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Abstract

Biological and artificial neural networks create internal representations for com-1

plex tasks. In artificial networks, the ability to form task-specific representations2

is shaped by datasets, architectures, initialization strategies, and optimization al-3

gorithms. Previous studies show that different initializations lead to either a lazy4

regime, where representations stay static, or a rich regime, where they evolve5

dynamically. This work examines how initialization affects learning dynamics6

in deep linear networks, deriving exact solutions for λ-balanced initializations,7

which reflect the weight scaling across layers. These solutions explain how rep-8

resentations and the Neural Tangent Kernel evolve from rich to lazy regimes,9

with implications for continual, reversal, and transfer learning in neuroscience10

and practical applications.11

1 Introduction12

Biological and artificial neural networks learn internal representations that enable complex tasks13

such as categorization, reasoning, and decision-making. Both systems often develop similar repre-14

sentations from comparable stimuli, suggesting shared information processing mechanisms Yamins15

et al. (2014). This similarity, though not fully understood, has drawn interest from neuroscience,16

AI, and cognitive science Haxby et al. (2001); Laakso & Cottrell (2000); Morcos et al. (2018); Ko-17

rnblith et al. (2019); Moschella et al. (2022). The success of neural models relies on their ability18

to form these representations and extract relevant features from data to build internal representa-19

tions, a complex process that in machine learning is defined by two regimes: lazy and rich Saxe20

et al. (2014); Pennington et al. (2017); Chizat et al. (2019); Bahri et al. (2020). Despite significant21

advances, these learning regimes and their characterization are not yet fully understood and would22

benefit from clearer theoretical predictions, particularly regarding the influence of prior knowledge23

(initialization) on the learning regime. We discuss related works in the appendix A.24

Our contributions. (1) We derive exact solutions for the gradient flow in unequal-input-output25

two-layer deep linear networks, under a broad range of lambda-balanced initialization conditions26

(Section 2). (2) We model the full range of learning dynamics from lazy to rich, showing that this27

transition is influenced by a complex interaction of architecture, relative scale, and absolute scale,28

(Section 3). (3) We present applications relevant to both the neuroscience and machine learning29

field, providing exact solutions for continual learning dynamics, reversal learning dynamics, and30

transfer learning (Section 4).31

2 Exact Learning Dynamics32

Preliminaries Consider a supervised learning task where input vectors xn ∈ RNi , from a set of33

P training pairs {(xn,yn)}Pn=1, need to be mapped to their corresponding target output vectors34
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yn ∈ RNo . We learn this task with a two-layer linear network model that produces the output35

predictionŷn = W2W1xn, with weight matrices W1 ∈ RNh×Ni and W2 ∈ RNo×Nh , where36

Nh is the number of hidden units. The network’s weights are optimized using full batch gradi-37

ent descent with learning rate η (or respectively time constant τ = 1
η ) on the mean squared error38

loss L(ŷ,y) = 1
2

〈
||ŷ − y||2

〉
, where ⟨·⟩ denotes the average over the dataset. The dynamics are39

completely determined by the input covariance and input-output correlation matrices of the dataset,40

defined as Σ̃xx = 1
P

∑P
n=1 xnx

T
n ∈ RNi×Ni and Σ̃yx = 1

P

∑P
n=1 ynx

T
n ∈ RNo×Ni , and41

the initialization W2(0),W1(0). Our objective is to describe the entire dynamics of the network’s42

output and internal representations based on this initialization and the task statistics. We consider43

an approach first introduced in the foundational work of Fukumizu Fukumizu (1998) and extended44

in recent work by Braun et al. (2022), which rather than consider the dynamics of the parameters45

directly, we consider the dynamics of a matrix of the important statistics. In particular, defining46

Q =
[
W1 WT

2

]T ∈ R(Ni+No)×Nh , we consider the (Ni +No)× (Ni +No) matrix47

QQT (t) =

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) W2W
T
2 (t)

]
, (1)

which is divided into four quadrants with interpretable meanings. The approach monitors sev-48

eral key statistics collected in the matrix. The off-diagonal blocks contain the network function49

Ŷ(t) = W2W1(t)X, which can be used to evaluate the dynamics of the loss as shown in Fig. 1.50

The on-diagonal blocks capture the correlation structure of the weight matrices, allowing for the51

calculation of the temporal evolution of the network’s internal representations. This includes the52

representational similarity matrices (RSM) of the neural representations within the hidden layer, as53

first defined by Braun et al. (2022),RSMI = XTWT
1 W1(t)X, RSMO = YT (W2W

T
2 (t))

+Y,54

where + denotes the pseudoinverse; and the network’s finite-width NTK Jacot et al. (2018); Lee55

et al. (2019); Arora et al. (2019b) NTK = INo ⊗XTWT
1 W1(t)X+W2W

T
2 (t)⊗XTX, where I56

is the identity matrix and ⊗ is the Kronecker product. Hence, the dynamics of QQT describes the57

important aspects of network behaviour.58

Assumptions. See Appendix B.2 for a further discussion of each assumptions.59

• A1 (Whitened input). The input data is whitened, that is Σ̃xx = I.60

• A2 (Lambda-balanced). The network’s weight matrices are lambda-balanced at the begin-61

ning of training, that is W2(0)
TW2(0)−W1(0)W1(0)

T = λI. If this condition holds at62

initialization, it will persist throughout training Saxe et al. (2014); Arora et al. (2018a). For63

completeness, we prove this in Appendix B.64

• A3 (Dimensions). The hidden dimension of the network is defined as Nh = min(Ni, No),65

ensuring the network is neither bottlenecked (Nh < min(Ni, No)) nor overparameterized66

(Nh > min(Ni, No)).67

• A4 (Full-rank). The input-output correlation of the task and the initial state of the network68

function have full rank, that is rank(Σ̃xy) = rank(W2(0)W1(0)) = min(Ni, No).69

Lemma 2.1. Under assumptions 1 and 2, the gradient flow dynamics of QQT (t), with initalization70

QQT (0) = Q(0)Q(0)T can be written as a differential matrix Riccati equation71

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2, where F =

(
−λ

2
INi (Σ̃yx)T

Σ̃yx λ
2
INo

)
. (2)

As derived in Fukumizu (1998) and extended in Braun et al. (2022), whenever F is symmetric and72

diagonalizable such that F = PΛP T , where P is an orthonormal matrix and Λ is a diagonal73

matrix, then the unique solution to this matrix Riccatti is given by,74

QQT (t) = eF
t
τ Q(0)

[
I+Q(0)TP

(
e2Λ

t
τ − I

2Λ

)
P TQ(0)

]−1

Q(0)T eF
t
τ . (3)

In Appendix C.2 we prove that this equation is the unique solution to the initial value problem75

derived in Lemma 2.1 no matter the value of Λ. However, as discussed in Braun et al. (2022), the76

solution in this form is not very useable or interpretable due to the matrix inverse mixing the blocks77

of QQT . Additionally, we need to diagonalize F . To do so we consider the compact singular value78

decomposition SVD(Σ̃yx) = ŨS̃ṼT . Here, Ũ ∈ RNo×Nh denote the left singular vectors, S̃ ∈79
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RNh×Nh the square matrix with ordered, non-zero eigenvalues on its diagonal, and Ṽ ∈ RNi×Nh80

the corresponding right singular vectors. For unequal input-output dimensions (Ni ̸= No), the right81

and left singular vectors are not square. Accordingly, for the case Ni > Nh = No, we define82

Ũ⊥ ∈ RNo×|No−Ni| as a matrix containing orthogonal column vectors that complete the basis for83

Ũ, i.e., make
[
Ũ Ũ⊥] orthonormal, and Ṽ⊥ ∈ RNi×|No−Ni| as a matrix of zeros. Conversely,84

when Ni = Nh < No, then Ṽ⊥ is a matrix containing orthogonal column vectors that complete85

the basis for Ṽ and Ũ⊥ is a matrix of zeros. Using this SVD structure we can now describe the86

eigendecomposition of F.87

Lemma 2.2. Under assumptions 3 and 4, the eigendecomposition of F = PΛPT is88

P =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

√
2Ṽ⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√
2Ũ⊥

)
, Λ =

S̃λ 0 0

0 −S̃λ 0
0 0 λ⊥

 , (4)

where the matrices S̃λ, λ⊥, H̃ , and G̃ are diagonal matrices defined as:89

S̃λ =

√
S̃2 +

λ2

4
I, λ⊥ = sgn(No −Ni)

λ

2
I|No−Ni|, H̃ = sgn(λ)

√
S̃λ − S̃

S̃λ + S̃
, G̃ =

1√
I+ H̃2

. (5)

Main theorem. Thanks to the eigendecomposition of F we can separate the solution provided in90

equation 3 into four quadrants. Following an approach used in Braun et al. (2022), we will find it91

useful to define the following variables of the initialization that will allow us to define the product92

P TQ(0) more succinctly,93

B = W2(0)
T Ũ(G̃+ H̃G̃) +W1(0)Ṽ (G̃− H̃G̃) ∈ RNh×Nh , (6)

C = W2(0)
T Ũ(G̃− H̃G̃)−W1(0)Ṽ (G̃+ H̃G̃) ∈ RNh×Nh , (7)

D = W2(0)
T Ũ⊥ +W1(0)Ṽ⊥ ∈ RNh×|No−Ni|. (8)

Using these variables of the initialization, this brings us to our main theorem:94

Theorem 2.3. Under the assumptions of whitened inputs, 1, lambda-balanced weights 2, no bottle-95

neck 3, and full rank 4, the temporal dynamics of QQT are96

QQT (t) =

(
Z1(t)A

−1(t)ZT
1 (t) Z1(t)A

−1(t)ZT
2 (t)

Z2(t)A
−1(t)ZT

1 (t) Z2(t)A
−1(t)ZT

2 (t)

)
,

with the time-dependent variables Z1(t) ∈ RNi×Nh , Z2(t) ∈ RNo×Nh , and A(t) ∈ RNh×Nh :97

Z1(t) =
1

2
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2
Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥e

λ⊥
t
τ DT , (9)

Z2(t) =
1

2
Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT +

1

2
Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT + Ũ⊥e

λ⊥
t
τ DT , (10)

A(t) = I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +D

(
eλ⊥

t
τ − I

λ⊥

)
DT . (11)

The proof of Theorem 2.3 is in Appendix C. With this solution we can calculate the exact temporal98

dynamics of the loss, network function, RSMs and NTK (Fig. 1A, C) over a range of lambda-99

balanced initializations. Implementation and simulation. Simulation details are in Appendix F.7.100

3 Rich and Lazy Learning101

In this section we use these solutions to gain a deeper understanding of the transition between the102

rich and lazy regimes by examining the dynamics as a function of lambda – the relative scale - as it103

varies between positive and negative infinity.104

Dynamics of the singular values. Here we examine a lambda-balanced linear network initial-105

ized with task-aligned weights. Previous research Saxe et al. (2019a) has demonstrated that initial106

weights that are aligned with the task remain aligned throughout training, restricting the learning107

dynamics to the singular values of the network.108

Theorem 3.1. Under the assumptions of Theorem 2.3 and with a task-aligned initialization, as de-109

fined in Saxe et al. (2013), the network function is given by the expression W2W1(t) = ŨS(t)Ṽ T110
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where S(t) ∈ RNh×Nh is a diagonal matrix of singular values with elements sα(t) that evolve ac-111

cording to the equation, sα(t) = sα(0) + γα(t;λ) (s̃α − sα(0)) , where s̃α is the α singular value112

of S̃ and γα(t;λ) is a λ-dependent monotonic transition function for each singular value that in-113

creases from γα(0;λ) = 0 to limt→∞ γα(t;λ) = 1 defined explicitly in Appendix D.1. We find that114

under different limits of λ, the transition function converges pointwise to the sigmoidal (λ→ 0) and115

exponential (λ→ ±∞) transition functions,116

lim
λ→0

γα(t;λ)→
e2s̃α

t
τ − 1

e2s̃α
t
τ − 1 + s̃α

sα(0)

, lim
λ→±∞

γα(t;λ)→ 1− e−|λ| t
τ . (12)

Figure 1: A The temporal dynamics of the numerical
simulation of the loss, network function, correlation
of input and output weights, and the NTK (row 1-5
respectively) are exactly matched by the analytical so-
lution for λ = −2 . B λ = 0.001 Large initial weight
values. C λ = 2 initial weight values.

