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Abstract

Hate speech towards people with different
backgrounds is a major problem observed in
social media. Although there are various at-
tempts to detect hate speech automatically via
supervised learning models, the performance
of such models simply rely on limited datasets
on which models are trained. In this study,
we construct large-scale tweet datasets for su-
pervised hate speech detection in English and
Turkish, including human-labeled 100k tweets
per each. Our datasets are designed to have
equal number of tweets distributed over five
domains; namely religion, gender, race, poli-
tics, and sports. We analyze the performance
of state-of-the-art language models on large-
scale hate speech detection with a special fo-
cus on model scalability. We also examine
cross-domain transfer ability of hate speech de-
tection.

1 Introduction

With the growth of social media platforms, hate
speech towards people who do not share the same
identity or community increases dramatically (Twit-
ter, 2021). Consequences of online hate speech
could be real-life violence against other people and
communities (Byman, 2021). The need of automat-
ically detecting hate speech text is thereby urging.
Existing solutions to detect hate speech mostly
rely on supervised learning, resulting in a strict
dependency on the quality and quantity of labeled
data. Most of the datasets labeled by human experts
for hate speech detection are not large in size due to
the labor cost (Poletto et al., 2021), causing a lack
of detailed experiments on model generalization
and scalability. Indeed, most studies on hate speech
detection report high performances on their test
sets, while their generalization capabilities to other
datasets are limited (Arango et al., 2019).
Existing datasets for hate speech detection are
mostly prepared for non-agglutinative languages,
e.g. around half of them are in English (Poletto

et al., 2021). Agglutinative ones, such as Turkic
and Uralic languages, have low or no resources for
hate speech detection. We thereby construct large-
scale human-annotated datasets for hate speech
detection using English and Turkish tweets.
Hatred language can be expressed in various top-
ics (we refer to topics as hatred domains). Domains
vary depending on the target group. For instance,
misogyny (targeting women) and homophobia (tar-
geting different gender identities) are examples of
the domain of gender-based hatred. Existing stud-
ies mostly consider a limited number of domains,
and investigate hate speech in terms of an abstract
notion including aggressive language, threats, slurs,
and offenses (Poletto et al., 2021). We consider not
only the hatred behavior in the definition of hate
speech, but also five most frequently observed do-
mains depending on target group; namely religion,
gender, racism, politics, and sports-based hatred.
Supervised models trained on a specific learning
dataset can fail to generalize their performance
on the original evaluation set to other evaluation
sets. However, this phenomenon is studied in cross-
dataset! (Grondahl et al., 2018; Karan and Snajder,
2018), cross-lingual (Pamungkas and Patti, 2019),
and cross-platform (Agrawal and Awekar, 2018)
transfer. Transfer learning among hatred domains
is not well studied due to the lack of large-scale
datasets. In this study, with the help of our novel
datasets including five hatred domains mentioned
above, we analyze the generalization capability of
hate speech detection in terms of hatred domains.
The contributions of this study are in three
folds. (i) We construct large-scale human-labeled
hate speech detection datasets for English and Turk-
ish. (ii) We analyze the performance of various
models for hate speech detection with a special

'In literature, the phrase "cross-domain" is mostly used for
the transfer between two datasets that are published by differ-
ent studies but not necessarily in different hatred domains. We
refer to them as cross-dataset.



focus on model scalability. (iii) We examine the
generalization capability of hate speech detection
in terms of zero-shot cross-domain transfer.

The structure of the paper is as follows. In the
next section, we provide a summary of related work.
In Section 3, we explain our large-scale datasets.
In Section 4, we report our experimental design
and results. In Section 5, we provide a discussion
on scalability, ablation study, and limitations of our
study. We conclude the study in the last section.

2 Related Work

We briefly summarize related work on the methods,
previous datasets, and transfer learning for hate
speech detection.

