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Abstract

Deep neural networks can approximate functions on different types of data, from
images to graphs, with varied underlying structure. This underlying structure can
be viewed as the geometry of the data manifold. By extending recent advances
in the theoretical understanding of neural networks, we study how a randomly
initialized neural network with piece-wise linear activation splits the data manifold
into regions where the neural network behaves as a linear function. We derive
bounds on the density of boundary of linear regions and the distance to these
boundaries on the data manifold. This leads to insights into the expressivity
of randomly initialized deep neural networks on non-Euclidean data sets. We
empirically corroborate our theoretical results using a toy supervised learning
problem. Our experiments demonstrate that number of linear regions varies across
manifolds and the results hold with changing neural network architectures. We
further demonstrate how the complexity of linear regions is different on the low
dimensional manifold of images as compared to the Euclidean space, using the
MetFaces dataset.

1 Introduction

The capacity of Deep Neural Networks (DNNs) to approximate arbitrary functions given sufficient
training data in the supervised learning setting is well known [Cybenko, 1989, Hornik et al., 1989,
Anthony and Bartlett, 1999]. Several different theoretical approaches have emerged that study the
effectiveness and pitfalls of deep learning. These studies vary in their treatment of neural networks
and the aspects they study range from convergence [Allen-Zhu et al., 2019, Goodfellow and Vinyals,
2015], generalization [Kawaguchi et al., 2017, Zhang et al., 2017, Jacot et al., 2018, Sagun et al.,
2018], function complexity [Montúfar et al., 2014, Mhaskar and Poggio, 2016], adversarial attacks
[Szegedy et al., 2014, Goodfellow et al., 2015] to representation capacity [Arpit et al., 2017]. Some
recent theories have also been shown to closely match empirical observations [Poole et al., 2016,
Hanin and Rolnick, 2019b, Kunin et al., 2020].

One approach to studying DNNs is to examine how the underlying structure, or geometry, of the data
interacts with learning dynamics. The manifold hypothesis states that high-dimensional real world
data typically lies on a low dimensional manifold [Tenenbaum, 1997, Carlsson et al., 2007, Fefferman
et al., 2013]. Empirical studies have shown that DNNs are highly effective in deciphering this
underlying structure by learning intermediate latent representations [Poole et al., 2016]. The ability
of DNNs to “flatten” complex data manifolds, using composition of seemingly simple piece-wise
linear functions, appears to be unique [Brahma et al., 2016, Hauser and Ray, 2017].

DNNs with piece-wise linear activations, such as ReLU [Nair and Hinton, 2010], divide the input
space into linear regions, wherein the DNN behaves as a linear function [Montúfar et al., 2014]. The
density of these linear regions serves as a proxy for the DNN’s ability to interpolate a complex data
landscape and has been the subject of detailed studies [Montúfar et al., 2014, Telgarsky, 2015, Serra
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et al., 2018, Raghu et al., 2017]. The work by Hanin and Rolnick [2019a] on this topic stands out
because they derive bounds on the average number of linear regions and verify the tightness of these
bounds empirically for deep ReLU networks, instead of larger bounds that rarely materialize. Hanin
and Rolnick [2019a] conjecture that the number of linear regions correlates to the expressive power
of randomly initialized DNNs with piece-wise linear activations. However, they assume that the
data is uniformly sampled from the Euclidean space Rd, for some d. By combining the manifold
hypothesis with insights from Hanin and Rolnick [2019a], we are able to go further in estimating the
number of linear regions and the average distance from linear boundaries. We derive bounds on how
the geometry of the data manifold affects the aforementioned quantities.

