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Abstract
Hate speech towards people with different001
backgrounds is a major problem observed in002
social media. Although there are various at-003
tempts to detect hate speech automatically via004
supervised learning models, the performance005
of such models simply rely on limited datasets006
on which models are trained. In this study,007
we construct large-scale tweet datasets for su-008
pervised hate speech detection in English and009
Turkish, including human-labeled 100k tweets010
per each. Our datasets are designed to have011
equal number of tweets distributed over five012
domains; namely religion, gender, race, poli-013
tics, and sports. We analyze the performance014
of state-of-the-art language models on large-015
scale hate speech detection with a special fo-016
cus on model scalability. We also examine017
cross-domain transfer ability of hate speech de-018
tection.019

1 Introduction020

With the growth of social media platforms, hate021

speech towards people who do not share the same022

identity or community increases dramatically (Twit-023

ter, 2021). Consequences of online hate speech024

could be real-life violence against other people and025

communities (Byman, 2021). The need of automat-026

ically detecting hate speech text is thereby urging.027

Existing solutions to detect hate speech mostly028

rely on supervised learning, resulting in a strict029

dependency on the quality and quantity of labeled030

data. Most of the datasets labeled by human experts031

for hate speech detection are not large in size due to032

the labor cost (Poletto et al., 2021), causing a lack033

of detailed experiments on model generalization034

and scalability. Indeed, most studies on hate speech035

detection report high performances on their test036

sets, while their generalization capabilities to other037

datasets are limited (Arango et al., 2019).038

Existing datasets for hate speech detection are039

mostly prepared for non-agglutinative languages,040

e.g. around half of them are in English (Poletto041

et al., 2021). Agglutinative ones, such as Turkic 042

and Uralic languages, have low or no resources for 043

hate speech detection. We thereby construct large- 044

scale human-annotated datasets for hate speech 045

detection using English and Turkish tweets. 046

Hatred language can be expressed in various top- 047

ics (we refer to topics as hatred domains). Domains 048

vary depending on the target group. For instance, 049

misogyny (targeting women) and homophobia (tar- 050

geting different gender identities) are examples of 051

the domain of gender-based hatred. Existing stud- 052

ies mostly consider a limited number of domains, 053

and investigate hate speech in terms of an abstract 054

notion including aggressive language, threats, slurs, 055

and offenses (Poletto et al., 2021). We consider not 056

only the hatred behavior in the definition of hate 057

speech, but also five most frequently observed do- 058

mains depending on target group; namely religion, 059

gender, racism, politics, and sports-based hatred. 060

Supervised models trained on a specific learning 061

dataset can fail to generalize their performance 062

on the original evaluation set to other evaluation 063

sets. However, this phenomenon is studied in cross- 064

dataset1 (Gröndahl et al., 2018; Karan and Šnajder, 065

2018), cross-lingual (Pamungkas and Patti, 2019), 066

and cross-platform (Agrawal and Awekar, 2018) 067

transfer. Transfer learning among hatred domains 068

is not well studied due to the lack of large-scale 069

datasets. In this study, with the help of our novel 070

datasets including five hatred domains mentioned 071

above, we analyze the generalization capability of 072

hate speech detection in terms of hatred domains. 073

The contributions of this study are in three 074

folds. (i) We construct large-scale human-labeled 075

hate speech detection datasets for English and Turk- 076

ish. (ii) We analyze the performance of various 077

models for hate speech detection with a special 078

1In literature, the phrase "cross-domain" is mostly used for
the transfer between two datasets that are published by differ-
ent studies but not necessarily in different hatred domains. We
refer to them as cross-dataset.
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focus on model scalability. (iii) We examine the079