2.1 Methods for Hate Speech Detection

Earlier studies on hate speech detection are based
on matching hatred keywords using lexicons (Sood
et al., 2012). The disadvantage of such methods is
strict dependency on lexicons. Supervised learning
with a set of features extracted from a training set
is a solution for the dependency issue. Text content
is useful to extract bag-of-words features; such as
n-grams, Part-of-Speech tags, linguistic and syn-
tactical features (Dadvar et al., 2013; Waseem and
Hovy, 2016; Nobata et al., 2016; Waseem, 2016;
Davidson et al., 2017). User-based features, such
as content history, meta-attributes, and user profile
(Dadvar et al., 2013; Waseem, 2016; Chatzakou
et al., 2017; Unsvag and Gambick, 2018), can be
used to detect hatred signals. Structural features of
a social network, such as centrality and clustering,
are studied as well (Chatzakou et al., 2017).

To capture word semantics better than bag-
of-words; word embeddings, such as Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014), are utilized to detect abusive and hatred lan-
guage (Djuric et al., 2015; Nobata et al., 2016; Mou
et al., 2020). To resolve the issues related to noisy
text of social media, character and phonetic-level
embeddings are studied for hate speech (Mou et al.,
2020). Instead of extracting hand-crafted features;
deep neural networks, such as CNN (Kim, 2014)
and LSTM (Jozefowicz et al., 2015), are applied to
extract deep features to represent text. Indeed, their
application outperforms previous methods that em-
ploy lexicons and hand-crafted features (Badjatiya
et al., 2017; Zimmerman et al., 2018; Mou et al.,
2020; Cao et al., 2020).

Recently, Transformer architecture (Vaswani

et al., 2017) is studied for hate speech detection, as
in all other downstream tasks of NLP. Transformer
employs self-attention for each token over all to-
kens, targeting to capture a rich contextual repre-
sentation of whole text. Fine-tuning BERT (Devlin
et al., 2019) for hate speech detection outperforms
previous methods (Liu et al., 2019a; Caselli et al.,
2021; Mathew et al., 2021; Aluru et al., 2021). We
examine the performance of not only BERT, but
also various Transformer language models for both
multi-class and binary hate speech detection.

2.2 Resources for Hate Speech Detection

A recent survey summarizes the current state of
datasets in hate speech detection by listing over 40
datasets, around half of which are tweets, and again
around half of which are prepared in English lan-
guage (Poletto et al., 2021). Benchmark datasets
are also released as a shared task for hate speech de-
tection (Basile et al., 2019; Zampieri et al., 2020).

There are efforts to create large-scale human-
labeled datasets for hate speech detection. The
dataset in Davidson et al. (2017) has around 25k
tweets each labeled by three or more annotators
for three classes; offensive, hate, and neither. The
dataset in Golbeck et al. (2017) has 35k tweets
labeled by at most three annotators per tweet for
binary classification (harassing or not). The dataset
in Founta et al. (2018) has 80k tweets each labeled
by five annotators for seven classes including offen-
sive and hate. However, our datasets differ in terms
of the following aspects. We have 100k top-level
tweets per two languages, English and Turkish. The
datasets are clean, which will be explained in the
next section. We have three class labels (hate, of-
fensive, and normal), and five annotators per each
tweet. Lastly, we design to have 20k tweets for
each of five hatred domains, which would enable
us to analyze zero-shot cross-domain transfer.

2.3 Transfer Learning for Hate Speech
Detection

Generalization of a hate-speech detection model
trained on a specific dataset to other datasets
with the same or similar class labels, i.e. cross-
dataset transfer, is widely studied (Grondahl et al.,
2018; Karan and Snajder, 2018; Wiegand et al.,
2018; Pamungkas and Patti, 2019; Swamy et al.,
2019; Arango et al., 2019; Pamungkas et al., 2020;
Markov and Daelemans, 2021). Using different
datasets in different languages, cross-lingual trans-
fer aims to overcome language dependency in hate



speech detection (Pamungkas and Patti, 2019; Pa-
mungkas et al., 2020; Markov et al., 2021; Nozza,
2021). There are also efforts to analyze platform-
independent hate speech detection, i.e. cross-
platform transfer (Agrawal and Awekar, 2018). In
this study, we analyze whether hate speech detec-
tion can be generalized across hatred domains, re-
gardless of the target and topic of hate speech.