The proof for Theorem 3.1 can be found117

in Appendix D.1. As shown in Fig.4 B,118

as λ approaches zero, the dynamics re-119

semble sigmoidal learning curves that tra-120

verse between saddle points, characteris-121

tic of the rich regime Braun et al. (2022).122

In this regime the network learns the most123

salient features first, which can be benefi-124

cial for generalization Lampinen & Gan-125

guli (2018). Conversely, as shown in Fig.4126

A and C, as the magnitude of λ increases,127

the dynamics become exponential, charac-128

teristic of the lazy regime. In this regime,129

all features are treated equally and the net-130

work’s dynamics resemble that of a shallow131

network. relative scale λ has in shaping the132

learning dynamics, from sigmoidal to ex-133

ponential, steering the network between the134

rich and lazy regimes.135

The dynamics of the representations. We136

now consider how the representations of137

the individual parameters W1 and W2138

change through training. We note that un-139

der lambda-balanced initializations there is140

simple structure which persists throughout training that allows us to recover the dynamics of the141

parameters up to a time-dependent orthogonal transformation from the dynamics of QQT (t).142

The effective singular values Sλ of the corresponding weights are either up-weighted or down-143

weighted depending on the magnitude and sign of λ, splitting the representation into two parts as144

shown in theorem D.1. This division is reflected in the network’s internal representations. With our145

solution, QQT (t), which captures the temporal dynamics of the similarity between hidden layer146

activations, we can analyze the network’s internal representations in relation to the task. This allows147

us to determine whether the network adopts a rich or lazy representation, depending on the value of148

λ. Assuming convergence to the global minimum, which is guaranteed when the matrix B is non-149

singular, the internal representation satisfies WT
1 W1 = ṼS̃2

1Ṽ
T and W2W

T
2 = ŨS̃2

2Ũ
T with150

W2W1 = ŨS̃ṼT . Theorem D.3 in the Appendix provides a detailed proof of this limiting behav-151

ior. To illustrate this, we consider a hierarchical semantic learning task1, introduced in Saxe et al.152

(2014); Braun et al. (2022), where living organisms are organized according to their features (Fig.153

2A). The representational similarity of the task’s inputs (ṼS̃ṼT ) reflects this hierarchical structure154

(Fig.2A). Similarly, the representational similarity of the task’s target values (ŨS̃ŨT ) highlights155

the primary groupings of items. When training a two-layer network with relative scale λ equal to156

zero and task-agnostic initialization Mishkin & Matas (2015), the input and output representational157

similarity matrices (Fig.2 B) match the task’s structure upon convergence. As derived in Theorem158

D.4 the network is guaranteed to find a rich solution regardless of the absolute scale , meaning159

WT
1 W1 = ṼS̃ṼT and W2W

T
2 = ŨS̃ŨT , as shown in Fig. 2 C. Hence the network learns task-160

specific representations. We also show that as λ approaches either positive or negative infinity, the161

1In this setting, the network has equal input and output dimensions

4



network symmetrically transitions into the lazy regime. As demonstrated in Theorem D.4 and illus-162

trated in Fig. 2, the representations converge to an identity matrix for both large positive and large163

negative values of λ— emerging in the output representations for large positive λ and input repre-164

sentations for large negative λ. This convergence indicates that the network adopts task-agnostic165

representations. Meanwhile, the other respective RSMs become negligible, with scales proportional166

to 1/λ. Therefore, as shown in Theorem D.5, the NTK becomes static and equivalent to the identity167

matrix in the limit as λ approaches infinity. However, the downscaled representations of the net-168

work remain structured and task-specific. This property could be beneficial if the weights are later169

rescaled, such as during fine-tuning, potentially enhancing generalization and transfer learning, as170

we will demonstrate in Section 4. We compare this to the scenario where both weights are initial-171

ized with large Gaussian values, leading to lazy learning that maintains a fixed NTK but lacks any172

structural representation, as illustrated in Fig.2. Consequently, we propose a new lazy regime, which173

we refer to as the semi-structured lazy regime. We note that these existing regimes preserve only the174

input or output representation, resulting in a partial loss of structural information. All together, we175

find that initialization will determine which layer in the network the task specification features re-176

sides in: layers initialized with large values will be task-agnostic, while those initialized with small177

values will be task-specific.178

Figure 2: A A semantic learning task with the SVD of the input-output correlation matrix of the
task. (top) U and V represent the singular vectors, and S contains the singular values. (bottom) The
respective RSMs for the input and for the output task. B Simulation results and C Theoretical input
and output representation matrices after training, showing convergence when initialized with varying
lambda values, according to the initialization scheme described in F.7. D Final RSMs matrices after
training converged when initialised from random large weights. E After convergence, the network’s
sensitivity to input noise (top panel) is invariant to λ, but the sensitivity to parameter noise increases
as λ becomes smaller (or larger) than zero.

Representation robustness and sensitivity to noise. Here we examine the relationship between179

the learning regime and the robustness of the learned representations to added noise in the inputs180

and parameters. The expected post-convergence loss with added noise to the inputs is determined181

by the norm of the network function Braun et al. (2024), which in our setting is independent of λ182

(Figure 2E, Appendix D.3). However, if instead noise is added to the parameters, the expected loss183

scales quadratically with the norm of the weight matrices Braun et al. (2024), which in our setting184

depend on λ. We find that under equal input-output dimensions, networks initialized with weights185

such that λ = 0, corresponding to the rich regime, converge to solutions that are most robust to186

parameter noise (Figure 2E, Appendix D.3). In practice, parameter noise could be interpreted as the187

noise occurring within the neurons of a biological network. Hence, a rich solution may enable a188

more robust representation in such systems.189

The impact of the architecture. Thus far, we have found that the magnitude of the relative scale190

parameter λ determines the extent or rich and lazy learning. Here, we explore how a network’s191

learning regime is also shaped by the interaction of its architecture and the sign of the relative192

scale. We consider three types of network architectures, depicted in Fig. 3A: funnel networks, which193

narrow from input to output (Ni > Nh = No); inverted-funnel networks, which expand from input194

to output (Ni = Nh < No); and square networks, where input and output dimensions are equal195

(Ni = Nh = No). Our solution, QQT , captures the dynamics of the NTK across these different196

network architectures. To examine the NTK’s evolution under varying λ initializations, we compute197

the kernel distance from initialization, as defined in Fort et al. (2020). As shown in Fig. 3B, we198

observe that funnel networks consistently enter the lazy regime as λ → ∞, while inverted-funnel199

networks do so as λ→ −∞. The NTK remains static during the initial phase, rigorously confirming200

the rank argument first introduced by Kunin et al. (2024) for the multi-output setting. In the opposite201
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limits of λ, these networks transition from a lazy regime to a rich regime. During this second202

alignment phase, the NTK matrix undergoes changes, indicating an initial lazy phase followed by a203

delayed rich phase. We further investigate and quantify this delayed rich regime, showing the NTK204

movement over training in Fig. 3C. This behavior is also quantified in Theorem D.6, which describes205

the rate of learning in this network. For square networks with equal input and output dimensions,206

this behavior is discussed in Section 3. Across all architectures, as λ→ 0, the networks consistently207

transition into the rich regime. Altogether, we further characterize the delayed rich regime in wide208

networks.209

Figure 3: A. Schematic representations of the network architectures considered, from left to right:
funnel network, square network, and inverted-funnel network. B. The plot shows the NTK kernel
distance from initialization, as defined in Fort et al. (2020) across the three architecture depicted
schematically. C. The NTK kernel distance away from initialization over training time.

4 Application210

Continual learning. Similarly to the framework presented by Braun et al. (2022), our approach de-211

scribes the exact solutions of the networks dynamics trained across a sequence of tasks. As detailed212

in Appendix E.1, we demonstrate that, regardless of the chosen value of lambda, training on subse-213

quent tasks can result in the overwriting of previously acquired knowledge, leading to catastrophic214

forgetting McCloskey & Cohen (1989); Ratcliff (1990); French (1999).215

Reversal learning. As demonstrated in Braun et al. (2022), reversal learning theoretically does216

not succeed in deep linear networks as the initalization aligns with the separatrix of a saddle point.217

While simulations show that the learning dynamics can escape the saddle point due to numerical218

imprecision, the process is catastrophically slowed in its vicinity. However, when λ is non-zero,219

reversal learning dynamics consistently succeed, as they avoid passing through the saddle point220

due to the initialization scheme. This is both theoretically proven and numerically illustrated in221

Appendix E.2. We also present a spectrum of reversal learning behaviors controlled by the relative222

scale λ, ranging from rich to lazy learning regimes. This spectrum has the potential to explain the223

diverse dynamics observed in animal behavior, offering insights into the learning regimes relevant224

to various neuroscience experiments.225

Transfer learning. We consider how different λ initializations influence generalization to a new226

feature after being trained on an initial task. As detailed in Appendix E.3 we first train each network227

on the hierarchical semantic learning task described in Fig. 2. After, we add a new feature to the228

dataset for example ‘eats worms’ We train it specifically on the corresponding item, in this case, the229

goldfish, while keeping the rest of the network parameters unchanged. Afterwards, we evaluate the230

generalization to the other items. We observe in Appendix figure E.3 that the hierarchical structure of231

the data is effectively transferred to the new feature when the representation is task-specific and λ is232

zero. Conversely, when the output feature representation is lazy, meaning the hidden representation233

lacks adaptation, no hierarchical generalization is observed. Strikingly, when λ is positive, the234

hierarchical structure in the input weights remains small but structured, while the output weights235

exhibit a lazy representation and the network generalizes hierarchically. This indicates that the lazy236

regime structure can be beneficial for transfer learning.237

5 Discussion238

We derive exact solutions to the learning dynamics within a tractable model class: deep linear net-239

works. We examine the transition between the rich and lazy regimes by analyzing the dynamics240

as a function of λ—the relative scale—across its full range from positive to negative infinity. Our241

analysis demonstrates that the relative scale, λ, is pivotal in managing the transition between rich242

and lazy regimes.243
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Rishidev Chaudhuri, Berk Gerçek, Biraj Pandey, Adrien Peyrache, and Ila Fiete. The intrinsic280

attractor manifold and population dynamics of a canonical cognitive circuit across waking and281

sleep. Nature neuroscience, 22(9):1512–1520, 2019.282

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-283

parameterized models using optimal transport. Advances in neural information processing sys-284

tems, 31, 2018.285

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks286

trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.287

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.288

Advances in neural information processing systems, 32, 2019.289

7

https://papers.nips.cc/paper_files/paper/2022/hash/2b3bb2c95195130977a51b3bb251c40a-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/2b3bb2c95195130977a51b3bb251c40a-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/2b3bb2c95195130977a51b3bb251c40a-Abstract-Conference.html


Hugo Cui, Luca Pesce, Yatin Dandi, Florent Krzakala, Yue M Lu, Lenka Zdeborová, and Bruno290
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A Related Work453

Lazy regime. Extensive research has identified a fundamental phenomenon in overparameterized454

neural networks: during training, these networks frequently remain near their linearized form, un-455

dergoing minimal changes in the parameter space Chizat et al. (2019). Consequently, they adopt456

learning dynamics akin to kernel regression, characterized by the Neural Tangent Kernel (NTK)457

matrix and exhibiting exponential learning behavior Du et al. (2018); Jacot et al. (2018); Du et al.458

(2019); Allen-Zhu et al. (2019a,b); Zou et al. (2020). This behavior, known as the lazy or kernel459

regime, typically occurs in infinitely wide architectures and can be triggered by large variance ini-460

tialization at the start of training Jacot et al. (2018); Chizat et al. (2019). While the lazy regime offers461

valuable insights into how networks converge to a global minimum, it does not fully account for the462

generalization capabilities of neural networks trained with standard initializations. It is, therefore,463

widely believed that another regime, driven by small or vanishing initializations, underpins some of464

the successes of neural networks.465

Rich regime. In contrast, the rich feature-learning regime is characterized by a NTK that evolves466

throughout training, accompanied by non-convex dynamics that navigate saddle points Baldi &467

