
Leveraging Large Language Models for Solving Rare MIP Challenges

Anonymous ACL submission

Abstract

Mixed Integer Programming (MIP) has been ex-001
tensively applied to areas requiring mathemati-002
cal solvers to address complex instances within003
tight time constraints. However, as the problem004
scale increases, the complexity of model formu-005
lation and finding feasible solutions escalates006
significantly. Beneficial from outstanding text007
generation capacity of Large Language Mod-008
els (LLMs), building and solving industrial-009
level instances becomes insensitive to problem010
scale. While LLMs, like GPT-4, can handle011
some traditional medium-scale MIP problems,012
they struggle with uncommon or highly spe-013
cialized MIP scenarios. Fine-tuning LLMs can014
yield some feasible solutions for medium-scale015
MIP instances, but these models typically fail016
to explore diverse solutions when constrained017
by a low and constant temperature. In this pa-018
per, we propose and evaluate a recursively dy-019
namic temperature method integrated with a020
chain-of-thought approach to exploit a large021
feasible region. Our findings show that starting022
with a high temperature and gradually lowering023
it leads to better feasible solutions compared024
to other dynamic temperature strategies. Ad-025
ditionally, by comparing results generated by026
the LLM with those from Gurobi, we demon-027
strate that the LLM can produce solutions that028
complement traditional solvers by accelerating029
the pruning process and improving overall effi-030
ciency.031

