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Abstract

Mixed Integer Programming (MIP) has been ex-
tensively applied to areas requiring mathemati-
cal solvers to address complex instances within
tight time constraints. However, as the problem
scale increases, the complexity of model formu-
lation and finding feasible solutions escalates
significantly. Beneficial from outstanding text
generation capacity of Large Language Mod-
els (LLMs), building and solving industrial-
level instances becomes insensitive to problem
scale. While LLLMs, like GPT-4, can handle
some traditional medium-scale MIP problems,
they struggle with uncommon or highly spe-
cialized MIP scenarios. Fine-tuning LLMs can
yield some feasible solutions for medium-scale
MIP instances, but these models typically fail
to explore diverse solutions when constrained
by a low and constant temperature. In this pa-
per, we propose and evaluate a recursively dy-
namic temperature method integrated with a
chain-of-thought approach to exploit a large
feasible region. Our findings show that starting
with a high temperature and gradually lowering
it leads to better feasible solutions compared
to other dynamic temperature strategies. Ad-
ditionally, by comparing results generated by
the LLM with those from Gurobi, we demon-
strate that the LLM can produce solutions that
complement traditional solvers by accelerating
the pruning process and improving overall effi-
ciency.

1 Introduction

Mixed Integer Programming (MIP) is a fundamen-
tal tool in many optimization domains, such as the
Traveling Salesman Problem (TSP) (Laporte, 1992)
and facility location planning (Klose and DrexI,
2005). MIP also plays a particularly critical role in
time-sensitive applications like transportation and
network scheduling (He et al., 2018), where find-
ing a feasible solution within a short time frame
is essential to maintaining system operability and
avoiding downtime.

The traditional approach to solve MIP problems
is the branch-and-bound (B&B) algorithm(Lawler
and Wood, 1966). While this method guarantees
to find the optimal solution for a given instance,
the efficiency of mathematical solvers that use such
method like Gurobi(Achterberg, 2019) diminishes
as the problem scale increases (Jablonsky et al.,
2015). Moreover, the complexity of model formu-
lation grows significantly with the dimensionality
of the problem. For example, the growth rate of the
complexity of a 3D bin-packing problem (Martello
et al., 2000) is considerably higher than that of a
2D bin-packing problem (Johnson, 1974).

To expedite the search for optimal solutions,
mathematical solvers implement various tech-
niques such as heuristics, cutting planes, paral-
lelism, presolve(Gomory, 2010). However, despite
these advanced methods, solvers still face chal-
lenges in efficiently handling large-scale MIP prob-
lems within tight time constraints. Large language
models (LLMs), with their strong pattern recog-
nition capabilities, can achieve similar objectives
with only minimal data and modeling information.
For instance, Yang et al. (Yang et al., 2023) pio-
neered the application of Chain-of-Thought (CoT)
reasoning (Wei et al., 2022) in large language mod-
els such as GPT-3.5 (Brown, 2020) and GPT-4
(Achiam et al., 2023) to address problems like the
TSP using only the coordinates of cities, without
explicitly requiring distances between each pair of
cities. This approach reduces the time complexity
from O(n?), typically required for distance calcu-
lations in traditional mathematical solvers, offering
a more efficient solution.

However, the previous work by Yang et al. (Yang
et al., 2023) has several drawbacks. First, the in-
stance data is generated from randomly sampled
integers, which may reduce its validity as a demon-
stration of the LLMs capabilities in real-world MIP
applications. Second, the TSP is a well-known
and extensively studied problem, meaning LLMs



have been trained on similar data and the same TSP
model numerous times. In our experiments, we ob-
served that LL.Ms often struggle with complicated
mathematic models and frequently fail to grasp the
MIP modeling process. These factors raise con-
cerns about the robustness of LLMs in real-world
applications.