3 Large-Scale Datasets for Hate Speech
Detection

3.1 Dataset Construction

We used Full-Archieve Search provided by Twitter
Premium API to retrieve more than 200k tweets;
filtered according to language, tweet type, publish
time, and contents. We filter English and Turkish
tweets published in 2020 and 2021. The dataset
contains only top-level tweets, i.e., not a retweet,
reply, or quote. Tweet contents are filtered based
on a keyword list. The list contains hashtags and
keywords from five topics (i.e. hatred domains);
religion, gender, racism, politics, and sports. We
design to keep the number of tweets belonging to
each hatred domain balanced.

For cleaning, we remove near-duplicate tweets
by measuring higher than 80% text similarity be-
tween tweets using the Cosine similarity with TF-
IDF term weighting (Sedhai and Sun, 2015). We
restrict the average number of tweets per user in
order not to exceed 1% of all tweets to avoid user-
dependent modeling (Geva et al., 2019). We also
remove tweets shorter than five words; excluding
hashtags, URLs, and emoticons.

3.2 Dataset Annotation

Based on the definitions and categorization of hate-
ful speech (Sharma et al., 2018), we label tweets
as containing hate speech if they target, incite vio-
lence against, threaten, or call for physical damage
for an individual or a group of people because of
some identifying trait or characteristic. We label
tweets as offensive if they humiliate, taunt, discrim-
inate, or insult an individual or a group of people
in any form, including visual and textual. Other
tweets are labeled as normal.

Each tweet is annotated by five annotators ran-
domly selected from a set of 16 undergrads and
four grads. If consensus is not achieved on ground-
truth, a human expert outside the initial annotator
set determines the label. We provide annotation
guidelines to all annotators. The guidelines docu-

Definition EN TR

Number of tweets 100,000 100,000
Number of offensive tweets 27,140 30,747
Number of hate tweets 7,325 27,593
Number of users 85,396 69,524
First tweet date 02/26/20  01/17/20
Last tweet date 03/31/21  03/31/21
Average tweets per user 1.2 1.4
Average tweet length (words) 29.20 24.37
Shortest tweet length 5 5
Longest tweet length 72 121
Number of hashtags 23,170 24,444
Number of URLs 76,006 72,233
Number of tweets with hashtags 12,751 17,390
Number of tweets with URLs 73,439 71,434

Table 1: Dataset statistics. We construct two large-
scale datasets including English (EN) and Turkish (TR)
tweets for hate speech detection in terms of three
classes (hate, offensive, and normal).

Lang. Domain Hate Offens. Normal Total
Religion 1,427 5,221 13,352 20k
Gender 1,313 6,431 12,256 20k
EN Race 1,541 3,846 14,613 20k
Politics 1,610 6,018 12,372 20k
Sports 1,434 5,624 12,942 20k
Religion 5,688 7,435 6,877 20k
Gender 2,780 6,521 10,699 20k
TR Race 5,095 4,905 10,000 20k
Politics 7,657 4,253 8,090 20k
Sports 6,373 7,633 5,994 20k

Table 2: Distribution of topics in our datasets with re-
spect to three classes (hate, offensive, and normal).

ment includes the rules of annotations; the defini-
tions of hate, offensive, and normal tweets; and the
common mistakes observed during annotation. The
annotations started on February 15th, and ended on
October 5th, 2021 (i.e. a period of 84 days). We
measure inter-annotator agreement with Krippen-
dorft’s alpha coefficient and get a nominal score of
0.395 for English and 0.417 for Turkish.

3.3 Dataset Statistics

We report main statistics about our datasets in Ta-
ble 1. Although we follow a similar construction
approach, the number of tweets with hate speech in
English is less than those in Turkish, which might
indicate a tighter regularization for English content
by Twitter. Normal tweets dominate in both lan-
guages, specifically in English, as expected due to
the nature of hate speech and the platform regu-
lations. The statistics of tweet length imply that
our task is similar to a short text classification for
tweets, where the average number of words is ideal
to be 25 to 30 (Sahinug¢ and Toraman, 2021).

The distribution of tweets for each domain and



language is given in Table 2. In English, the num-
ber of hatred tweets are similar in each domain;
however, race has less number of offensive tweets
than others. The number of hatred tweets are simi-
lar in Turkish, except gender and politics.

