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ABSTRACT

Continual learning based on prompt tuning creates a key-value pool, where these
key-value pairs are called prompts. Prompts are retrieved using input images as
queries and input into a frozen backbone network. It requires training only a few
parameters to quickly adapt to downstream tasks. Compared to other traditional
continual learning methods, it is more effective in resisting catastrophic forget-
ting. However, the effectiveness of these methods heavily depends on the selection
strategy. Most existing methods overlook the model plasticity since they focus on
solving the model’s stability issues, leading to a sharp decline in performance for
new tasks in long task sequences of incremental learning. To address these limi-
tations, we propose a novel prompt-based continual learning method called TIPS,
which mainly consists of two modules: (1) design a novel two-level prompt se-
lection strategy combined with a set of adaptive weights for sparse joint tuning,
aiming to improve the accuracy of prompt selection; (2) design a semantic dis-
tillation module that enhances the generalization ability to unknown new classes
by creating a language token and utilizing the encapsulated semantic information
of class names. We validated TIPS on four datasets across three incremental sce-
narios. Our method outperformed the current state of the art (SOTA) by 2.03%,
4.78%, 1.18%, and 5.59% on CIFAR (10 tasks), ImageNet-R (20 tasks), CUB (10
tasks), and DomainNet (20 tasks). Notably, our approach consistently surpasses
or matches SOTA in all settings, maintaining stable prompt selection accuracy
throughout multiple incremental learning sessions.

1 INTRODUCTION

Humans are good at gaining new knowledge while remembering past information. However, ma-
chine learning finds it hard to copy this ability (Van de Ven & Tolias, 2019; Masana et al., 2022).
Neural networks often forget learned knowledge when learning new tasks, which is called catas-
trophic forgetting (De Lange et al., 2021; McCloskey & Cohen, 1989). Continual learning (CL)
(Mehta et al., 2023; Masana et al., 2022) achieves great success in solving catastrophic forgetting
and has received increasing attention in recent years (Parisi et al., 2019). To handle catastrophic for-
getting, CL aims at smoothly integrating new tasks into a single model while preventing catastrophic
forgetting of previously learned knowledge. However, maintaining this balance (i.e., the stability-
plasticity dilemma (Arani et al., 2022; Wang et al., 2022a)) poses great challenges for effective CL.

Traditional from-scratch training methods in CL aim to prevent knowledge forgetting by protecting
important past parameters. For example, Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017), uses regularization constraints on the loss function for new tasks to protect previously ac-
quired knowledge from being disrupted by new information. DER (Yan et al., 2021) employs a
dynamic network architecture that creates a distinct parameter space for each task, while freezing
the existing parameters to ensure they remain unchanged, thereby achieving effective parameter iso-
lation. However, these methods not only require multiple iterations to converge but also rely on
rehearsal strategy1 to perform well. It poses significant challenges in scenarios that require rapid
generalization or involve privacy concerns.

1Allocate extra storage space for several old task examplars. When learning a new task, learn all the exam-
plars from the storage space together with the new task examples.
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Figure 1: Left: The framework of previous prompt-based CL. They typically use a Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) as the feature extractor, treating the input image features
as the query. A similarity function (e.g., cosine similarity) is then used to directly select the most
similar prompts (key-value pairs) from the prompt pool based on the query. Finally, the selected
prompt is input into the backbone network along with the image. However, the accuracy of selecting
the correct prompt using these simple selection strategies declines sharply, leading to a decrease
in model stability in long-sequence task settings. Right: 3D-KDE analysis of ImageNet-R. T1,1

represents the density distribution of all samples in Task- 1 after completing the first task, while
T10,1 represents the density distribution of all samples in Task-1 after completing the 10-th task. At
the completion of the first task, the model has the optimal understanding of Task- 1. If the density
distribution changes less after n rounds of incremental learning sessions, the model is considered
more stable. We present the density distributions of the baseline and our method, showing that the
density distribution changes less with our method, indicating a more stable model.

A recent innovation in CL influenced by prompt learning is referred to as prompt-based pre-trained
CL approaches. In training phase, these methods (Wang et al., 2022b;a; Chen et al., 2023) first freeze
the pre-trained Transformer backbone and then train the corresponding prompts to adapt to specific
downstream tasks. Each task generally has a unique set of prompts, and all of the prompt sets
constitute a prompt pool. A similarity function is employed to select the prompt that best matches
the current test example during inference phase. The selected prompt is then concatenated with the
example’s embedding and input into the backbone network. These methods significantly reduce
the impact of catastrophic forgetting due to extensive prior knowledge of the pre-trained model and
allow the model to converge with very few iterations.