To corroborate our theoretical bounds with empirical results, we design a toy problem where the
input data is sampled from two distinct manifolds that can be represented in a closed form. We count
the exact number of linear regions and the average distance to the boundaries of linear regions on
these two manifolds that a neural network divides the two manifolds into. We demonstrate how the
number of linear regions and average distance varies for these two distinct manifolds. These results
show that the number of linear regions on the manifold do not grow exponentially with the dimension
of input data. Our experiments do not provide estimates for theoretical constants, as in most deep
learning theory, but demonstrate that the number of linear regions change as a consequence of these
constants. We also study linear regions of deep ReLU networks for high dimensional data that lies
on a low dimensional manifold with unknown structure and how the number of linear regions vary
on and off this manifold, which is a more realistic setting. To achieve this we present experiments
performed on the manifold of natural face images. We sample data from the image manifold using
a generative adversarial network (GAN) [Goodfellow et al., 2014] trained on the curated images
of paintings. Specifically, we generate images using the pre-trained StyleGAN [Karras et al., 2019,
2020b] trained on the curated MetFaces dataset [Karras et al., 2020a]. We generate curves on the
image manifold of faces, using StyleGAN, and report how the density of linear regions varies on and
off the manifold. These results shed new light on the geometry of deep learning over structured data
sets by taking a data intrinsic approach to understanding the expressive power of DNNs.

2 Preliminaries and Background

Our goal is to understand how the underlying structure of real world data matters for deep learning.
We first provide the mathematical background required to model this underlying structure as the
geometry of data. We then provide a summary of previous work on understanding the approximation
capacity of deep ReLU networks via the complexity of linear regions. For the details on how our
work fits into one of the two main approaches within the theory of DNNs, from the expressive power
perspective or from the learning dynamics perspective, we refer the reader to Appendix C.

2.1 Data Manifold and Definitions

Figure 1: A 2D surface, here represented by a 2-torus, is embedded in a larger input space, R3.
Suppose each point corresponds to an image of a face on this 2-torus. We can chart two curves:
one straight line cutting across the 3D space and another curve that stays on the torus. Images
corresponding to the points on the torus will have a smoother variation in style and shape whereas
there will be images corresponding to points on the straight line that are not faces.
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We use the example of the MetFaces dataset [Karras et al., 2020a] to illustrate how data lies on a low
dimensional manifold. The images in the dataset are 1028 × 1028 × 3 dimensional. By contrast,
the number of realistic dimensions along which they vary are limited, e.g. painting style, artist, size
and shape of the nose, jaw and eyes, background, clothing style; in fact, very few 1028× 1028× 3
dimensional images correspond to realistic faces. We illustrate how this affects the possible variations
in the data in Figure 1. A manifold formalises the notion of limited variations in high dimensional
data. One can imagine that there exists an unknown function f : X → Y from a low dimensional
space of variations, to a high dimensional space of the actual data points. Such a function f : X → Y ,
from one open subset X ⊂ Rm, to another open subset Y ⊂ Rk, is a diffeomorphism if f is bijective,
and both f and f−1 are differentiable (or smooth). Therefore, a manifold is defined as follows.
Definition 2.1. Let k,m ∈ N0. A subset M ⊂ Rk is called a smooth m-dimensional submanifold
of Rk (or m-manifold in Rk) iff every point x ∈ M has an open neighborhood U ⊂ Rk such that
U ∩M is diffeomorphic to an open subset Ω ⊂ Rm. A diffeomorphism (i.e. differentiable mapping),

f : U ∩M → Ω

is called a coordinate chart of M and the inverse,
h := f−1 : Ω → U ∩M

is called a smooth parametrization of U ∩M .

For the MetFaces dataset example, suppose there are 10 dimensions along which the images vary.
Further assume that each variation can take a value continuously in some interval of R. Then the
smooth parametrization would map f : Ω∩R10 →M ∩R1028×1028×3. This parametrization and its
inverse are unknown in general and computationally very difficult to estimate in practice.