Hornik (1989); Saxe et al. (2014, 2019b); Jacot et al. (2021). This regime features sigmoidal learn-468

ing curves and simplicity biases, such as low-rankness Li et al. (2020) or sparsity Woodworth et al.469

(2020). Numerous studies have shown that the absolute scale of initialization drives the rich regime,470

which typically emerges at small initialization scales Chizat et al. (2019); Geiger et al. (2020). How-471

ever, it’s also been shown that even at small initialization scales, differences in weight magnitudes472

between layers can induce the lazy learning regime Azulay et al. (2021); Kunin et al. (2024). This473

highlights the significance of both absolute scale (initialization variance) and relative scale (differ-474

ence in weight magnitude between layers) in generating diverse learning dynamics. Beyond absolute475

scale and relative scale, additional aspects of initialization can profoundly affect feature learning,476

including the effective rank of the weight matrices Liu et al. (2023), layer-specific initialization477

variances Yang & Hu (2020); Luo et al. (2021); Yang et al. (2022), and the use of large learning478

rates Lewkowycz et al. (2020); Ba et al. (2022); Zhu et al. (2023); Cui et al. (2024). These findings479

illustrate the effect of initialization on inducing complex learning behavior through the resulting480

dynamics. Here we develop a solvable model which captures these diverse phenomena.481

Rich and lazy regimes in the brain. The distinction between rich and lazy learning may also hold482

implications for neuroscience, where neural representations have been argued to have task-specific483

or task-agnostic characteristics in different settings Farrell et al. (2023a); Ostojic & Fusi (2024);484

Tye et al. (2024). The lazy regime can be linked to the non-linear mixed selectivity of neurons,485

where task variables are represented in a high-dimensional space which mixes various potentially486

relevant variables Raposo et al. (2014); Tang et al. (2019); Rigotti et al. (2013); Bernardi et al.487

(2020). Conversely, the rich regime aligns with linear mixed selectivity Tye et al. (2024) and the488

manifold learning regime, where the brain encodes tasks on a structured, low-dimensional, task-489

specific manifold, as observed in grid cells within the entorhinal cortex Chaudhuri et al. (2019);490

Bernardi et al. (2020); Flesch et al. (2022).491

Linear networks. Our work builds upon a rich body of research on deep linear networks, which,492

despite their simplicity, have proven to be valuable models for understanding more complex neu-493

ral networks Baldi & Hornik (1989); Fukumizu (1998); Saxe et al. (2014). Previous research has494

extensively analyzed convergence Arora et al. (2018a); Du & Hu (2019), generalization properties495

Lampinen & Ganguli (2018); Poggio et al. (2018); Huh (2020), and the implicit bias of gradient496

descent Arora et al. (2019a); Woodworth et al. (2020); Chizat & Bach (2020); Kunin et al. (2022)497

in linear networks. These studies have also revealed that deep linear networks have intricate fixed498

point structures and nonlinear learning dynamics in parameter and function space, reminiscent of499

phenomena observed in nonlinear networks Arora et al. (2018b); Lampinen & Ganguli (2018).500

Seminal work by Saxe et al. (2014) laid the groundwork by providing exact solutions to gradient501

flow dynamics under task-aligned initializations, demonstrating that the largest singular values are502

learned first during training. This analysis has been extended to deep linear networks Arora et al.503

(2018b, 2019a); Ziyin et al. (2022) with more flexible initialization schemes Gidel et al. (2019);504

Tarmoun et al. (2021); Gissin et al. (2019). This work directly builds on the matrix Riccati for-505

mulation proposed by Fukumizu (1998); Braun et al. (2022) which extends these solutions to wide506

networks. We extend and refine these results to obtain the dynamics for lambda-balanced initializa-507

tion dynamics of networks to more clearly demonstrate the impact of initialization on rich and lazy508

learning regimes also developed in Tu et al. (2024) for a set of orthogonal initalizations. Our work509
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extends previous analysis Xu & Ziyin (2024); Kunin et al. (2024) of these regime to wide networks.510

Previous studies leveraged these solutions primarily to characterize convergence rates; however, our511

work goes beyond this by providing a comprehensive characterization of the complete dynamics of512

the system Tarmoun et al. (2021).513

Infinite-width networks. Recent advances in understanding the rich regime have largely stemmed514

from examining how the initialization variance and layer-wise learning rates must scale in the515

infinite-width limit to maintain consistent behavior in activations, gradients, and outputs. Several516

studies have employed statistical mechanics tools to derive analytical solutions for the rich popu-517

lation dynamics of two-layer nonlinear neural networks initialized using the mean field parameter-518

ization Mei et al. (2018); Rotskoff & Vanden-Eijnden (2018); Chizat & Bach (2018); Sirignano &519

Spiliopoulos (2020); Rotskoff & Vanden-Eijnden (2022); Sirignano & Spiliopoulos (2020). Other520

methods for analyzing deep network dynamics include the NTK limit, where the network effectively521

performs kernel regression without feature learning Jacot et al. (2018); Lee et al. (2019); Arora et al.522

(2019b). Our solution allows us to the study the evolution of the NTK and the influence of absolute523

scale and relative scale on the transition between lazy and rich learning in finite width networks524

Jacot et al. (2021); Xu & Ziyin (2024); Kunin et al. (2024); Chizat et al. (2019). Furthermore, these525

approaches typically require numerical integration or operate within a limited learning regime, and526

are unable to describe the learning dynamics of hidden representations. Instead, our work focuses527

on the impact of initialization on representation learning dynamics and derives explicit analytical528

solutions within tractable models.529

B Preliminaries530

B.1 Appendix: Balanced Condition531

Definition B.1 (Definition of λ-balanced property (Saxe et al. (2013), Marcotte et al. (2023))). The532

weights W1,W2 are λ-balanced if and only if there exists a Balanced Coefficient λ ∈ R such that:533

B(W1,W2) = W T
2 W2 −W1W

T
1 = λI (13)

where B is called the Balanced Computation.534

For λ = 0 we have Zero-Balanced given as A5 (). W1(0)W1(0)
T = W2(0)

TW2(0).535

Theorem B.2. Balanced Condition Persists Through Training536

Suppose at initialization537

W2(0)
TW2(0)−W1(0)W1(0)

T = λI (14)

Then for all t ≥ 0538

W2(t)
TW2(t)−W1(t)W1(t)

T = λI (15)

Proof. Consider:539

τ
d

dt

[
W2(t)W2(t)

T −W1(t)W1(t)
T
]
=

(
τ
d

dt
W2(t)

)T

W2(t) +W2(t)
T

(
τ
d

dt
W2(t)

)
−
(
τ
d

dt
W1(t)

)
W1(t)

T −W1(t)

(
τ
d

dt
W1(t)

)T

= W1(t)
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)T

W2(t)

+W2(t)
T
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W1(t)

−W2(t)
T
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W1(t)

−W1(t)
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W2(t)

= 0
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Note that W2(t)
TW2(t)−W1(t)W1(t)

T is conserved for any initial value λ.540

B.2 Discussion Assumptions541

Whittened Inputs. Although the whitened input assumption is quite strong, it is commonly used542

in analytical work to obtain exact solutions, and much of the existing literature relies on these solu-543

tions Fukumizu (1998); Braun et al. (2022); Kunin et al. (2024) . Kunin et al. (2024) goes further by544

exploring the implicit bias of the trajectory without relying on exact solutions. When X⊺X is low-545

rank, they can only predict the trajectories in the limit as λ→ ±∞. If the interpolating manifold is546

one-dimensional, the solution can be solved exactly in terms of λ (black dots).547

Dimension. Fukumizu assumed equal input and output dimensions Ni = No, but allowed for a548

bottleneck in the hidden dimension of the network Nh ≤ Ni = No. The work by Braun et al. (2022)549

extended Fukumizu (1998) solutions to cases with unequal input and output dimensions Ni ̸= No,550

but to so did not allow a bottleneck Nh = min{Ni, No} and added an assumption on the invertibility551

of a statistic of the singular vector overlap between the model and the input-output statistics. In our552

work we allow for unequal input and output Ni ̸= No and do not introduce an additional invertibility553

assumption.554

Balancedness. The main distinction between our work and prior works is that both Fukumizu555

(1998) and Braun et al. (2022) assumed zero-balanced W1(0)W1(0)
T = W2(0)

TW2(0), while556

we relax this assumption to λ-balanced. The zero-balanced condition restricts the networks to a557

rich setting. We develop solutions to explore the continuum between the rich and the lazy regime.558

While some works, such as Tarmoun et al. (2021), have considered removing this constraint, their559

solutions remain in an unstable and mixed form. Our work, in its form enable the understanding560

of different learning regimes by exploring initialization properties beyond just absolute scale and561

demonstrate that this transition can be accessed and controlled by adjusting a key parameter: the562

relative scale. Other studies, such as Kunin et al. (2024) and Xu & Zheng (2024), have similarly563

relaxed the balancedness assumption but were limited to single-output neuron settings.564

C Appendix: Exact learning dynamics with prior knowledge565

C.1 Appendix: Fukumizu Approach566

Lemma C.1. We introduce the variables567

Q =

[
WT

1
W2

]
and QQT =

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]
. (16)

Defining568

F =

[
−λ

2 I (Σ̃yx)T

Σ̃yx λ
2 I

]
, (17)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation569

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2. (18)

Proof. We introduce the variables570

Q =

[
WT

1
W2

]
and QQT =

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]
. (19)

We compute the time derivative571

τ
d

dt
(QQT ) = τ

[
dWT

1

dt W1 +WT
1

dW1

dt
dWT

1

dt W2 +WT
1

dW2

dt
dW2

dt W1 +W2
dW1

dt
dWT

2

dt W2 +WT
2

dW2

dt

]
. (20)

Using equations 18 and 19, we compute the four quadrants separately giving572

τ

(
dWT

1

dt
W1 +WT

1

dW1

dt

)
= (21)
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573

= (Σyx −W2W1)
TW2W1 +WT

1 W
T
2 (Σ

yx −W2W1) (22)
574

= (Σyx)TW2W1 +WT
1 W

T
2 Σ

yx −WT
1 W

T
2 W2W1 − (W2W1)

TW2W1 (23)
575

= (Σyx)TW2W1 +WT
1 W

T
2 Σ

yx −WT
1 W

T
2 W2W1 −WT

1 W1W
T
1 W1 − λWT

1 W1, (24)

τ

(
dWT

1

dt
WT

2 +WT
1

dWT
2

dt

)
= (25)

576

= (Σyx −W2W1)
TW2W

T
2 +WT

1 W1(Σ
yx −W2W1)

T (26)
577

= (Σyx)TW2W
T
2 +WT

1 W1(Σ
yx)T −WT

1 W1W
T
1 W

T
2 −WT

1 W
T
2 W2W

T
2 , (27)

τ

(
dW2

dt
W1 +W2

dW1

dt

)
= (28)

578

= (Σyx −W2W1)W
T
1 W1 +W2W

T
2 (Σ

yx −W2W1) (29)
579

= ΣyxWT
1 W1 +W2W

T
2 Σ

yx −W2W
T
2 W2W1 −W2W1W

T
1 W1, (30)

τ

(
dW2

dt
WT

2 +W2
dWT

2

dt

)
= (31)

580

(Σ̃yx −W2W1)W
T
1 W

T
2 +W2W1(Σ̃

yx −W2W1)
T (32)

581

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W1(W2W1)

T (33)
582

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W1W

T
1 W

T
2 (34)

583

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W

T
2 W2W

T
2 + λW2W

T
2 . (35)

Defining584

F =

[
−λ

2 I (Σ̃yx)T

Σ̃yx λ
2 I

]
, (36)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation585

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2. (37)