Our work focuses on how to integrate LLMs into
real-world applications. To demonstrate the gen-
eralizability of LLMs in real-world scenarios, we
developed a fine-grained simulator and utilized the
operational dataset provided by DiDi in November
2016(Yao et al., 2018) to simulate the passenger-
driver matching process in the ride-pooling market
using MIP. Our work is divided into three main
components: (1) We construct a carpooling MIP
model based on real-world data while capturing
and storing vehicle locations, order locations, MIP
instances, and intermediate feasible solution sta-
tuses for future training purposes. (2) Leveraging
the pattern recognition capabilities of LLMs and
CoT reasoning, we generate prompts using only
abstract information from the carpooling dataset,
bypassing the need to compute MIP parameters,
like the distance between the vehicle and the user’s
order, explicitly. We then perform supervised fine-
tuning on LLaMA 3.1 (8B) (Dubey et al., 2024) to
discover better feasible solutions, comparing these
with the top three feasible solutions generated by
traditional mathematical solvers. The results from
LLM can be used to accelerate the pruning process
in conventional mathematical solvers. (3) We em-
ploy recursive dynamic temperature adjustments to
refine the quality of feasible solutions generated by
the LLM. Through a strategy of starting at a higher
temperature and gradually reducing it, we observe
significant improvements in solution quality. By
systematically evaluating performance under vari-
ous temperature schedules, we identify the highly
effective strategy for enhancing the effectiveness
and consistency of the solutions produced.

2 Related Work

MIP plays a crucial role in combinatorial optimiza-
tion, with applications in planning(Klose and Drexl,
2005), scheduling(Xiong et al., 2022), and rout-
ing(Braekers et al., 2016). Traditional methods like
B&B (Lawler and Wood, 1966) have been widely
used to solve MIP problems. However, these meth-
ods can be computationally intensive, leading to
growing interest in enhancing MIP solvers with
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Figure 1: The time cost of building the model increases
significantly as the problem scale grows. This trend
illustrates the growing computational complexity asso-
ciated with larger problem instances.

machine learning (ML) and LLMs.

Recent works integrating ML with MIP can be
categorized into two main approaches (Zhang et al.,
2023): exact algorithms and heuristic algorithms.
For exact methods like B&B, ML models have
been used to optimize branching variable selection
and node selection, significantly improving solu-
tion efficiency (Gasse et al., 2019) (Khalil et al.,
2016). On the heuristic side, techniques like Large
Neighborhood Search and Feasibility Pump have
benefited from ML integration, leading to higher so-
lution quality and computational efficiency (Song
et al., 2020) (Qi et al., 2021). Additionally, Graph
Neural Networks have been leveraged to represent
MIP instances, enhancing decision-making pro-
cesses like branching and node selection (Gasse
et al., 2019). Reinforcement learning is also in-
creasingly applied in both exact and heuristic meth-
ods to support adaptive decision-making within the
B&B framework (Tang et al., 2020).

With the advent of LLMs and the rise of Al
agents, more research has focused on translating
natural language into operations research problems
(Xiao et al., 2023; AhmadiTeshnizi et al., 2023;
Wang et al., 2024). Although zero-shot learning
typically performs poorly on complex problems,
LLMs have significant potential, and their perfor-
mance can be improved through techniques like the
chain of thought (Wei et al., 2022), tree of thought
(Yao et al., 2023), and self-consistency (Wang et al.,
2022). Yang et al.’s work (Yang et al., 2023) uti-
lizes models like PaLM (Chowdhery et al., 2023)
and GPT-4 (Achiam et al., 2023) to tackle linear re-
gression and the TSP with CoT reasoning, demon-
strating success on small-scale problems. Our work
fine-tunes the LLaMA 3.1 (8§B) model (Dubey et al.,



2024) using both model information and real MIP
instance data capable of generating feasible solu-
tions, and proposes an adaptive temperature strat-
egy that iteratively enhances LLM performance,
leading to the generation of even more optimized
feasible solutions.

3 Method

Given that LLMs have been trained on numerous
traditional MIP problems, such as the TSP (La-
porte, 1992), and considering the limitations in
the generalizability of previous work due to the
use of non-real-world data, we aim to assess the
potential of LLMs in MIP under real-world condi-
tions. To achieve this, we construct a carpooling
MIP model and develop a simulator to replicate
the vehicle dispatching process. The DiDi oper-
ational dataset (Yao et al., 2018), which consists
of the location and time of orders from Novem-
ber 2016, serves as the foundation for generating
real-world data in this study. The input is a long
text containing information about the locations of
orders and the positions of various categories of
vehicles, while the output is feasible solutions for
dispatching these vehicles to different users.