generalization capability of hate speech detection080

in terms of zero-shot cross-domain transfer.081

The structure of the paper is as follows. In the082

next section, we provide a summary of related work.083

In Section 3, we explain our large-scale datasets.084

In Section 4, we report our experimental design085

and results. In Section 5, we provide a discussion086

on scalability, ablation study, and limitations of our087

study. We conclude the study in the last section.088

2 Related Work089

We briefly summarize related work on the methods,090

previous datasets, and transfer learning for hate091

speech detection.092

2.1 Methods for Hate Speech Detection093

Earlier studies on hate speech detection are based094

on matching hatred keywords using lexicons (Sood095

et al., 2012). The disadvantage of such methods is096

strict dependency on lexicons. Supervised learning097

with a set of features extracted from a training set098

is a solution for the dependency issue. Text content099

is useful to extract bag-of-words features; such as100

n-grams, Part-of-Speech tags, linguistic and syn-101

tactical features (Dadvar et al., 2013; Waseem and102

Hovy, 2016; Nobata et al., 2016; Waseem, 2016;103

Davidson et al., 2017). User-based features, such104

as content history, meta-attributes, and user profile105

(Dadvar et al., 2013; Waseem, 2016; Chatzakou106

et al., 2017; Unsvåg and Gambäck, 2018), can be107

used to detect hatred signals. Structural features of108

a social network, such as centrality and clustering,109

are studied as well (Chatzakou et al., 2017).110

To capture word semantics better than bag-111

of-words; word embeddings, such as Word2Vec112

(Mikolov et al., 2013) and GloVe (Pennington et al.,113

2014), are utilized to detect abusive and hatred lan-114

guage (Djuric et al., 2015; Nobata et al., 2016; Mou115

et al., 2020). To resolve the issues related to noisy116

text of social media, character and phonetic-level117

embeddings are studied for hate speech (Mou et al.,118

2020). Instead of extracting hand-crafted features;119

deep neural networks, such as CNN (Kim, 2014)120

and LSTM (Jozefowicz et al., 2015), are applied to121

extract deep features to represent text. Indeed, their122

application outperforms previous methods that em-123

ploy lexicons and hand-crafted features (Badjatiya124

et al., 2017; Zimmerman et al., 2018; Mou et al.,125

2020; Cao et al., 2020).126

Recently, Transformer architecture (Vaswani127

et al., 2017) is studied for hate speech detection, as 128

in all other downstream tasks of NLP. Transformer 129

employs self-attention for each token over all to- 130

kens, targeting to capture a rich contextual repre- 131

sentation of whole text. Fine-tuning BERT (Devlin 132

et al., 2019) for hate speech detection outperforms 133

previous methods (Liu et al., 2019a; Caselli et al., 134

2021; Mathew et al., 2021; Aluru et al., 2021). We 135

examine the performance of not only BERT, but 136

also various Transformer language models for both 137

multi-class and binary hate speech detection. 138

2.2 Resources for Hate Speech Detection 139

A recent survey summarizes the current state of 140

datasets in hate speech detection by listing over 40 141

datasets, around half of which are tweets, and again 142

around half of which are prepared in English lan- 143

guage (Poletto et al., 2021). Benchmark datasets 144

are also released as a shared task for hate speech de- 145

tection (Basile et al., 2019; Zampieri et al., 2020). 146

There are efforts to create large-scale human- 147

labeled datasets for hate speech detection. The 148

dataset in Davidson et al. (2017) has around 25k 149

tweets each labeled by three or more annotators 150

for three classes; offensive, hate, and neither. The 151

dataset in Golbeck et al. (2017) has 35k tweets 152

labeled by at most three annotators per tweet for 153

binary classification (harassing or not). The dataset 154

in Founta et al. (2018) has 80k tweets each labeled 155

by five annotators for seven classes including offen- 156

sive and hate. However, our datasets differ in terms 157

of the following aspects. We have 100k top-level 158

tweets per two languages, English and Turkish. The 159

datasets are clean, which will be explained in the 160

next section. We have three class labels (hate, of- 161

fensive, and normal), and five annotators per each 162

tweet. Lastly, we design to have 20k tweets for 163

each of five hatred domains, which would enable 164

us to analyze zero-shot cross-domain transfer. 165

2.3 Transfer Learning for Hate Speech 166

Detection 167

Generalization of a hate-speech detection model 168

trained on a specific dataset to other datasets 169

with the same or similar class labels, i.e. cross- 170

dataset transfer, is widely studied (Gröndahl et al., 171

2018; Karan and Šnajder, 2018; Wiegand et al., 172

2018; Pamungkas and Patti, 2019; Swamy et al., 173

2019; Arango et al., 2019; Pamungkas et al., 2020; 174

Markov and Daelemans, 2021). Using different 175

datasets in different languages, cross-lingual trans- 176

fer aims to overcome language dependency in hate 177
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speech detection (Pamungkas and Patti, 2019; Pa-178