4 Experiments

We have two main experiments. First, we analyze
the performance of various methods for hate speech
detection. In the second part, we examine the gen-
eralization capability of hate speech detection in
terms of cross-domain transfer.

4.1 Hate Speech Detection
4.1.1 Experimental Design

We apply 10-fold leave-one-out cross-validation,
where each fold has 90k train instances; and report
the average score of accuracy, precision, recall, and
weighted F1 score. We fine-tune the following
models that are pre-trained by using English text:

* ALBERT (Lan et al., 2020): Compared to BERT
(Devlin et al., 2019), ALBERT has additional
training data and lowers memory consumption
with fewer parameters. Instead of next sentence
prediction, sentence order prediction is used to
focus on coherence between two sentences.

* BART (Lewis et al., 2020): BART is a seq2seq
model that employs a bidirectional encoder and
a left-to-right decoder. The advantage is to learn
a model by reconstructing the input text. BART
has sentences randomly shuffled in training, and
text spans are masked instead of single words.

e BERT (Devlin et al., 2019): BERT uses bi-
directional language modeling with masked lan-
guage modeling and next sentence prediction.

* BERTweet (Nguyen et al., 2020): BERTweet is
trained based on the RoBERTa (Liu et al., 2019b)
pre-training procedure by using only tweets.
ConvBERT (Jiang et al., 2020): ConvBERT ar-
chitecture replaces the quadratic time complex-
ity of the self-attention mechanism of BERT
with convolutional layers. The number of self-
attention heads are reduced by a mixed attention
mechanism of self-attention and convolutions
that would model local dependencies.

¢ DeBERTa (He et al., 2021): DeBERTa intro-
duces a disentangled attention mechanism on top
of the BERT architecture to emphasize relative
word positions. The model also uses an enhanced
mask decoder for absolute positions. DeBERTa
employs BPE instead of WordPiece tokenization.

* DistilBERT (Sanh et al., 2019): DistilBERT is
an efficient version of BERT with 40% less pa-
rameters while retaining 97% of its performance.

* ELECTRA (Clark et al., 2020): ELECTRA in-
troduces the discriminator, a Transformer model
that replaces the task of masked language mod-
eling with replaced token detection. This new
task predicts if a token is replaced by a generator
network, enabling to run the task for all tokens
rather than a subset as in masked modeling.

* Megatron (Shoeybi et al., 2019): Megatron in-
troduces an efficient parallel training approach
for BERT-like models to increase parameter size.

* RoBERTa (Liu et al., 2019b): RoBERTa is built
on BERT architecture with modified hyperparam-
eters and a diverse corpora in pretraining, and
removes the task of next sentence prediction.

* XLNet (Yang et al., 2019): XLNet replaces the
task of masked language modeling with permuta-
tion language modeling, and removes the task of
next sentence prediction.

There are already fine-tuned models for hate
speech detection in English (we find no fine-tuned
model for Turkish hate speech detection). We use
the following fine-tuned models for zero-shot infer-
ence, as well as fine-tuning again with our data.

» HateXplain (Mathew et al., 2021): HateXplain
fine-tunes BERT-base, using a novel dataset with
20k instances, 9k of which are tweets. The model
can be used for zero-shot inference on multi-class
(hate, offensive, and normal) detection.

e HateBERT (Caselli et al., 2021): HateBERT
re-trains BERT-base, using around 1.5m Reddit
messages published by suspended communities
due to promoting hateful content. The model
can be used for zero-shot inference on binary
classification (hateful or not).

For Turkish, we fine-tune the same models used
in English listed above, except already fine-tuned
ones, to understand cross-lingual generalization
capability from English and Turkish. Besides, we
fine-tune the following models that are pre-trained
by using only Turkish text.

* BERTurk (Schweter, 2020): The model re-
trains BERT architecture for Turkish data.

¢ DistilBERTurk (Schweter, 2020): A distilled
version of BERTurk with a smaller training data.

¢ ConvBERTurk (Schweter, 2020): Based on
ConvBERT (Jiang et al., 2020), but using a mod-
ified training procedure and Turkish data.



* ELECTRA (TR) (Schweter, 2020): Based on
ELECTRA (Clark et al., 2020), but using Turkish
data. We refer to it as ELECTRATurk.

