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Abstract

What action sequence aa′a′′ was likely responsible for reaching state s′′′ (from state1

s) in 3 steps? Addressing such questions is important in causal reasoning and in re-2

inforcement learning. Inverse “MDP” models p(aa′a′′|ss′′′) can be used to answer3

them. In the traditional “forward” view, transition “matrix” p(s′|sa) and policy4

π(a|s) uniquely determine “everything”: the whole dynamics p(as′a′s′′a′′...|s),5

and with it, the action-conditional state process p(s′s′′...|saa′a′′), the multi-step6

inverse models p(aa′a′′...|ssi), etc. If the latter is our primary concern, a natural7

question, analogous to the forward case is to which extent 1-step inverse model8

p(a|ss′) plus policy π(a|s) determine the multi-step inverse models or even the9

whole dynamics. In other words, can forward models be inferred from inverse10

models or even be side-stepped. This work addresses this question and variations11

thereof, and also whether there are efficient decision/inference algorithms for this.12

Keywords
inverse models; reinforcement learning; causality; theory; multi-step models; planning.13

1 Introduction14

Consider an MDP with actions a∈{0,..,k−1} and states s∈{1,...,d}. Rewards play no role in our15

analysis, so controlled Markov process [DY79] or conditional Markov chain may be a more apt16

naming. Transition “matrix” p(s′|sa) (“Forward model”) and policy π(a|s) uniquely determine the17

whole dynamics18

p(as′a′s′′a′′...|s) = π(a|s)·p(s′|sa)·π(a′|s′)·p(s′′|s′a′)·... (1)

and also determines the action-conditional state process (“Multi-Step Forward Model”):19

p(s′s′′...|saa′a′′) = p(as′a′s′′a′′...|s)/
∑

s′s′′...

p(as′a′s′′a′′...|s) (2)

Here we consider Inverse Model p(a|ss′) and Multi-Step Inverse Models p(aa′a′′...|ss′s′′s′′′...)20

and p(a|ssi) and variations thereof. Inverse MDP models should not be confused with inverse21

reinforcement learning [AD21], which infers rewards, which play no role here.22

Motivation. One motivation to consider inverse models is causal inference: An inverse model23

captures the likelihood that an action a was the cause of the transition from state s to state s′. A24

multi-step inverse model captures the likelihood that a first action a or action sequence aa′...ai−125

was the cause of the state sequence ss′...si or the cause of the transition from state s to state si. The26

latter is the primary goal in (automatic/stochastic) planning [HSHB99]: to find an action sequence27

that leads to a desired goal state si=sgoal. The shortest path, i.e. smallest i, that reaches sgoal (with28

high probability in the stochastic case) can easily be found via a trivial search over i=1,2,3,... if the29

fixed-i planning problem can be solved efficiently.30

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Another machine-learning motivation is that inverse models may be substantially smaller than31

forward models. For instance, an action-independent Markov process p(s′|sa) = p(s′|s) may32

be very complex for large d, but for a state-independent (known) policy π(a|s) = π(a), the in-33

verse model p(aa′...|s..s′′..) = π(a)π(a′)... is trivial (and known). Of course this extreme case34

is uninteresting, but a partial similar simplification happens if state s decomposes into s= (ṡ,s̈)35

[EMK+22]. In this case, if the forward model p(s′|sa) factors into a (simple) controlled p(ṡ′|ṡa)36

and (complex) uncontrolled p(s̈′|s̈), and the policy π(a|s)=π(a|ṡ) only depends on (small) ṡ, then37

p(aa′...|s..s′′..)=p(aa′...|ṡ..ṡ′′..) is independent of (large) s̈. Note that this simplification happens38

“automatically”. We do not need to know the factorization structure, say (ṡ,s̈) = f(s) for some39

unknown f . Appendix B contains a bit of practical context/motivation/application.40

Main questions.41

The main question we consider here is:42

to which extent do inverse model p(a|ss′) plus policy π(a|s)43

determine the multi-step inverse model or even the whole dynamics.44

For instance, do p(a|ss′) plus π(a|s) determine45

(i) the full dynamics (1),46

(ii) the full dynamics, if also p(aa′|ss′′) is provided,47

(iii) the multi-step inverse model p(aa′...|ssi) (or p(aa′...|ss′s′′...)),48

(iv) the multi-step inverse model p(aa′...|ssi) (or p(aa′...|ss′s′′)), if also p(a|ss′′) is provided,49

(v) just the initial action p(a|ss′′) from just final state s′′,50

(vi) p(a|ssi) if also p(a|ss′′) is provided,51

and variations thereof? Also, is there an efficient algorithm that can decide whether the solution is52

unique and/or computes any or all of them?53

Unlike in the “forward” case (1), the answer to all these questions is ‘complicated’ and ‘sometimes’.54

For instance, (i) is true iff k≥ d and p(s′|sa) has full rank. (ii) seems true for “most” transition55

matrices. (iii-vi) can fail, but (iv) and (vi) seem to hold for interesting cases. In some situations there56

are efficient algorithms which sometimes work.57

Related work. There is of course abundant literature on causal reasoning in general [PGJ16], and58

in the modern context of Deep Learning in particular [OKD+21], but to the best of our knowledge,59

the setup and questions we are asking are novel, at least in this generality and rigor.60

A special case of our setup is considered in [EMK+22]. The authors consider Exogenous Block MDPs61

(EX-BMDPs) which correspond to the motivating decomposition example above, and formalized in62

Section 3 as tensor-product MDPs. Additionally they assume episodic MDPs with near-deterministic63

dynamics. Their PPE algorithm finds action sequences of high inverse probability p(aa′...ai−1|ssi)64

in polynomial time in ṡ rather than s, while our aim is to infer higher- from lower-step inverse models65

for general MDPs.66

In the context of Deep Learning, there is ample empirical work that would benefit from a positive
answer to our main question: Variational Intrinsic Control [GRW17] and Diversity is All You
Need [EGIL18] are representative of a broad class of methods that learn diverse options (policies /
action sequences) that are inferrable from their effects on the environment. This relies on inverse
modelling, as their mutual information objective is decomposed into maximizing skill/policy entropy
and minimizing the entropy of an inverse model:

I(si;a...ai−1|s)≡H(a...ai−1|s)–H(aa′...ai−1|ssi)

This is akin to finding all action sequences of sufficiently high probability p(aa′...ai−1|ssi), or all67

skills when the policy space is captured by an auxiliary variable p(z|ssi). The EDDICT algorithm68

[HDB+21] also maximizes this objective, and parameterizes the requisite inverse models such that69

they yield forward predictions, but as detailed in Section 4 its unlikely that such models would yield70

optimal multi-step inverse predictions in general. Dynamics-Aware Unsupervised Discovery of Skills71

[SGL+19] decomposes the mutual information in the opposite direction, so as to avoid learning an72

inverse model and instead relies on a conventional forward model. Uniting all of the above mentioned73

methods is that the action sequence/skill horizon i must be fixed a priori. Inferring long horizon74
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inverse models from shorter ones (the topic of the present work) would allow all of these methods to75

circumvent this constraint.76

A second stream of empirical work uses single-step inverse models for representation learning77

[BEP+18]. Agent57 is arguably the most prominent of these methods [BPK+20], and therein the78

authors note that this choice of representation limits the generality of their approach, as multi-step79

effects can be aliased over. Despite this being a known limitation, multi-step inverse models are not80

used as they are too cumbersome to effectively learn online. A positive result to our questions (iii)81

or (iv) would allow such methods to leverage multi-step inverse predictions despite only learning a82

single-step model.83

These two beneficiaries of improvements to the construction of multi-step inverse models (filtering84

action sequences and state abstraction) dovetail into potential benefits for a broad range of planning85

algorithms. Exploiting this relationship between the questions addressed here and planning problems86

is left to future work, but we sketch out the motivation more fully in Section B.87