Although important progress has been achieved by existing prompt-based CL methods, they have the
following drawbacks to address: (1) Most of prompt-based CL methods (e.g., (Wang et al., 2022b;
Chen et al., 2023)) heavily depend on selection strategy. During the inference phase, task identifiers
are not available, so only the selection strategy can identify the appropriate prompt from training.
Conventional selection methods (as shown in Figure 1) that measure similarities between images
and prompts show a significant decrease in the probability of accurately selecting the correct prompt
as the number of task sessions and prompts increases. (2) Many prompt-based CL methods (e.g.,
(Wang et al., 2023a; Smith et al., 2023)) focus on solving the forgetting problem (stability) while
neglecting the model’s generalisation ability (plasticity), resulting in a limited understanding of new
tasks by specific task prompts within a few model iterations.

In this paper, we propose a novel prompt-based CL framework, as illustrated in Figure 2. Our goals
include: (1) designing a stable prompt selection strategy to prevent a significant decline in accu-
racy when selecting the correct prompt as the size of the prompt set increases; and (2) developing
a simple and effective module to enhance the model’s understanding of new tasks and improve its
plasticity. To achieve these goals, we construct a two-level prompt. The first-level prompt consists
of a set of learnable parameters and text embeddings of class labels, it improves the probability of
matching image embeddings with class prototypes by learning the high-level semantic features of
images, thereby addressing the instability of the prompt selection strategy. Moreover, we propose a
set of adaptive weight parameters, with each weight corresponding to a prompt, which dynamically
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adjusts the importance of each prompt across different tasks. These weights capture the underlying
complexity of various tasks during forward propagation, enabling the linear combination and passing
of the prompt set to any depth of the backbone network, thereby enhancing the model’s resistance to
forgetting old classes. Finally, we introduce a semantic knowledge distillation module that incorpo-
rates a learnable semantic token to capture the semantic information of current class labels, aiding
second-level prompts in understanding new tasks and improving the model’s plasticity.

Compared to previous work, contributions of our work include:

• We designed a two-level prompt selection strategy that leverages the semantic consistency
between images and class labels to improve the accuracy of selecting the corresponding
prompt. This strategy further adjusts the relevant prompts using adaptive weighting. Com-
pared to traditional selection methods, our approach reduces potential errors in prompt
selection and enhances stability during long incremental task sessions.

• We designed a semantic distillation module that integrates visual and linguistic modalities
to utilize the semantics of the original class labels in text form. This simple and novel
method enhances plasticity by focusing on learning the knowledge of the current task with-
out relying on intricately designed boosters, effectively alleviating the issue of insufficient
understanding of new tasks.

• Our method is not restricted by specific datasets or incremental scenarios due to the well-
designed framework. We conduct ablation studies in detail, including the loss function and
proposed structures to understand the model. Extensive experiments demonstrate that it
achieves state-of-the-art CL performance.

2 RELATED WORK

Continual learning from scratch. The first category is regularization-based (Wu et al., 2019; Kirk-
patrick et al., 2017; Chaudhry et al., 2018) CL, where the primary idea is to employ a penalty
mechanism to ensure that important parameters remain unchanged. The second category is replay-
based (Rebuffi et al., 2017; Li & Hoiem, 2017; Feng et al., 2024a; Douillard et al., 2020) CL, which
allocates extra storage space for a few exemplars of previous tasks. When learning a new task,
the system learns all the exemplars from the storage space, as well as the examples from the new
task. The third category is parameter-isolation-based (Feng et al., 2024b; Yan et al., 2021; Douil-
lard et al., 2022) CL, which allocates independent learning parameters for each task. While some
methods employ sophisticated compression strategies to reduce the number of model parameters,
they often neglect rapid generalization. Consequently, these models usually require a large number
of iterations to converge.

Prompt-Based Continual Learning. Prompt-based CL keeps the pre-trained model’s weights un-
changed while adding additional learnable prompt tuning modules to generalize to downstream
tasks. These works (Wang et al., 2022b;a; Smith et al., 2023) create a prompt pool where each
prompt contains a learnable index key and a prompt value. They uses a cosine distance function to
search for the nearest in the existing pool, then optimizes weights using cross-entropy loss. In re-
cent, some works (Zhou et al., 2022; Wang et al., 2023a) integrated CLIP (Radford et al., 2021) with
a backbone network to form a framework, inspiring recent innovations. For example, Chen et al.
(2023) enhances model diversity using CLIP to replace identical pre-trained models for construct-
ing different classifiers, dynamically combining logits during inference for comprehensive decision-
making. Zheng et al. (2023) applied merging techniques to CLIP models to maintain their zero-shot
performance during CL. Although this merging method does not require saving all historical models,
deciding which parameters to merge remains a challenge.

The key difference between our method and the aforementioned methods is that our approach does
not require selecting or merging parameters. Our method and others are based on the same pretrained
backbone (e.g., CLIP encoder). However, our approach achieves comparable or even better results
without necessitating fine-tuning the parameters of the backbone network. Moreover, our work
does not require any additional storage space for previous instances of old classes by leveraging the
prior knowledge of the powerful pre-trained model, making our approach suitable for data privacy
scenarios.