1 Introduction032

Mixed Integer Programming (MIP) is a fundamen-033

tal tool in many optimization domains, such as the034

Traveling Salesman Problem (TSP) (Laporte, 1992)035

and facility location planning (Klose and Drexl,036

2005). MIP also plays a particularly critical role in037

time-sensitive applications like transportation and038

network scheduling (He et al., 2018), where find-039

ing a feasible solution within a short time frame040

is essential to maintaining system operability and041

avoiding downtime.042

The traditional approach to solve MIP problems 043

is the branch-and-bound (B&B) algorithm(Lawler 044

and Wood, 1966). While this method guarantees 045

to find the optimal solution for a given instance, 046

the efficiency of mathematical solvers that use such 047

method like Gurobi(Achterberg, 2019) diminishes 048

as the problem scale increases (Jablonskỳ et al., 049

2015). Moreover, the complexity of model formu- 050

lation grows significantly with the dimensionality 051

of the problem. For example, the growth rate of the 052

complexity of a 3D bin-packing problem (Martello 053

et al., 2000) is considerably higher than that of a 054

2D bin-packing problem (Johnson, 1974). 055

To expedite the search for optimal solutions, 056

mathematical solvers implement various tech- 057

niques such as heuristics, cutting planes, paral- 058

lelism, presolve(Gomory, 2010). However, despite 059

these advanced methods, solvers still face chal- 060

lenges in efficiently handling large-scale MIP prob- 061

lems within tight time constraints. Large language 062

models (LLMs), with their strong pattern recog- 063

nition capabilities, can achieve similar objectives 064

with only minimal data and modeling information. 065

For instance, Yang et al. (Yang et al., 2023) pio- 066

neered the application of Chain-of-Thought (CoT) 067

reasoning (Wei et al., 2022) in large language mod- 068

els such as GPT-3.5 (Brown, 2020) and GPT-4 069

(Achiam et al., 2023) to address problems like the 070

TSP using only the coordinates of cities, without 071

explicitly requiring distances between each pair of 072

cities. This approach reduces the time complexity 073

from O(n2), typically required for distance calcu- 074

lations in traditional mathematical solvers, offering 075

a more efficient solution. 076

However, the previous work by Yang et al. (Yang 077

et al., 2023) has several drawbacks. First, the in- 078

stance data is generated from randomly sampled 079

integers, which may reduce its validity as a demon- 080

stration of the LLMs capabilities in real-world MIP 081

applications. Second, the TSP is a well-known 082

and extensively studied problem, meaning LLMs 083

1

have been trained on similar data and the same TSP084

model numerous times. In our experiments, we ob-085

served that LLMs often struggle with complicated086

mathematic models and frequently fail to grasp the087

MIP modeling process. These factors raise con-088

cerns about the robustness of LLMs in real-world089

applications.090

Our work focuses on how to integrate LLMs into091

real-world applications. To demonstrate the gen-092

eralizability of LLMs in real-world scenarios, we093

developed a fine-grained simulator and utilized the094

operational dataset provided by DiDi in November095

2016(Yao et al., 2018) to simulate the passenger-096

driver matching process in the ride-pooling market097

using MIP. Our work is divided into three main098

components: (1) We construct a carpooling MIP099

model based on real-world data while capturing100

and storing vehicle locations, order locations, MIP101

instances, and intermediate feasible solution sta-102

tuses for future training purposes. (2) Leveraging103

the pattern recognition capabilities of LLMs and104

CoT reasoning, we generate prompts using only105

abstract information from the carpooling dataset,106

bypassing the need to compute MIP parameters,107

like the distance between the vehicle and the user’s108

order, explicitly. We then perform supervised fine-109

tuning on LLaMA 3.1 (8B) (Dubey et al., 2024) to110

discover better feasible solutions, comparing these111

with the top three feasible solutions generated by112

traditional mathematical solvers. The results from113

LLM can be used to accelerate the pruning process114

in conventional mathematical solvers. (3) We em-115

ploy recursive dynamic temperature adjustments to116

refine the quality of feasible solutions generated by117

the LLM. Through a strategy of starting at a higher118

temperature and gradually reducing it, we observe119

significant improvements in solution quality. By120

systematically evaluating performance under vari-121

ous temperature schedules, we identify the highly122

effective strategy for enhancing the effectiveness123

and consistency of the solutions produced.124

2 Related Work125

MIP plays a crucial role in combinatorial optimiza-126

tion, with applications in planning(Klose and Drexl,127

2005), scheduling(Xiong et al., 2022), and rout-128

ing(Braekers et al., 2016). Traditional methods like129

B&B (Lawler and Wood, 1966) have been widely130

used to solve MIP problems. However, these meth-131

ods can be computationally intensive, leading to132

growing interest in enhancing MIP solvers with133

Figure 1: The time cost of building the model increases
significantly as the problem scale grows. This trend
illustrates the growing computational complexity asso-
ciated with larger problem instances.