Contents. In Section 2 we will formalize questions (i)-(vi) in matrix/tensor notation. Section 388

gives a first probe into these questions by considering various degenerate cases. In Section 4 we89

study the solvability and uniqueness questions (i),(iii),(v), when only Ba is given, i.e. the case90

i=1, in preparation for and showing the necessity of considering i> 1. In Section 5 we provide91

a polynomial-time algorithm via linear relaxation that works under certain conditions. Section 692

provides some validation experiments on toy domains. Section 7 concludes, followed by references.93

Appendices A-R contain a list of notation, more motivation, counter-examples, experiments, and94

more.95

2 Problem Formalization and Preliminaries96

We now formalize our questions (i)-(vi) from the introduction, and for this purpose introduce some97

useful matrix notation. We are not aware of prior work addressing these questions, so quite some98

ground-work to suitably formalize the various question is needed, and many little results are derived99

or mentioned in passing to give better insight into the structure of the problem. To avoid clutter, we100

will not constantly point out edge cases or domain constraints. For instance quantities that represent101

probabilities are obviously non-negative and sum to one. The reader worried about divisions by 0102

here and there should best assume that all probabilities are strictly positive, but most considerations103

and results naturally generalize with some care, e.g. by adding “almost surely” w.r.t. to the joint104

distribution (1). Appendix Q contains a proper treatment of 0/0.105

Notation. Capital letters B,D,I,M,W,... are used for d×d matrices over [0;1]⊂R and tensors106

by adding further upper indices, e.g. M ·
·· is an order-3 tensor, and Ma

·· a matrix for each a∈ {0 :107

k−1} :={0,...,k−1}, and A,C,V,... are other tensors. We define Id to be the identity (eye) matrix108

Idss′ := δss′ := [[s= s′]] ∀s,s′ ∈ {1 : d}, and I to be the all-one matrix Iss′ =1 ∀ss′. We drop all-109

quantifiers ∀s,s′,... if clear from context. Let ⊙ denote element-wise (Hadamard) multiplication110

([A⊙B]ss′ =Ass′Bss′ ), and similarly ⊘, while (no) · represents (conventional) matrix multiplication111

and has operator precedence over ⊙ and ⊘. Matrices form a ring under conventional (+,·) and112

a commutative ring under (+,⊙), but (A ·B)⊙C ̸= A ·(B⊙C). A diagonal matrix D has the113

property D =D⊙Id, i.e. Dss′ =Dss[[s= s′]]. V := I ·D is a matrix with Dss in the whole of114

column s (Vss′ =V∗s′ =Ds′s′ ). Note that A·D=A⊙V ([A·D]ss′′ =
∑

s′Ass′Ds′s′′ =Ass′′Ds′′s′′ =115

Ass′′V∗s′′ = [A⊙V ]ss′′). Similar left-right reversed identities hold. ⊥ denotes ‘undefined’. See116

Appendix A for a full List of Notation.117

Matrix/tensor formalization. We define Ma
ss′ :=p(as′|s)=π(a|s)p(s′|sa). Marginalizing out the118

action, gives p(s′|s)=
∑

ap(as
′|s)=

∑
aM

a
ss′ =:M+

ss′ . Marginalizing out the next-state, gives back119

π(a|s)=
∑

s′p(as
′|s)=

∑
s′M

a
ss′ =:M+

sa. For instance, the multi-step dynamics can be written as120

p(as′a′s′′...|s) = p(as′|s)·p(a′s′′|a′)·... = Ma
ss′M

a′

s′s′′ ...

Marginalizing out the intermediate states gives121

p(aa′...ai−1si|s) = [Ma ·Ma′
...·Mai−1

]ssi
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The inverse MDP model can then be expressed as122

Ba
ss′ := p(a|ss′) = p(as′|s)/p(s′|s) = Ma

ss′/M
+
ss′ = [Ma⊘M+]ss′

The multi-step inverse model given the whole state sequence becomes123

p(aa′...|ss′s′′...) = p(as′|s)p(a′s′′|s′)...
p(s′|s)p(s′′|s′)...

=
Ma

ss′M
a′

s′s′′ ...

M+
ss′M

+
s′s′′ ...

= p(a|ss′)p(a′|s′s′′)... (3)

and can easily be computed from the 1-step inverse models. To answer the primary question: which124

action sequence can lead to (desired) state si from state s, we need to marginalize out s′...si−1. For125

instance, the two-step inverse model from s to s′′ with s′ marginalized out becomes126

Baa′

ss′′ := p(aa′|ss′′) =
∑

s′M
a
ss′M

a′

s′s′′∑
s′M

+
ss′M

+
s′s′′

= [Ma ·Ma′
⊘(M+)2]ss′′ (4)

Note that unlike the forward case, Baa′ ̸=Ba ·Ba′
, which is responsible for all the problems we127

will face. Also Ba+ ̸=Ba but B+=1=B++. We always use brackets to denote and disambiguate128

(matrix) powers ()2 from upper indices Ma. The initial-action 2-step (and similarly i-step) inverse129

models follow from further marginalizing a′a′′...:130

Ba+
ss′′ = p(a|ss′′) = [MaM+⊘(M+)2]ss′′ ,

Ba+i−1

ssi = p(a|ssi) = [Ma(M+)i−1⊘(M+)i]ssi (5)

With this notation, questions (i-vi) in the introduction can formally be written as131

(i) Can M be inferred from Ba :=Ma⊘M+?132

(ii) Can M be inferred from Ba and Baa′
:=MaMa′⊘(M+)2?133

(iii) Can Baa′...ai

:=MaMa′
...Mai⊘(M+)i be inferred from Ba?134

(iv) Can Baa′...ai

be inferred from Ba and Baa′
?135

(v) Can Ba+ :=MaM+⊘(M+)2 be inferred from Ba?136

(vi) Can Ba++ :=Ma(M+)2⊘(M+)3 be inferred from Ba and Ba+?137

Each question comes in two versions, given also π, or not knowing π. We mainly consider the former138

version, i.e. knowing Ma
s+:139

Constraint on M for known π: Ma
s+ = π(a|s) and in particular M+

s+ = 1 (6)

Questions (i)-(vi) also have multiple variations:140

(I) Assume some arbitrary Ba (and Baa′
) is given, but not defined via M .141

Is there no, exactly one, or multiple M consistent with these B?142

(II) Is there an efficient algorithm that can decide the previous question?143

(III) Is there an efficient algorithm that can compute any/all solutions if one/many exist, and144

halts/loops if not (4 non-trivial combinations of /).145

(IV) Can we efficiently determine the “number” of solutions,146

e.g. the dimension of the variety formed by the set of all solutions.147

Formulation of the uniqueness questions. Abstractly, these questions ask whether M (in case148

of (i-ii)) or g(M) for some function g (in case of (iii-vi)) can be inferred from some other function149

f(M). Let us define another MDP q(s′|sa) with same policy π(s|a) and shorthand150

W a
ss′ := π(a|s)q(s′|sa)