We write τ d
dt (QQT ) for completeness586

τ
d

dt
(QQT ) =

[
−λ

2 (Σ̃yx)T

Σ̃yx λ
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]
+

[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]T [−λ
2 (Σ̃yx)T

Σ̃yx λ
2

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]2
(38)

=

[
−λ

2 (Σ̃yx)T

Σ̃yx λ
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]
+

[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]T [−λ
2 (Σ̃yx)T

Σ̃yx λ
2

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] (39)

=

[
−λ

2W
T
1 W1 + (Σ̃yx)TW2W1 −λ

2W
T
1 W2 + (Σ̃yx)TW2W

T
2

Σ̃yxWT
1 W1 +

λ
2W2W1 Σ̃yxWT

1 W
T
2 + λ

2W2W
T
2

]
+

[
−λ

2W
T
1 W1 +WT

1 W1(Σ̃
yx)T λ

2W
T
1 W2 +WT

1 W2(Σ̃
yx)T

−λ
2W

T
2 W1 +W2W1(Σ̃

yx)T λ
2W2W

T
2 +W2W

T
2 (Σ̃

yx)T

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] (40)
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=

[
−λ

2W
T
1 W1 + (Σ̃yx)TW2W1 −λ

2W
T
1 W2 + (Σ̃yx)TW2W

T
2

Σ̃yxWT
1 W1 +

λ
2W2W1 Σ̃yxWT

1 W
T
2 + λ

2W2W
T
2

]
+

[
−λ

2W
T
1 W1 +WT

1 W1(Σ̃
yx)T λ

2W
T
1 W2 +WT

1 W2(Σ̃
yx)T

−λ
2W

T
2 W1 +W2W1(Σ̃

yx)T λ
2W2W

T
2 +W2W

T
2 (Σ̃

yx)T

]
−
[
WT

1 W1W
T
1 W1 +WT

1 W2W
T
2 W1 WT

1 W1W
T
1 W2 +WT

1 W2W
T
2 W2

W2W1W
T
1 W1 +W2W

T
2 W2W1 W2W1W

T
1 W2 +W2W

T
2 W2W

T
2

] (45)

587

The four quadrants of 20 are equivalent to equations 24, 27, 30, and 35 respectively.588

C.2 QQT Diagonalisation589

Lemma C.2. If F = PΛP T is symmetric and diagonalizable, then the matrix Riccati differential590

equation d
dt (QQT ) = FQQT + QQTF − (QQT )2 with initialization QQT (0) = Q(0)Q(0)T591

has a unique solution for all t ≥ 0, and the solution is given by592

QQT (t) = eF
t
τ Q(0)

[
I+Q(0)TP

(
e2Λ

t
τ − I

2Λ

)
P TQ(0)

]−1

Q(0)T eF
t
τ . (41)

This is true even when there exists Λi = 0.593

Proof. First we show that there exists a unique solution to the initial value problem stated. This is594

true by Picard-Lindelöf theorem. Now we show that the provided solution satisfies the ODE. Let595

L = eF
t
τ Q(0) and C = I+Q(0)TP

(
e2Λ

t
τ −I

2Λ

)
P TQ(0) such that solution QQT (t) = LC−1LT .596

The time derivative of QQT is then given by597

d

dt
(QQT ) =

d

dt
(L)C−1LT +L

d

dt
(C−1)LT +LC−1 d

dt
(LT ) (42)

Solving for these derivatives individually, we find598

d

dt
(L) =

d

dt
eF

t
τ Q(0) = F eF

t
τ Q(0) = FL (43)

d

dt
(C−1) = −C−1 d

dt
(C)C−1 = −C−1Q(0)TP

d

dt

(
e2Λ

t
τ − I

2Λ

)
P TQ(0)C−1 (44)

We consider the derivative of the fraction serpately,599

d

dt

(
e2Λ

t
τ − I

2Λ

)
= e2Λ

t
τ (45)

this is true even in the limit as λi → 0. Plugging these derivatives back in we see that the solution600

satisfies the ODE. Lastly, let t = 0, we see that the the solution satisfies the initial conditions.601

C.3 F Diagonalization602

Lemma C.3. Under assumptions of full-rank 4, the eigendecomposition of F = PΛPT where603

P =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

√
2Ṽ⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√
2Ũ⊥

)
, Λ =

S̃λ 0 0

0 −S̃λ 0
0 0 λ⊥

 (46)

and the matrices S̃λ, λ⊥, H̃ , and G̃ are the diagonal matrices defined as:604

S̃λ =

√
S̃2 +

λ2

4
I, λ⊥ = sgn(No −Ni)

λ

2
I, H̃ = sgn(λ)

√
S̃λ − S̃

S̃λ + S̃
, G̃ =

1√
I+ H̃2

. (47)
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Beyond the invertibility of F , notice from the equation (Fukumizu solution) we need to understand605

the relationship between F and Q(0). To do this the following lemma relates the structure between606

the SVD of the model with the SVD structure of the individual parameters.607

Proof. We leave for the reader by computing608

F = PΛP T (48)

609

C.4 Solution Unequal-Input-Output610

Theorem C.4. Under the assumptions of whitened inputs, 1, lambda-balanced weights 2, no bot-611

tleneck 3, and full rank 4, the temporal dynamics of QQT are612

QQT (t) =

(
Z1A

−1ZT
1 Z1A

−1ZT
2

Z2A
−1ZT

1 Z2A
−1ZT

2

)
,

where the variables Z1 ∈ RNi×Nh , Z2 ∈ RNo×Nh , and A ∈ RNh×Nh are defined as613

Z1(t) =
1

2
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2
Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T (49)

Z2(t) =
1

2
Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT +

1

2
Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0) (50)

A(t) =I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)

+W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T (51)

Proof. We start and use the diagonalization of F to rewrite the matrix exponential of F and F . Note614

that PTP = PPT = I and therefore PT = P−1.615

e
F t

τ = Pe
Γ
P

T

=
1

√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

√
2V⊥

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)
√
2U⊥

] 
e
S̃λ

t
τ 0 0

0 e
−S̃λ

t
τ 0

0 0 e
λ⊥

t
τ

 1
√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

√
2V⊥

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)
√
2U⊥

]T

=
1

√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

Ũ(G̃ − H̃G̃) −Ũ(G̃ + H̃G̃)

] e
S̃λ

t
τ 0

0 e
−S̃λ

t
τ

 1
√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)

]T
+ 2

1
√
2

[
Ṽ⊥
Ũ⊥

]
e
λ⊥

t
τ

1
√
2

[
Ṽ⊥
Ũ⊥

]T

= Oe
Λ t

τ O + 2Me
λ⊥

t
τ M

T . (52)

616

eF
t
τ F−1eF

t
τ − F−1 = OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT −OΛ−1OT +M(eλ⊥

t
τ − I)(λ⊥)

−1MT .
(53)

F = OΛOT + 2Mλ⊥M
T (54)

Where M = 1√
2

[
Ṽ⊥
Ũ⊥

]T
. Placing these expressions into equation 41 gives617

QQT (t) =
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0)[

I+
1

2
Q(0)T

(
O
(
e2Λ

t
τ − I

)
Λ−1OT +M(eλ⊥

t
τ − I)λ−1

⊥ MT
)
Q(0)

]−1

(55)

Q(0)T
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]T

OTQ(0) =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T (
W T

1 (0)
W2(0)

)
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=
1√
2

(
(G̃− H̃G̃)Ṽ TW T

1 (0) + (G̃+ H̃G̃)ŨTW2(0)

(G̃+ H̃G̃)Ṽ TW T
1 (0)− (G̃− H̃G̃)ŨTW2(0)

)

=
1√
2

(
BT

−CT

)
(56)

where618

B = W2(0)
T Ũ(G̃+ H̃G̃) +W1(0)Ṽ (G̃− H̃G̃) ∈ RNh×Nh (57)

C = W2(0)
T Ũ(G̃− H̃G̃)−W1(0)Ṽ (G̃+ H̃G̃) ∈ RNh×Nh (58)

OeΛt/τ =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)(
eS̃λ

t
τ 0

0 e−S̃λ
t
τ

)

=
1√
2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ

Ũ(G̃+ H̃G̃)eS̃λ
t
τ −Ũ(G̃− H̃G̃)e−S̃λ

t
τ

)
(59)

OeΛt/τOTQ(0) =
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ

Ũ(G̃+ H̃G̃)eS̃λ
t
τ −Ũ(G̃− H̃G̃)e−S̃λ

t
τ

)(
BT

−CT

)

=
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT + Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT

)
(60)

2Meλ⊥
t
τ MTQ(0) = 2

1√
2

[
Ṽ⊥
Ũ⊥

] [
eλ⊥

t
τ 0

0 eλ⊥
t
τ

]
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥ 0

0 Ũ⊥e
λ⊥

t
τ ŨT

⊥

] [
W1(0)

T

W2(0)

]
=

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

Ũ⊥e
λ⊥

t
τ ŨT

⊥W2(0)

]
(61)

Putting it together we get the expressions for Z1(t) and Z2(t)619

[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0) =

=
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT + Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT

)
+

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

Ũ⊥e
λ⊥

t
τ ŨT

⊥W2(0)

]
(62)

Z1(t) =
1

2
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2
Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T (63)

Z2(t) =
1

2
Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT +

1

2
Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0) (64)
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We now compute the terms inside the inverse620

Q(0)TM(eλ⊥
t
τ )λ−1

⊥ MTQ(0)

=
[
W1(0) W2(0)

T
] 1√

2

[
Ṽ⊥
Ũ⊥

] [
eλ⊥

t
τ 0

0 eλ⊥
t
τ

] [
λ⊥ 0
0 λ⊥

]−1
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=
[
W1(0) W2(0)

T
] [eλ⊥

t
τ λ−1

⊥ Ṽ⊥Ṽ
T
⊥W1(0)

T

eλ⊥
t
τ λ−1

⊥ Ũ⊥Ũ
T
⊥W2(0)

]
=
[(

W1(0)Ṽ⊥e
λ⊥

t
τ λ−1

⊥ ṼT
⊥W1(0)

T +W2(0)
T Ũ⊥e

λ⊥
t
τ λ−1

⊥ ŨT
⊥W2(0)

)]
(65)

Q(0)TMλ−1
⊥ MTQ(0) = 2

[
W1(0) W2(0)

T
] 1√

2

[
Ṽ⊥
Ũ⊥

] [
λ⊥ 0
0 λ⊥

]−1
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=
[
W1(0) W2(0)

T
] [Ṽ⊥

Ũ⊥

] [
λ−1
⊥ Ṽ⊥Ṽ

T
⊥W1(0)

T

λ−1
⊥ Ũ⊥Ũ

T
⊥W2(0)

]
=
[
W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
T +W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)
]

(66)

Now621

1

2
Q(0)TO

(
e2Λ

t
τ − I

)
Λ−1OT =

1

4
[B −C]

(
eΛ

t
τ − I

)
Λ−1

(
BT

−CT

)
=

1

4

(
B
(
e2S̃λ

t
τ − I

)
(S̃λ)

−1BT −C
(
e−2S̃λ

t
τ − I

)
(S̃λ)

−1CT
)

(67)

Putting it all together622

A(t) =I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)

+W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T (68)

So, final form:623

QQT (t) =[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]
[
I+

1

4

(
B

(
e2S̃λ

t
τ − I

S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT

)

+W2(0)
T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0) +W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T

]−1

[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]T
(69)

624

C.5 Stable solution Unequal-Input-Output625

Theorem C.5. Given the assumptions of Theorem 2.3 further assuming that B is invertible and626

defining eλ⊥
t
τ = sgn(No −Ni)

λ
2 , the temporal evolution of QQT is described as follows:627

19



QQT (t) = Z
[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ (70)

+

(
I− e−2S̃λ

t
τ

4S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−S̃λ

t
τ − I

4S̃λ

)
CTB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

e−S̃λ
t
τ e

λ⊥
2

t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+ e−S̃λ
t
τ e

λ
2

t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

ZT
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Z =

 1
2 Ṽ

[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

1
2Ũ

[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ


(71)

Proof. We start from629

QQT (t) =[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]
[
I+

1

4

(
B

(
e2S̃λ

t
τ − I

S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT

)