machine learning (ML) and LLMs. 134

Recent works integrating ML with MIP can be 135

categorized into two main approaches (Zhang et al., 136

2023): exact algorithms and heuristic algorithms. 137

For exact methods like B&B, ML models have 138

been used to optimize branching variable selection 139

and node selection, significantly improving solu- 140

tion efficiency (Gasse et al., 2019) (Khalil et al., 141

2016). On the heuristic side, techniques like Large 142

Neighborhood Search and Feasibility Pump have 143

benefited from ML integration, leading to higher so- 144

lution quality and computational efficiency (Song 145

et al., 2020) (Qi et al., 2021). Additionally, Graph 146

Neural Networks have been leveraged to represent 147

MIP instances, enhancing decision-making pro- 148

cesses like branching and node selection (Gasse 149

et al., 2019). Reinforcement learning is also in- 150

creasingly applied in both exact and heuristic meth- 151

ods to support adaptive decision-making within the 152

B&B framework (Tang et al., 2020). 153

With the advent of LLMs and the rise of AI 154

agents, more research has focused on translating 155

natural language into operations research problems 156

(Xiao et al., 2023; AhmadiTeshnizi et al., 2023; 157

Wang et al., 2024). Although zero-shot learning 158

typically performs poorly on complex problems, 159

LLMs have significant potential, and their perfor- 160

mance can be improved through techniques like the 161

chain of thought (Wei et al., 2022), tree of thought 162

(Yao et al., 2023), and self-consistency (Wang et al., 163

2022). Yang et al.’s work (Yang et al., 2023) uti- 164

lizes models like PaLM (Chowdhery et al., 2023) 165

and GPT-4 (Achiam et al., 2023) to tackle linear re- 166

gression and the TSP with CoT reasoning, demon- 167

strating success on small-scale problems. Our work 168

fine-tunes the LLaMA 3.1 (8B) model (Dubey et al., 169

2

2024) using both model information and real MIP170

instance data capable of generating feasible solu-171

tions, and proposes an adaptive temperature strat-172

egy that iteratively enhances LLM performance,173

leading to the generation of even more optimized174

feasible solutions.175

3 Method176

Given that LLMs have been trained on numerous177

traditional MIP problems, such as the TSP (La-178

porte, 1992), and considering the limitations in179

the generalizability of previous work due to the180

use of non-real-world data, we aim to assess the181

potential of LLMs in MIP under real-world condi-182

tions. To achieve this, we construct a carpooling183

MIP model and develop a simulator to replicate184

the vehicle dispatching process. The DiDi oper-185

ational dataset (Yao et al., 2018), which consists186

of the location and time of orders from Novem-187

ber 2016, serves as the foundation for generating188

real-world data in this study. The input is a long189

text containing information about the locations of190

orders and the positions of various categories of191

vehicles, while the output is feasible solutions for192

dispatching these vehicles to different users.193

3.1 Problem Statement194

There are two types of vehicles: (1) empty vehicles195

and (2) vehicles with one passenger. Additionally,196

we assume that each order is associated with a sin-197

gle customer and that a vehicle can accommodate198

at most two passengers at a time. Our goal is to199

minimize the total distance traveled for picking up200

customers, subject to the above constraints. The de-201

tailed method for calculating the distance in various202

scenarios is provided in Appendix 6.2.203

The notation is as follows:204

- xij is a decision variable indicating whether empty205

car i is assigned to user j.206

- yijk is a decision variable indicating whether207

empty car i is assigned to pick up user j and then208

user k.209

- zij is a decision variable indicating whether car i210

with one passenger willing to share is assigned to211

user j.212

- dij is the distance between vehicle i and user j.213

- d′jk is the distance between user j and user k.214

- d′′ij is the distance between vehicle i (with one215

order) and user j.216

- m is the number of empty vehicles.217

- n is the number of vehicles with one order.218

- p is the number of orders. 219

1. Objective Function 220

The objective is to minimize the total distance be-
tween vehicles and passengers across all segments
of the vehicle paths:

min

n1∑
i=1

m∑
j=1

xij ·dij+
n1∑
i=1

m∑
j=1

m∑
k=1,k ̸=j

yijk·(dij+d′jk)+

n2∑
i=1

m∑
j=1

zij ·d′′ij

2. Constraints 221

Order Coverage: Each user is assigned to exactly 222

one vehicle: 223∑
i

xij+
∑
i

∑
k,j ̸=k

(yijk+yikj)+
∑
i′

zi′,j = 1, ∀ j 224

Vehicle Capacity for Empty Vehicles: Each 225

empty vehicle picks up at most two people: 226∑
j

xij +
∑
j

∑
k ̸=j

yijk ≤ 1, ∀ i 227

Vehicle Capacity for Shared Rides: Each vehi- 228

cle with one passenger picks up at most one more 229

person: 230∑
j

zij ≤ 1, ∀ i 231

Binary Variable Constraints: 232

xij , yijk, zi,j ∈ {0, 1}, ∀ i, j, k 233

3. Analysis of the Constraint Matrix 234

As discussed in the previous constraints part, Fig- 235

ure 1 illustrates the relationship between the model- 236

building time and the number of sets. The shape of 237

the constraint matrix is given by: 238

(m+ n+ p, m · p+m · p2 + n · p) 239

240

The complexity of the constraint matrix in- 241

creases significantly as the size of the set grows, 242

resulting in a very high level of computational com- 243

plexity. This makes it infeasible to solve the prob- 244

lem instantly if the size of the set increases signifi- 245

cantly. 246

3.2 Data Collection and Prompt Generation 247

Prior to fine-tuning the LLMs, we first identify the 248

positions of the orders and the various types of 249

vehicles. The next step is to generate the labels, 250

which consist of the intermediate feasible solution 251

and the optimal solution for this MIP instance. 252

3

Figure 2: Workflow of training and inference, show-
ing the recursive approach where the temperature starts
high to explore a broad solution space and gradually
decreases to refine and improve solution quality.