(In applications, Ba would be learned from data, and W or Baa′... inferred from Ba in the hope151

that W ≈M .) One way to rephrase the questions is whether f(M) = f(W ) implies M =W or152

g(M)= g(W ) for all (or most or some) M and W . The condition that π is the same for p and q,153

translates to154

Constraint on M and W : Ma
s+=π(a|s)=W a

s+ and in particular M+
s+ = 1 = W+

s+ (7)
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We name the two most interesting equation versions as follows:155

EqIM(ia) : Baa′...ai

:= MaMa′
...Mai

⊘(M+)i
?
= W aW a′

...W ai

⊘(W+)i (8)

EqIM(i+): Ba+...+ := Ma(M+)i−1⊘(M+)i
?
= W a(W+)i−1⊘(W+)i (9)

We allow M+
ss′ = 0 and keep probabilistic convention that p(a|ss′) = π(a|s)p(s′|sa)/p(s′|s) is156

undefined iff p(s′|s)=0 (see end of Appendix J and Appendix Q for more discussion). Formally,157

Ba
ss′ =⊥=0/0 iff M+

ss′ =0, also W+
ss′ =0 iff M+

ss′ =0, and similarly for larger i.158

3 Degenerative Cases159

To get some feeling about why these questions are so more intricate than analogous ones in for-160

ward models, we consider some simple examples and special cases first, with details provided in161

Appendix D. Some further special cases (deterministic planning, deterministic reachability, and162

deterministic inverse models) are considered in Appendix E. There is a strong relationship between163

the examples violating (i,iii,v) and counter-examples to seemingly different conjectures found in164

related work. See Section C for details.165

It is easy to see that e.g. M0= 1
4

(
0 2
1 1

)
, M1= 1

4

(
2 0
1 1

)
, W 0= 1

2

(
0 1
1 0

)
, W 1= 1

2

(
1 0
1 0

)
satisfy EqIM(1) but166

violate EqIM(2), which means that the 1-step inverse model Ba does not always uniquely determine167

the 2-step inverse model Baa′
, i.e. (i,iii,v) can fail. M=W trivially implies g(M)=g(W ), which168

means that if (i) is true, then trivially also (iii&v), and if (ii) is true, then trivially also (iv&vi). If Ma
ss′169

is independent a or s′ or Ma
ss′ =Mss′πa, then Baa′a′′...=k−i is independent M , so any W ̸=M170

leads to the same B, which shows that (i) and (ii) and higher order analogues can fail. If M and W171

are independent s, then EqIM(1) actually implies EqIM(i)∀i. Since there are such M ̸=W satisfying172

EqIM(1), this constitutes another failure case of (i) and (ii). For block-diagonal M =
(
Ṁ 0
0 M̈

)
and173

W =
(
Ẇ 0
0 Ẅ

)
, all operations (+−×/⊙⊘) preserve the block structure, so the above degenerative174

cases can be combined, one for the upper-left block and another for the lower-right block. The most175

interesting special case is as follows:176

Tensor-product M and W . Let [Ṁ⊗M̈ ]ss′ :=Ṁṡṡ′M̈s̈s̈′ with s:=(ṡ,s̈) and s′ :=(ṡ′,s̈′) be the ten-177

sor product of Ṁ and M̈ (not to be confused with the element-wise product⊙). Assume Ma=Ṁa⊗178

M̈ , where the second factor is action-independent. In this case, MaMa′
...=(ṀaṀa′

...)⊗(M̈M̈...),179

and similarly if a,a′,... is replaced by +, hence MaMa′
...Mai⊘(M+)i=ṀaṀa′

...Ṁai⊘(Ṁ+)i180

is independent of M̈ , and similarly for W a = Ẇ a⊗Ẅ . That means, EqIM(i) hold if Ṁa = Ẇ a,181

whatever M̈ and Ẅ are. This formalizes our motivating example that if some part of the state (s̈)182

is not controlled (by a) and the dynamics factorizes (p(s′|sa)= p(ṡ′|ṡa)p(s̈′|s̈)) and the policy is183

independent s̈ (π(a|s)=π(a|ṡ)), then the multi-step inverse models (3-5) become much simpler than184

the forward model (2), namely independent s̈. This case has been studied in [EMK+22] for episodic185

near-deterministic M .186

4 (Non)Uniqueness of Inverse MDP Models187

We will now consider EqIM(1) and EqIM(2). We first provide a dimensional analysis which gives188

some insight and tentative answers about the solution space for W (given B or M ): No, one, finitely189

many, or a polynomial variety (of some dimension) of solutions. We then consider EqIM(1) only190

and characterize M and W for which it holds. This will be used to provide an algorithm that can191

determine a (and in some sense all) solution for W and hence Baa′..., given only Ba. EqIM(1)192

is quite simple, since it is effectively linear, but EqIM(2) is quadratic in W , which is where the193

difficulties start.194

Dimensional analysis / counting solutions. Assume k≤ d and B· or M · are given. The kd2195

equations EqIM(1) in W constitute (k−1)d2 (linear) constraints on (the kd2 real entries in) W . It’s196

only (k−1)d2, since summing over a gives d2 vacuous equations B+=1=W+⊘W+. There are197

kd further (linear) constraints W a
s+=π(a|s). Assuming no further (missed/accidental) redundancies,198

this leads to a kd2−(k−1)d2−kd= d(d−k) dimensional (linear) solution space for W . This is199
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consistent with the algorithm below inferring Baa′
from Ba if all Ba have full rank. Hence the set of200

solutions for Baa′
forms a polynomial variety of dimension at least d(d−k).201

If also Ba+ is given, EqIM(2+) provides (k−1)d2 further (quadratic) constraints (EqIM(ia) even202

provides (ki−1)d2 constraints). Since d(d−k)<(k−1)d2, this now gives an over-determined system203

which generally has no solution. But by assumption, M is a solution, which gives hope that there204

may be only one or a finite number of solutions.205

We can use the kd+(k−1)d2 linear equations to eliminate this number of variables in W , which leaves206

(k−1)d2 quadratic equations, now in only d(d−k) variables, and no further equality constraints.207

By Bézout’s bound [FW89], such a System of Quadratic Equations (SQE), either has a continuum208

number of solutions (as in the counter-example of Appendix K) or at most 2d(d−k) solutions (as209

possibly in the counter-example in Appendix J). Multiple discrete solutions are often caused by210

symmetries, so for random Ba and Ba+ consistent with M , the solution may indeed be unique.211

Inferring some Baa′
from Ba. Even if Ba does not uniquely determine Baa′

, we can ask for212

an algorithm inferring some consistent Baa′
from Ba. Indeed this was our primary goal before213

realizing that the answer is not always unique. We know that Ba=W a⊘W+ for some W . This214

implies W a=Ba⊙W+. So W a=Ba⊙J for some J independent a. We need to ensure proper215

normalization W a
s+ = π(a|s), i.e. [Ba⊙J ]s+ = π(a|s). This leads to the following algorithm to216

produce some (and indeed all) Baa′
:217

• Given inverse 1-step model Ba
ss′ :=p(a|ss′) and policy π(a|s)218

• For each s, choose some d-vector Js·219

satisfying the k linear equations
∑

s′B
a
ss′Jss′ =π(a|s)220

• Compute forward model W a :=Ba⊙J221

• Compute 2-step inverse model Baa′
:=W aW a′⊘(W+)2222

• Then p(aa′|ss′′)≡Baa′

ss′′ is some solution.223

If for every s, matrix B·
s· has rank d, then Baa′

is unique. The equations have no solution iff B is224

invalid in the sense that no underlying MDP M could have produced such B. This can only happen225

for k>d, i.e. B based on M have some intrinsic constraints beyond B+=1 for k>d. For instance226

B0= 1
2

(
1 0
1 0

)
, B1= 1

2

(
0 1
0 1

)
, B2= 1

2

(
1 1
1 1

)
is inconsistent with π(a|s)= 1

3 . For unknown π, any J with227

Js+=1 will do. In general, the valid J span a linear subspace, but the set of all consistent Baa′
228

forms an algebraic variety of equal or lower dimension. Baa′
may even be unique even if J and W229

are not (see Section 3). Noting that the ranks of M ·
s· and W ·

s· are the same, this gives the precise230

conditions under which (i) is true:231

Proposition 1 (Conditions under which (i) is true)

Ma⊘M+=W a⊘W+ implies M=W iff M ·
s· has rank ≥d for every s.