There are similarities in how geometric elements are defined for manifolds and Euclidean spaces.
A smooth curve, on a manifold M , γ : I →M is defined from an interval I to the manifold M as
a function that is differentiable for all t ∈ I , just as for Euclidean spaces. The shortest such curve
between two points on a manifold is no longer a straight line, but is instead a geodesic. One recurring
geometric element, which is unique to manifolds and stems from the definition of smooth curves, is
that of a tangent space, defined as follows.
Definition 2.2. LetM be anm-manifold in Rk and x ∈M be a fixed point. A vector v ∈ Rk is called
a tangent vector of M at x if there exists a smooth curve γ : I →M such that γ(0) = x, γ̇(0) = v
where γ̇(t) is the derivative of γ at t. The set

TxM := {γ̇(0)|γ : R →M is smoothγ(0) = x}
of tangent vectors of M at x is called the tangent space of M at x.

In simpler terms, the plane tangent to the manifold M at point x is called the tangent space and
denoted by by TxM . Consider the upper half of a 2-sphere, S2 ⊂ R3, which is a 2-manifold in R3.
The tangent space at a fixed point x ∈ S2 is the 2D plane perpendicular to the vector x and tangential
to the surface of the sphere that contains the point x. For additional background on manifolds we
refer the reader to Appendix B.

2.2 Linear Regions of Deep ReLU Networks

The higher the density of these linear regions the more complex a function a DNN can approximate.
For example, a sin curve in the range [0, 2π] is better approximated by 4 piece-wise linear regions as
opposed to 2. To clarify this further, with the 4 “optimal” linear regions [0, π/2), [π/2, π), [π, 3π/2),
and [3π/2, 2π] a function could approximate the sin curve better than any 2 linear regions. In other
words, higher density of linear regions allows a DNN to approximate the variation in the curve better.
We define the notion of boundary of a linear regions in this section and provide an overview of
previous results.

We consider a neural network, F , which is a composition of activation functions. Inputs at each layer
are multiplied by a matrix, referred to as the weight matrix, with an additional bias vector that is
added to this product. We limit our study to ReLU activation function [Nair and Hinton, 2010], which
is piece-wise linear and one of the most popular activation functions being applied to various learning
tasks on different types of data like text, images, signals etc. We further consider DNNs that map
inputs, of dimension nin, to scalar values. Therefore, F : Rnin → R is defined as,

F (x) =WLσ(BL−1 +WL−1σ(...σ(B1 +W1x))), (1)
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where Wl ∈ Mnl×nl−1 is the weight matrix for the lth hidden layer, nl is the number of neurons in
the lth hidden layer, Bl ∈ Rnl is the vector of biases for the lth hidden layer, n0 = nin and σ : R → R
is the activation function. For a neuron z in the lth layer we denote the pre-activation of this neuron,
for given input x ∈ Rnin , as zl(x). For a neuron z in the layer l we have

z(x) =Wl−1,zσ(...σ(B1 +W1x)), (2)

for l > 1 (for the base case l = 1 we have z(x) =W1,zx) where Wl−1,z is the row of weights, in the
weight matrix of the lth layer, Wl, corresponding to the neuron z. We use Wz to denote the weight
vector for brevity, omitting the layer index l in the subscript. We also use bz to denote the bias term
for the neuron z.

Neural networks with piece-wise linear activations are piece-wise linear on the input space [Montúfar
et al., 2014]. Suppose for some fixed y ∈ Rnin as x→ y if we have z(x) → −bz then we observe a
discontinuity in the gradient ∇xσ(bz +Wzz(x)) at y. Intuitively, this is because x is approaching
the boundary of the linear region of the function defined by the output of z. Therefore, the boundary
of linear regions, for a feed forward neural network F , is defined as:

BF = {x|∇F (x) is not continuous at x}.

Hanin and Rolnick [2019a] argue that an important generalization for the approximation capacity
of a neural network F is the (nin − 1)−dimensional volume density of linear regions defined as
volnin−1(BF ∩ K)/volnin(K), for a bounded set K ⊂ Rnin . This quantity serves as a proxy for
density of linear regions and therefore the expressive capacity of DNNs. Intuitively, higher density of
linear boundaries means higher capacity of the DNN to approximate complex non-linear functions.
The quantity is applied to lower bound the distance between a point x ∈ K and the set BF , which is

distance(x,BF ) = min
neurons z

|z(x)− bz|/||∇z(x)||,

which measures the sensitivity over neurons at a given input. The above quantity measures how “far”
the input is from flipping any neuron from inactive to active or vice-versa.