To understand generalization capability of from
multi-lingual models to both English and Turkish,
we fine-tune the following multi-lingual models.

* mBERT (Devlin et al., 2019): mBERT is built on
BERT architecture, but using multilingual data
covering 100 languages.

¢ XLM-R (Conneau et al., 2020): XLM-R is built
on RoBERTa architecture, but using multilin-
gual data covering 100 languages. The model is
trained on more data than mBERT, and removes
the task of next sentence prediction.

Our dataset is prepared for fine-tuning multi-
class (hate, offensive, and normal) detection. How-
ever, to understand the performance of models in
binary setup, we merge offensive and hate instances
into a single hate class. We report performances in
both multi-class and binary setups for all models
listed above, if fine-tuning is available accordingly.

To get fair comparison, all models are set to the
same hyper-parameters: Batch size is 32, learning
rate is le-5, the number of epochs is 10, maximum
input length is 128 tokens, using AdamW optimizer.
Only exception is Megatron, due to its large size,
we reduce batch size to 8 and epochs to 5. We use
GeForce RTX 2080 Ti for fine-tuning the models.

4.1.2 Experimental Results

In Table 3, we report the performance of multiclass
(hate, offensive, and normal) and binary (hate +
offensive vs. normal) hate speech detection along
with model sizes, pretraining domains, and the av-
erage time in minutes of 10-folds for fine-tuning.
The highest performing models in English are those
with the highest number of parameters (Megatron
and BART) regardless of multi-class or binary se-
tups. BERTweet achieves higher performance than
BERT which would highlight the importance of the
domain of the pretrain corpus.

The highest performing model in Turkish is Con-
vBERTurk both in multi-class and binary setups.
Pretraining in the same language with the down-
stream task helps increase the performance. How-
ever, the performance difference between XLM-
R and BERTurk models are not substantial. We
thereby argue that one can utilize multilingual mod-
els in low-resource setups. The models pretrained
in English demonstrate a capability of cross-lingual

transfer, e.g. ELECTRA achieves competitive per-
formance with multi-lingual and Turkish models,
when fine-tuned for Turkish.

Zero-shot models fine-tuned for hate speech de-
tection on other datasets underperform on our data,
and do not achieve highest performances when fine-
tuned further. This observation would show that
already fine-tuned models have limited capability
of generalization to new data.

The performance of binary detection is higher
than multi-class detection in both languages, as
expected. Binary detection dramatically improves
the performance in Turkish, which would show the
poor performance of detecting offensive tweets in
Turkish (see class-based analysis in Section 5).

4.2 Cross-Domain Transfer
4.2.1 Experimental Design

We test cross-domain transferability with fine-
tuning a model on a source domain and testing
it on a target domain. We design to set a fixed ha-
tred domain as target, and remaining ones as source.
The performance can be measured by relative zero-
shot transfer ability (Turc et al., 2021). We refer
to it as recovery ratio, since it represents the ratio
of how much original performance is recovered by
changing source domain, given as follows.

M(S,T)
recovery(S,T) = M(T.T) (1)
where M (S,T) is a model performance for the
source domain .S on the target domain 7. In the
case of source and target domains are the same,
recovery would be 1.0.

We also set a fixed hatred domain as source, and
remaining ones as target. The performance can be
measured by cross-lingual transfer gap (Hu et al.,
2020). We modify it to normalize, and refer to
it as decay ratio, since it represents the ratio of
how much inference performance is decayed by
replacing target domain, given as follows.

M(S,T) — M(S, S)
M(S, S)

decay(S,T) = 2)

In the case of source and target domains are the
same, there would be no decay or performance
drop, so decay would be zero. In the cross-domain
experiments, we measure weighted F1; and employ
BERT for English, and BERTurk for Turkish.