3.1 Problem Statement

There are two types of vehicles: (1) empty vehicles
and (2) vehicles with one passenger. Additionally,
we assume that each order is associated with a sin-
gle customer and that a vehicle can accommodate
at most two passengers at a time. Our goal is to
minimize the total distance traveled for picking up
customers, subject to the above constraints. The de-
tailed method for calculating the distance in various
scenarios is provided in Appendix 6.2.

The notation is as follows:
- 74; is a decision variable indicating whether empty
car 7 is assigned to user j.
- Yijk 1s a decision variable indicating whether
empty car ¢ is assigned to pick up user j and then
user k.
- z;j 18 a decision variable indicating whether car 1
with one passenger willing to share is assigned to
user j.
- d;; 1s the distance between vehicle 7 and user j.
- d;. ;. 1s the distance between user j and user k.
- dg’] is the distance between vehicle 7 (with one
order) and user j.
- m is the number of empty vehicles.
- n is the number of vehicles with one order.

- p is the number of orders.

1. Objective Function

The objective is to minimize the total distance be-
tween vehicles and passengers across all segments
of the vehicle paths:
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2. Constraints
Order Coverage: Each user is assigned to exactly
one vehicle:

S wmi+Y > Wigktyin)+Y 2w =1,V
;
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Vehicle Capacity for Empty Vehicles: Each
empty vehicle picks up at most two people:

D@+ D Yk S L Vi
J J k#j

Vehicle Capacity for Shared Rides: Each vehi-

cle with one passenger picks up at most one more

person:
Zzij S 1, Vi
J

Binary Variable Constraints:
Tijs Yijks Rij € {0, 1}, A i,j, k

3. Analysis of the Constraint Matrix
As discussed in the previous constraints part, Fig-
ure 1 illustrates the relationship between the model-
building time and the number of sets. The shape of
the constraint matrix is given by:

(m+n+p, m-p+m-p>+n-p)

The complexity of the constraint matrix in-
creases significantly as the size of the set grows,
resulting in a very high level of computational com-
plexity. This makes it infeasible to solve the prob-
lem instantly if the size of the set increases signifi-
cantly.

3.2 Data Collection and Prompt Generation

Prior to fine-tuning the LLMs, we first identify the
positions of the orders and the various types of
vehicles. The next step is to generate the labels,
which consist of the intermediate feasible solution
and the optimal solution for this MIP instance.

/
ij
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Figure 2: Workflow of training and inference, show-
ing the recursive approach where the temperature starts
high to explore a broad solution space and gradually
decreases to refine and improve solution quality.
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3.2.1 Data Storage

When the simulator constructs and solves the MIP
instances using the Gurobi (Achterberg, 2019)
solver, we capture several critical pieces of infor-
mation that include (1) the location of every vehicle
and order, (2) the status of intermediate feasible
solutions, and (3) the optimal solution.

3.2.2 Prompt Generation

Following the collection of raw and intermediate
data, we compile the LaTeX code for the mathe-
matical model-building process, the details of each
vehicle and order scenario, and both feasible and
optimal solutions into a text format, as presented
in Appendix 6.1. This information is then used to
generate the desired prompt for subsequent training
and inference processes.

3.3 Recursive CoT with dynamic temperature

Since LLMs, after fine-tuning, exhibit a strong
ability to grasp problem patterns, they often pro-
duce the same feasible solution at lower temper-
atures—even when the prompt suggests that this
solution isn’t optimal. Despite recursive adjust-
ments from lower temperatures to higher tempera-
tures intended to explore a broader solution space,
LLMs may still become trapped in the previous bad
solutions. Thus, a temperature strategy is needed
to effectively explore diverse possibilities and en-
hance solution quality.