Informally, Hanin and Rolnick [2019a] provide two main results for a randomly initialized DNN F ,
with a reasonable initialisation. Firstly, they show that

E
[volnin−1(BF ∩K)

volnin(K)

]
≈ #{ neurons},

meaning the density of linear regions is bound above and below by some constant times the number
of neurons. Secondly, for x ∈ [0, 1]nin ,

E
[
distance(x,BF )

]
≥ C#{ neurons}−1,

where C > 0 depends on the distribution of biases and weights, in addition to other factors. In
other words, the distance to the nearest boundary is bounded above and below by a constant times
the inverse of the number of neurons. These results stand in contrast to earlier worst case bounds
that are exponential in the number of neurons. Hanin and Rolnick [2019a] also verify these results
empirically to note that the constants lie in the vicinity of 1 throughout training.

3 Linear Regions on the Data Manifold

One important assumption in the results presented by Hanin and Rolnick [2019a] is that the input, x,
lies in a compact set K ⊂ Rnin and that volnin(K) is greater than 0. Also, the theorem pertaining to
the lower bound on average distance of x to linear boundaries the input assumes the input uniformly
distributed in [0, 1]nin . As noted earlier, high-dimensional real world datasets, like images, lie on
low dimensional manifolds, therefore both these assumptions are false in practice. This motivates us
to study the case where the data lies on some m−dimensional submanifold of Rnin , i.e. M ⊂ Rnin

where m≪ nin. We illustrate how this constraint effects the study of linear regions in Figure 2.

As introduced by Hanin and Rolnick [2019a], we denote the “(nin − k)−dimensional piece” of
BF as BF,k. More precisely, BF,0 = ∅ and BF,k is recursively defined to be the set of points
x ∈ BF \ {BF,0 ∪ ... ∪ BF,k−1} with the added condition that in a neighbourhood of x the set BF,k
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Figure 2: A circle is an example of a 1D manifold in a 2D Euclidean space. The effective number of
linear regions on the manifold, the upper half of the circle, are the number of linear regions on the
arc from −π to π. In the diagram above, each color in the 2D space corresponds to a linear region.
When the upper half of the circle is flattened into a 1D space we obtain a line. Each color on the line
corresponds to a linear region of the 2D space.

coincides with hyperplane of dimension nin − k. We provide a detailed and formal definition for BF,k

with intuition in Appendix E. In our setting, where the data lies on a manifold M , we define B′
F,k

as BF,k ∩M , and note that dim(B′
F,k) = m − k (Appendix E Proposition E.4). For example, the

transverse intersection (see Definition E.3) of a plane in 3D with the 2D manifold S2 is a 1D curve in
S2 and therefore has dimension 1. Therefore, B′

F,k is a submanifold of dimension 3− 2 = 1. This
imposes the restriction k ≤ m, for the intersection BF,k ∩M to have a well defined volume.

We first note that the definition of the determinant of the Jacobian, for a collection of neurons
z1, ..., zk, is different in the case when the data lies on a manifold M as opposed to in a compact set
of dimension nin in Rnin . Since the determinant of the Jacobian is the quantity we utilise in our proofs
and theorems repeatedly we will use the term Jacobian to refer to it for succinctness. Intuitively,
this follows from the Jacobian of a function being defined differently in the ambient space Rnin as
opposed to the manifold M . In case of the former it is the volume of the paralellepiped determined
by the vectors corresponding to the directions with steepest ascent along each one of the nin axes. In
case of the latter it is more complex and defined below. Let Hm be the m−dimensional Hausdorff
measure (we refer the reader to the Appendix B for background on Hausdorff measure). The Jacobian
of a function on manifold M , as defined by Krantz and Parks [2008] (Chapter 5), is as follows.
Definition 3.1. The (determinant of) Jacobian of a functionH :M → Rk, where k ≤ dim(M) = m,
is defined as