. Multi-class Binary
Lang. Model Params Pretrain Acc. Prec. Recall F1 Time| Acc. Prec. Recall F1 Time
ALBERT 11.7m W,B 0.806 0.680 0.806 0.731 138.310.853 0.736 0.853 0.789 139.1
BART 139.4m W,B 0.819 0.692 0.819 0.745 163.0/0.866 0.755 0.866 0.805 162.0
BERT 108.3m W,B 0.808 0.679 0.808 0.732 135.5/0.858 0.743 0.858 0.794 136.5
BERTweet 134.9m M 0.815 0.686 0.815 0.741 133.210.863 0.750 0.863 0.801 134.8
ConvBERT 105.7m Web 0.812 0.684 0.812 0.738 156.3|0.861 0.747 0.861 0.798 157.2
DeBERTa 138.6m W,B,Web,M,S 0.811 0.681 0.811 0.736 171.710.862 0.750 0.862 0.801 172.0
DistilBERT 65.2m W,B 0.807 0.679 0.807 0.732 67.210.856 0.739 0.856 0.792 67.7
ELECTRA 108.9m W,B 0.809 0.679 0.809 0.734 139.010.861 0.747 0.861 0.798 132.7
EN  Megatron 345m W,S,N,Web 0.817 0.703 0.817 0.749 295.6|0.864 0.765 0.864 0.807 287.3
RoBERTa 124.6m W,B,N,Web,S 0.814 0.687 0.814 0.741 134.210.864 0.765 0.864 0.807 134.0
XLNet 116.7m W,B,N,Web,CC 0.810 0.681 0.810 0.735 179.710.859 0.745 0.859 0.797 178.5
mBERT 177.9m W 0.805 0.677 0.805 0.730 144.910.855 0.738 0.855 0.790 140.1
XLM-R 278.0m CC 0.816 0.689 0.816 0.742 145.310.863 0.752 0.863 0.802 146.0
HateXplain 109.5m W,B.M 0.681 0.637 0.681 0.647 zero-shot| - - - - -
HateXplain 109.5m W,B.M 0.782 0.643 0.782 0.700 133.7| - - - - -
hateBERT 109.5m M - - - - -10.654 0.652 0.654 0.653 zero-shot
hateBERT 109.5m M - - - - -10.859 0.745 0.859 0.796 132.3
ALBERT 11.7m W,B 0.691 0.499 0.691 0.575 135.6/0.806 0.659 0.806 0.723 145.6
BART 139.4m W,B 0.721 0.544 0.721 0.614 159.710.826 0.691 0.826 0.750 175.4
BERT 108.3m W,B 0.726 0.548 0.726 0.620 129.710.826 0.691 0.826 0.751 141.1
BERTweet 134.9m M 0.739 0.569 0.739 0.639 139.8/0.834 0.704 0.834 0.762 142.3
ConvBERT 105.7m Web 0.732 0.560 0.732 0.629 151.8/0.826 0.690 0.826 0.750 164.1
DeBERTa 138.6m W,B,Web,M,S 0.726 0.549 0.726 0.620 168.6/0.826 0.692 0.826 0.751 177.6
DistilBERT 65.2m W,B 0.722 0.543 0.722 0.614 66.7(0.825 0.689 0.825 0.748 72.9
ELECTRA 108.9m W,B 0.748 0.581 0.748 0.650 129.910.842 0.716 0.842 0.772 135.8
TR  Megatron 345m W,S,N,Web 0.725 0.562 0.725 0.625 303.910.826 0.704 0.826 0.755 288.8
RoBERTa 124.6m W,B,N,Web,S 0.728 0.552 0.728 0.623 130.5/0.831 0.701 0.831 0.758 135.5
XLNet 116.7m W,B,N,Web,CC 0.730 0.556 0.730 0.626 187.410.828 0.695 0.828 0.754 177.9
mBERT 177.9m W 0.744 0.576 0.744 0.644 134.010.839 0.711 0.839 0.768 135.5
XLM-R 278.0m CC 0.761 0.600 0.761 0.667 143.710.856 0.739 0.856 0.791 142.4
BERTurk 110.6m W,B,Web 0.767 0.606 0.767 0.673 129.310.863 0.752 0.863 0.802 132.8
DistilBERTurk  67.5m W,B,Web 0.759 0.596 0.759 0.663 67.710.851 0.732 0.851 0.785 71.1
ConvBERTurk 106.8m W,B,Web 0.770 0.610 0.770 0.677 154.5/0.867 0.758 0.867 0.807 157.4
ELECTRATurk 110.0m W,B,Web 0.767 0.608 0.767 0.674 133.7/0.864 0.754 0.864 0.804 132.0