For this to be possible at all, we need k≥d, i.e. more actions than states. This is typically not the most232

interesting regime. See Appendix F for an alternative derivation of this result without an intermediary233

algorithm.234

We will next show that EqIM(2) removes this limitation, but we do not know of a general and efficient235

algorithm for inferring (some) Baa′a′′
from Ba and Baa′

. We cannot even rule out that finding236

approximate solutions is NP-hard.237

(Non)Uniqueness of Inverse MDP Models for i≥2. Above we have established that Ba does not238

uniquely determine Baa′
for the interesting regime of k<d. From the dimensional analysis, providing239

2-step inverse model Baa′
in addition, has the potential of uniquely determining forward model W240

and/or multi-step inverse models Baa′a′′.... We have numerically verified that this is indeed the case241

for Ba and Baa′
based on random Ma. A more detailed analysis of the linear/quadratic structure of242

the problem is provided in Appendix G and a rank analyses in Appendices H and R. Unfortunately,243

even providing Ba and Baa′
does not always uniquely determine Ma, nor higher B, and (ii,iv,vi) fail244

for some Ma. Furthermore this remains true for higher i-versions, i.e. even EqIM(1)...EqIM(i) do245

not always uniquely determine EqIM(i+1). We provide (potential) counter-examples in Appendices I246

and J, but they involve “bad” 0/0. We discuss what this means at the end of Appendix J. We provide a247
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fully satisfactory counter-example in Appendix K. If the solution is not unique, the set of solutions248

forms a polynomial variety. Its (local) dimension measures the “number” of other solutions (in a249

neighborhood). In Appendix R we provide explicit expressions for the tangent spaces from which250

these dimension can efficiently be calculated.251

5 Linear Relaxation252

In Section 4 we provided an algorithm if only Ba is given. Here we consider the i> 1 case, and253

derive an algorithm for ki≥d, provided the solution is unique and further conditions on B are met.254

That is, we require i≥ logk(d), which is greater than the minimum necessary in theory i=2 from255

the dimensional analysis. E.g. for i=1 we recover k≥d, and i=2 improves this to k≥
√
d, and256

i=⌈log2(d)⌉ works for all k.257

Recursive formulation. From EqIM(1) we know that W a=Ba⊙W+. Plugging this into EqIM(ia)258

and abbreviating a:i :=aa′...ai and a<i :=aa′...ai−1 and j := i+1, this gives259

Ba:i

⊙(W+)i = (Ba⊙W+)·...·(Bai

⊙W+) (10)

If we plug EqIM((i−1)a) into EqIM(ia) and abbreviate V :=(W+)i−1 this simplifies to260

Ba:i

⊙(V ·W+) = (Ba<i

⊙V )·(Bai

⊙W+)

which written out becomes261 ∑
si

Ba:i

ssjVssiW
+
sisj =

∑
si

Ba<i

ssi VssiB
ai

sisjW
+
sisj (11)

Linear relaxation. We can consider a linear relaxation of this System of Polynomial Equations262

(SPE) by introducing new variables Ussisj (aiming at Ussisj =VssiW
+
sisj ):263 ∑

si

Aa:i

ssisjUssisj = 0 with Aa:i

ssisj := Ba:i

ssj−B
a<i

ssi B
ai

sisj (12)

These are kid2 potentially independent linear equations in d3 unknowns U . The solution can only be264

unique if ki≥d. For random B, for each fixed (s,sj), the ki×d matrix A···
s·sj has indeed full rank265

min{ki,d}≥d, hence Ussisj ≡0 is the only solution. This is inconsistent with the constraints (7),266

and hence shows that (unrestricted random) B do not come from some M . This makes the validity of267

the B’s sometimes semi-decidable in time O(d4(d+ki)) or typically/randomized time O(d5). For268

the B’s originating from some M , Ûssisj =(M+)i−1
ssi M

+
sisj solves (12). Since for different ssj the269

equations in (12) are independent, Ussisj := ÛssisjKssj also solves (12) for any K. In other words,270

the rank of A···
s·sj is bounded by min{ki,d−1}, and achieved e.g. for random matrices B consistent271

with M . Since the solution is not unique, for many solutions U there will be no W+ satisfying272

Ussisj =(W+)i−1
ssi W

+
sisj , not to speak of M+, even if the original problem (10)+(7) has a unique273

solution.274

Unique solution by lifted constraints. So we must (and at least for random M can) make the275

solution unique by taking into account the linear constraints (7). Applying them to s;si,s′;sj ,a;276

ai and multiplying from the left with Vssi and using Vssi =Ussi+ we lift them to277 ∑
sj

Bai

sisjUssisj = Ussi+π(a
i|si) and Us++ = 1 (13)

These kd2+d further linear constraints have the potential to make the solution of (12) unique, i.e.278

resolve the d2 degeneracy Kssi . If so, we can recover M+
sisj =W+

sisj =Ussisj/Vssi (and finally279

Ma=W a=Ba⊙W+) in polynomial time. It actually suffices to solve (12) and (13) for one fixed280

s, e.g. s=1, which with some care can be done in time O(d4). In practice, for approximate B one281

would solve a least-squares problem using all equations or a random projection for speed.282

Algorithm. Putting pieces together, we have the following algorithm for computing W a and hence283

Ba:j

for all j via EqIM(ja) from Ba and Ba<i

and Ba:i

284
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• Given: Policy π(a|s) and for j−1:= i≥2, inverse 1,i−1,i-step models285

Ba
ss′ =p(a|ss′) and Ba<i

ssj =p(a<i|ssi) and Ba:i

ssj =p(a:i|ssj)286

• Do the following calculations for one s (e.g. s=1),287

or a few or all s or some random linear combinations of s:288

• For each sj , let Ûssisj be a solution of (12) with Ûs+sj =1289

• If a non-zero solution does not exist, set Ûssisj =0 ∀si.290

• Optional: If multiple solutions exist, return “W may not be unique”291

• If Ûs++=0, return “B is not consistent with any M”292

• Solve
∑

sjC
ai

ssisjKssj =0 and Ks+=1 for Ks∗, where Cai

ssisj :=(Bai

sisj−π(a
i|si))Ûssisj293

• If no solution, return “B is not consistent with any M”294

• Optional: If multiple solutions exist, return “W may not be unique”295

• Ũssisj := ÛssisjKssj , Ussisj := Ũssisj/Ũs++, Vssi :=Ussi+, W+
sisj :=Ussisj/Vssi296