3
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Figure 2: Left: Our proposed prompt selection strategy uses a two-level prompt architecture. The
first-level generates class prototypes as keys, which are compared with the query for similarity.
Then, the optimal prompt is selected by incorporating learnable parameters. Notably, we freeze the
prompt parameters from previous tasks when we fine-tune the prompts for the current task to prevent
them from being affected by the current task. Right: Overall framework of our method. Selected
prompts and image embeddings are fed into the pre-trained Vision Transformer (VIT) model, which
employs prefix tuning to adapt to downstream tasks. To tackle the plasticity challenge inherent in
prompt-based CL, the CLIP text encoder is harnessed to extract the semantics of class names and
images. Subsequently, semantic knowledge distillation is applied to facilitate back-propagation into
the model and language tokens.

3 METHODOLOGY

3.1 PRELIMINARY

Problem Definition. The goal of CL is to acquire knowledge from a stream of data composed
of T non-overlapping sequential datasets, denoted as D = {D1,D2, . . . ,Dt}. Each dataset Dt

corresponds to a specific task t, which can be represented as a collection of data for that specific
class, i.e., Dt =

⋃
i (x

t
c, y

t
c), contains data samples xt

c ∈ X and corresponding ytc ∈ Y , where
c denotes the c-th class within task t, The objective is to train a mapping function fθ : X →
Y parameterized by θ to handle the T incremental tasks. In the inference phase, f predicts the
corresponding label y based on task-agnostic samples x. Note that during the training phase of the
current task, data from previous tasks is not accessible.

3.2 OVERALL FRAMEWORK

In our work, we introduce a new prompt-based CL method called TIPS, which aims to address
the instability of the prompt selection strategy and the low plasticity of the model. Specifically,
TIPS consists of two modules: Two-level prompt (TP) and semantic knowledge distillation. As
shown in Figure 2, TP is based on a two-level prompt selection strategy. The first-level prompt
generates a key for retrieval by combining class labels with learnable context parameters and feeding
them into the CLIP text encoder. Then, the visual embedding of the input image are used as a
query, which is matched with the key. Finally, we apply adaptive weight modulation to the second-
level prompt, which enables joint sparse prompt tuning, thereby reducing prompt selection errors
in long incremental task sequences. To facilitate the model’s adaptation to CL incremental tasks, a
semantic knowledge distillation module was proposed. The semantic knowledge of the current class
is transferred to a learnable language token by using a simple distillation function.

3.3 TWO-LEVEL PROMPT

To improve pertained model’s performance on downstream tasks, previous methods (e.g., Coop
(Zhou et al., 2022)) use a set of learnable vectors to replace the preset templates (e.g., a photo of
[cat]). The key point of those method is encoding the knowledge of the downstream data into these
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vectors to guide the model in adapting to downstream tasks. Specifically, the learnable contextual
vectors p is concatenated with class name yc ∈ Yt, where the text description of the c-th class is:

Pc = ([p]1; [p]2; . . . [p]m; [CLS]c) , (1)
where each [p]i ∈ RD, i ∈ {1, 2 . . . ,m}, [CLS]c is the text embedding of the c-th class name.
COOP uses the embedding output k as a class prototype for classification, feed an image x ∈
RH×W×C and a text embedding Pc into the CLIP image encoder Evis and text encoder Etxt,
yielding the image embedding q = Evis (x) and the class prototype kc = 1

N

∑N
i=1 Etxt (Pc).

Consequently, it can calculate the probability of class yc prediction for the test image x using the
following formula:

p (yc | x) =
e⟨q,kc⟩/τ∑N
i=1 e

⟨q,kc⟩/τ
, (2)

where τ is a temperature parameter learned by CLIP, ⟨·, ·⟩ denotes the cosine distance similarity, kc

is the embedding of c-th class in current task, and N is the total number of classes. In our method,
we use P as the first-level prompt and the output k from Etxt as the class prototype key in order
to enhance the accuracy of selecting corresponding prompts. In particular, we calculate similarity
scores by matching the queries qt

c with the keys kt
c to retrieve the second-level prompt:

St
c =

〈
qt
c,k

t
c

〉
, (3)

where c represents the class encoding in the current task, and t represents the task encoding. The
similarity scores are then projected onto shared space St ∈ RN×D. To make prompt selection more
flexible, we propose a set of adaptive weights W ∈ RN×D to regulate the correlation between the
task and the prompts, achieving joint sparse prompt tuning. The final output of the second-level
prompt as follow:

P̂t
c = TOP-Kmax{St

c ·W · P̂t
c}. (4)

Each class corresponding to each prompt, i.e., P̂t = [P̂1; P̂2; . . . P̂N ], where P̂ ∈ RN×M×D, M
denotes length of second prompt. In addition, we also follow CODA-Prompt (Smith et al., 2023)
regularisation penalty to prevent potential similarities between the new and old prompts, it provides
more diversity and less homogeneity in prompts:

LO =
∑

t=Ti,t′∈past(Ti)

∥∥∥P̂t, P̂t′

∥∥∥
2
, (5)

where Ti denotes as current task, and past(t) = {t′|t′ ∈ T, t′ < i} represents previous learned task.