Table 3: Multi-class and binary hate speech detection. Average of 10-fold cross-validation is reported. Highest
score is given in bold. Time is the average minutes of 10-fold fine-tuning. Models are divided into sub-groups
in terms of English, multi-lingual, already fine-tuned, and Turkish language models. For pretraining datasets; W
stands for Wikipedia, B for BooksCorpus (Zhu et al., 2015), M for Social Media (Twitter or Reddit), Web for
OpenWebText (Gokaslan and Cohen, 2019) or ClueWeb (Callan et al., 2009), S for Stories (Trinh and Le, 2018),

N for News (RealNews (Zellers et al., 2019) or Giga5 or CCNews), CC for CommonCrawl.

4.2.2 Experimental Results

Table 4 answers the question of "To what extent
target domain is recovered by different source do-
mains?" Recovery performances between domains
are quite effective, such that all recovery perfor-
mances are above 80% for both languages. The
reason might be the similar hate speech patterns in
the domains. Recovering gender domain is particu-
larly more difficult than other domains in English.
We argue that speech patterns in gender-based ha-
tred text can be differentiated from general hate
patterns, i.e. gender-based hatred is more unpre-
dictable by other domains in English. We observe
the same argument for politics in Turkish. We ex-
pect to fully recover when source is all domains,
since the original source is already covered. Indeed,
using all domains does not deteriorate recovery.

Table 5 shows the decay scores when tested on a
different domain. When gender is used as source,
there is no decay in other target domains in English,
but not in Turkish. Recall that gender recovery
in English is poor as well. We argue that gender-
based hatred language is not easily transferred from
other domains, but it can transfer hatred language to
others. This could be important for data scarcity in
hate speech detection. In addition, the performance
of sports decays much when used as a source in
both languages, showing that sports-based hatred
cannot easily generalize to other domains.

We note that recovery and decay ratio can be
interpreted together. For instance, in English, the
domain transfer from religion to gender has 89%
recovery, and its decay ratio is -12%. While the
domain transfer from sports to gender has the same



Lang. Source/Target | Religion || Gender || Racism || Politics || Sports All
Religion 0.712 89%
Gender 0.700
EN Racism 89% 0.750
Politics 85% 0.720
Sports 89% 0.782
All 0.732
Religion
Gender
TR Racism
Politics
Sports
All

Table 4: Cross-domain transfer for hate speech detection in terms of column-wise recovery ratio. The results
should be interpreted column-wise, e.g. 89% recovery from religion to gender in EN means that we recover 89%
of 0.700 (gender to gender), but not 0.712 (religion to religion). Source domains are given in rows, targets in
columns. Diagonal gray cells have weighted F1 where target and source is the same. As recovery increases, green

color gets darker.

Lang. Source/Target Religion Gender Racism Politics Sports All
Religion 0.712 -12% 0% 2% 0% -1%
Gender 0% 0.700 0% 0% 0% 0%

EN'" Racism 6%  -17% 0750  -10%  -5% 8%
Politics -4% -17% 2% 0.720 0% -4%
Sports -14% -20% -13% 9% 0782 -11%
All 2% -5% 0% 2% 0% | 0.732
Religion 0.637 -5% -0.3% -8% 0% 2%
Gender -14% 0.666 -71% -18% -5% -9%

TR Racism 11%  -11% 0676 -14% 3% 8%
Politics -18% -14% -9% 0.656 9%  -10%
Sports -21% -22% -15% -25% 0705  -16%
All -5% 0% 0% -2% 0% = 0.673

Table 5: Cross-domain transfer for hate speech detection in terms of row-wise decay ratio. The results should be
interpreted row-wise, e.g. -12% decay from religion to gender in EN means that we lose -12% of 0.712 (religion to
religion), but not 0.700 (gender to gender). Source domains are given in rows, targets in columns. Diagonal gray
cells have weighted F1 where target and source is the same. As decay increases, red color gets darker.

recovery ratio, its decay is -20%, which shows that
the same recovery values do not necessarily mean
the same performance.