• Optional: If different s lead to different W+ or V ̸=(W+)i−1,297

return “W may not be unique”298

• Return forward model W a :=Ba⊙W+ and other inverse B··· computed via (8)299

Variations that don’t work. For unknown π, we only have d lifted constraints Us++=1, which are300

not sufficient to make the solution unique, also resulting in too many solutions for the relinearization301

trick [CKPS00] to work. The same is true if we had relaxed Uss′sj =W+
ss′Vs′sj . If we had applied302

linear relaxation directly to EqIM(ia), this would have led to order-i+1 tensors and require k≥d1−1/i,303

which is much worse than k≥d1/i for i>2. Including Ba:j

and EqIM(ja) for some or all j<i−1 is304

not only unhelpful but even counter-productive.305

6 Experiments306

The algorithm described in Section 5 was motivated by the dimensional analysis and properties of307

random matrices. Namely, that A···
s·sj is likely “full” rank, and thus yielding a unique solution. In308

order to explore the plausibility of this assumption in practice, we have evaluated the algorithm309

on a set of toy (but structured) environments. This includes the canonical ‘four-rooms’ grid-world310

and samples from the distribution over all grid-worlds of that size. All environments have k=5311

(local movement on the grid) and d=24, thus satisfying the k≥d2 constraint which permits solving312

EqIM(2).313

Experiments on naturalistic environments. As detailed in Appendix P, for all environments314

tested the algorithm yielded a unique solution (recovering Ma) up to a reasonable level of numerical315

precision. This remained true even after injecting noise (across several orders of magnitude) into316

the environmental transition dynamics. This is in contrast to related methods which rely on near-317

deterministic environments [EMK+22].318

This result is non-trivial, as the statistics of these environments differ significantly from those319

produced by random matrices. For example, grid-world dynamics are both local and sparse, unlike320

random matrix dynamics which almost always have non-zero probability for all transitions. It remains321

to be seen whether or not larger-scale environments yield similar results, but it is at least non-obvious322

what additional environmental properties would break the constraints of the algorithm.323

Experiments illustrating robustness to noise. The propositions (and previous experimental result)324

assume that we know the one and two step inverse models (B1 :=Ba, B2 :=Ba+) exactly, but in325

practice these distributions must be estimated from data. Here we investigate the extent to which our326

algorithm is robust to noise arising from learning.327

Rather than committing to a specific learning algorithm, we instead directly inject noise into the328

true inverse distributions. Figure 2 shows that noise doesn’t substantially degrade performance329

across several orders of magnitude (see Appendix P for details). Additionally, the effect of this330

noise is substantially diminished as the horizon of the inverse model is increased (from B1 :=Ba331

to B3 :=Ba++). While the is perhaps not surprising, as the entropy of such inverse distributions332

increases monotonically with the horizon, it still shows that noise is not compounding in a way that333

renders long-horizon predictions meaningless.334
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Experiments on the Tensor-product special case. As detailed in Section 3, if M factors into two335

processes Ṁa⊗M̈ , where M̈ is action-independent, then only the complexity of the action-dependent336

process Ṁa matters for all of our questions. The significance of this special case, as well as the337

details of environments construction, can be found in Appendix P.338

The linear algorithm of Section 4 can (implicitly) output all W and B2 consistent with B1, and the339

formulas derived in Appendix R allow to (explicitly) calculate the dimensions of the solution spaces.340

In the experiments shown in Figure 3, the environments complexity is systematically varied. The341

results show that the space of forward dynamics W is always larger than the space of the 2-step342

inverse models (B2). This confirms that inverse models can be simpler than forward models.343

7 Conclusion344

Summary. We have shown that the 1-step inverse model p(a|ss′) does not uniquely determine345

the 2-step probabilities p(a|ss′′) if there are less actions than states (k < d). Even for k≥ d, the346

implication can fail, e.g. if the extra actions are ineffective, but if p(s′|sa) =Ma
ss′ considered as347

matrices in a and s′ for each s have full rank, the implication holds. Even providing p(aa′...aj−1|ssj)348

for all j<i not necessarily determines p(a|ssi). Since the involved SPE is (heavily) over-determined,349

we expect the failure cases to be sparse/rare in some sense. For (B based on) random M , we provided350

evidence that a=2 suffices to determine M and hence p(aa′...|ss′s′′...) from p(a|ss′) and p(a|ss′′).351

For low-rank M the implication may fail.352

Open Problems. Maybe characterizing all M for which EqIM(1) and EqIM(2) uniquely determine353

W is hopeless, not to speak of finding some or all W in case not. More formally, we can ask the354

question of whether there exists an efficient algorithm that can decide whether EqIM(i) has a unique355

solution.356

Conjecture 2 (NP-hardness) Deciding (ii), (iv), (vi) is NP-hard. Deciding whether Ba and Baa′
357

are consistent with some M is also NP-hard. Computing some solution is FNP-hard.358

In Appendix L we provide some weak preliminary evidence, why this problem may be NP-hard.359

Appendix O contains fully self-contained a few versions of this open problem in their simplest360

instantiation and most elegant form.361

Discussion. Given our analysis, we would expect that in practice, Ba and Baa′
determines Baa′a′′...362

and W sufficiently well. Sufficiently well in case of W means all and only those aspects of the363

forward model relevant for the inverse model. Then of course the question remains how to compute364

the/an answer. While the linear relaxation developed in Section 5 fails for k < d1/i as an exact365

method, it might still lead to useful approximate solutions [Stu02] without formal guarantees. Indeed,366

EqIM(ia) is heavily over-determined for i≥2, and heuristic solvers often work well in this regime.367

Handling non-uniqueness: In practice, the state space is very often infinite, and no finite amount368

of data will determine even Ba uniquely without further structural assumptions. Neural networks369

intrinsically restrict the solution space, but this may not suffice for modern over-parametrized deep370

networks. Aiming for the maximum-entropy distribution consistent with the (constraints from) data371

is popular, and could make the solution unique, as well as any other optimization constraint.372
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Environment Layout True M+ (noisy) Inferred M+ (noisy)True M+ Inferred M+

Figure 1: Environments, their transition matrices (i.e. M+) and the matrices inferred by the algorithm
(i.e. W+). Results shown on the most and least noisiest variants of each environment. Top ‘four-
rooms’ grid-world. Bottom One of the randomly generated grid-worlds.
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Figure 2: Noise-induced reconstruction error:
In practice W must be inferred from learned es-
timates of B1 and B2. We investigate the ef-
fect of the resulting error on the inverse models
(B1,B2,B3) recovered from the inferred W in
terms of their proximity to the ground truth distri-
butions. At each noise level the algorithm was run
on 10 randomly generated grids, with the shaded
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Figure 3: Solution dimensions of W and B2
given B1: When the solution to an inverse model
(B2) given only B1 is not unique, we can charac-
terize the solution space in terms of its manifold
dimension. By comparing this to the dimension
of that of the inferred forward model (W ), we
can see that our algorithm has narrowed down
the space of inverse models further. If also B2 is
given, the solution dimension of W reduces from
dW (blue curve) to dW−dB (blue minus orange
curve).
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Inverse MDP Models – Supplementary Material477

A List of Notation478

Symbol Type Explanation
⊥ undefined
[[bool]] ∈{0,1} =1 if bool=True, =0 if bool=False
δss′ :=[[s=s′]] Kronecker delta
d ∈N number of states
k ∈N number of actions
i,j ∈N time index/step
{i :j} ⊂Z Set of integers from i to j (empty if j<i)
s,s′,...,si ∈{1:d} state at time step 1,2,...,i
a,a′,...,ai ∈{0:k−1} action at time step 1,2,...,i
b,b′,...,bi ∈{0:k−1} alternative action at time step 1,2,...,i
a:i := aa′...ai sequence of i actions
a<i := aa′...ai−1 sequence of i−1 actions
ṡ,s̈ ∈{1: ḋ} parts of state, usually s=(ṡ,s̈)
ε >0 small number >0
p(...) ∈ [0;1] (conditional) probability distribution over states and actions
π(a|s) ∈ [0;1] policy. Probability of action a in state s
Ma,W a ∈ [0;1]d×d transition-policy tensor Ma

ss′ =p(s′|sa)·π(a|s), similarly W =q
Ba ∈ [0;1]d×d inverse 1-step model Ba

ss′ =p(a|ss′) for each action a
Ba++

ss′′′ ∈ [0;1] 3-step first-action inverse model p(a|ss′′′)
J,K,∆ ∈Rd×d action-independent d×d “transition” matrices
+