From a high-level perspective, the features extracted by Evis contain rich advanced information,
such as image labels and contextual details. By optimizing the first-level prompt, the text’s con-
textual parameters can better learn the high-level semantics of the image. As a result, this strategy
makes the query and key features more similar, increasing the success rate of matching. Further-
more, to retain this capability, we freeze the learnable parameters from previous tasks while learning
the current task, ensuring more stable prompt selection in long task sequence settings.

3.4 SEMANTIC KNOWLEDGE DISTILLATION

The implementation of a two-level prompt with adaptive weight for prompt selection enables our
model to effectively adapt to downstream tasks, ensuring high stability. However, a highly stable
model has an impact on new classes’ learning. Therefore, we propose a semantic knowledge distil-
lation module to capture the semantic usage of new class names, enhancing the model’s ability to
learn new classes.

To capture the textual semantic information of class names, we created a language token ℓi ∈
[ℓ1, ℓ2, . . . , ℓD], as shown in Figure 2. The language token embedding eℓc = fθ(ℓc) and class token
ζi ∈ [ζ1, ζ2, . . . , ζD] embedding eζc = fθ(ζc) is summed to form a new embedding for c-th class:

esumc = α · eℓc + β · eζc , (6)

where α and β are hyperparameters that regulate the integrate process, we used α = 0.5 and β = 0.5
for all of our experiments, the final embedding esumc is passed through softmax to generate the final
prediction:

ŷc = Softmax(fθ(esumc )). (7)

5
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Eq.6 and Eq.7 can effectively enhance the understanding of the current task by integrating the two
modalities’ information at the decision layer. However, their output features become similar because
the two tokens share the same goal in the training phase. It hinders the effective training of the
language token. To enhance the discriminative ability of the language token, we propose a new loss
function called semantic distillation (LSD).

The text encoder of CLIP is utilized to extract the embedding feature of the class-name and contex-
tual information of image hc = Etxt (Pc) ,hc ∈ RD. Simultaneously, we use the ViT backbone to
obtain the output feature eℓc corresponding to the language token. Thereby, we use a simple distilla-
tion function (Hinton et al., 2015) to extract high-level information of image from semantic feature
space into the language token feature:

LSD = LCrossEntropy (ŷc, yc) + λ · LKD

(
eℓc,hc

)
, (8)

where λ is the balancing hyperparameter, ŷc denotes the prediction result of the classification head.
For detailed experimental settings, please refer to Table 10.

Table 1: The average accuracy (%) and the number of fine-tuned parameters for 4 datasets with
an incremental number of 10 tasks are presented, with DomainNet being a cross-domain dataset.
Methods are grouped according to the buffer size, where 0 indicates no replay is needed, * denotes
results directly taken from the original paper, and - indicates experiments that could not be com-
pleted, the rest of the experiments were conducted using the code provided by their original paper.
We conducted experiments using three random seeds: 1993, 1997 and 1999.

Model Buffer size CIFAR-100 ImageNet-R CUB-200 DomainNet #Para(M)

Joint-Training (ViT-B/16) 0 93.23 90.38 88.13 89.15 86.00
Fine-Tune (ViT-B/16) 0 18.42±0.23 18.87±2.65 18.52±1.99 10.68±3.25 86.00
Experience Replay (ViT-B/16) 5000 82.53±0.17 65.18±0.40 63.12±1.44 59.23±1.32 86.00
EWC (Kirkpatrick et al., 2017) 2000 54.14±1.25 40.27±3.24 38.25±2.45 - 86.00
LwF (Li & Hoiem, 2017) 2000 20.35±0.98 20.48±0.58 17.45±1.27 - 86.00
Gdumb (Prabhu et al., 2020) 2000 67.14±0.37 44.28±0.51 61.34±0.46 - 86.00
DER++ (Yan et al., 2021) 2000 61.06±0.75 57.64±0.98 75.84±1.35 - 86.00
PromptFusion (Chen et al., 2023) 2000 87.40±0.00

∗ 80.70±0.00
∗ - - 0.35

PC (Dai et al., 2024) 0 88.04±0.00
∗ 74.34±0.00

∗ - - -
L2P (Wang et al., 2022b) 0 89.24±0.04 76.82±0.38 77.28±0.72 71.63±0.95 0.20
Dualprompt (Wang et al., 2022a) 0 87.39±0.35 73.97±0.44 79.14±0.58 71.98±0.99 0.41
AttriCLIP (ViT-L/14) (Wang et al., 2023a) 0 81.40±0.00

∗ 81.71±0.35 58.53±1.47 74.59±1.02 -
CODA-Prompt (Smith et al., 2023) 0 90.40±0.12 78.69±0.48 81.05±0.33 81.41±0.82 3.91
ESN (Wang et al., 2023b) 0 90.38±0.67 73.66±0.92 83.01±1.00 82.99±1.18 3.07
Ours 0 92.43±0.34 83.77±0.67 84.29±0.69 88.39±0.78 3.61

Table 2: Result of the forgetting rate (%) ↓ (Chaudhry et al., 2018) for 4 datasets with an incremental
number of 10 tasks, where lower values are better.