mungkas et al., 2020; Markov et al., 2021; Nozza,179

2021). There are also efforts to analyze platform-180

independent hate speech detection, i.e. cross-181

platform transfer (Agrawal and Awekar, 2018). In182

this study, we analyze whether hate speech detec-183

tion can be generalized across hatred domains, re-184

gardless of the target and topic of hate speech.185

3 Large-Scale Datasets for Hate Speech186

Detection187

3.1 Dataset Construction188

We used Full-Archieve Search provided by Twitter189

Premium API to retrieve more than 200k tweets;190

filtered according to language, tweet type, publish191

time, and contents. We filter English and Turkish192

tweets published in 2020 and 2021. The dataset193

contains only top-level tweets, i.e., not a retweet,194

reply, or quote. Tweet contents are filtered based195

on a keyword list. The list contains hashtags and196

keywords from five topics (i.e. hatred domains);197

religion, gender, racism, politics, and sports. We198

design to keep the number of tweets belonging to199

each hatred domain balanced.200

For cleaning, we remove near-duplicate tweets201

by measuring higher than 80% text similarity be-202

tween tweets using the Cosine similarity with TF-203

IDF term weighting (Sedhai and Sun, 2015). We204

restrict the average number of tweets per user in205

order not to exceed 1% of all tweets to avoid user-206

dependent modeling (Geva et al., 2019). We also207

remove tweets shorter than five words; excluding208

hashtags, URLs, and emoticons.209

3.2 Dataset Annotation210

Based on the definitions and categorization of hate-211

ful speech (Sharma et al., 2018), we label tweets212

as containing hate speech if they target, incite vio-213

lence against, threaten, or call for physical damage214

for an individual or a group of people because of215

some identifying trait or characteristic. We label216

tweets as offensive if they humiliate, taunt, discrim-217

inate, or insult an individual or a group of people218

in any form, including visual and textual. Other219

tweets are labeled as normal.220

Each tweet is annotated by five annotators ran-221

domly selected from a set of 16 undergrads and222

four grads. If consensus is not achieved on ground-223

truth, a human expert outside the initial annotator224

set determines the label. We provide annotation225

guidelines to all annotators. The guidelines docu-226

Definition EN TR
Number of tweets 100,000 100,000
Number of offensive tweets 27,140 30,747
Number of hate tweets 7,325 27,593
Number of users 85,396 69,524
First tweet date 02/26/20 01/17/20
Last tweet date 03/31/21 03/31/21
Average tweets per user 1.2 1.4
Average tweet length (words) 29.20 24.37
Shortest tweet length 5 5
Longest tweet length 72 121
Number of hashtags 23,170 24,444
Number of URLs 76,006 72,233
Number of tweets with hashtags 12,751 17,390
Number of tweets with URLs 73,439 71,434

Table 1: Dataset statistics. We construct two large-
scale datasets including English (EN) and Turkish (TR)
tweets for hate speech detection in terms of three
classes (hate, offensive, and normal).

Lang. Domain Hate Offens. Normal Total

EN

Religion 1,427 5,221 13,352 20k
Gender 1,313 6,431 12,256 20k
Race 1,541 3,846 14,613 20k
Politics 1,610 6,018 12,372 20k
Sports 1,434 5,624 12,942 20k

TR

Religion 5,688 7,435 6,877 20k
Gender 2,780 6,521 10,699 20k
Race 5,095 4,905 10,000 20k
Politics 7,657 4,253 8,090 20k
Sports 6,373 7,633 5,994 20k

Table 2: Distribution of topics in our datasets with re-
spect to three classes (hate, offensive, and normal).

ment includes the rules of annotations; the defini- 227

tions of hate, offensive, and normal tweets; and the 228

common mistakes observed during annotation. The 229

annotations started on February 15th, and ended on 230

October 5th, 2021 (i.e. a period of 84 days). We 231

measure inter-annotator agreement with Krippen- 232

dorff’s alpha coefficient and get a nominal score of 233

0.395 for English and 0.417 for Turkish. 234

3.3 Dataset Statistics 235

We report main statistics about our datasets in Ta- 236

ble 1. Although we follow a similar construction 237

approach, the number of tweets with hate speech in 238

English is less than those in Turkish, which might 239

indicate a tighter regularization for English content 240

by Twitter. Normal tweets dominate in both lan- 241

guages, specifically in English, as expected due to 242

the nature of hate speech and the platform regu- 243

lations. The statistics of tweet length imply that 244

our task is similar to a short text classification for 245

tweets, where the average number of words is ideal 246

to be 25 to 30 (Şahinuç and Toraman, 2021). 247

The distribution of tweets for each domain and 248
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language is given in Table 2. In English, the num-249