+ ·n→· index summation, e.g. M+
s+=

∑
as′M

a
ss′

· (·,·)→· matrix multiplication: [AB]ss′′ =
∑

s′Ass′Bs′s′′

⊙ (·,·)→· element-wise multiplication of matrix elements: [A⊙B]ss′ =Ass′Bss′

⊘ (·,·)→· element-wise division of matrix elements: [A⊘B]ss′ =Ass′/Bss′

⊗ (·,·)→· tensor product: [Ṁ⊗M̈ ]ss′ :=Ṁṡṡ′M̈s̈s̈′ with s=(ṡ,s̈) and s′=(ṡ′,s̈′)

B Application to Planning479

In Section 1, various streams of applied work were highlighted; here we focus on spelling out the480

overarching impact that compositional inverse models (an affirmative answer to question (iv)) would481

have for planning problems.482

Many forms of planning involve the evaluation of candidate i-step action sequences (e.g. model483

predictive path integral control [WDG+16]). Ideally, all possible action sequences would be evaluated,484

but as the space of i-step action sequences grows exponentially in i, this is often intractable.485

Access to the i-step inverse distribution p(a...ai|s...si+1) allows determining the subset of action486

sequences that likely reach state si+1 post-execution (e.g. those whose probability is above some487

threshold). It is often the case that only action sequences that are distinguished in this way are of488

interest (e.g. goal-reach tasks), thus access to an inverse model of the appropriate horizon allows for489

filtering candidates. This filtering method is a particularly appealing approach when the cost/reward490

function is initially unknown and frequently changes, as in [MJR15].491

Motivating Example. Consider an agent who has control over ṡ but not over s̈. For instance a robot492

equipped with a camera can control its position and orientation, but not the shape and color of objects493

in its path. The forward model p(s′|as) essentially involves modelling the whole observable world.494

The inverse model p(a|ss′) on the other hand can ignore inputs that the agent has no control over. Of495

course in practice, s does not come neatly separated into ṡ and s̈, so a (say) deep neural network still496

has to learn the controllable features, but neither needs to learn nor predict the uncontrollable features497

(under the factorization assumptions described in Section 3, now in feature space).498

If the goal is to navigate from s to si in i time steps, and open-loop control suffices as e.g. in499

(near)-deterministic problems [EMK+22], then action sequences for which p(aa′...ai−1|ssi) is large500
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are the most likely that caused the transition to si, hence these sequences are promising candidates501

for macro actions (temporally extended actions, options) in Reinforcement Learning [SP02, Pre00].502

Since the action space is typically much smaller than the state space (the former often finite, the503

latter often even infinite-dimensional), even learning p(aa′...ai−1|s...si) directly for all small i can504

be feasible and may be more data-efficient than learning the one-step forward model. A closed-loop505

alternative would be to learn only p(a|s...si), find the likely first action a that caused the ultimate506

transition to si, then take action a, iterate, and store the resulting sequence as an option.507

The required sample complexity to learn inverse MDP models for larger i directly from data may508

grow exponentially in i, which is why inferring i-step inverse models from 1-step and 2-step inverse509

models would be useful. The fact that this problem borders NP-hardness probably prevents even510

powerful transformer models to finding the structure in p(aa′...ai−1|s...si) by themselves.511

C Counter-Examples in Related Work512

In Section 3 we presented a counter-example to questions (i,iii,v). Question (i) (i.e. Can M be513

inferred from Ba :=Ma⊘M+?) has been implicitly addressed in previous work. In [EMK+22,514

App.A.3] the authors present a counter-example to the claim that a state representation constructed515

via an inverse model (i.e. two states have the same representation iff they yield the same inverse516

distribution for all of their possible successor states) is sufficient for representing a set of policies517

that differentially visit all states. This fails whenever two states are aliased by the inverse model.518

Technically, as per their Definition 2, this ‘policy cover’ need only account for all ‘endogenous’ states.519

But omit the ‘exogenous’ states from their counter-example and it can be seen to address our question520

(i).521

Note that this failure of state representation learning implies a negative answer to our question (i),522

as W would differ from M on these aliased states. Unlike our counter-example, theirs involves523

deterministic forward dynamics, and therefor buttresses our claims by showing that M cannot always524

be inferred even in this simpler case. Similar to our counter-example in Section 3, [MHKL20]525

proposes a stochastic counter-example to inverse modeling for state representation learning.526

In general, the transferability of these counter-examples suggests a strong relationship between527

the literature on using single-step inverse models for state representation learning and using them528

for inferring the forward model. It is an interesting open question whether or not algorithms for529

representation learning on the basis of multi-step inverse models (like those put forward in [EMK+22])530

might be used to shed light on the questions put forward here and vice versa.531

D Degenerative Cases - Details532

To get some feeling about why these questions are so more intricate than analogous ones in forward533

models, we consider some simple examples and special cases first. Some further special cases534

(deterministic planning, deterministic reachability, and deterministic inverse models) are considered535

in Appendix E.536

Example violating (i,iii,v). A specific example for M and W which satisfy EqIM(1) but violate537

EqIM(2+) and hence EqIM(2a) is as follows:538

M0= 1
4

(
0 2
1 1

)
, M1= 1

4

(
2 0
1 1

)
, W 0= 1

2

(
0 1
1 0

)
, W 1= 1

2

(
1 0
1 0

)
which satisfies (7) (Ma

s+= 1
2 =W a

s+). In this example, M+= 1
2

(
1 1
1 1

)
and W+= 1

2

(
1 1
2 0

)
, which shows539

Ma⊘M+=W a⊘W+, except that W+
22=0 ̸=1=M+

22, hence there is one “dubious” 1
?
=0/0 case.540

A simple calculation shows that EqIM(2+) is violated (w/o any division by 0). The division by 0 can541

easily avoided by mixing Ua
ss′≡ 1

4 into M and W , e.g. M; 1
2 (M+U) and W ; 1

2 (W+U). This542

means that the 1-step inverse model Ba does not always uniquely determine the 2-step inverse model543

Baa′
, i.e. (i,iii,v) can fail.544

M=W . This trivially implies g(M)=g(W ). This means if (i) is true, then trivially also (iii) and545

(v), and if (ii) is true, then trivially also (iv) and (vi).546
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M and W are independent a. Note that Ma
ss′≡p(s′|sa) independent a implies Ma

s+ independent547

a, hence π(a|s) = Ma
s+ = 1/k independent a as well, hence Ma = 1

kM
+. The latter implies548

MaMa′
...Mai⊘(M+)i=k−i is independent M hence is the same as for W . Since we can choose549

M ̸=W , this shows that (i) and (ii) and higher order analogues fail for these degenerate M and W .550

M and W are nearly independent a. The above degeneracy generalizes to Ma
ss′ =Mss′πa and551