JM
k,H(x) = sup

{Hk(DMH(P ))

Hk(P )

∣∣∣P is a k-dimensional parallelepiped contained in TxM.
}
,

where DM : TxM → Rk is the differential map (see Appendix B) and we use DMH(P ) to denote
the mapping of the set P in TxM , which is a parallelepiped, to Rk. The supremum is taken over all
parallelepipeds P .

We also say that neurons z1, ..., zk are good at x if there exists a path of neurons from z to the output
in the computational graph of F so that each neuron is activated along the path. Our three main
results that hold under the assumptions listed in Appendix A, each of which extend and improve upon
the theoretical results by Hanin and Rolnick [2019a], are:
Theorem 3.2. Given F a feed-forward ReLU network with input dimension nin, output dimension 1,
and random weights and biases. Then for any bounded measurable submanifold M ⊂ Rnin and any
k = 1, ....,m the average (m− k)−dimensional volume of BF,k inside M ,

E[volm−k(BF,k ∩M)] =
∑

distinct neurons z1,...,zk in F

∫
M

E[Yz1,...,zk ]dvolm(x), (3)

where Yz1,...,zk is JM
m,Hk

(x)ρb1,...,bk(z1(x), ..., zk(x)), times the indicator function of the event that
zj is good at x for each j = 1, ..., k. Here the function ρbz1 ,...,bzk is the density of the joint distribution
of the biases bz1 , ..., bzk .
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This change in the formula, from Theorem 3.4 by Hanin and Rolnick [2019a], is a result of the
fact that z(x) has a different direction of steepest ascent when it is restricted to the data manifold
M , for any j. The proof is presented in Appendix E. Formula 3 also makes explicit the fact that
the data manifold has dimension m ≤ nin and therefore the m− k-dimensional volume is a more
representative measure of the linear boundaries. Equipped with Theorem 3.2, we provide a result for
the density of boundary regions on manifold M .
Theorem 3.3. For data sampled uniformly from a compact and measurable m dimensional manifold
M we have the following result for all k ≤ m:

volm−k(BF,k ∩M)

volm(M)
≤

(
# neurons

k

)
(2CgradCbiasCM )k,

where Cgrad depends on ||∇z(x)|| and the DNN’s architecture, CM depends on the geometry of M ,
and Cbias on the distribution of biases ρb.

The constant CM is the supremum over the matrix norm of projection matrices onto the tangent
space, TxM , at any point x ∈M . For the Euclidean space CM is always equal to 1 and therefore the
term does not appear in the work by Hanin and Rolnick [2019a], but we cannot say the same for our
setting. We refer the reader to Appendix F for the proof, further details, and interpretation. Finally,
under the added assumptions that the diameter of the manifold M is finite and M has polynomial
volume growth we provide a lower bound on the average distance to the linear boundary for points
on the manifold and how it depends on the geometry and dimensionality of the manifold.
Theorem 3.4. For any point, x, chosen randomly from M , we have:

E[distanceM (x,BF ∩M)] ≥ CM,κ

CgradCbiasCM#neurons
,

where CM,κ depends on the scalar curvature, the input dimension and the dimensionality of the
manifold M . The function distanceM is the distance on the manifold M .