ber of hatred tweets are similar in each domain;250

however, race has less number of offensive tweets251

than others. The number of hatred tweets are simi-252

lar in Turkish, except gender and politics.253

4 Experiments254

We have two main experiments. First, we analyze255

the performance of various methods for hate speech256

detection. In the second part, we examine the gen-257

eralization capability of hate speech detection in258

terms of cross-domain transfer.259

4.1 Hate Speech Detection260

4.1.1 Experimental Design261

We apply 10-fold leave-one-out cross-validation,262

where each fold has 90k train instances; and report263

the average score of accuracy, precision, recall, and264

weighted F1 score. We fine-tune the following265

models that are pre-trained by using English text:266

• ALBERT (Lan et al., 2020): Compared to BERT267

(Devlin et al., 2019), ALBERT has additional268

training data and lowers memory consumption269

with fewer parameters. Instead of next sentence270

prediction, sentence order prediction is used to271

focus on coherence between two sentences.272

• BART (Lewis et al., 2020): BART is a seq2seq273

model that employs a bidirectional encoder and274

a left-to-right decoder. The advantage is to learn275

a model by reconstructing the input text. BART276

has sentences randomly shuffled in training, and277

text spans are masked instead of single words.278

• BERT (Devlin et al., 2019): BERT uses bi-279

directional language modeling with masked lan-280

guage modeling and next sentence prediction.281

• BERTweet (Nguyen et al., 2020): BERTweet is282

trained based on the RoBERTa (Liu et al., 2019b)283

pre-training procedure by using only tweets.284

• ConvBERT (Jiang et al., 2020): ConvBERT ar-285

chitecture replaces the quadratic time complex-286

ity of the self-attention mechanism of BERT287

with convolutional layers. The number of self-288

attention heads are reduced by a mixed attention289

mechanism of self-attention and convolutions290

that would model local dependencies.291

• DeBERTa (He et al., 2021): DeBERTa intro-292

duces a disentangled attention mechanism on top293

of the BERT architecture to emphasize relative294

word positions. The model also uses an enhanced295

mask decoder for absolute positions. DeBERTa296

employs BPE instead of WordPiece tokenization.297

• DistilBERT (Sanh et al., 2019): DistilBERT is 298

an efficient version of BERT with 40% less pa- 299

rameters while retaining 97% of its performance. 300

• ELECTRA (Clark et al., 2020): ELECTRA in- 301

troduces the discriminator, a Transformer model 302

that replaces the task of masked language mod- 303

eling with replaced token detection. This new 304

task predicts if a token is replaced by a generator 305

network, enabling to run the task for all tokens 306

rather than a subset as in masked modeling. 307

• Megatron (Shoeybi et al., 2019): Megatron in- 308

troduces an efficient parallel training approach 309

for BERT-like models to increase parameter size. 310

• RoBERTa (Liu et al., 2019b): RoBERTa is built 311

on BERT architecture with modified hyperparam- 312

eters and a diverse corpora in pretraining, and 313

removes the task of next sentence prediction. 314

• XLNet (Yang et al., 2019): XLNet replaces the 315

task of masked language modeling with permuta- 316

tion language modeling, and removes the task of 317

next sentence prediction. 318

There are already fine-tuned models for hate 319

speech detection in English (we find no fine-tuned 320

model for Turkish hate speech detection). We use 321

the following fine-tuned models for zero-shot infer- 322

ence, as well as fine-tuning again with our data. 323

• HateXplain (Mathew et al., 2021): HateXplain 324

fine-tunes BERT-base, using a novel dataset with 325

20k instances, 9k of which are tweets. The model 326

can be used for zero-shot inference on multi-class 327

(hate, offensive, and normal) detection. 328

• HateBERT (Caselli et al., 2021): HateBERT 329

re-trains BERT-base, using around 1.5m Reddit 330

messages published by suspended communities 331

due to promoting hateful content. The model 332

can be used for zero-shot inference on binary 333

classification (hateful or not). 334

For Turkish, we fine-tune the same models used 335

in English listed above, except already fine-tuned 336

ones, to understand cross-lingual generalization 337

capability from English and Turkish. Besides, we 338

fine-tune the following models that are pre-trained 339

by using only Turkish text. 340

• BERTurk (Schweter, 2020): The model re- 341

trains BERT architecture for Turkish data. 342

• DistilBERTurk (Schweter, 2020): A distilled 343

version of BERTurk with a smaller training data. 344

• ConvBERTurk (Schweter, 2020): Based on 345

ConvBERT (Jiang et al., 2020), but using a mod- 346

ified training procedure and Turkish data. 347
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• ELECTRA (TR) (Schweter, 2020): Based on348