W a
ss′ =Wss′πa, i.e. action-independent dynamics, and state-independent actions, which in turn is a552

special case of the tensor product below (with s= s̈ and ṡ≡0).553

M and W are independent s′. In this case, Ma
ss′ =

1
dM

a
s+= 1

dπ(a|s)=W a
ss′ , hence is a special554

case of case M=W above.555

M and W are independent s. In this case, [MaMa′
]ss′′ =

∑
s′M

a
∗s′M

a′

∗s′′ =π(a|∗)Ma′

∗s′′ . Also556

the policy π(a|s)=Ma
s+ is independent s. If we assume EqIM(1), this implies557

[MaMa′
⊘(M+)2]ss′′ =

π(a|∗)Ma′

∗s′′

π(+|∗)M+
∗s′′

=
π(a|∗)W a′

∗s′′

π(+|∗)W+
∗s′′

= [W aW a′
⊘(W+)2]ss′′

hence EqIM(2) holds and similarly EqIM(i)∀i. As an example, consider558

M0 := 1
2

(
0 1
0 1

)
, M1 := 1

2

(
1 0
1 0

)
, W 0 := 1

3

(
0 1
0 1

)
, W 1 := 2

3

(
1 0
1 0

)
These M ̸=W satisfy EqIM(1) (Ma⊘M+=2Ma=W a⊘W+), hence constitute another failure559

case of (i) and (ii).560

Block-diagonal M and W . For M=
(
Ṁ 0
0 M̈

)
and W=

(
Ẇ 0
0 Ẅ

)
, all operations (+−×/⊙⊘) preserve561

the block structure, so the above degenerative cases can be combined, one for the upper-left block562

and another for the lower-right block.563

Tensor-product M and W . Let [Ṁ⊗M̈ ]ss′ :=Ṁṡṡ′M̈s̈s̈′ with s:=(ṡ,s̈) and s′ :=(ṡ′,s̈′) be the ten-564

sor product of Ṁ and M̈ (not to be confused with the element-wise product⊙). Assume Ma=Ṁa⊗565

M̈ , where the second factor is action-independent. In this case, MaMa′
...=(ṀaṀa′

...)⊗(M̈M̈...),566

and similarly if a,a′,... is replaced by +, hence MaMa′
...Mai⊘(M+)i=ṀaṀa′

...Ṁai⊘(Ṁ+)i567

is independent of M̈ , and similarly for W a = Ẇ a⊗Ẅ . That means, EqIM(i) hold if Ṁa = Ẇ a,568

whatever M̈ and Ẅ are. This formalizes our motivating example that if some part of the state (s̈)569

is not controlled (by a) and the dynamics factorizes (p(s′|sa)= p(ṡ′|ṡa)p(s̈′|s̈)) and the policy is570

independent s̈ (π(a|s)=π(a|ṡ)), then the multi-step inverse models (3-5) become much simpler than571

the forward model (2), namely independent s̈. This case has been studied in [EMK+22] for episodic572

near-deterministic M .573

E Deterministic Cases574

Deterministic planning / reachability problem. If we are only interested in finding some action575

sequence aa′...ai that leads to si, the problem becomes easy: The only thing that matters is the576

support of the various matrices, not the numerical values themselves. Since Ba
ss′ >0 iff Ma

ss′ >0577

(either assuming M+
ss′>0 or regarding⊥>0 as False), and similarly for higher orders, we can replace578

Ma by Ba in (iii), and get Baa′...ai

ssi+1 >0 iff [BaBa′
...Bai

]ssi+1 >0. We could also replace Ma by579

Ga
ss′ :=[[Ba

ss′ >0]], then [GaGa′
...Gai

]ssi+1 >0 counts the number of paths of length i from s to si+1580

via action sequence aa′...ai, and hence determines whether si+1 can be reached. Similarly (G+)i>0581

iff there is some action sequence that can reach si+1 from s. An action a such that Ga(G+)i>0 can582

be chosen as the first action of such a sequence if it exists, and a′,a′′... can be found the same way by583

recursion. So this deterministic planning/reachability problem has a “unique” solution, which can be584

found in time O(i·d·(d+k)) (for fixed s and si+1).585

B is deterministic. Assume Ma
ss′/M

+
ss′ =:Ba

ss′ ∈ {0,1,⊥}. This is true if and only if Ma has586

disjoint support for different a, i.e. iff Ma⊙M b=0 ∀a ̸=b. This in turn means that Ba
ss′ =[[W a

ss′ >0]]587

for any and only those W with same support as M , and hence also W a⊙W b=0 ∀a ̸=b, which is588

another failure case of (i). Here we have included the case where no action leads from s to s′, in which589

15



case W+
ss′ =0 and Ba is undefined (⊥). This readily extends to higher orders: If Baa′...∈{0,1,⊥},590

then Baa′...=[[W aW a′...⊘(W+)i>0]] iff W aW a′
... has the same support as MaMa′

... and591

W aW a′
...W ai

⊙W bW b′ ...W bi =0 ∀aa′...ai ̸=bb′...bi (14)

Note that W a⊙W b =0 does not necessarily imply (14), e.g. for W 0 = 1
2

(
1 0
0 1

)
and W 1 = 1

2

(
0 1
1 0

)
,592

(W 0)2=(W 1)2. In Appendices I&J&K we construct W such that (14) holds for larger i.593

F Characterizing M and W for which EqIM(1) holds594

Ma⊘M+=W a⊘W+ ⇐⇒ W a=Ma⊙J with J :=W+⊘M+

That is, J is independent of a. Phrased differently595

For any M and W , EqIM(1) is satisfied iff W a⊘Ma is independent a. (15)

For a given M , this allows to determine all W consistent with EqIM(1), by just multiplying with any596

a-independent J≥0. Not all J though lead to W consistent with (7). In order to also satisfy (7), J597

needs to be restricted as follows: With ∆ss′ :=Jss′−1, (7) becomes598

0
!
= W a

s+−Ma
s+ =

∑
s′

Ma
ss′(∆ss′+1)−Ma

s+ =
∑
s′

Ma
ss′∆ss′ (16)

For each fixed s, these are k homogenous linear equations (one for each a) in d variables. Given M ,599

all and only the W consistent with EqIM(1) and (7) can be obtained via W a=Ma⊙(1+∆) with ∆600

satisfying M ·
s·∆s·=0.601

As a special case, ∆=0 necessarily if and only if the rank of M ·
s· is ≥d for every s. This gives the602

precise conditions as stated in Proposition 1 under which (i) is true. We will next show that EqIM(2)603

removes this limitation.604

G Characterizing M and W for which EqIM(1) and EqIM(2+) hold605

From Appendix F we know that the most general Ansatz for W a satisfying EqIM(1) is Ma⊙(1+∆).606

Plugging this into (28) and expanding in ∆, we get607

0 = MaM+⊙(M+)2−MaM+⊙(M+)2

+ MaM+⊙[M+(M+⊙∆)+(M+⊙∆)⊙M+]−[(Ma⊙∆)M+Ma(M+⊙∆)]⊙(M+)2]

+ MaM+⊙(M+⊙∆)2−(Ma⊙∆)(M+⊙∆)⊙(M+)2

This is a collection of quadratic equations in ∆. The ∆-independent first line is 0. We can write this608

in canonical form:609

ΣklA
a
ss′′,kl∆kl = Ra

kl(∆) with (17)

Aa
ss′′,kl := (Σs′M

a
ss′M

+
s′s′′)(M

+
skM

+
ks′′δls′′+M+

slM
+
ls′′δsk−M

a
skM

+
ks′′δls′′−M

a
slM

+
ls′′δsk)