3.2.1 Data Storage253

When the simulator constructs and solves the MIP254

instances using the Gurobi (Achterberg, 2019)255

solver, we capture several critical pieces of infor-256

mation that include (1) the location of every vehicle257

and order, (2) the status of intermediate feasible258

solutions, and (3) the optimal solution.259

3.2.2 Prompt Generation260

Following the collection of raw and intermediate261

data, we compile the LaTeX code for the mathe-262

matical model-building process, the details of each263

vehicle and order scenario, and both feasible and264

optimal solutions into a text format, as presented265

in Appendix 6.1. This information is then used to266

generate the desired prompt for subsequent training267

and inference processes.268

3.3 Recursive CoT with dynamic temperature269

Since LLMs, after fine-tuning, exhibit a strong270

ability to grasp problem patterns, they often pro-271

duce the same feasible solution at lower temper-272

atures—even when the prompt suggests that this273

solution isn’t optimal. Despite recursive adjust-274

ments from lower temperatures to higher tempera-275

tures intended to explore a broader solution space,276

LLMs may still become trapped in the previous bad277

solutions. Thus, a temperature strategy is needed278

to effectively explore diverse possibilities and en-279

hance solution quality.280

To address this, we employ a recursive approach281

with dynamic temperature to leverage CoT effec-282

tively. Our strategy involves initially generating283

feasible solutions with a high temperature to ex-284

plore a broader solution space. We then iteratively285

refine these solutions by gradually lowering the286

temperature. This dynamic temperature adjustment287

begins with a high temperature to facilitate explo-288

ration and progressively decreases to a low tem-289

Figure 3: The gap, defined as the difference between the
feasible and optimal solution, shows that a larger gap
means worse performance. After fine-tuning, LLaMA
3.1 8B generates feasible solutions with a smaller gap
than solver’s first three solutions, especially as MIP
instance scale grows.