Model CIFAR-100 ImageNet-R CUB-200 DomainNet
Fine-Tune (ViT-B/16) 88.68 84.72 90.64 94.35

Experience Replay 16.46±0.25 23.31±0.89 24.32±0.22 27.18±1.23

LwF (Li & Hoiem, 2017) 87.23±2.34 80.12±1.02 83.81±0.95 -

DER++ (Yan et al., 2021) 39.87±0.99 39.12±1.01 28.18±0.79 -
PC (Dai et al., 2024) 5.61±0.00

∗ 7.35±0.00
∗ - -

L2P (Wang et al., 2022b) 7.63±0.30
∗ 4.22±0.47 13.60±0.28 15.98±1.25

Dualprompt (Wang et al., 2022a) 6.71±0.09
∗ 4.68±0.20

∗ 11.04±0.26 9.16±0.31

AttriCLIP (ViT-L/14) (Wang et al., 2023a) 10.32±0.21 6.44±0.11 30.17±0.14 22.35±3.34

CODA-Prompt (Smith et al., 2023) 7.03±0.34 4.88±0.30 6.91±0.12 10.15±0.12

ESN (Wang et al., 2023b) 5.44±0.48 5.20±0.77 6.73±1.77 10.62±2.12

Ours 5.05±0.70 3.63±0.24 6.00±1.32 8.89±0.86
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. A large number of experiments were conducted on 4 benchmark datasets to thoroughly
compare different continual learning methods. Note that all test samples do not have task identifiers.
We follow (Smith et al., 2023; Wang et al., 2022b; 2023b) to evaluate CIFAR-100 (Krizhevsky et al.,
2009), ImageNet-R (Hendrycks et al., 2021), and DomainNet (Peng et al., 2019). Furthermore, we
included the CUB-200 (Wah et al., 2011) dataset, which has markedly distinct classes from the
backbone network’s pre-training dataset, thereby providing an efficient evaluation of the model’s
adaptability to downstream tasks.

Protocols. We divided each dataset into 5, 10, and 20 incremental task sessions, which means that
the number of classes per incremental session is the total number of classes in each dataset divided
by 5, 10, and 20, respectively. It is worth noting that DomainNet collected 345 different classes
from six domains. We followed the ESN (Wang et al., 2023b) division rule and selected 200 classes
to form a new dataset.

Implementation Details. To ensure a fair comparison, all methods use the ImageNet-21K pre-
trained VIT-B-16 (Dosovitskiy et al., 2020) as the backbone network. We optimise our model with a
learning rate of 0.001 and set the number of epochs to 20 using Adam (Kingma & Ba, 2014). We set
the pool size to 200 for all datasets, with the exception of CIFAR, which we set to 100. We set the
second-level prompt M length to 4 and the first-level prompt m length for CLIP to 16. In the first
level of prompts, we initialize the prefix parameters with tokenize of ”XXXX”. In the second-level
prompts, we randomly initialize the parameters. For the CLIP setup, we follow AttriCLIP (Wang
et al., 2023a) setting and choose ViT-L-14 as the backbone network. For a detailed explanation,
please refer to Algorithm 1.

Metrics. We denote the TOP-1 accuracy after task t as At, and Last represents the accuracy of the
last task. The average accuracy is denoted as Avg =

∑n
t=1 At.

Table 3: Result of average accuracy Avg and accuracy of last task on 5 tasks setting. All experiments
were conducted in 1993 random seed.

Method CIFAR ImageNet-R CUB DomainNet
Avg Last Avg Last Avg Last Avg Last

L2P (Wang et al., 2022b) 90.61 85.98 77.69 73.95 79.96 71.46 76.94 71.10
Dualprompt (Wang et al., 2022a) 89.99 85.63 75.21 70.88 80.49 72.09 73.69 69.52
AttriCLIP (ViT-L/14) (Wang et al., 2023a) 82.68 76.12 81.78 78.23 65.53 55.37 73.36 66.11
CODA-Prompt (Smith et al., 2023) 92.20 88.64 79.23 74.88 83.40 81.17 86.60 79.23
ESN (Wang et al., 2023b) 91.71 88.51 75.30 71.02 85.91 84.82 84.31 75.91
Ours 92.43 89.04 85.11 82.97 85.03 83.93 88.78 83.11

Table 4: Result of average accuracy Avg and accuracy of last task on 20 tasks setting. All experi-
ments were conducted in 1993 random seed.