ELECTRA (Clark et al., 2020), but using Turkish349

data. We refer to it as ELECTRATurk.350

To understand generalization capability of from351

multi-lingual models to both English and Turkish,352

we fine-tune the following multi-lingual models.353

• mBERT (Devlin et al., 2019): mBERT is built on354

BERT architecture, but using multilingual data355

covering 100 languages.356

• XLM-R (Conneau et al., 2020): XLM-R is built357

on RoBERTa architecture, but using multilin-358

gual data covering 100 languages. The model is359

trained on more data than mBERT, and removes360

the task of next sentence prediction.361

Our dataset is prepared for fine-tuning multi-362

class (hate, offensive, and normal) detection. How-363

ever, to understand the performance of models in364

binary setup, we merge offensive and hate instances365

into a single hate class. We report performances in366

both multi-class and binary setups for all models367

listed above, if fine-tuning is available accordingly.368

To get fair comparison, all models are set to the369

same hyper-parameters: Batch size is 32, learning370

rate is 1e-5, the number of epochs is 10, maximum371

input length is 128 tokens, using AdamW optimizer.372

Only exception is Megatron, due to its large size,373

we reduce batch size to 8 and epochs to 5. We use374

GeForce RTX 2080 Ti for fine-tuning the models.375

4.1.2 Experimental Results376

In Table 3, we report the performance of multiclass377

(hate, offensive, and normal) and binary (hate +378

offensive vs. normal) hate speech detection along379

with model sizes, pretraining domains, and the av-380

erage time in minutes of 10-folds for fine-tuning.381

The highest performing models in English are those382

with the highest number of parameters (Megatron383

and BART) regardless of multi-class or binary se-384

tups. BERTweet achieves higher performance than385

BERT which would highlight the importance of the386

domain of the pretrain corpus.387

The highest performing model in Turkish is Con-388

vBERTurk both in multi-class and binary setups.389

Pretraining in the same language with the down-390

stream task helps increase the performance. How-391

ever, the performance difference between XLM-392

R and BERTurk models are not substantial. We393

thereby argue that one can utilize multilingual mod-394

els in low-resource setups. The models pretrained395

in English demonstrate a capability of cross-lingual396

transfer, e.g. ELECTRA achieves competitive per- 397

formance with multi-lingual and Turkish models, 398

when fine-tuned for Turkish. 399

Zero-shot models fine-tuned for hate speech de- 400

tection on other datasets underperform on our data, 401

and do not achieve highest performances when fine- 402

tuned further. This observation would show that 403

already fine-tuned models have limited capability 404

of generalization to new data. 405

The performance of binary detection is higher 406

than multi-class detection in both languages, as 407

expected. Binary detection dramatically improves 408

the performance in Turkish, which would show the 409

poor performance of detecting offensive tweets in 410

Turkish (see class-based analysis in Section 5). 411

4.2 Cross-Domain Transfer 412

4.2.1 Experimental Design 413

We test cross-domain transferability with fine- 414

tuning a model on a source domain and testing 415

it on a target domain. We design to set a fixed ha- 416

tred domain as target, and remaining ones as source. 417

The performance can be measured by relative zero- 418

shot transfer ability (Turc et al., 2021). We refer 419

to it as recovery ratio, since it represents the ratio 420

of how much original performance is recovered by 421

changing source domain, given as follows. 422

recovery(S, T ) =
M(S, T )

M(T, T )
(1) 423

where M(S, T ) is a model performance for the 424

source domain S on the target domain T . In the 425

case of source and target domains are the same, 426

recovery would be 1.0. 427

We also set a fixed hatred domain as source, and 428

remaining ones as target. The performance can be 429

measured by cross-lingual transfer gap (Hu et al., 430

2020). We modify it to normalize, and refer to 431

it as decay ratio, since it represents the ratio of 432

how much inference performance is decayed by 433

replacing target domain, given as follows. 434

decay(S, T ) =
M(S, T )−M(S, S)

M(S, S)
(2) 435

In the case of source and target domains are the 436

same, there would be no decay or performance 437

drop, so decay would be zero. In the cross-domain 438

experiments, we measure weighted F1; and employ 439

BERT for English, and BERTurk for Turkish. 440
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Lang. Model Params Pretrain Multi-class Binary
Acc. Prec. Recall F1 Time Acc. Prec. Recall F1 Time