+W2(0)
T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0) +W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T

]−1

[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]T
(72)

We extract B−T e−S̃λ
t
τ from all terms as exemplified bellow630

OeΛt/τOTQ(0) =
1

2

Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
Ũ
[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]BT eS̃λ
t
τ (73)
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and rewrite the dynamis as631

QQT (t) =[(
1
2 Ṽ (G̃− H̃G̃)− 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

1
2Ũ(G̃+ H̃G̃) + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

)]
[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ +

1

4

((
I− e−2S̃λ

t
τ

S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−2S̃λ

t
τ − I

S̃λ

)
CTB−T e−S̃λ

t
τ

)

+e−S̃λ
t
τ B−1W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+e−S̃λ
t
τ B−1W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

[(
1
2 Ṽ (G̃− H̃G̃)− 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

1
2Ũ(G̃+ H̃G̃) + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

)]T
(74)

632

QQT (t) = 1
2 Ṽ

[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

1
2Ũ

[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ


[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ

+

(
I− e−2S̃λ

t
τ

4S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−S̃λ

t
τ − I

4S̃λ

)
CTB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

e−S̃λ
t
τ e

λ⊥
2

t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+ e−S̃λ
t
τ e

λ
2

t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

 Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

Ũ
[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ

T

(75)

where eλ⊥
t
τ = sgn(No −Ni)

λ
2 is a scalar633
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C.5.1 Proof Exact learning dynamics with prior knowledge unequal dimension634

We follow a similar derivation presented in Braun et al. (2022) and start with the following equation635

QQT (t) =
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0)︸ ︷︷ ︸

L[
I+

1

2
Q(0)T

(
O
(
e2Λ

t
τ − I

)
Λ−1OT +M(eλ⊥

t
τ − I)λ−1

⊥ MT
)
Q(0)

]−1

︸ ︷︷ ︸
C−1

(76)

Q(0)T
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
︸ ︷︷ ︸

R

=LC−1R, (77)

Substituting our solution into the matrix Riccati equation then yields636

τ
d

dt
QQT = FQQT +QQTF− (QQT )2 (78)

⇒ τ
d

dt
LC−1R

?
= FLC−1R+ LC−1RF− LC−1RLC−1R. (79)

Using the chain rule ∂(AB) = (∂A)B+A(∂B) and the identities637

d

dt
(A−1) = A−1(

d

dt
A)A−1 and

d

dt
(etA) = AetA = etAA (80)

τ
d

dt
QQT = τ

d

dt
LC−1R (81)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(82)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (83)

Next, we note that638

O =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T

(84)
639

OTO =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)
(85)

= I (86)

OTM =
1√
2

[
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

]
1√
2

[
Ṽ⊥
Ũ⊥

]
(87)

=
1

2

[
(G̃− H̃G̃)T ṼT Ṽ⊥ + (G̃+ H̃G̃)T ŨT Ũ⊥
(G̃+ H̃G̃)T ṼT Ṽ⊥ − (G̃− H̃G̃)T ŨT Ũ⊥

]
(88)

= 0 (89)
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and640

MTO =
1√
2

[
ṼT

⊥ ŨT
⊥
](Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)
(90)

=
1

2

[
ṼT

⊥Ṽ(G̃− H̃G̃) + ŨT
⊥Ũ(G̃+ H̃G̃)

ṼT
⊥Ṽ(G̃+ H̃G̃)− ŨT

⊥Ũ(G̃− H̃G̃)

]
(91)

= 0. (92)

we get641

τ
d

dt
QQT = τ

d

dt

(
LC−1R

)
(93)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(94)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (95)

with642

τ

(
d

dt
L

)
C−1R = τ

(
O

1

τ
ΛeΛ

t
τ OT + 2M

λ⊥I

2τ
eλ⊥

t
τ MT

)
Q(0)C−1R (96)

=
(
OΛeΛ

t
τ OT +Mλ⊥Ie

λ⊥
t
τ MT

)
Q(0)C−1R (97)

= (Oλ⊥O
T + 2Mλ⊥M

T )
(
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

)
Q(0)C−1R (98)

= FLC−1R, (99)

τLC−1

(
d

dt
R

)
= τLC−1Q(0)T

(
O

1

τ
eΛ

t
τ ΛOT + 2Meλ⊥

t
τ
λ⊥I

2τ
MT

)
(100)

= LC−1Q(0)T
(
O

1

τ
eΛ

t
τ ΛOT + 2Meλ⊥

t
τ
λ⊥I

2τ
MT

)
(101)

= LC−1RF (102)

and643
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τL

(
d

dt
C−1

)
R = −τLC−1

(
d

dt
C

)
C−1R (103)

= −LC−1

[
τ
1

2
Q(0)TO2

1

τ
e2Λ

t
τ ΛΛ−1OTQ(0) (104)

+ τ
1

2
Q(0)T 4

1

τ
Meλ⊥

t
τ λ⊥ (λ⊥)

−1
MTQ(0)

]
C−1R

= −LC−1

[
Q(0)TOe2Λ

t
τ OTQ(0) + 2Q(0)TMeλ⊥

t
τ MTQ(0)

]
C−1R

(105)

= −LC−1

[
Q(0)TOeΛ

t
τ OTOeΛ

t
τ OTQ(0)

+ 2Q(0)TOeΛ
t
τ OTM︸ ︷︷ ︸

0

eλ⊥
t
τ MTQ(0) (106)

+ 2Q(0)TMeλ⊥
t
τ MTO︸ ︷︷ ︸

0

eΛ
t
τ OTQ(0)

+ 4Q(0)TMeλ⊥
t
τ MTMeλ⊥

t
τ MTQ(0)

]
C−1R

= −LC−1RLC−1R. (107)

Finally, substituting equations 96, 100 and 103 into the left hand side of equation 79 proves equality.644

□645

D Rich-Lazy646

D.1 Dynamics of the Singular Values647

Theorem D.1. Under the assumptions of Theorem 2.3 and with a task-aligned initialization given648

by W1(0) = RS1Ṽ
T and W2(0) = ŨS2R

T , where R ∈ RNh×Nh is an orthonormal matrix, then649

the network function is given by the expression W2W1(t) = ŨS(t)Ṽ T where S(t) ∈ RNh×Nh is650

a diagonal matrix of singular values with elements sα(t) that evolve according to the equation,651

sα(t) = sα(0) + γα(t;λ) (s̃α − sα(0)) , (108)

where s̃α is the α singular value of S̃ and γα(t;λ) is a λ-dependent monotonic transition function652

for each singular value that increases from γα(0;λ) = 0 to limt→∞ γα(t;λ) = 1 defined as653

γα(t;λ) =
s̃λ,αsλ,α sinh

(
2s̃λ,α

t
τ

)
+
(
s̃αsα + λ2

4

)
cosh

(
2s̃λ,α

t
τ

)
−
(
s̃αsα + λ2

4

)
s̃λ,αsλ,α sinh

(
2s̃λ,α

t
τ

)
+
(
s̃αsα + λ2

4

)
cosh

(
2s̃λ,α

t
τ

)
+ s̃α (s̃α − sα)

, (109)

where s̃λ,α =
√
s̃2α + λ2

4 , sλ,α =
√
sα(0)2 +

λ2

4 , and sα = sα(0). We find that under different654

limits of λ, the transition function converges pointwise to the sigmoidal (λ → 0) and exponential655

(λ→ ±∞) transition functions,656

γα(t;λ)→

 e2s̃α
t
τ −1

e2s̃α
t
τ −1+ s̃α

sα(0)

as λ→ 0,

1− e−|λ| t
τ as λ→ ±∞

. (110)

Proof. According to Theorem 2.3, the network function is given by the equation657

W2W1(t) = Z2(t)A
−1(t)ZT

1 (t), (111)
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which depends on the variables of the initialization B and C. Plugging the expressions for a task-658

aligned initialization W1(0) and W2(0) into these variables we get the following simplified expres-659

sions,660

B = R
(
S2(G̃+ H̃G̃) + S1(G̃− H̃G̃)

)
︸ ︷︷ ︸

DB

, (112)

C = R
(
S2(G̃− H̃G̃)− S1(G̃+ H̃G̃)

)
︸ ︷︷ ︸

DC

, (113)

where we define the diagonal matrices DB and DC for ease of notation. Using these expressions,661

we now get the following time-dependent expressions for Z2(t), A−1(t), and Z1(t),662

Z1(t) =
1

2
Ṽ
(
(G̃− H̃G̃)eS̃λ

t
τ DB − (G̃+ H̃G̃)e−S̃λ

t
τ DC

)
RT (114)

Z2(t) =
1

2
Ũ
(
(G̃+ H̃G̃)eS̃λ

t
τ DB + (G̃− H̃G̃)e−S̃λ

t
τ DC

)
RT (115)

A(t) = R

(
I+

(
e2S̃λ

t
τ − I

4S̃λ

)
D2

B −

(
e−2S̃λ

t
τ − I

4S̃λ

)
D2

C

)
RT (116)

Plugging these expressions into the expression for the network function, notice that the R terms663

cancel each other resulting in following equation664

W2W1(t) = Ũ


(
(G̃− H̃G̃)eS̃λ

t
τ DB − (G̃+ H̃G̃)e−S̃λ

t
τ DC

)(
(G̃+ H̃G̃)eS̃λ

t
τ DB + (G̃− H̃G̃)e−S̃λ

t
τ DC

)
4I+

(
e
2S̃λ

t
τ −I

S̃λ

)
D2

B −
(

e
−2S̃λ

t
τ −I

S̃λ

)
D2

C


︸ ︷︷ ︸

S(t)

Ṽ T ,

(117)
Notice that the middle term is simply a product of diagonal matrices. We can factor the numerator665

of this expressions as,666

(G̃2− H̃2G̃2)e2S̃λ
t
τ D2

B +
(
(G̃− H̃G̃)2 − (G̃+ H̃G̃)2

)
DBDC − (G̃2− H̃2G̃2)e−2S̃λ

t
τ D2

C

(118)
We can further factor this expression as,667

G̃2(I− H̃2)
(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− 4G̃2H̃DBDC . (119)

Putting it all together we find that S(t) can be expressed as,668

S(t) =
G̃2(I− H̃2)

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− 4G̃2H̃DBDC

4I+
(

e2S̃λ
t
τ −I

S̃λ

)
D2

B −
(

e−2S̃λ
t
τ −I

S̃λ

)
D2

C

. (120)

Now using the relationship between H̃ and G̃ we use the following two identities:669

G̃2(I− H̃2) =
S̃

S̃λ

, 4G̃2H̃ =
λ

S̃λ

(121)

Plugging these identities into the previous expression and multiplying the numerator and denomina-670

tor by S̃λ gives,671

S(t) =
S̃
(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− λDBDC

4S̃λ + e2S̃λ
t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (122)

Add and subtract S̃
(
4S̃λ +D2

C −D2
B

)
from the numerator such that672

S(t) = S̃ −
S̃
(
4S̃λ +D2

C −D2
B

)
+ λDBDC

4S̃λ + e2S̃λ
t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (123)
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Using the form of DB and DC notice the following two identities:673

DBDC =
λ

S̃λ

(
S̃ − S2S1

)
, D2

C −D2
B = − 4

S̃λ

(
S̃S2S1 +

λ2

4
I

)
(124)

From the second identity we can derive a third identity,674

4S̃λ +D2
C −D2

B = 4
S̃

S̃λ

(
S̃ − S2S1

)
(125)

Plugging the first and third identities into the numerator for the previous expression gives,675

S(t) = S̃ −
(4S̃2+λ2I)

S̃λ

(
S̃ − S2S1

)
4S̃λ + e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (126)

Multiply numerator and denominator by S̃λ

4 and simplify terms gives the expression,676

S(t) = S̃ − S̃λ
2

S̃λ
2
+ S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− S̃λ

4 (D2
B −D2

C)

(
S̃ − S2S1

)
. (127)

Thus we have found the transition function,677

γ(t;λ) =

S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
+ S̃λ

4

(
D2

C −D2
B

)
S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
+ S̃λ

4

(
4S̃λ +D2

C −D2
B

) . (128)