perature to focus on refinement. This balanced 290

approach helps us improve solution diversity and 291

quality, ultimately leading to better feasible solu- 292

tions. Figure 2 illustrates the entire workflow of 293

training and inference. 294

4 Experiment 295

Using LLMs to retrieve the exact optimal solution 296

for medium and large-scale MIP instances is cur- 297

rently impractical. However, due to their strong pat- 298

tern recognition capabilities, fine-tuned LLMs can 299

provide satisfactory feasible solutions that serve as 300

upper bounds for minimization problems. 301

We aim to explore the potential of LLMs in this 302

context. If LLMs can provide satisfactory feasible 303

solutions during the model-building process, or if 304

traditional solvers like Gurobi face challenges in 305

finding feasible solutions for large-scale instances, 306

these LLM-generated solutions could serve as valu- 307

able upper bounds to accelerate the pruning process. 308

By comparing the solutions generated by LLMs 309

with the top three feasible solutions produced by 310

traditional mathematical solvers, we can potentially 311

leverage LLM-generated solutions to enhance prun- 312

ing strategies and improve overall solver efficiency. 313

4.1 Comparision with Mathematical Solvers 314

We fine-tune the LLaMA-3.1-8B model for the 315

following experiment and split 10% of the total 316

instances in the generated dataset, which contains 317

12,500 MIP instances, as our test dataset. 318

We compare the best feasible solution obtained 319

from the LLM using three recursive calls, where 320

the temperature gradually decreases from 1 to 0.1 321

4

to 0.01, against the first three feasible solutions gen-322

erated by GUROBI (Achterberg, 2019), CPLEX323

(Manual, 1987), and COPT (Ge et al., 2022) to324

evaluate which approach achieves a smaller gap.325

The gap is calculated using the formula:326

gap =
current objective value − optimal value

current objective value
327

Figure 3 illustrates the relationship between the328

scale of the MIP instance and the gap observed329

from LLMs, GUROBI, CPLEX, and COPT. The330

fine-tuned LLaMA-3.1-8B model is able to gener-331

ate feasible solutions that are much closer to the332

optimal solution compared to the first three feasi-333

ble solutions generated by traditional mathematical334

solvers.335

4.2 Ablation336

To demonstrate the effectiveness of the temperature337

adjustment strategy from higher to lower in enhanc-338

ing the performance of our fine-tuned LLaMA-3.1-339

8B model, we conduct a comparison across several340

scenarios. These include cases (1) where the tem-341

perature initially rises from 0.01 to 1 and then falls342

back to 0.01 recursively, (2) where the temperature343

remains constant at 0.01 during recursive calls, (3)344

where a single temperature setting of 0.01 is used,345

and (4) where the temperature progressively rises346

from 0.01 to 0.1 to 1 with each recursion. This347

comparative analysis highlights the impact of each348

strategy on the model’s ability to generate optimal349

feasible solutions.350

The comparison results for medium-scale MIP351

instances are shown in Figure 4. The solution qual-352

ity score represents the percentage of feasible solu-353

tions generated by LLMs that have a smaller gap354

compared to the Gurobi solver. The average score355

in the test dataset is illustrated in Table 1. The opti-356

mal approach involves using a high temperature to357

encourage LLMs to explore a broader range of pos-358

sibilities, which helps prevent them from getting359

trapped in specific nodes. Subsequently, lowering360

the temperature exploits and refines the better re-361

sults, allowing for improved solution quality.362

5 Conclusion363

Our study evaluates the potential of LLMs to ad-364

dress unknown MIP models and uses the carpool-365

ing dispatch case to demonstrate how LLMs can366

enhance efficiency in finding better feasible solu-367

tions. This, in turn, can expedite traditional math-368

Figure 4: The solution quality score represents the per-
centage of feasible solutions generated by LLMs that
have a smaller gap compared to the Gurobi solver, which
shows a larger score means better performance.

Table 1: Average Scores for Different Temperature
Strategies

Strategy Average Score
Single Temperature Call 0.560
Constant Temperature 0.732

Temperature Rise Then Fall 0.756
Temperature Rise 0.813
Temperature Fall 0.840

ematical solvers’ processes by pruning unneces- 369

sary nodes. We also examine the effectiveness 370

of various temperature management strategies for 371

fine-tuned LLama-3.1-8B in solving medium-scale 372

MIP instances. The comparison results reveal that 373

different temperature management approaches sig- 374

nificantly influence the quality of feasible solutions 375

obtained by the model. Starting with a high temper- 376

ature to explore more nodes and then exploiting bet- 377

ter solutions by gradually lowering the temperature 378

improves the quality of feasible solutions generated 379

by LLMs. 380

5

References381

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama382
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,383
Diogo Almeida, Janko Altenschmidt, Sam Altman,384
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.385
arXiv preprint arXiv:2303.08774.386

Tobias Achterberg. 2019. What’s new in gurobi387
9.0. Webinar Talk url: https://www. gurobi.388
com/wp-content/uploads/2019/12/Gurobi-90-389
Overview-Webinar-Slides-1. pdf, 5(9):97–113.390

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell.391
2023. Optimus: Optimization modeling using mip392
solvers and large language models. arXiv preprint393
arXiv:2310.06116.394

Kris Braekers, Katrien Ramaekers, and Inneke395
Van Nieuwenhuyse. 2016. The vehicle routing prob-396
lem: State of the art classification and review. Com-397
puters & industrial engineering, 99:300–313.398

Tom B Brown. 2020. Language models are few-shot399
learners. arXiv preprint ArXiv:2005.14165.400

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,401
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul402
Barham, Hyung Won Chung, Charles Sutton, Sebas-403
tian Gehrmann, et al. 2023. Palm: Scaling language404
modeling with pathways. Journal of Machine Learn-405
ing Research, 24(240):1–113.406

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,407
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,408
Akhil Mathur, Alan Schelten, Amy Yang, Angela409
Fan, et al. 2024. The llama 3 herd of models. arXiv410
preprint arXiv:2407.21783.411

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent412
Charlin, and Andrea Lodi. 2019. Exact combinato-413
rial optimization with graph convolutional neural net-414
works. Advances in neural information processing415
systems, 32.416

Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and417
Yinyu Ye. 2022. Cardinal optimizer (copt) user guide.418
arXiv preprint arXiv:2208.14314.419

Ralph E Gomory. 2010. Outline of an algorithm for420
integer solutions to linear programs and an algorithm421
for the mixed integer problem. Springer.422