EN

ALBERT 11.7m W,B 0.806 0.680 0.806 0.731 138.3 0.853 0.736 0.853 0.789 139.1
BART 139.4m W,B 0.819 0.692 0.819 0.745 163.0 0.866 0.755 0.866 0.805 162.0
BERT 108.3m W,B 0.808 0.679 0.808 0.732 135.5 0.858 0.743 0.858 0.794 136.5
BERTweet 134.9m M 0.815 0.686 0.815 0.741 133.2 0.863 0.750 0.863 0.801 134.8
ConvBERT 105.7m Web 0.812 0.684 0.812 0.738 156.3 0.861 0.747 0.861 0.798 157.2
DeBERTa 138.6m W,B,Web,M,S 0.811 0.681 0.811 0.736 171.7 0.862 0.750 0.862 0.801 172.0
DistilBERT 65.2m W,B 0.807 0.679 0.807 0.732 67.2 0.856 0.739 0.856 0.792 67.7
ELECTRA 108.9m W,B 0.809 0.679 0.809 0.734 139.0 0.861 0.747 0.861 0.798 132.7
Megatron 345m W,S,N,Web 0.817 0.703 0.817 0.749 295.6 0.864 0.765 0.864 0.807 287.3
RoBERTa 124.6m W,B,N,Web,S 0.814 0.687 0.814 0.741 134.2 0.864 0.765 0.864 0.807 134.0
XLNet 116.7m W,B,N,Web,CC 0.810 0.681 0.810 0.735 179.7 0.859 0.745 0.859 0.797 178.5
mBERT 177.9m W 0.805 0.677 0.805 0.730 144.9 0.855 0.738 0.855 0.790 140.1
XLM-R 278.0m CC 0.816 0.689 0.816 0.742 145.3 0.863 0.752 0.863 0.802 146.0
HateXplain 109.5m W,B,M 0.681 0.637 0.681 0.647 zero-shot - - - - -
HateXplain 109.5m W,B,M 0.782 0.643 0.782 0.700 133.7 - - - - -
hateBERT 109.5m M - - - - - 0.654 0.652 0.654 0.653 zero-shot
hateBERT 109.5m M - - - - - 0.859 0.745 0.859 0.796 132.3

TR

ALBERT 11.7m W,B 0.691 0.499 0.691 0.575 135.6 0.806 0.659 0.806 0.723 145.6
BART 139.4m W,B 0.721 0.544 0.721 0.614 159.7 0.826 0.691 0.826 0.750 175.4
BERT 108.3m W,B 0.726 0.548 0.726 0.620 129.7 0.826 0.691 0.826 0.751 141.1
BERTweet 134.9m M 0.739 0.569 0.739 0.639 139.8 0.834 0.704 0.834 0.762 142.3
ConvBERT 105.7m Web 0.732 0.560 0.732 0.629 151.8 0.826 0.690 0.826 0.750 164.1
DeBERTa 138.6m W,B,Web,M,S 0.726 0.549 0.726 0.620 168.6 0.826 0.692 0.826 0.751 177.6
DistilBERT 65.2m W,B 0.722 0.543 0.722 0.614 66.7 0.825 0.689 0.825 0.748 72.9
ELECTRA 108.9m W,B 0.748 0.581 0.748 0.650 129.9 0.842 0.716 0.842 0.772 135.8
Megatron 345m W,S,N,Web 0.725 0.562 0.725 0.625 303.9 0.826 0.704 0.826 0.755 288.8
RoBERTa 124.6m W,B,N,Web,S 0.728 0.552 0.728 0.623 130.5 0.831 0.701 0.831 0.758 135.5
XLNet 116.7m W,B,N,Web,CC 0.730 0.556 0.730 0.626 187.4 0.828 0.695 0.828 0.754 177.9
mBERT 177.9m W 0.744 0.576 0.744 0.644 134.0 0.839 0.711 0.839 0.768 135.5
XLM-R 278.0m CC 0.761 0.600 0.761 0.667 143.7 0.856 0.739 0.856 0.791 142.4
BERTurk 110.6m W,B,Web 0.767 0.606 0.767 0.673 129.3 0.863 0.752 0.863 0.802 132.8
DistilBERTurk 67.5m W,B,Web 0.759 0.596 0.759 0.663 67.7 0.851 0.732 0.851 0.785 71.1
ConvBERTurk 106.8m W,B,Web 0.770 0.610 0.770 0.677 154.5 0.867 0.758 0.867 0.807 157.4
ELECTRATurk 110.0m W,B,Web 0.767 0.608 0.767 0.674 133.7 0.864 0.754 0.864 0.804 132.0

Table 3: Multi-class and binary hate speech detection. Average of 10-fold cross-validation is reported. Highest
score is given in bold. Time is the average minutes of 10-fold fine-tuning. Models are divided into sub-groups
in terms of English, multi-lingual, already fine-tuned, and Turkish language models. For pretraining datasets; W
stands for Wikipedia, B for BooksCorpus (Zhu et al., 2015), M for Social Media (Twitter or Reddit), Web for
OpenWebText (Gokaslan and Cohen, 2019) or ClueWeb (Callan et al., 2009), S for Stories (Trinh and Le, 2018),
N for News (RealNews (Zellers et al., 2019) or Giga5 or CCNews), CC for CommonCrawl.