We will use our previous identities and the definitions of D2
B and D2

C to simplify this expression.678

Notice the following identity,679

S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
= S̃λSλ sinh

(
2S̃λ

t

τ

)
+

(
S̃S(0) +

λ2

4
I

)
cosh

(
2S̃λ

t

τ

)
(129)

Putting it all together we get680

γ(t;λ) =
S̃λSλ sinh

(
2S̃λ

t
τ

)
+
(
S̃S(0) + λ2

4 I
)
cosh

(
2S̃λ

t
τ

)
−
(
S̃S(0) + λ2

4 I
)

S̃λSλ sinh
(
2S̃λ

t
τ

)
+
(
S̃S(0) + λ2

4 I
)
cosh

(
2S̃λ

t
τ

)
+ S̃

(
S̃ − S(0)

) (130)

We will now show why under certain limits of λ this expression simplifies to the sigmoidal and681

exponential dynamics discussed in the previous section.682

Sigmoidal dynamics. When λ = 0, then S̃λ = S̃ and Sλ = S(0). Notice, that the coefficients for683

the hyperbolic functions all simplify to S̃S(0). Using the hyperbolic identity sinh(x) + cosh(x) =684

ex, we can simplify the expression for the transition function to685

γ(t;λ) =
S̃S(0)e2S̃

t
τ − S̃S(0)

S̃S(0)e2S̃
t
τ − S̃S(0) + S̃2

. (131)

Dividing the numerator and denominator by S̃S(0) gives the final expression.686

Exponential dynamics. In the limit as λ → ±∞ the expressions S̃λ → |λ|
2 and Sλ → |λ|

2 .687

Additionally, in these limits because λ2

4 I ≫ S̃S(0) then
(
S̃S(0) + λ2

4 I
)
→ λ2

4 I. As a result of688

these simplifications the coefficients for the hyperbolic functions all simplify to λ2

4 I. As a result we689

can again use the hyperbolic identity sinh(x) + cosh(x) = ex to simplify the expression as690

γ(t;λ) =
λ2

4 e|λ|
t
τ − λ2

4 I

λ2

4 e|λ|
t
τ + S̃

(
S̃ − S(0)

) . (132)

Dividing the numerator and denominator by λ2

4 results in all terms without a coefficient proportional691

to λ2 vanishing, which simplifying further gives the final expression.692
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Figure 4: Simulated and analytical dynamics of the singular values of the network function with
relative scale lambda A λ = −2 B λ = 0 C λ = 2 initialized as described in F.7.

D.2 Dynamics of the representation from the Lazy to the Rich Regime693

The lazy and rich regimes are defined by the dynamics of the NTK of the network. Lazy learning694

occurs when the NTK is constant, rich learning occurs when it is not. (Farrell et al. (2023b))695

The NTK intuitively measures the movement of the network representations through training. As696

shown in (Braun et al. (2022)), in specific experimental setup, we can calculate the NTK of the697

network in terms of the internal representations in a straightforward way:698

NTK = INo ⊗XTWT
1 W1(t)X+W2W

T
2 (t)⊗XTX (133)

In order to better understand the effect of λ on NTK dynamics, we first prove some theorems in-699

volving the Singular Values of the λ-balanced weights, and the representations of a λ-balanced700

network.701

D.2.1 Lambda-balanced singular value702

Theorem D.2. Under a λ-Balanced initialization 2, if the network function W2W1(t) =703

U(t)S(t)V T (t) is full-rank 4 and we define Sλ(t) =
√

S2(t) + λ2

4 I. , then we can recover the pa-704

rameters W2(t) = U(t)S2(t)R
T (t), W1(t) = R(t)S1(t)V

T (t) up to time-dependent orthogonal705

transformation R(t) of size Nh ×Nh, where706

S1(t) =
((

Sλ(t)− λI
2

) 1
2 0max(0,Ni−No)

)
S2(t) =

((
Sλ(t) +

λI
2

) 1
2 0max(0,No−Ni)

)
(134)

Proof. We prove the case Ni ≤ No and Nh = min(Ni, No). The proof for No ≤ Ni follows the707

same structure. Let USV T = W2(t)W1(t) be the Singular Value Decomposition of the product708

of the weights at training step t. We will use W2 = W2(t),W1 = W1(t) as a shorthand.709

710

By properties of Singular Value Decomposition, we can write W2 = US2R
T ,W1 = RS1V

T ,711

where R is an orthonormal matrix and S2,S1 are diagonal (possibly rectangular) matrices.712

713

The Balanced property states that W T
2 W2 − W1W

T
1 = λI. We know this holds for any t714

since this is a conserved quantity in linear networks.715

716

Hence717

RST
2 S2R

T −RS1S1R
T = λI (135)

ST
2 S2 − S1S1 = λI (136)

The matrices S1,S2, have shapes (Nh, Ni), (No, Nh) respectively. We introduce the diagonal ma-718

trices Ŝ1 of shape (Nh, Ni), Ŝ2 of shape (Ni, Nh) such that the zero matrix has size (No−Ni, Nh)719

:720

S1 =
(
Ŝ1

)
, S2 =

(
Ŝ2

0

)
(137)
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Hence721

ST
2 S2 − S1S1 = λI (138)

From the equation above and the fact that Ŝ1Ŝ2 = S we derive that:722

Ŝ2 =

(√
λ2I+ 4S2 + λI

2

) 1
2

, Ŝ1 =

(√
λ2I+ 4S2 − λI

2

) 1
2

, (139)

Hence723

W2 = U

((√
λ2I+4S2+λI

2

) 1
2

0max(0,No−Ni)

)
,RT , W1 = R

((√
λ2I+4S2−λI

2

) 1
2

0max(0,Ni−No)

)
V T

(140)
724

D.2.2 Convergence proof725

With our solution, QQT (t), which captures the temporal dynamics of the similarity between hidden726

layer activations, we can analyze the network’s internal representations in relation to the task. This727

allows us to determine whether the network adopts a rich or lazy representation, depending on the728

value of λ. Consider a λ-Balanced network training on data Σyx = Ũ S̃Ṽ T . We assume that the729

convergence is toward global minima and B is invertible730

Theorem D.3. Under the assumptions of Theorem C.5, the network function converges to ŨS̃ṼT731

and acquires the internal representation, that is WT
1 W1 = ṼS̃2

1Ṽ
T and W2W

T
2 = ŨS̃2

2Ũ
T732

Proof. As training time increases, all terms including a matrix exponential with negative exponent733

in Equation 70 vanish to zero, as Sλ = S̃λ is a diagonal matrix with entries larger zero734

As training time increases, all terms in the equations vanish to zero. Terms in Equation 70 decay as735

lim
t→∞

e−
√

S̃2+λ2I
4

t
τ = 0. (141)

and736

lim
t→∞

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ = 0. (142)

where S̃λ = S̃λ is a diagonal matrix with entries larger zero737

Therefore, in the temporal limit, eq. 70 reduces to738

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) WT
2 W2(t)

]
(143)

=

[
Ṽ(G̃− H̃G̃)

Ũ(H̃G̃+ G̃)

] [
S̃λ

−1
]−1 [

(Ṽ(G̃− H̃G̃))T (Ũ(H̃G̃+ G̃))T
]

(144)

=

[
Ṽ(G̃− H̃G̃)S̃λ(G̃− H̃G̃)T ṼT Ṽ(G̃− H̃G̃)S̃λ(H̃G̃+ G̃)T ŨT

Ũ(H̃G̃+ G̃)S̃λ(G̃− H̃G̃)T ṼT Ũ(H̃G̃+ G̃)S̃λ(H̃G̃+ G̃)T ŨT

]
.

(145)

(G̃− H̃G̃)S̃λ(G̃+ H̃G̃) =
Sλ(1− H̃2)

1 + H̃2
= S̃ (146)

S̃λ(G̃− H̃G̃)2 =
S̃λ(1 + H̃2)

1 + H̃2
− S̃λ(2H̃)

1 + H̃2
=

√
4S̃2 + λ2I− λI

2
(147)
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S̃λ(G̃+ H̃G̃)2 =
S̃λ(1 + H̃2)

1 + H̃2
+

S̃λ(2H̃)

1 + H̃2
=

√
4S̃2 + λ2I+ λI

2
(148)

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) WT
2 W2(t)

]
(149)

=

[
ṼS2

1Ṽ
T ṼS̃ŨT

ŨS̃ṼT ŨS2
2Ũ

T

]
. (150)

739

D.2.3 Representation in the limit740

Theorem D.4. Under the assumptions of Theorem C.5, training on data Σyx = Ũ S̃Ṽ T , as λ→∞741

the representation tends to742

W2W
T
2 = Ũ

(
λI 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT W T

1 W1 =
1

λ
Ṽ

(
S̃2 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

As λ→ −∞743

W2W
T
2 = − 1

λ
Ũ

(
S̃2 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT , W T

1 W1 = Ṽ

(
−λI 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

As λ→ −∞744

W2W
T
2 = − 1

λ
Ũ

(
S̃2 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT , W T

1 W1 = Ṽ

(
−λI 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

Proof. We start from the representation derived in D.3 and using the Taylor expansion of f(x) =745 √
1 + x2, we compute746

√
λ2I+ 4S̃2 + λI

2
=
|λ|
√
1 +

(
2S̃
λ

)2
+ λI

2
(151)

|λ|
(
1 +

(
2S̃
λ

)2
+O(λ−4)

)
+ λI

2
=
|λ|+ λ

2
+

S̃2

|λ|
+O(λ−3) (152)

Hence747

lim
λ→∞

√
λ2I+ 4S̃2 + λI

2
= λI, lim

λ→−∞

√
λ2I+ 4S̃2 + λI

2
=

S̃2

|λ|
= − S̃2

λ
(153)

Similarly,748 √
λ2I+ 4S̃2 − λI

2
=
|λ| − λ

2
+

S̃2

|λ|
+O(λ−3) (154)

lim
λ→∞

√
λ2I+ 4S̃2 − λI

2
=

S̃2

λ
, lim

λ→−∞

√
λ2I+ 4S̃2 − λI

2
=

S̃2

|λ|
= −λI (155)

Since Ũ , Ṽ are independent of λ:749
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lim
λ→±∞

W2W
T
2 = Ũ

(
lim

λ→±∞
S2

)
ŨT (156)

lim
λ→±∞

W T
1 W1 = Ṽ

(
lim

λ→±∞
S1

)
Ṽ T (157)

750

As |λ| → ∞, one of the network representations approaches a scaled identity matrix, while the751

other tends toward zero. Intuitively, this suggests that the representations shift less and less as |λ|752

increases. Next, we demonstrate that the NTK becomes progressively less variable as |λ| grows and753

ultimately converges to zero.754

D.2.4 NTK movement755

Relationship between λ and the NTK of the network756

Theorem D.5. Under the assumptions of Theorem C.5, consider a linear network training on data757

Σyx = Ũ S̃Ṽ T . At any arbitrary training time t ≥ 0, let W2(t)W1(t) = U∗S∗V ∗T . Then,758

1. For any λ ∈ R:759

NTK(0) = INo
⊗XTV

(√
λ2I+4S∗2−λI

2 0
0 0

)
V TX

+U

(√
λ2I+4S∗2+λI

2 0
0 0

)
UT ⊗XTX

(158)

NTK(t) = INo ⊗XTV ∗
(√

λ2I+4S∗2−λI
2 0
0 0

)
V ∗T

+U∗
(√

λ2I+4S∗2+λI
2 0
0 0

)
U∗T ⊗XTX

(159)

2. As λ→∞:760

NTK(t)− NTK(0)→ 1

λ

(
INo ⊗XTV ∗S̃∗2V ∗TX − INo ⊗XTV S̃2V TX

)
→ 0

(160)

3. As λ→ −∞:761

NTK(t)− NTK(0)→ 1

λ

(
US̃2UT ⊗XTX −U∗S̃∗2U∗T ⊗XTX

)
→ 0 (161)

Proof. Follows by substituting the expressions for the network representations in terms of λ from762

(Braun et al. (2022))’s expression for the NTK of a linear network. Similarly, follows from substi-763

tuting the limit expressions for the network representations and the fact that the Kronecker product764

is linear in both arguments.765

The theorem above demonstrates that as |λ| → ∞, the NTK of a λ-Balanced network remains766

constant. This indicates that the network operates in the lazy regime throughout all training steps.767

This finding is significant as it highlights the impact of weight initialization on learning regimes.768

30



D.3 Representation robustness and sensitivity to noise769

As derived in (Braun et al., 2024), the expected mean squared error under additive, independent and770

identically distributed input noise with mean µ = 0 and variance σ2
x is771 〈

1

2P

P∑
i=1

||W2W1 (xx + ξi)− yi||22

〉
ξx

= σ2
x||W2W1||2F + c, (162)

where c = 1
2 Tr(Σ̃

yy) − 1
2 Tr(Σ̃

yxΣ̃yxT ) is a noise independent constant that only depends on772

the statistics of the training data. In Theorem D.3 we show that the network function converges to773

ŨS̃ṼT and therefore774

σ2
x||W2W1||2F = σ2

x||ŨS̃ṼT ||2F
= σ2

x||S̃||2F

= σ2
x

Nh∑
i=1

S̃2
i

(163)

As derived in (Braun et al., 2024), under the assumption of whitened inputs (Assumption 1), in the775

case of additive parameter noise with µ = 0 and variance σ2
W, the expected mean squared error is776 〈

1

2P

P∑
i=1

|| (W2 + ξW2
) (W1 + ξW1

)xi − yi||22

〉
ξW1

,ξW2

=
1

2
Niσ

2
W||W2||2F +

1

2
Noσ

2
W||W1||2F +

1

2
NiNhNoσ

4 + c.