Method CIFAR ImageNet-R CUB DomainNet
Avg Last Avg Last Avg Last Avg Last

L2P (Wang et al., 2022b) 84.18 77.72 74.50 69.87 70.07 57.80 66.46 58.54
Dualprompt (Wang et al., 2022a) 83.65 77.91 71.22 65.15 78.98 66.16 63.21 55.36
AttriCLIP (ViT-L/14) (Wang et al., 2023a) 79.54 62.08 77.12 71.75 60.60 43.25 72.33 61.94
CODA-Prompt (Smith et al., 2023) 88.52 83.42 74.80 69.80 72.11 63.40 80.78 67.91
ESN (Wang et al., 2023b) 87.15 80.37 70.46 64.28 65.69 63.10 79.59 66.19
Ours 87.46 81.90 80.39 77.90 75.75 70.78 85.56 74.42

4.2 EXPERIMENTAL RESULTS.

We compared classical methods with recent state-of-the-art (SOTA) methods: EWC (Kirkpatrick
et al., 2017), LWF (Li & Hoiem, 2017), Gdumb (Prabhu et al., 2020), Der++ (Yan et al., 2021),
Promptfusion (Chen et al., 2023), L2P (Wang et al., 2022b), Dualprompt (Wang et al., 2022a),
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AttriClip (Wang et al., 2023a), Coda-Prompt (Smith et al., 2023), ESN (Wang et al., 2023b) and PC
(Dai et al., 2024). We also reported the baseline method, which involves sequential fine-tuning and
joint-training of a pre-trained model.

Main Result. We present the results of various methods on four datasets—CIFAR, CUB, ImageNet-
R, and Domainnet for 5, 10, and 20 tasks in Tables 1, 3, and 4, respectively. Overall, our method
achieves excellent performance compared to the recent SOTA methods across the four datasets with-
out replaying old classes examplars. Additionally, our method also shows a competitive number of
tuned parameters. One could find that:

(1) TIPS demonstrated strong performance across various metrics. Specifically, in the 10 tasks set-
ting, TIPS outperformed the best comparative method, ESN (which achieved 83% on DomainNet),
by approximately 5% in terms of the Avg metric. This improvement is attributable to our prompt
selection strategy, which relies on the similarity between image queries and class prototype keys
both share similar high-level semantic information, thereby enhancing the stability of the selection
process.

(2) Our methods have advanced the addressing of the stability-plasticity dilemma beyond the
achievements of previous prompt-based CL methods. Although TIPS is also a prompt-based CL
approach, it achieves substantially better performance on the LAST metric, outperforming recent
SOTA methods by approximately 4–6%. This improvement is attributed to our introduction of lan-
guage tokens, which enable the framework to more effectively learn the semantic information of
newly introduced classes.

(3) Our method demonstrates significant advancements on more challenging cross-domain datasets
like ImageNet-R and DomainNet, despite only achieving modest improvements on simpler tasks.
Specifically, TIPS achieves a performance improvement over the second-best method by 5.59% on
ImageNet-R (20 tasks) and by 4.78% on DomainNet (20 tasks) on long sequences setting.

To further verify our method, the forgetting rates for the 10-task scenario are reported in Table 2. Al-
though a rehearsal strategy is not employed, a lower forgetting rate across all four datasets compared
to recent SOTA methods is exhibited by our approach. Additionally, experiments were conducted on
the CUB dataset, which has a distribution vastly different from that of the pre-trained backbone. In
the 10-task scenario, an improvement over ESN by 1.18% is achieved by our method. This suggests
that performance of our method is independent of any particular dataset or CL environment.

Table 5: Result of ablation study on 10 tasks setting. Last-T denotes the TOP-1 accuracy for the
new classes of the last task.

TP AW LSD
Cifar-100 ImageNet-R CUB-200 DomainNet

Avg Last-T Avg Last-T Avg Last-T Avg Last-T
86.99 79.35 75.36 72.36 75.38 84.35 77.36 31.35

✓ 90.94 85.00 80.36 75.78 81.40 87.35 83.69 42.31
✓ 90.85 86.10 78.93 75.78 80.65 91.02 82.64 30.33

✓ ✓ 91.64 88.20 83.03 82.57 82.90 88.57 87.42 46.11
✓ ✓ ✓ 92.43 91.10 83.77 85.67 84.29 94.69 88.39 57.94
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Figure 3: Left: Accuracy of selecting correct prompts on training for each task across various
incremental tasks with different methods. Middle: The learning accuracy of old classes in each task
varies with different methods. Right: The learning accuracy of new classes in each task varies with
different methods. Note: All experiments were conducted on ImageNet-R 10 tasks.
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Table 6: Result of applying TP and the LSD
to L2p. The experiment was conducted on
ImageNet-R 10 tasks setting.