Fang He, Jie Yang, and Meng Li. 2018. Vehicle schedul-423
ing under stochastic trip times: An approximate dy-424
namic programming approach. Transportation Re-425
search Part C: Emerging Technologies, 96:144–159.426

Josef Jablonskỳ et al. 2015. Benchmarks for current lin-427
ear and mixed integer optimization solvers. Acta Uni-428
versitatis Agriculturae et Silviculturae Mendelianae429
Brunensis, 63(6):1923–1928.430

David S Johnson. 1974. Fast algorithms for bin packing.431
Journal of Computer and System Sciences, 8(3):272–432
314.433

Elias Khalil, Pierre Le Bodic, Le Song, George 434
Nemhauser, and Bistra Dilkina. 2016. Learning to 435
branch in mixed integer programming. In Proceed- 436
ings of the AAAI conference on artificial intelligence, 437
volume 30. 438

Andreas Klose and Andreas Drexl. 2005. Facility loca- 439
tion models for distribution system design. European 440
journal of operational research, 162(1):4–29. 441

Gilbert Laporte. 1992. The traveling salesman prob- 442
lem: An overview of exact and approximate algo- 443
rithms. European Journal of Operational Research, 444
59(2):231–247. 445

Eugene L Lawler and David E Wood. 1966. Branch- 446
and-bound methods: A survey. Operations research, 447
14(4):699–719. 448

CPLEX User’s Manual. 1987. Ibm ilog cplex optimiza- 449
tion studio. Version, 12(1987-2018):1. 450

Silvano Martello, David Pisinger, and Daniele Vigo. 451
2000. The three-dimensional bin packing problem. 452
Operations research, 48(2):256–267. 453

Meng Qi, Mengxin Wang, and Zuo-Jun Shen. 2021. 454
Smart feasibility pump: Reinforcement learning 455
for (mixed) integer programming. arXiv preprint 456
arXiv:2102.09663. 457

Jialin Song, Yisong Yue, Bistra Dilkina, et al. 2020. 458
A general large neighborhood search framework for 459
solving integer linear programs. Advances in Neural 460
Information Processing Systems, 33:20012–20023. 461

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. 2020. 462
Reinforcement learning for integer programming: 463
Learning to cut. In International conference on ma- 464
chine learning, pages 9367–9376. PMLR. 465

Teng Wang, Zhenqi He, Wing-Yin Yu, Xiaojin Fu, and 466
Xiongwei Han. 2024. large language models are 467
good multi-lingual learners : when llms meet cross- 468
lingual prompts. arXiv preprint arXiv:2409.11056. 469

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 470
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 471
Denny Zhou. 2022. Self-consistency improves chain 472
of thought reasoning in language models. arXiv 473
preprint arXiv:2203.11171. 474

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 475
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 476
et al. 2022. Chain-of-thought prompting elicits rea- 477
soning in large language models. Advances in neural 478
information processing systems, 35:24824–24837. 479

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, 480
Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu, Tao 481
Zhong, Jia Zeng, Mingli Song, et al. 2023. Chain- 482
of-experts: When llms meet complex operations re- 483
search problems. In The Twelfth International Con- 484
ference on Learning Representations. 485

6

Hegen Xiong, Shuangyuan Shi, Danni Ren, and Jinjin486
Hu. 2022. A survey of job shop scheduling problem:487
The types and models. Computers & Operations488
Research, 142:105731.489

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,490
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023.491
Large language models as optimizers. arXiv preprint492
arXiv:2309.03409.493

Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian494
Jia, Siyu Lu, Pinghua Gong, Jieping Ye, and Zhenhui495
Li. 2018. Deep multi-view spatial-temporal network496
for taxi demand prediction. In Proceedings of the497
AAAI conference on artificial intelligence, volume 32.498

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,499
Thomas L. Griffiths, Yuan Cao, and Karthik500
Narasimhan. 2023. Tree of Thoughts: Deliber-501
ate problem solving with large language models.502
Preprint, arXiv:2305.10601.503

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen,504
Mingxuan Yuan, Yawen Li, and Junchi Yan. 2023. A505
survey for solving mixed integer programming via506
machine learning. Neurocomputing, 519:205–217.507

6 Appendix 508

6.1 Prompt template 509

Prompt Template

Your task is to find the optimal solution for
a carpool dispatch problem. If you cannot
find the optimal solution, you should try
to return a better feasible solution. The
background is as follows:

Rules for vehicle-order pair:

• Each order is for one user only.