4.2.2 Experimental Results441

Table 4 answers the question of "To what extent442

target domain is recovered by different source do-443

mains?" Recovery performances between domains444

are quite effective, such that all recovery perfor-445

mances are above 80% for both languages. The446

reason might be the similar hate speech patterns in447

the domains. Recovering gender domain is particu-448

larly more difficult than other domains in English.449

We argue that speech patterns in gender-based ha-450

tred text can be differentiated from general hate451

patterns, i.e. gender-based hatred is more unpre-452

dictable by other domains in English. We observe453

the same argument for politics in Turkish. We ex-454

pect to fully recover when source is all domains,455

since the original source is already covered. Indeed,456

using all domains does not deteriorate recovery.457

Table 5 shows the decay scores when tested on a 458

different domain. When gender is used as source, 459

there is no decay in other target domains in English, 460

but not in Turkish. Recall that gender recovery 461

in English is poor as well. We argue that gender- 462

based hatred language is not easily transferred from 463

other domains, but it can transfer hatred language to 464

others. This could be important for data scarcity in 465

hate speech detection. In addition, the performance 466

of sports decays much when used as a source in 467

both languages, showing that sports-based hatred 468

cannot easily generalize to other domains. 469

We note that recovery and decay ratio can be 470

interpreted together. For instance, in English, the 471

domain transfer from religion to gender has 89% 472

recovery, and its decay ratio is -12%. While the 473

domain transfer from sports to gender has the same 474
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Lang. Source/Target Religion Gender Racism Politics Sports All

EN

Religion 0.712 89% 96% 97% 95% 96%
Gender 101% 0.700 97% 99% 98% 99%
Racism 99% 89% 0.750 94% 91% 94%
Politics 97% 85% 94% 0.720 97% 95%
Sports 95% 89% 91% 99% 0.782 95%
All 101% 99% 100% 99% 99% 0.732

TR

Religion 0.637 91% 94% 90% 93% 93%
Gender 90% 0.666 92% 84% 90% 90%
Racism 94% 90% 0.676 88% 93% 93%
Politics 85% 84% 88% 0.656 85% 88%
Sports 88% 83% 88% 81% 0.705 88%
All 101% 102% 100% 100% 101% 0.673

Table 4: Cross-domain transfer for hate speech detection in terms of column-wise recovery ratio. The results
should be interpreted column-wise, e.g. 89% recovery from religion to gender in EN means that we recover 89%
of 0.700 (gender to gender), but not 0.712 (religion to religion). Source domains are given in rows, targets in
columns. Diagonal gray cells have weighted F1 where target and source is the same. As recovery increases, green
color gets darker.

Lang. Source/Target Religion Gender Racism Politics Sports All

EN

Religion 0.712 -12% 0% -2% 0% -1%
Gender 0% 0.700 0% 0% 0% 0%
Racism -6% -17% 0.750 -10% -5% -8%
Politics -4% -17% -2% 0.720 0% -4%
Sports -14% -20% -13% -9% 0.782 -11%
All -2% -5% 0% -2% 0% 0.732

TR

Religion 0.637 -5% -0.3% -8% 0% -2%
Gender -14% 0.666 -7% -18% -5% -9%
Racism -11% -11% 0.676 -14% -3% -8%
Politics -18% -14% -9% 0.656 -9% -10%
Sports -21% -22% -15% -25% 0.705 -16%
All -5% 0% 0% -2% 0% 0.673

Table 5: Cross-domain transfer for hate speech detection in terms of row-wise decay ratio. The results should be
interpreted row-wise, e.g. -12% decay from religion to gender in EN means that we lose -12% of 0.712 (religion to
religion), but not 0.700 (gender to gender). Source domains are given in rows, targets in columns. Diagonal gray
cells have weighted F1 where target and source is the same. As decay increases, red color gets darker.