(164)

Using Theorem D.3, we have777

||W1||2F = Tr(WT
1 W1)

= Tr

(√
λ2I+ 4S̃2 + λI

2

)

=
1

2

(
Nh∑
i=1

√
λ2 + 4S̃2

i + λ

) (165)

and778

||W2||2F = Tr(W2W
T
2 )

= Tr

(√
λ2I+ 4S̃2 − λI

2

)

=
1

2

(
Nh∑
i=1

√
λ2 + 4S̃2

i − λ

)
.

(166)

To find the λ that minimises the expected loss, we substitute the equations for the norms, take the779

partial derivative with respect to λ and set it to zero780

∂ ⟨L⟩ξW1
,ξW2

∂λ

!
= 0

⇔1

4
Niσ

2
W

∂

∂λ

( Nh∑
i=1

√
λ2 + 4S̃2

i − λ
)
+

1

4
Noσ

2
W

∂

∂λ

(
Nh∑
i=1

√
λ2 + 4S̃2

i + λ

)
= 0

⇔Ni

Nh∑
i=1

λ√
λ2 + 4S̃2

i

−NiNh +No

Nh∑
i=1

λ√
λ2 + 4S̃2

i

+NoNh = 0

⇔
Nh∑
i=1

λ√
λ2 + 4S̃2

i

= Nh
Ni −No

Ni +No
.

(167)
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It follows, that under the assumption that Ni = No, the equation reduces to781

Nh∑
i=1

λ√
λ2 + 4S̃2

i

= 0. (168)

We note, that the denominator is always positive and therefore, that the left-hand side of the equation782

is always larger zero for any λ > 0, and smaller than zero for any λ < 0. The euqation is therefore783

only solved for λ = 0.784

D.4 Effect of the architecture from the lazy to the Rich Regime785

Theorem D.6. Under the conditions of Theorem C.5, when λ⊥ > 0, the network enters a regime786

referred to as the delayed-rich phase. In this phase, the learning rate is determined by two competing787

exponential factors:788

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ

and789

e−
√

S̃2+λ2

4 I t
τ .

As λ increases, different parts of the network exhibit distinct learning behaviors: some components790

adapt quickly and converge exponentially with lambda, while others are constrained by the singular791

values of the network, resulting in slower adaptation.792

Proof. The solution to Theorem C.5 is governed by two time-dependent terms:793

e−
√

S̃2+λ2I
4

t
τ and eλ⊥

t
τ e−

√
S̃2+λ2

4 I t
τ .

The first term exhibits exponential decay with rate λ, approaching zero as time progresses:794

lim
t→∞

e−
√

S̃2+λ2I
4

t
τ = 0.

The second term also decays, but at a rate governed by the singular values S̃, as λ tends to infinity:795

lim
t→∞

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ = 0.

Since796

λ⊥ −
√
S̃2 +

λ2

4
I > 0,

we have797

lim
λ→∞

(
λ⊥ −

√
S̃2 +

λ2

4
I

)
= S̃.

Thus, as λ increases, the convergence rate slows for certain parts of the network (those governed by798

larger singular values), while other components continue to learn more quickly. This explains the799

delay observed in the delayed-rich regime.800

E Appendix: Application801

E.1 Appendix: Continual Learning802

We build upon the derivation presented in Braun et al. (2022) to incorporate the dynamics of contin-
ual learning throughout the entire learning trajectory. Utilizing the assumption of whitened inputs,
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the entire batch loss for the ith task is

Li (Tj) =
1

2P
∥W2W1Xi −Yi∥2F

=
1

2P
Tr
(
(W2W1Xi −Yi |) (W2W1Xi −Yi |)T

)
=

1

2P
Tr
(
W2W1XiX

T
i (W2W1)

T
)
− 1

P
Tr
(
W2W1XiY

T
i

)
+

1

2P
Tr
(
YiY

T
i

)
=

1

2
Tr
(
W2W1(W2W1)

T
)
− Tr

(
W2W1Σ̃

yxT

i

)
+

1

2
Tr
(
Σ̃yy

i

)
=

1

2
Tr

((
W2W1 − Σ̃yx

i

)(
W2W1 − Σ̃yx

i

)T
− Σ̃yx

i Σ̃yxT

i

)
+

1

2

(
Σ̃yy

i

)
=

1

2

∥∥∥W2W1 − Σ̃yx
i

∥∥∥2
F
−1

2
Tr
(
Σ̃yx

i Σ̃yxT

i

)
+

1

2

(
Σ̃yy

i

)
︸ ︷︷ ︸

c

.

Hence, the extent of forgetting, denoted as F for task Ti during training on task Tk subsequent to803

training the network on task Tj , specifically, the relative change in loss, is entirely dictated by the804

similarity structure among tasks.805

Fi (Tj , Tk) = Li (Tk)− Li (Tj)

=
1

2

∥∥∥Σ̃yx
k − Σ̃yx

i

∥∥∥2
F
+ c− 1

2

∥∥∥W2W1 − Σ̃yx
i

∥∥∥2
F
− c

=
1

2

(∥∥∥Σ̃yx
k − Σ̃yx

i

∥∥∥2
F
−
∥∥∥W2W1 − Σ̃yx

i

∥∥∥2
F

)
.

It is important to note that the amount of forgetting is a function of the weight trajectories. Therefore,806

we have analytical solutions for trajectories of forgetting as well.807
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Figure 5: Continual learning. A Top: Network training from small zero-balanced weights across
a sequence of tasks (colored lines represent simulations, and black dotted lines represent analytical
results). Bottom: Evaluation loss for the tasks in the sequence (dotted lines) while training on the
current task (solid lines). As the network optimizes its function on the current task, the loss on
previously learned tasks increases.

Figure. E.1 panel was generated by training a linear network with Ni = 5, Nh = 10, No = 6808

subsequently on four different random regression tasks with N = 25. The learning rate was η =809

0.05 and the initial weights were small (σ = 0.0001).810

E.2 Appendix: Reversal Learning811

As first introduced in Braun et al. (2022), in the following discussion, we assume that the input and812

output dimensions are equal. We denote the i-th columns of the left and right singular vectors as ui,813

ũi, and vi, ṽi, respectively.814

Reversal learning occurs when both the task and the initial network function share the same left and815

right singular vectors, i.e., U = Ũ and V = Ṽ, with the exception of one or more columns of the816

left singular vectors, where the direction is reversed: −ui = ũi.817

It is important to note that if a reversal occurs in the right singular vectors, such that −vi = ṽi, this818

can be equivalently represented as a reversal in the left singular vectors, as the signs of the right and819

left singular vectors are interchangeable.820

In the reversal learning setting, both B = S2Ũ
T Ũ(G̃ + H̃G̃) + S1V

T Ṽ (G̃ − H̃G̃) and821

C = S2Ũ
T Ũ(G̃− H̃G̃)− S1V

T Ṽ (G̃+ H̃G̃) are diagonal matrices.822

823

In the case where lambda is zero, the same argument given in Braun et al. (2022) follows, the824

diagonal entries of C are zero if the singular vectors are aligned and non zero if they are reversed.825

Similarly, diagonal entries of B are non-zero if the singular vectors are aligned and zero if they are826

reversed. Therefore, in the case of reversal learning, B is a diagonal matrix with 0 values and thus827

is not invertible. As a consequence, the learning dynamics cannot be described by Equation 49.828

However, as B and C are diagonal matrices, the learning dynamics simplify. Let bi, ci, si and s̃i829
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denote the i-th diagonal entry of B, C, S and S̃ respectively, then the network dynamics can be830

rewritten as831

W2W1(t) =
1

2
Ũ
[
(G̃+ H̃G̃)eS̃λ

t
τ BT + (G̃− H̃G̃)e−S̃λ

t
τ CT

)
[
S−1
λ +

1

4
B
(
e2S̃λ

t
τ − I

)
S̃−1
λ BT − 1

4
C
(
e−2S̃λ

t
τ − I

)
S̃−1
λ CT

]−1

(169)

1

2

(
(G̃− H̃G̃)eS̃λ

t
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It follows, that in the reversal learning case, i.e. b = 0, for each reversed singular vector, the832

dynamics vanish to zero833

lim
t→∞

−sλic2i s̃ie−4s̃λi
t
τ

4s̃λ,ie−2s̃λi
t
τ + sic2i

(
e−2s̃λi

t
τ − e−4s̃λi

t
τ

) ũiṽ
T
i = 0. (172)

Analytically, the learning dynamics are initialized on and remain along the separatrix of a saddle834

point until the corresponding singular value of the network function decreases to zero and stays835

there, indicating convergence to the saddle point. In numerical simulations, however, the learning836

dynamics can escape the saddle points due to the imprecision of floating-point arithmetic. Despite837

this, numerical optimization still experiences significant delays, as escaping the saddle point is time-838

consuming Lee et al. (2022). In contrast, when the singular vectors are aligned (c = 0), the equation839

governing temporal dynamics, as described in Saxe et al. (2014), is recovered. Under these con-840

ditions, training succeeds, with the singular value of the network function converging to its target841

value.842

lim
t→∞
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i
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= s̃λiũiṽ
T
i . (174)

In summary, in the case of aligned singular vectors, the learning dynamics can be described by843

the convergence of singular values. However in the case of reversal learning, analytically, training844

does not succeed. In simulations, the learning dynamics escape the saddle point due to numerical845

imprecision, but the learning dynamics are catastrophically slowed in the vicinity of the saddle point846

as shown in figure E.2 .847

In the case where λ is non-zero, the diagonal of C are also non-zero; this is true regardless of848

whether they are reversed or aligned. Similarly, the diagonal entries of B remain non-zero whether849

the singular vectors are aligned or reversed. Therefore, in the case of reversal learning, B is a850

diagonal matrix with elements that are zero. In figure E.2851
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Figure 6: Plot showing the steps to convergence for two tasks: (1) the reversal learning task and (2)
a randomly sampled continual learning task across a range of λ values. The reversal learning task
exhibits catastrophic slowing at λ = 0.