• Each car can accept up to two orders.

• There are three possible scenarios:

1. Two people simultaneously hail
a ride within a certain time range
and decide to share the ride. The
car will pick up Person A first,
then Person B, and drop off Per-
son A first, followed by Person
B.

2. A person willing to share a ride,
Person A, is already in the car,
and the car has started the trip. A
new carpool request from Person
B is received. The car will go
from its current location to pick
up Person B, drop off Person A,
and finally drop off Person B.

3. A person takes a ride from start
to finish without any carpooling.

The objective is to minimize the total
Manhattan distance between vehicles and
users, considering all segments of the
vehicle paths:

– LaTex code for building car pooling MIP
model –

You are given x and y coordinates (which
are transformed from latitude and longitude
using the Mercator projection method) for
every empty vehicle, one-person vehicle,
and user. The format is as follows:

EMPTY VEHICLES: (0) (x0, y0), (1) (x1,
y1) ... # Use "\n" if no vehicles.

510

7

https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601

ONE ORDER VEHICLES: (0) (x0, y0), (1)
(x1, y1) ... # Use "\n" if no one-order vehi-
cles.
USERS: (0) (x0, y0), (1) (x1, y1) ... # Use
"\n" if no users.

After transforming the latitude and lon-
gitude into x and y, it’s much easier to
calculate the Manhattan distance between
two places. The Manhattan distance
between (x0, y0) and (x1, y1) = abs(x1-x0)
+ abs(y1-y0)

EMPTY VEHICLES: (0) (86.97, 35.86), (1)
(85.23, 36.74), (2) (95.62, 28.43),
ONE ORDER VEHICLES: (0) (90.55,
35.17), (1) (101.43, 44.49), (2) (100.56,
44.77),
USERS: (0) (90.33, 35.82), (1) (97.04,
41.87), (2) (100.91, 42.75),

Below are some previous solutions. You
can derive the optimal solution straightfor-
wardly or derive the intermediate feasible
solution step by step.

The term "gap" refers to the difference
between the best-known solution and the
best possible solution (optimal solution)
within a given tolerance. The smaller the
gap, the better the feasible solution. The
format of previous solutions is:

x: (EMPTY_0, USER_5) (EMPTY_2,
USER_3)... # Car whose index is
’EMPTY_0’ is assigned to user whose index
is ’USER_5’, and so on.
y: (EMPTY_1, USER_1, USER_0)
(EMPTY_3, USER_10, USER_9)... # Car
whose index is ’EMPTY_1’ picks up user
whose index is ’USER_1’, then user whose
index is ’USER_0’, and so on.
z: (ONE_REQUEST_0, USER_6),
(ONE_REQUEST_1, USER_7)... # Car
whose index is ’ONE_REQUEST_0’ with
one existing passenger picks up user whose
index is ’USER_6’, and so on.

The x line is "\n" if no one is assigned to a
car alone.

511

The y line is "\n" if no two people are as-
signed to share a car.
The z line is "\n" if no one is assigned to a
car with one existing passenger.
one of solutions starts:
x: (0, 1) (1, 0)

z: (1, 2)
gap: 1.0, objective value: 24.36

one of solutions ends
(—-more exemplars ——-)

512

6.2 The Method for Calculating Distance 513

Considering the high computational cost and im- 514

practicality of using Dijkstra’s algorithm to calcu- 515

late distances for each instance, we simplify the 516

model by calculating Manhattan distances when 517

formulating the MIP. However, in the simulation 518

process, Dijkstra’s algorithm is employed to simu- 519

late vehicle movement. 520

8

	Introduction
	Related Work
	Method
	Problem Statement
	Data Collection and Prompt Generation
	Data Storage
	Prompt Generation

	Recursive CoT with dynamic temperature

	Experiment
	Comparision with Mathematical Solvers
	Ablation

	Conclusion
	Appendix
	Prompt template
	The Method for Calculating Distance