5 Discussion

5.1 Scalability

We examine scalability as the effect of increasing
training size on model performance. Since label-
ing hate speech data is costly, the data size of hate
speech detection becomes important. Our large-
scale datasets are available to analyze scalability.
To do so, we split 10% of data for testing, 10% for
validation, and remaining 80% for training. From
the training split, we set five scale values starting
from 20% to 100%. To obtain reliable results, we
repeat this process five times, and report the av-
erage scores. At each iteration, training and vali-
dation datasets are randomly sampled. We re-run

BERT for English, and BERTurk for Turkish.

We train the models for five epochs. However,
we use the number of epochs that gives the best
performance on the validation set, given in Table 6.
The motivation is to have a fair comparison by ne-
glecting the positive effect of having more training
data, since more number of instances means more
number of steps. We observe that using smaller
number of instances (e.g. 20% of data size) needs
more epochs to converge, compared to larger data.

The results for overall detection performance are
given in Figure 1la. We observe that the perfor-
mance slightly improves as training data increases
in both English and Turkish. We also investigate
the scalability performance of individual classes in
Figure 1b for English, and Figure 1c for Turkish.

For English, normal tweets are the best predicted,
while hate tweets are the worst predicted class. In-
terestingly, the performance of hate class improves
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Figure 1: Scalability analysis for hate speech detection.

Lang./Ratio 20% 40% 60% 80% 100% Data Model Acc. Prec. Recall F1
EN 350 230 220 190  2.08 Raw text 0.808 0.679 0.808  0.732
TR 390 370 333 228 2.52 EN w/o URL 0.808 0.680 0.808 0.733
w/o Hashtags 0.807 0.679 0.807 0.732
Table 6: Number of epochs when the best model is w/o Emoji 0.809 0.681 0.809 0.734
obtained on validation set for scalability. Maximum wilo All 0808 0.679 0.808 0.732
. Raw text 0.767 0.606 0.767 0.673
epochs is set to 3. g WoURL 0.767 0.606 0.767  0.673
w/o Hashtags 0.763 0.601  0.763  0.668
w/o Emoji 0.766  0.605 0.766  0.672
w/o All 0.763 0.601 0.763  0.668

significantly as training data increases. Normal
and offensive tweets exhibit a slightly increasing
pattern. This result emphasizes the importance of
the data size in hate speech detection. Given that
the main bottleneck in hate speech detection task
is misprediction of hate speech rather than normal
tweets, using higher number of data instances has
significant effect on hate speech detection perfor-
mance. On the other hand, the performance of all
classes slightly increase in Turkish. Hate tweets
are better predicted compared to offensive tweets,
showing that language is important to detect hate
speech. A reason could be the different speech
patterns in different languages. Note that the num-
ber of hate tweets in Turkish is larger than those
of English, however the performance of English is
still worse than Turkish when similar number of
training instances are considered (e.g. hate score
of ratio 100% in Figure 1b is still worse than the
score of 20% in Figure 1¢). Overall, collecting hate
speech data in large scale contributes to model per-
formance, but not with a substantial degree. How-
ever, the best improvement by increasing the train
size is observed for the hate class in English.

5.2 Ablation Study

To assess the effect of tweet-specific components
on the performance of hate speech detection, we
remove each component from tweets, and re-run

Table 7: The ablation study: Effect of tweet-specific
components. The average of 10-fold cross-validation
is reported. Highest scores are given in bold.

BERT for English, and BERTurk for Turkish.
Tweet-specific components are URLs, hashtags,
and emoji symbols. Table 7 reports the experi-
mental results of the ablation study. The results
show that removing tweet-specific components has
almost no effect on the performance in English.
Similar observation is valid for Turkish, but using
hashtags has a slight performance improvement.

6 Conclusion

We construct large-scale datasets for hate speech
detection in English and Turkish to analyze the per-
formances of state-of-the-art models. With the help
of such available data, we also analyze model scal-
ability. We design our datasets to have equal size
of instances for each of five hatred domains; so that
we report zero-shot cross-domain transfer results in
hate speech detection. Future work would focus on
a detailed error analysis of hate speech detection.
The scalability results are limited to Transformer-
based language models, one can further analyze
other models. The generalization capability of ha-
tred domains can be examined in other languages.
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