recovery ratio, its decay is -20%, which shows that475

the same recovery values do not necessarily mean476

the same performance.477

5 Discussion478

5.1 Scalability479

We examine scalability as the effect of increasing480

training size on model performance. Since label-481

ing hate speech data is costly, the data size of hate482

speech detection becomes important. Our large-483

scale datasets are available to analyze scalability.484

To do so, we split 10% of data for testing, 10% for485

validation, and remaining 80% for training. From486

the training split, we set five scale values starting487

from 20% to 100%. To obtain reliable results, we488

repeat this process five times, and report the av-489

erage scores. At each iteration, training and vali-490

dation datasets are randomly sampled. We re-run491

BERT for English, and BERTurk for Turkish. 492

We train the models for five epochs. However, 493

we use the number of epochs that gives the best 494

performance on the validation set, given in Table 6. 495

The motivation is to have a fair comparison by ne- 496

glecting the positive effect of having more training 497

data, since more number of instances means more 498

number of steps. We observe that using smaller 499

number of instances (e.g. 20% of data size) needs 500

more epochs to converge, compared to larger data. 501

The results for overall detection performance are 502

given in Figure 1a. We observe that the perfor- 503

mance slightly improves as training data increases 504

in both English and Turkish. We also investigate 505

the scalability performance of individual classes in 506

Figure 1b for English, and Figure 1c for Turkish. 507

For English, normal tweets are the best predicted, 508

while hate tweets are the worst predicted class. In- 509

terestingly, the performance of hate class improves 510
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(a) Weighted F1 scores for multi-class
hate speech detection with respect to in-
creasing training data. There is a slight
performance increase in both languages.
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(b) Weighted F1 scores for different
classes in English. The performance of
normal class saturates early, and hate
class benefits the most.
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(c) Weighted F1 scores for different
classes in Turkish. There is a slight per-
formance increase in all classes.

Figure 1: Scalability analysis for hate speech detection.

Lang./Ratio 20% 40% 60% 80% 100%
EN 3.50 2.30 2.20 1.90 2.08
TR 3.90 3.70 3.33 2.28 2.52

Table 6: Number of epochs when the best model is
obtained on validation set for scalability. Maximum
epochs is set to 5.

significantly as training data increases. Normal511

and offensive tweets exhibit a slightly increasing512

pattern. This result emphasizes the importance of513

the data size in hate speech detection. Given that514

the main bottleneck in hate speech detection task515

is misprediction of hate speech rather than normal516

tweets, using higher number of data instances has517

significant effect on hate speech detection perfor-518

mance. On the other hand, the performance of all519

classes slightly increase in Turkish. Hate tweets520

are better predicted compared to offensive tweets,521

showing that language is important to detect hate522

speech. A reason could be the different speech523

patterns in different languages. Note that the num-524

ber of hate tweets in Turkish is larger than those525

of English, however the performance of English is526

still worse than Turkish when similar number of527

training instances are considered (e.g. hate score528

of ratio 100% in Figure 1b is still worse than the529

score of 20% in Figure 1c). Overall, collecting hate530

speech data in large scale contributes to model per-531

formance, but not with a substantial degree. How-532

ever, the best improvement by increasing the train533

size is observed for the hate class in English.534

5.2 Ablation Study535

To assess the effect of tweet-specific components536

on the performance of hate speech detection, we537

remove each component from tweets, and re-run538

Data Model Acc. Prec. Recall F1

EN

Raw text 0.808 0.679 0.808 0.732
w/o URL 0.808 0.680 0.808 0.733
w/o Hashtags 0.807 0.679 0.807 0.732
w/o Emoji 0.809 0.681 0.809 0.734
w/o All 0.808 0.679 0.808 0.732

TR

Raw text 0.767 0.606 0.767 0.673
w/o URL 0.767 0.606 0.767 0.673
w/o Hashtags 0.763 0.601 0.763 0.668
w/o Emoji 0.766 0.605 0.766 0.672
w/o All 0.763 0.601 0.763 0.668

Table 7: The ablation study: Effect of tweet-specific
components. The average of 10-fold cross-validation
is reported. Highest scores are given in bold.

BERT for English, and BERTurk for Turkish. 539

Tweet-specific components are URLs, hashtags, 540

and emoji symbols. Table 7 reports the experi- 541

mental results of the ablation study. The results 542

show that removing tweet-specific components has 543

almost no effect on the performance in English. 544

Similar observation is valid for Turkish, but using 545

hashtags has a slight performance improvement. 546

6 Conclusion 547

We construct large-scale datasets for hate speech 548

detection in English and Turkish to analyze the per- 549

formances of state-of-the-art models. With the help 550

of such available data, we also analyze model scal- 551

ability. We design our datasets to have equal size 552

of instances for each of five hatred domains; so that 553

we report zero-shot cross-domain transfer results in 554

hate speech detection. Future work would focus on 555

a detailed error analysis of hate speech detection. 556

The scalability results are limited to Transformer- 557

based language models, one can further analyze 558

other models. The generalization capability of ha- 559

tred domains can be examined in other languages. 560
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