Avg Last-T
L2p 77.20 71.62
L2p+TP 80.28 73.32
L2p+LSD 79.26 77.32

Table 7: Result of applying TP and the LSD
to CODA-Prompt. The experiment was con-
ducted on ImageNet-R 10 tasks setting.

Avg Last-T
CODA-Prompt 79.17 74.45
CODA-Prompt+TP 81.70 75.32
CODA-Prompt+LSD 81.06 81.39

4.3 ABLATION STUDY

(1) Structural analysis. The proposed method TIPS consists of two main modules: two-level
prompt (TP) selection strategy combined with a set of adaptive weights (AW); and semantic knowl-
edge distillation module (LSD). The impact of each part on the four datasets is shown in Table 5.
First, the results in the first three rows indicate that both TP and AW improve the Avg and Last-T
metrics compared to the baseline. Second, the combination of TP and AW results in the highest
increase in the term of Avg in the fourth row. For instance, across all datasets, it achieves an im-
provement of 4.65%, 7.67%, 7.52%, and 10.06% compared to baseline. Finally, it can be observed
that the sustained performance increase is manifested in terms of Avg and Last-T with the incor-
poration of the LSD module (as shown in fifth row). For example, it achieves an improvement of
26.59% in term of Last-T compare to the baseline in the DomainNet dataset. Overall, our method,
which incorporates all three modules (as shown in the last row), achieved the best results. Therefore,
the experiments validate the effectiveness of the proposed three modules.

(2) Selection strategy analysis. We report the performance of the prompt selection strategy and
the results on both old and new classes for TIPS compared to other methods in Figure 3. In the
left figure, the performance of our method can consistently achieve 80% accuracy in selecting the
correct prompt, even after 10 rounds of incremental learning. We also compare the average accuracy
on previously learned categories for each task across different methods as shown in middle figure.
We observe a strong correlation between performance and correct prompt selection. For instance,
TIPS achieves the highest average accuracy, followed by CODA-Prompt, which aligns with the trend
shown in the left figure. Additionally, we report the performance on new class learning, confirming
the superior capability of our proposed method in addressing the stability-plasticity dilemma.

(3) Adaptability analysis. To further validate our proposal, we combined it with traditional prompt-
based CL methods. Specifically, we integrated TP with LSD into recent SOTA and tested the Avg
and Last-T metrics to assess the adaptability of our proposal within other methods, as shown in
Table 6 and Table 7. The results indicate that both modules improve the Avg and Last-T metrics. For
instance, it can be observed that there is a notably improvement in AVG following the integration
of TP. Subsequently, L2P and CODA-Prompt exhibit respective increases of 5.7% and 6.94% in
term of Last-T with the incorporation of LSD. Overall, it indicate that our method does not require
selecting or merging parameters and demonstrates generalizability.

5 CONCLUSION

In this paper, we propose a novel prompt-based continual learning framework without relying on
a pre-set database or manually designed prompts. The proposed framework employs a two-level
prompt selection strategy, maintaining the stability of prompt selection by learning the consistency
between high-level image information and label semantic information in long sequence settings. To
achieve a balance between stability and plasticity, we design a semantic knowledge distillation mod-
ule to reduce the impact of old class retention on the learning of new classes. Extensive experiments
on four public datasets demonstrate that our method achieves state-of-the-art performance and is
independent of any particular dataset or CL environment.

Border impact: The proposed framework learns from a prompt pool and label predictor, making it
applicable to downstream tasks such as continual fine-tuning of large language models. However, the
goal of our work is to provide a general framework, and the trained prompt pool may be influenced
by inherent data biases. Therefore, future work could extend our framework to other application
scenarios.
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A SUPPLEMENTARY MATERIALS

A.1 VISUALISATION OF DETAILED PERFORMANCE

Visualising Detailed Results. To compare the performance of our proposed method (TIPS) with
the recent SOTA, we provide a detailed report for each dataset (CIFAR, ImageNet-R, CUB, and
DomainNet) across three incremental scenarios (5 tasks, 10 tasks, 20 tasks), as shown in Figure 4.

• CIFAR100: In the 10 tasks scenario, TIPS has an overall average accuracy that is 2%
higher than ESN. However, for both the longer (20 tasks) and shorter (5 tasks) task se-
quences, our performance is close to SOTA. Compared to attriCLIP, which also uses CLIP
assistance, TIPS shows better stability on simpler datasets.

• ImageNet-R: This dataset contains multiple domains and classes, presenting greater chal-
lenges and requirements for models. Notably, in all three scenarios, our performance ex-
ceeds SOTA. We believe this is due to CLIP’s powerful cross-domain recognition capabil-
ities.

• CUB: This dataset has a distribution that is significantly different from the pre-trained
dataset. Therefore, it effectively tests the model’s generalization ability for downstream
tasks. Although our performance on this dataset is slightly lacking, it is still close to SOTA
and shows better resistance to forgetting. For instance, in the 20 tasks scenario, the best-
performing Dualprompt experiences a sharp decline in accuracy after incremental session
13, while TIPS maintains stable accuracy and even shows a slight increase.