This result gives us intuition on how the density of linear regions around a point depends on the
geometry of the manifold. The constant CM,κ captures how volumes are distorted on the manifold
M as compared to the Euclidean space, for the exact definition we refer the reader to the proof in
Appendix G. For a manifold which has higher volume of a unit ball, on average, in comparison to
the Euclidean space the constant CM,κ is higher and lower when the volume of unit ball, on average,
is lower than the volume of the Euclidean space. For background on curvature of manifolds and a
proof sketch we refer the reader to the Appendices B and D, respectively. Note that the constant CM

is the same as in Theorem 3.3. Another difference to note is that we derive a lower bound on the
geodesic distance on the manifold M and not the Euclidean distance in Rk as done by Hanin and
Rolnick [2019a]. This distance better captures the distance between data points on a manifold while
incorporating the underlying structure. In other words, this distance can be understood as how much
a data point should change to reach a linear boundary while ensuring that all the individual points on
the curve, tracing this change, are “valid” data points.

3.1 Intuition For Theoretical Results

One of the key ingredients of the proofs by Hanin and Rolnick [2019a] is the co-area formula
[Krantz and Parks, 2008]. The co-area formula is applied to get a closed form representation of the
k−dimensional volume of the region where any set of k neurons, z1, z2, ..., zk is “good” in terms
of the expectation over the Jacobian, in the Euclidean space. Instead of the co-area formula we use
the smooth co-area formula [Krantz and Parks, 2008] to get a closed form representation of the
m− k−dimensional volume of the region intersected with manifold, M , in terms of the Jacobian
defined on a manifold (Definition 3.1). The key difference between the two formulas is that in the
smooth co-area formula the Jacobian (of a function from the manifold M ) is restricted to the tangent
plane. While the determinant of the “vanilla” Jacobian measures the distortion of volume around a
point in Euclidean space the determinant of the Jacobian defined as above (Definition 3.1) measures
the distortion of volume on the manifold instead for the function with the same domain, the function
that is 1 if the set of neurons are good and 0 otherwise.

The value of the Jacobian as defined in Definition 3.1 has the same volume as the projection of
the parallelepiped defined by the gradients ∇z(x) onto the tangent space (see Proposition F.1 in
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(a) (b)

Figure 3: The tractrix (a) and circle (b) are plotted in grey and the target function is in blue. This is
for illustration purposes and does not match the actual function or domains used in our experiments.

Appendix). This introduces the constant CM , defined above. Essentially, the constant captures
how the magnitude of the gradients, ∇z(x), are modified upon being projected to the tangent plane.
Certain manifolds “shrink” vectors upon projection to the tangent plane more than others, on an
average, which is a function of their geometry. We illustrate how two distinct manifolds “shrink”
the gradients differently upon projection to the tangent plane as reflected in the number of linear
regions on the manifolds (see Figure 11 in the appendix) for 1D manifolds. We provide intuition
for the curvature of a manifold in Appendix B, due to space constraints, which is used in the lower
bound for the average distance in Theorem 3.4. The constant CM,κ depends on the curvature as the
supremum of a polynomial whose coefficients depend on the curvature, with order at most nin and at
least nin −m. Note that despite this dependence on the ambient dimension, there are other geometric
constants in this polynomial (see Appendix G). Finally, we also provide a simple example as to how
this constant varies with nin and m, for a simple and contrived example, in Appendix G.1.

4 Experiments

4.1 Linear Regions on a 1D Curve

To empirically corroborate our theoretical results, we calculate the number of linear regions and
average distance to the linear boundary on 1D curves for regression tasks in two settings. The first is
for 1D manifolds embedded in 2D and higher dimensions and the second is for the high-dimensional
data using the MetFaces dataset. We use the same algorithm, for the toy problem and the high-
dimensional dataset, to find linear regions on 1D curves. We calculate the exact number of linear
regions for a 1D curve in the input space, x : I → Rnin where I is an interval in real numbers, by
finding the points where z(x(t)) = bz for every neuron z. The solutions thus obtained gives us
the boundaries for neurons on the curve x. We obtain these solutions by using the programmatic
activation of every neuron and using the sequential least squares programming (SLSQP) algorithm
[Kraft, 1988] to solve for |z(x(t))− bz| = 0 for t ∈ I . In order to obtain the programmatic activation
of a neuron we construct a Deep ReLU network as defined in Equation 2. We do so for all the neurons
for a given DNN with fixed weights.

