This consistent performance advantage across datasets and device configura-
tions highlights PolygoNet’s ability to deliver rapid and efficient processing.

These results emphasize the practical benefits of PolygoNet, especially in scenarios where computational
resources and processing time are critical constraints. The significant reduction in total processing time,
particularly on edge computing devices, makes PolygoNet an attractive solution for real-time applications
in mobile and embedded systems. The efficient handling of dominant points and the streamlined processing
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pipeline enable PolygoNet to maintain high performance while conserving computational resources, show-
casing its potential for widespread adoption in various real-world AI applications.

Table 3: Benchmarking Processing Time of Two Pipelines on Three Datasets Across Two Configuration
Dataset Device Pipeline Contour Extract (ms) MATC (ms) Inference (ms) Total Time (ms)

FashionMNIST (28× 28) Workstation Our 1.68 6.22 1.76 9.66
ResNet-50 - - 17.06 17.06

Edge Computing Our 2.28 54 6.15 62.43
ResNet-50 - - 116.25 116.25

Flavia (1600× 1200) Workstation Our 13.80 125 1.51 140.31
ResNet-50 - - 276.87 276.87

Edge Computing Our 27.38 1054 7.77 1089.15
ResNet-50 - - 1965.81 1965.81

Folio (4160× 3120) Workstation Our 104.27 848 4.30 956.57
ResNet-50 - - 2073.29 2073.29

Edge Computing Our 223 8622 8.28 8853.28
ResNet-50 - - 22080.98 22080.98

5.5 Discussions

Across all datasets, PolygoNet consistently required fewer floating-point operations (FLOPs), highlighting its
suitability for applications where computational resources are limited. Although ResNet-50 often achieved
higher accuracy and F1-score, the trade-off in terms of computational demand makes PolygoNet a more
practical choice in resource-constrained environments. This evaluation demonstrates the capability of Poly-
goNet to provide a balance between performance and computational efficiency, which is critical for real-world
applications, particularly in mobile and embedded systems.

In evaluating PolygoNet’s performance across various datasets, it is evident that the model’s design strate-
gically balances computational efficiency with sufficient accuracy for practical applications. Particularly in
environments where computational resources are scarce, such as in mobile and embedded systems, Poly-
goNet’s low FLOP count not only conserves energy but also enables more widespread use of advanced AI
technologies. This balance is crucial for applications requiring real-time analytics, such as in autonomous
vehicles or remote sensing technologies. Future research could focus on enhancing PolygoNet’s efficiency
further through techniques such as quantization and pruning, which may reduce the model size without
significantly impacting accuracy. Additionally, extending PolygoNet’s capabilities to handle more complex
tasks or datasets without substantial increases in computational demands could significantly impact AI’s
accessibility and sustainability.

6 Conclusion

In this paper, we have presented PolygoNet, a new approach that leverages polygonal contours and dom-
inant points for efficient image classification using deep neural networks. Our methodology addresses key
challenges in image classification, such as computational complexity and hardware resources requirement, by
transforming input images into compact polygon representations. This transformation significantly reduces
the computational burden, making our approach suitable for real-time applications and resource-constrained
environments.

The experimental results on benchmark datasets, including FashionMNIST, Flavia, and Folio, demonstrate
that PolygoNet achieves state-of-the-art performance while maintaining low computational requirements.
PolygoNet’s design, which combines the Modified Adaptive Tangential Cover (MATC) for dominant point
extraction with self-attention mechanisms and 1D convolutional blocks, ensures robust and efficient process-
ing of image data. This combination effectively balances model performance with the capacity to generalize
from minimal data while adhering to computational constraints.

Our evaluations highlight that PolygoNet offers a balanced trade-off between accuracy and computational
efficiency. While traditional models like ResNet-50 achieve higher accuracy, they come with significantly
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higher computational costs. In contrast, PolygoNet provides comparable performance with a fraction of the
computational resources, making it a practical choice for edge computing and mobile AI applications.

Future research could explore further optimization techniques, such as model quantization and pruning, to
enhance PolygoNet’s efficiency. Additionally, extending the approach to handle more complex datasets and
tasks without increasing computational demands could broaden its applicability. The promising results of
PolygoNet pave the way for its integration into various real-world applications, where efficient and accurate
image classification is crucial.

Overall, PolygoNet represents a good trade-off between performance and computational efficiency in image
classification, demonstrating that it is possible to achieve high performance with reduced computational
overhead by focusing on essential geometric features. This work opens new avenues for developing resource-
efficient deep learning models capable of performing complex visual tasks in constrained environments.
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