• DomainNet: It is a domain incremental dataset, where TIPS demonstrates strong domain
generalization capabilities, outperforming SOTA performance in various scenarios. No-
tably, this dataset is more challenging than ImageNet-R, leading to a rapid decline in ac-
curacy for all methods after the start of incremental learning. However, TIPS shows less
forgetting compared to other methods, proving its robustness in handling this difficulty.

Hyperparameter sensitivity experiments. We discuss the length of the parameters for the first-
level prompt m, the length of the parameters for the second-level prompt M , and the setting of the
hyperparameter λ:

In Table 8 and Table 9, we report the impact of different prompt lengths on the final average accuracy.
We found that although longer prompts do not lead to higher accuracy, there is a downward trend
after a certain point. We believe this effect is mainly because too many parameters make the learned
prompts converge, which is not good for retrieval accuracy. Finally, in Table 10, we report the
performance of different hyperparameters on different datasets. We select different hyperparameters
based on the difficulty of each dataset.

Visualisation of Grad-CAM. (Selvaraju et al., 2017) We present the activation images of TIPS
and SOTA in Figure 5 (by Grad-CAM). L2p can only focus on a few contours, while Coda-Prompt
has a larger focus area than L2p but still shows many unnecessary scattered points. TIPS, on the
other hand, can accurately find the target class contours, and the scattered points are significantly
reduced.

Table 8: Result of the impact of different first-level prompt m lengths on the 10 tasks incremental
accuracy, with the second-level prompt M length fixed at 4.

First-level Prompt CIFAR-100 ImageNet-R CUB-200
m=8 91.92 83.00 82.39
m=16 92.43 83.77 84.29
m=32 91.93 83.66 82.93

13
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Figure 4: Performance of different methods in continual learning across 4 datasets. Each point
represents the accuracy of seen classes.

Table 9: Result of the impact of different second-level prompt M lengths on the 10 tasks incremental
accuracy, with the first-level prompt m length fixed at 16.

Second-level Prompt CIFAR-100 ImageNet-R CUB-200
M=2 92.17 82.71 82.28
M=4 92.43 83.77 84.29
M=8 92.10 83.40 83.15
M=16 91.31 83.83 83.85

Table 10: Result of the Avg with differ λ settings on 10 tasks incremental accuracy.

λ 0 0.1 0.2 0.4 1
CIFAR-100 91.64 92.01 92.43 92.12 92.23
ImageNet-R 83.03 83.42 83.44 83.77 83.62

CUB-200 82.90 83.92 84.12 84.29 84.01
DomainNet 87.42 88.31 88.39 88.22 88.29
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Figure 5: Grad-CAM visualizations of different methods. All experiments were conducted in
ImageNet-R 10 tasks setup, with images randomly selected.

Algorithm 1 Two Level Prompt training on t-th task.

Input: Current data stream (xi, yi)
n
i=1 ∈ Dt, Pre-train Clip-Model Etxt and Evis, Pre-train

ViT fθ, classification head ϕ, First-Prompt Pool Pfirst =
{
Pfirst

1 , . . . ,Pfirst
t

}
, Second-

level Prompt Pool P = {P1, . . . ,Pt}, language token l = [l1, l2, . . . , lD], class token
c = [c1, c2, . . . , cD], adaptive weight sets W, number of training epochs of t-th task E, learn-
ing rate γ, balancing parameter λ

Freeze:
{
Pfirst

1 , . . . ,Pfirst
t−1

}
, {P1, . . . ,Pt−1}, fθ, Etxt, Evis

1: Initialize Pfirst
t with tokenized ”XXXX[CLS]”

2: for e = 1, . . . , E do
3: Draw a mini-batch B =

{
(xi, yi)

b
i=1

}
4: Initialize the sets of chosen keys and prompts for current batch: KB = {}, PB = {}
5: for (x, y) in B do
6: Calculate query q = Evis(B) and key k = Etxt(P

first
t )

7: Retrieve the batch prompt P̂B using k and adaptive weight W by Eq. 4
8: Calculate class token embedding ec = fθ(xi)[1] and language token embedding el =

fθ(xi)[2]
9: Calculate total loss Ltotal = LCE + λ · LKD + LO

10: Update sets of chosen keys and prompts: KB = KB ∪ k, PB = PB ∪ P̂B

11: end for
12: Accumulate total batches loss Ltotal

13: Perform backward
14: Update Pfirst

t , Pt, W, c, l, ϕ by γ · ∇Ltotal

15: end for

15


	Introduction
	Related Work
	Methodology
	Preliminary
	Overall Framework
	Two-Level Prompt
	Semantic Knowledge Distillation

	Experiments
	Experimental Settings
	Experimental Results.
	Ablation Study

	Conclusion
	Supplementary Materials
	Visualisation of Detailed Performance