4.2 Supervised Learning on Toy Dataset

We define two similar regression tasks where the data is sampled from two different manifolds with
different geometries. We parameterize the first task, a unit circle without its north and south poles,
by ψcircle : (−π, π) → R2 where ψcircle(θ) = (cos θ, sin θ) and θ is the angle made by the vector
from the origin to the point with respect to the x-axis. We set the target function for regression task
to be a periodic function in θ. The target is defined as z(θ) = a sin(νθ) where a is the amplitude
and ν is the frequency (Figure 3). DNNs have difficulty learning periodic functions [Ziyin et al.,
2020]. The motivation behind this is to present the DNN with a challenging task where it has to
learn the underlying structure of the data. Moreover the DNN will have to split the circle into linear
regions. For the second regression task, a tractrix is parametrized by ψtractrix : R1 → R2 where
ψtractrix(y) = (y − tanh y, sech y) (see Figure 3). We assign a target function z(t) = a sin(νt). For
the purposes of our study we restrict the domain of ψtractrix to (−3, 3). We choose ν so as to ensure
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that the number of peaks and troughs, 6, in the periodic target function are the same for both the
manifolds. This ensures that the domains of both the problems have length close to 6.28. Further
experimental details are in Appendix H.

The results, averaged over 20 runs, are presented in Figures 4 and 5. We note that CM is smaller
for Sphere (based on Figure 4) and the curvature is positive whilst CM is larger for tractrix and the
curvature is negative. Both of these constants (curvature and CM ) contribute to the lower bound
in Theorem 3.4. Similarly, we show results of number of linear regions divided by the number of
neurons upon changing architectures, consequently the number of neurons, for the two manifolds in
Figure 8, averaged over 30 runs. Note that this experiment observes the effect of CM × Cgrad, since
changing the architecture also changes Cgrad and the variation in Cgrad is quite low in magnitude as
observed empirically by Hanin and Rolnick [2019a]. The empirical observations are consistent with
our theoretical results. We observe that the number of linear regions starts off close to #neurons and
remains close throughout the training process for both the manifolds. This supports our theoretical
results (Theorem 3.3) that the constant CM , which is distinct across the two manifolds, affects the
number of linear regions throughout training. The tractrix has a higher value of CM and that is
reflected in both Figures 4 and 5. Note that its relationship is inverse to the average distance to the
boundary region, as per Theorem 3.4, and it is reflected as training progresses in Figure 5. This is
due to different “shrinking” of vectors upon being projected to the tangent space (Section 3.1).

4.3 Varying Input Dimensions

To empirically corroborate the results of Theorems 2 and 3 we vary the dimension nin while keeping
m constant. We achieve this by counting the number of linear regions and the average distance to
boundary region on the 1D circle as we vary the input dimension in steps of 5. We draw samples of 1D
circles in Rnin by randomly choosing two perpendicular basis vectors. We then train a network with
the same architecture as the previous section on the periodic target function (a sin(νθ)) as defined
above. The results in Figure 6 shows that the quantities stay proportional to #neurons, and do not
vary as nin is increased, as predicted by our theoretical results. Our empirical study asserts how the
relevant upper and lower bounds, for the setting where data lies on a low-dimensional manifold, does
not grow exponentially with nin for the density of linear regions in a compact set of Rnin but instead
depend on the intrinsic dimension. Further details are in Appendix H.

4.4 MetFaces: High Dimensional Dataset

Our goal with this experiment is to study how the density of linear regions varies across a low
dimensional manifold and the input space. To discover latent low dimensional underlying structure of
data we employ a GAN. Adversarial training of GANs can be effectively applied to learn a mapping
from a low dimensional latent space to high dimensional data [Goodfellow et al., 2014]. The generator
is a neural network that maps g : Rk → Rnin . We train a deep ReLU network on the MetFaces dataset
with random labels (chosen from 0, 1) with cross entropy loss. As noted by Zhang et al. [2017],
training with random labels can lead to the DNN memorizing the entire dataset.