To address this, we employ a recursive approach
with dynamic temperature to leverage CoT effec-
tively. Our strategy involves initially generating
feasible solutions with a high temperature to ex-
plore a broader solution space. We then iteratively
refine these solutions by gradually lowering the
temperature. This dynamic temperature adjustment
begins with a high temperature to facilitate explo-
ration and progressively decreases to a low tem-
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Figure 3: The gap, defined as the difference between the
feasible and optimal solution, shows that a larger gap
means worse performance. After fine-tuning, LLaMA
3.1 8B generates feasible solutions with a smaller gap
than solver’s first three solutions, especially as MIP
instance scale grows.

perature to focus on refinement. This balanced
approach helps us improve solution diversity and
quality, ultimately leading to better feasible solu-
tions. Figure 2 illustrates the entire workflow of
training and inference.

4 Experiment

Using LLMs to retrieve the exact optimal solution
for medium and large-scale MIP instances is cur-
rently impractical. However, due to their strong pat-
tern recognition capabilities, fine-tuned LLLMs can
provide satisfactory feasible solutions that serve as
upper bounds for minimization problems.

We aim to explore the potential of LLMs in this
context. If LLMs can provide satisfactory feasible
solutions during the model-building process, or if
traditional solvers like Gurobi face challenges in
finding feasible solutions for large-scale instances,
these LLM-generated solutions could serve as valu-
able upper bounds to accelerate the pruning process.
By comparing the solutions generated by LLMs
with the top three feasible solutions produced by
traditional mathematical solvers, we can potentially
leverage LLM-generated solutions to enhance prun-
ing strategies and improve overall solver efficiency.

4.1 Comparision with Mathematical Solvers

We fine-tune the LLaMA-3.1-8B model for the
following experiment and split 10% of the total
instances in the generated dataset, which contains
12,500 MIP instances, as our test dataset.

We compare the best feasible solution obtained
from the LLM using three recursive calls, where
the temperature gradually decreases from 1 to 0.1



to 0.01, against the first three feasible solutions gen-
erated by GUROBI (Achterberg, 2019), CPLEX
(Manual, 1987), and COPT (Ge et al., 2022) to
evaluate which approach achieves a smaller gap.
The gap is calculated using the formula:

current objective value — optimal value

Bap = current objective value

Figure 3 illustrates the relationship between the
scale of the MIP instance and the gap observed
from LLMs, GUROBI, CPLEX, and COPT. The
fine-tuned LLaMA-3.1-8B model is able to gener-
ate feasible solutions that are much closer to the
optimal solution compared to the first three feasi-
ble solutions generated by traditional mathematical
solvers.

4.2 Ablation

To demonstrate the effectiveness of the temperature
adjustment strategy from higher to lower in enhanc-
ing the performance of our fine-tuned LLaMA-3.1-
8B model, we conduct a comparison across several
scenarios. These include cases (1) where the tem-
perature initially rises from 0.01 to 1 and then falls
back to 0.01 recursively, (2) where the temperature
remains constant at 0.01 during recursive calls, (3)
where a single temperature setting of 0.01 is used,
and (4) where the temperature progressively rises
from 0.01 to 0.1 to 1 with each recursion. This
comparative analysis highlights the impact of each
strategy on the model’s ability to generate optimal
feasible solutions.

The comparison results for medium-scale MIP
instances are shown in Figure 4. The solution qual-
ity score represents the percentage of feasible solu-
tions generated by LL.Ms that have a smaller gap
compared to the Gurobi solver. The average score
in the test dataset is illustrated in Table 1. The opti-
mal approach involves using a high temperature to
encourage LLMs to explore a broader range of pos-
sibilities, which helps prevent them from getting
trapped in specific nodes. Subsequently, lowering
the temperature exploits and refines the better re-
sults, allowing for improved solution quality.

5 Conclusion

Our study evaluates the potential of LLMs to ad-
dress unknown MIP models and uses the carpool-
ing dispatch case to demonstrate how LLMs can
enhance efficiency in finding better feasible solu-
tions. This, in turn, can expedite traditional math-
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Figure 4: The solution quality score represents the per-
centage of feasible solutions generated by LLMs that
have a smaller gap compared to the Gurobi solver, which
shows a larger score means better performance.