E.3 Appendix: Generalization and structured learning852

We study how the representations learned for different λ initializations impact generalization of853

properties of the data. To do this, we consider the case where a new feature is associated to a854

learned item in a dataset and how this new feature may then be related to other items based on prior855

knowledge. In particular, we first train each network (for different values of −10 ≤ λ ≤ 10) on856

the hierarchical semantic learning task in Section 3 and then add a new feature (e.g., ‘eats worms’)857

to a single item (e.g., the goldfish) (Fig. E.3A), correspondingly increasing the output dimension858

to represent the novel feature. In order to learn the new feature without affecting prior knowledge,859

we append a randomly initialized row to W2 and train it on the single item with the new feature,860

while keeping the rest of the network frozen. Thus, we only change the weights from the hidden861

layer to the new feature which may produce different behavior depending on how the hidden layer862

representations vary based on λ. After training on the new feature-item association, we query the863

network with the rest of the data to observe how the new feature is associated with the other items.864

We find that as λ increases positively, the network better transfers the hierarchy such that it projects865

the feature onto items based on their distance to the trained item (Fig. E.3B,C). For example, after866

learning that a goldfish eats worms, the network can extrapolate the hierarchy to infer that another867

fish, or birds, may also eat worms; instead, plants are not likely to eat worms. Alternatively, as λ868

becomes more negative, the network ceases to infer any hierarchical structure and only learns to map869

the new feature to the single item trained on. In this case, after learning that a goldfish eats worms,870

the network does not infer that other fish, birds, or plants may also eat worms.871

Interestingly, this setting highlights how asymmetries in the representations yielded by different λ872

can actually benefit transfer and generalization. This can be shown by observing that the learning873

of a new feature association only depends on the first layer W1. Let ŷf denote the vector of the874

representation of the new feature f across items i in the dataset. Additionally, let w(f)T
2 be the new875

row of weights appended to W2 which map the hidden layer to the new feature. Following Saxe876

et al. (2019b), if w(f)T
2 is initialized with small random weights and trained on item H̃i, it will877

converge to878

w
(f)T
2 = H̃T

i W
T
1 /∥W1H̃i∥22 (175)

ŷf = (H̃T
i W

T
1 W1H̃)/∥W1H̃i∥22 (176)

From this we can see that differences in the representations of the new feature across items ŷf across879

λ are only influenced by W1.880

In the case of the rich learning regime where λ = 0, the semantic relationship between features881

and items is distributed across both layers. Instead, when λ > 0, the second layer W2 exhibits882

lazy learning, yielding an output representation W2W
T
2 of a weighted identity matrix. However,883

the first layer W1 still learns a rich representation of the hierarchy, albeit at a smaller scaling.884

Furthermore, rather than distributing this learning across both layers, in the λ > 0 case, all learning885
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of the hierarchy occurs in the first layer, allowing it to more readily transfer this structure to the886

learning of a new feature (which only depends on the first layer). Thus, in this case, the ‘shallowing’887

of the network into the first layer is actually beneficial. Finally, we can also observe the opposite888

case when λ < 0. Here, rich learning happens in the second layer, while the first layer is lazy and889

learns to represent a weighted identity matrix. As such, these networks do not learn to transfer the890

hierarchy of different items to the new feature.891

Figure 7: Transfer learning for different λ. A A new feature (such as ‘eats worms’) is introduced
to the dataset after training on the hierarchical semantic learning task (Section 3). A randomly
initialized row is added to W2 and trained on a single item with the new feature (for example, the
goldfish), with the rest of the network frozen. The network is then tested on the transfer of the new
feature to other items, such that items closer to the goldfish in the hierarchy are more likely to have
the same feature. B The generalization loss on the untrained items with the new feature decreases
as λ increases. C As λ increases positively, networks better transfer the hierarchical structure of the
data to the representation of the new feature.

F Implementation and Simulations892

The details of the simulation studies are described as follows. Specifically, Ni, Nh, and No represent893

the dimensions of the input, hidden layer, and output (target), respectively. The total number of894

training samples is denoted by N , and the learning rate is defined as η = 1
τ .895

F.1 Lambda-balanced weight initialization896

In practice, to initialize the network with lambda-balanced weights, we use Algorithm F.1. In this897

algorithm, α serves as a scaling factor that controls the variance of the weights, allowing for adjust-898

ments between smaller and larger weight initializations.899

F.2 Tasks900

In the following, we describe the different tasks that are used throughout the simulation studies.901

F.2.1 Random regression task902

In the random regression task, the inputs X ∈ RNi×N are generated from a standard normal dis-903

tribution, X ∼ N (µ = 0, σ = 1). The input data X is then whitened to satisfy 1
NXXT = I.904

The target values Y ∈ RNo×N are independently sampled from a normal distribution with variance905

scaled according to the number of output nodes, Y ∼ N (µ = 0, α = 1√
No

). Consequently, the906
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Algorithm 1 Get λ-balanced
1: function GET LAMBDA BALANCED(λ, in dim, hidden dim, out dim, σ = 1)
2: if out dim > in dim and λ < 0 then
3: raise Exception(’Lambda must be positive if out dim ¿ in dim’)
4: end if
5: if in dim > out dim and λ > 0 then
6: raise Exception(’Lambda must be positive if in dim ¿ out dim’)
7: end if
8: if hidden dim < min(in dim, out dim) then
9: raise Exception(’Network cannot be bottlenecked’)

10: end if
11: if hidden dim > max(in dim, out dim) and λ ̸= 0 then
12: raise Exception(’hidden dim cannot be the largest dimension if lambda is not 0’)
13: end if
14: W1 ← σ · random normal matrix(hidden dim, in dim)
15: W2 ← σ · random normal matrix(out dim, hidden dim)
16: [U, S, V t]← SVD(W2 ·W1)
17: R← random orthonormal matrix(hidden dim)

18: S2equal dim ←
√(√

λ2 + 4 · S2 + λ
)
/2

19: S1equal dim ←
√(√

λ2 + 4 · S2 − λ
)
/2

20: if out dim > in dim then
21: S2←

[
S2equal dim 0

0 0hidden dim−in dim

]
22: S1←

[
S1equal dim

0

]
23: else if in dim > out dim then
24: S1←

[
S1equal dim 0

0 0hidden dim−out dim

]
25: S2← [S2equal dim 0]
26: end if
27: init W2 ← U · S2 ·RT

28: init W1 ← R · S1 · V t
29: return (init W1, init W2)
30: end function

network inputs and target values are uncorrelated Gaussian noise, implying that a linear solution907

may not always exist.908

F.2.2 Semantic hierarchy909

We use the same task as in Braun et al. (2022) and modify it to match the theoretical dynamics.910

The modification ensures that the inputs are whitened. In the semantic hierarchy task, input items911

are represented as one-hot vectors, i.e., X = I
8 . The corresponding target vectors, yi, encode the912

item’s position within the hierarchical tree. Specifically, a value of 1 indicates that the item is a left913

child of a node, −1 denotes a right child, and 0 indicates that the item is not a child of that node.914

For example, consider the blue fish: it is a blue fish, a left child of the root node, a left child of the915

animal node, not part of the plant branch, a right child of the fish node, and not part of the bird,916

algae, or flower branches, resulting in the label [1, 1, 1, 0,−1, 0, 0, 0]. The labels for all objects in917

the semantic tree, as shown in Figure 2 A, are given by:918
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Y = 8 ∗



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


. (177)

The singular value decomposition (SVD) of the corresponding correlation matrix, Σ̃yx, is not unique919

due to identical singular values: the first two, the third and fourth, and the last four values are the920

same. To align the numerical and analytical solutions, this permutation invariance is addressed by921

adding a small perturbation to each column yi, for i ∈ 1, ..., N , of the labels:922

yi = yi ·
(
1 +

0.1

i

)
, (178)

resulting in singular values that are nearly, but not exactly, identical.923

F.3 Figure 1924

Panels B illustrates three simulations conducted on the same task with varying initial λ-balanced925

weights respectively λ = −2, λ = 0, λ = 2. The regression task parameters were set with (σ =926 √
10). The network architecture consisted of Ni = 3, Nh = 2, No = 2,with a learning rate of927

η = 0.0002. The batch size is N = 10. The zero-balanced weights are initialized with variance928

σ = 0.00001. The lambda-balanced network are initialized with sigmaxy =
√
1 of a random929

regression task with same architecture.930

On Panel C , we plot the ballancedness W2(0)
TW2(0)−W1(0)W1(0)

T for a two layer network931

initialised with Lecun initialization with dimension Ni = 40 ,Nh= 120 ,No=250932

F.4 Figure 2933

Panel A, B, C illustrates three simulations conducted on the same task with varying initial λ-balanced934

weights respectively λ = −2, λ = 0, λ = 2 according to the initialization scheme described in F.7.935

The regression task parameters were set with (σ =
√
10). The network architecture consisted of936

Ni = 3, Nh = 2, No = 2 with a learning rate of η = 0.0002. The batch size is N = 10. The937

zero-balanced weights are initialized with variance σ = 0.00001. The lambda-balanced network are938

initialized with sigmaxy =
√
1 of a random regression task with same architecture.939

F.5 Figure 3940

Panel A, B, C illustrates three simulations conducted on the same task with varying initial λ-balanced941

weights respectively λ = −2, λ = 0, λ = 2 according to the initialization scheme described in F.7.942

The regression task parameters were set with (σ =
√
12). The network architecture consisted of943

Ni = 3, Nh = 3, No = 3 with a learning rate of η = 0.0002. The batch size is N = 5. The944

zero-balanced weights are initialized with variance σ = 0.0009. The lambda-balanced network are945

initialized with sigmaxy =
√
12 of a random regression task with same architecture.946

F.6 Figure 4947

In Panel A presents a semantic learning task with the SVD of the input-output correlation matrix948

of the task. U and V represent the singular vectors, and S contains the singular values. This949

decomposition allows us to compute the respective RSMs as USU⊤ for the input and V SV ⊤ for950

the output task. The rows and columns in the SVD and RSMs are ordered identically to the items in951

the hierarchical tree.952
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The results in Panel B display simulation outcomes, while Panel C presents theoretical input and953

output representation matrices at convergence for a network trained on the semantic task described954

in Braun et al. (2022); Saxe et al. (2013),. These matrices are generated using varying initial λ-955

balanced weights set at λ = −2, λ = 0, and λ = 2, following the initialization scheme outlined956

in F.7. The network architecture includes Ni = 8, Nh = 8, and No = 8 with a learning rate957

of η = 0.001 and a batch size of N = 8. Zero-balanced weights are initialized with a variance958

of σ = 0.00001, while λ-balanced networks are initialized with σxy =
√
1 based on a random959

regression task with the same architecture.960

Panel D illustrates results from running the same task and network configuration but initialized with961

randomly large weights having a variance of σ = 1.962

In panel E, we trained a two-layer linear network with Ni = Nh = No = 4 on a random regression963

task for λ ∈ [−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5] to convergence. Subsequently, we added Gaussian964

noise with µ = 0, σ ∈ [0, 0.5, 1] to the inputs (top panel) or synaptic weights (bottom panel) and965

calculated the expected mean squared error.966

F.7 Figure 5967

Panel A illustrates schematic representations of the network architectures considered: from left to968

right, a funnel network (Ni = 4, Nh = 2, No = 2), a square network (Ni = 4, Nh = 4, No = 4),969

and an inverted-funnel network (Ni = 2, Nh = 2, No = 4).970

Panel B shows the Neural Tangent Kernel (NTK) distance from initialization, as defined in Fort et al.971

(2020), across the three architectures shown schematically. The kernel distance is calculated as:972

S(t) = 1− ⟨K0,Kt⟩
∥K0∥F ∥Kt∥F

.

The simulations conducted on the same task with eleven varying initial λ-balanced weights in973

[−9, 9]. The regression task parameters were set with (σ =
√
3). The task has batch size N = 10.974

The network has with a learning rate of η = 0.01. The lambda-balanced network are initialized with975

σxy =
√
1 of a random regression task.976

Panel C shows the Neural Tangent Kernel (NTK) distance from initialization for the funnel archi-977

tectures shown schematically with dimensions Ni = 3, Nh = 2, and No = 2. The simulations978

conducted on the same task with twenty one varying initial λ-balanced weights in [−9, 9]. The re-979

gression task parameters were set with (σ =
√
3). The task has batch size N = 30. The network980

has with a learning rate of η = 0.002. The lambda-balanced network are initialized with σxy =
√
1981

of a random regression task.982
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