We compare the log density of number of linear regions on a curve on the manifold with a straight line
off the manifold. We generate these curves using the data sampled by the StyleGAN by [Karras et al.,
2020a]. Specifically, for each curve we sample a random pair of latent vectors: z1, z2 ∈ Rk, this
gives us the start and end point of the curve using the generator g(z1) and g(z2). We then generate
100 images to approximate a curve connecting the two images on the image manifold in a piece-wise
manner. We do so by taking 100 points on the line connecting z1 and z2 in the latent space that are
evenly spaced and generate an image from each one of them. Therefore, the ith image is generated as:
z′i = g(((100− i)× z1 + i× z2)/100), using the StyleGAN generator g. We qualitatively verify the
images to ensure that they lie on the manifold of images of faces. The straight line, with two fixed
points g(z1) and g(z2), is defined as x(t) = (1− t)g(z1) + tg(z2) with t ∈ [0, 1]. The approximated
curve on the manifold is defined as x′(t) = (1 − t)g(z′i) + tg(z′i+1) where i = floor(100t). We
then apply the method from Section 4.1 to obtain the number of linear regions on these curves.

The results are presented in Figure 9. This leads us to the key observation: the density of linear
regions is significantly lower on the data manifold and devising methods to “concentrate” these linear
regions on the manifold is a promising research direction. That could lead to increased expressivity
for the same number of parameters. We provide further experimental details in Appendix I.
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Figure 4: Graph of number of linear regions for
tractrix (blue) and sphere (orange). The shaded
regions represent one standard deviation. Note
that the number of neurons is 26 and the number
of linear regions are comparable to 26 but differ-
ent for both the manifolds throughout training.

Figure 5: Graph of distance to linear regions for
tractrix (blue) and sphere (orange). The distances
are normalized by the maximum distance on the
range, for both tractrix and sphere. The shaded
regions represent one standard deviation.

Figure 6: We observe that as the dimension nin is
increased, while keeping the manifold dimension
constant, the number of linear regions remains
proportional to number of neurons (26).

Figure 7: We observe that as the dimension nin is
increased, while keeping the manifold dimension
constant, the average distance varies very little.

Figure 8: The effects of changing the architecture
on the number of linear regions. We observe that
the value of CM effects the number of linear re-
gions proportionally. The number of hidden units
for three layer networks are in the legend along
with the data manifold.

Figure 9: We observe that the log density of num-
ber of linear regions is lower on the manifold
(blue) as compared to off the manifold (green).
This is for the MetFaces dataset.
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5 Discussion and Conclusions

There is significant work in both supervised and unsupervised learning settings for non-Euclidean
data [Bronstein et al., 2017]. Despite these empirical results most theoretical analysis is agnostic
to data geometry, with a few prominent exceptions [Cloninger and Klock, 2020, Shaham et al.,
2015, Schmidt-Hieber, 2019]. We incorporate the idea of data geometry into measuring the effective
approximation capacity of DNNs, deriving average bounds on the density of boundary regions
and distance from the boundary when the data is sampled from a low dimensional manifold. Our
experimental results corroborate our theoretical results. We also present insights into expressivity
of DNNs on low dimensional manfiolds for the case of high dimensional datasets. Estimating the
geometry, dimensionality and curvature, of these image manifolds accurately is a problem that
remains largely unsolved [Brehmer and Cranmer, 2020, Perraul-Joncas and Meila, 2013], which
limits our inferences on high dimensional dataset to observations that guide future research. We note
that proving a lower bound on the number of linear regions, as done by Hanin and Rolnick [2019a],
for the manifold setting remains open. Our work opens up avenues for further research that combines
model geometry and data geometry and can lead to empirical research geared towards developing
DNN architectures for high dimensional datasets that lie on a low dimensional manifold.
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