Table 1: Average Scores for Different Temperature
Strategies

Strategy Average Score
Single Temperature Call 0.560
Constant Temperature 0.732
Temperature Rise Then Fall 0.756
Temperature Rise 0.813
Temperature Fall 0.840

ematical solvers’ processes by pruning unneces-
sary nodes. We also examine the effectiveness
of various temperature management strategies for
fine-tuned LLama-3.1-8B in solving medium-scale
MIP instances. The comparison results reveal that
different temperature management approaches sig-
nificantly influence the quality of feasible solutions
obtained by the model. Starting with a high temper-
ature to explore more nodes and then exploiting bet-
ter solutions by gradually lowering the temperature
improves the quality of feasible solutions generated
by LLMs.
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6 Appendix

6.1 Prompt template

Prompt Template

Your task is to find the optimal solution for
a carpool dispatch problem. If you cannot
find the optimal solution, you should try
to return a better feasible solution. The
background is as follows:

Rules for vehicle-order pair:
* Each order is for one user only.
* Each car can accept up to two orders.

* There are three possible scenarios:

1. Two people simultaneously hail
a ride within a certain time range
and decide to share the ride. The
car will pick up Person A first,
then Person B, and drop off Per-
son A first, followed by Person
B.

2. A person willing to share a ride,
Person A, is already in the car,
and the car has started the trip. A
new carpool request from Person
B is received. The car will go
from its current location to pick
up Person B, drop off Person A,
and finally drop off Person B.

3. A person takes a ride from start
to finish without any carpooling.

The objective is to minimize the total
Manhattan distance between vehicles and
users, considering all segments of the
vehicle paths:

— LaTex code for building car pooling MIP
model —

You are given x and y coordinates (which
are transformed from latitude and longitude
using the Mercator projection method) for
every empty vehicle, one-person vehicle,
and user. The format is as follows:

EMPTY VEHICLES: (0) (x0, y0), (1) (x1,
y1) ... # Use "\n" if no vehicles.
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ONE ORDER VEHICLES: (0) (x0, y0), (1)
(x1,y1) ... # Use "\n" if no one-order vehi-
cles.

USERS: (0) (x0, y0), (1) (x1, y1) ... # Use
"\n" if no users.

After transforming the latitude and lon-
gitude into x and y, it’s much easier to
calculate the Manhattan distance between
two places. The Manhattan distance
between (x0, y0) and (x1, y1) = abs(x1-x0)
+ abs(y1-y0)

EMPTY VEHICLES: (0) (86.97, 35.86), (1)
(85.23, 36.74), (2) (95.62, 28.43),

ONE ORDER VEHICLES: (0) (90.55,
35.17), (1) (101.43, 44.49), (2) (100.56,
44.77),

USERS: (0) (90.33, 35.82), (1) (97.04,
41.87), (2) (100.91, 42.75),

Below are some previous solutions. You
can derive the optimal solution straightfor-
wardly or derive the intermediate feasible
solution step by step.

The term "gap" refers to the difference
between the best-known solution and the
best possible solution (optimal solution)
within a given tolerance. The smaller the
gap, the better the feasible solution. The
format of previous solutions is:

x: (EMPTY_0, USER_5) (EMPTY_2,
USER_3)... # Car whose index is
"EMPTY_0’ is assigned to user whose index
is "USER_5’, and so on.

y:  (EMPTY_1, USER_1, USER_0)
(EMPTY_3, USER_10, USER_9)... # Car
whose index is 'TEMPTY_1’ picks up user
whose index is "USER_1°, then user whose
index is "USER_0’, and so on.

zZ: (ONE_REQUEST_0, USER_6),
(ONE_REQUEST_1, USER_7)... # Car
whose index is 'ONE_REQUEST_0’ with
one existing passenger picks up user whose
index is "USER_6’, and so on.

The x line is "\n" if no one is assigned to a
car alone.

The y line is "\n" if no two people are as-
signed to share a car.

The z line is "\n" if no one is assigned to a
car with one existing passenger.

(—-more exemplars

-)

6.2 The Method for Calculating Distance

Considering the high computational cost and im-
practicality of using Dijkstra’s algorithm to calcu-
late distances for each instance, we simplify the
model by calculating Manhattan distances when
formulating the MIP. However, in the simulation
process, Dijkstra’s algorithm is employed to simu-
late vehicle movement.
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