Ra(∆) := (Ma⊙∆)(M+⊙∆)⊙(M+)2−MaM+⊙(M+⊙∆)2

Let us consider Aa as a d2×d2 matrix for each a, ∆ as a vector of length d2, and (wrongly) presume610

Ra≡0 at first. Aa is a sum of 4 terms. The second and fourth terms are block-diagonal matrices611

(d blocks of size d×d in the diagonal) due to the δsk. The first and third terms are scrambled612

block-diagonal matrices due to the δls′′ , or more precisely, consist of d×d blocks, each bock being613

a d×d diagonal matrix. If Ma has full rank, each of the four terms has full rank d2, but Aa itself614

can have lower rank, 0-eigenvalues due to some cancellations. Random M apparently achieves the615

highest rank, but even then, Aa itself has only rank d(d−1).616

Actually, Aa∆=0 is required to hold for all a, so the rank of A as a kd2×d2 matrix may still be d2.617

But A+≡0 for k=2 implies A0=−A1, hence the rank is still at most d(d−1). k>2 may rectify618

this, but there is an alternative, which works for all a: ∆ also needs to satisfy (16), which can be619
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rewritten as620 ∑
kl

Ca
s,kl∆kl = 0 with Ca

s,kl := Ma
slδsk (18)

These give another kd constraints, and apparently often d new ones from random M . If we combine621

A′ :=
(
A·

C·

)
, this implies that A′ has often rank d2, so A′∆=0 can only be satisfied for ∆=0. For622

k=2, A+=0, so inclusion of either A0 or A1 in A′ would suffice, but C0 and C1 are potentially623

independent, so both have to be included.624

Let us now return to the real case of Ra ̸=0 for full random M , hence full-rank A′. With R′ :=
(
R·

0

)
,625

we need to solve A′∆=R′. Note that R′=R′(∆) is not a constant, but a (homogenous) quadratic626

function of ∆ itself. Consider any ∆=Θ(ε), then A′∆=Θ(ε) while R′(∆)=Θ(ε2), which is a627

contradiction for sufficiently small ε (this argument can be made rigorous). This implies that no ∆628

with 0< ||∆||<ε can satisfy A′∆=R′(∆). In conclusion,629

Proposition 3 (Random M and full-rank A′)630

If A′ has full rank and W is close to M , then EqIM(1) and EqIM(2) imply W =M .631

Empirically A′ has full rank for random M .632

This of course implies EqIM(i)∀i and also (iv). Globally, i.e. if W is not close to M , these implica-633

tions may not hold.634

We have yet to establish sufficient conditions which Ma lead to full-rank A′. Empirically, this has635

been true for random Ma, so should hold almost surely if M are sampled uniformly. One might636

conjecture that full-rank Ma are sufficient, but this is not the case. For instance, if Ma is independent637

a, then A′≡0.638

Zero A and R for full-rank Ṁa. We finally we note that A and R can have low rank, indeed A≡639

0≡R even for a-dependent full-rank Ma: Consider the example Ṁa from (22) or its generalization640

(27): First, if for two matrices Ma and Ma′
only one s′ (depending on s and s′′) contributes to641

the sum in MaMa′
then (Ma⊙J)(Ma′⊙J)=MaM b⊙K for some K. This makes (19) valid for642

Ma :=Ṁa and W a :=Ṁa⊙J for any J , since for aa′ ̸=bb′ both sides are 0 by construction of Ṁa643

(the ⊙K does nothing to it), and are trivially equal for aa′=bb′. By summing over a′bb′, also (28) is644

valid for any J , hence of course also for J=1+∆ for any ∆. Since (17) is equivalent to (28), (17)645

holds for any ∆. This can only be true for A≡0 and R≡0. This degeneracy in itself does not violate646

(ii), since the probability constraints require W =M , as established earlier.647

H EqIM(1)∧EqIM(2+) ̸→EqIM(3) for full low rank M?648

The following numerical approach may lead to counter-examples with full support to (v) without649

any divisions by 0 (M+
ss′ >0 and W+

ss′ >0 ∀ss′). We now consider full Ma but of rank r<d. The650

most interesting case is where all Ma span the same row-space, i.e. Ma =La ·R, where La are651

d×r matrices and R is a r×d matrix. Recall A′ :=
(
A·

C·

)
with Aa and Ca defined in (17) and (18).652

Empirically, for k=2, the rank of A′ typically is min{d2,(3r−1)d−r(r−1)}, never more, and only653

in degenerate cases less. Hence for r=2, A′ is singular for d≥5. Hence for d≥5, there exist ∆ ̸=0654

with A′∆=0,655

For ∆0 :=∆=Θ(ε), this is an approximate Θ(ε2) solution of A′∆=R′(∆). By iterating ∆←656

∆0+A
′+R′(∆), where A

′+ is the pseudo-inverse of A′, we get an Θ(εi)-approximation after i−2657

iterations. This should rapidly converge to an “exact” non-zero(!) solution A′∆=R′(∆). This would658

show that (ii) can fail for full M . Generically, this solution also violates EqIM(3), i.e. also (vi) can659

fail. By this we mean, for randomly sampled La and R (for a=r=2 and d≥5) and performing the660

procedure above, EqIM(3) does not hold. There is a caveat with this argument, namely if R′ is not in661

the range of A′, then this construction fails.662

I EqIM(1) does not imply EqIM(2) (⊙-version)663

We have already given a simple example that violates (v) in Section 3, but the example and method-664

ology provided here generalizes to (vi) and even larger i. We consider deterministic reversible665
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forward dynamics for any policy π(a|s)>0 ∀as. For simplicity we assume k=2 and uniform policy666

π(a|s)= 1
2 . We defer a discussion of 0/0 to the end of the next Appendix.667

We consider Ma and W a that permute states. That is, M ·
ss′ :=[[s′=π·(s)]] and W ·

ss′ :=[[s′=σ·(s)]]668

for some permutations π·,σ· : {1,...,d} → {1,...,d}. Strictly speaking, we should multiply this669

by π(a|s) = 1
k , but this global factor plays no role here, so will be dropped everywhere. Matrix670

multiplication corresponds to permutation composition: [M ·W ·]ss′′ =[[s′′=σ·(π.(s)]]. We denote671

example permutation (matrices) by [π]=[π(1)...π(d)].672

We now construct a counter-example for (v): For d=4, let M0=W 0= Id=[1234] be the identity673

matrix/permutation. Let W 1=[2341] be the cyclic permutation 1→2→3→4→1, and M1=[2143]674

the cycle pair 1↔2 and 3↔4. We know from (15) that EqIM(1) holds iff W a⊘Ma is independent675

a (= J) iff W a⊘Ma =W b⊘M b ∀a,b ∈ {0,1} iff W a⊙M b =Ma⊙W b. Case a= b is trivial,676

so only W 0⊙M1 =M0⊙W 1 needs to be verified. Now M ·⊙W · of two permutations matrices677

is not a permutation matrix (unless M · =W ·). It still a 0-1 matrix with at most one non-zero678

entry in each row and column. We can generalize the permutation notation to “sub-permutations”679

by defining π(s) = ∅ if row s is empty. For instance M1⊙W 1 = [2∅4∅]. EqIM(1) holds, since680

W 0⊙M1=[∅∅∅∅]=M0⊙W 1.681

Similarly EqIM(2a) holds iff W aW a′⊘MaMa′
is independent a,a′ iff682

W aW a′
⊙M bM b′ = MaMa′

⊙W bW b′ ∀a,a′,b,b′. (19)

But for a=a′=0 and b=b′=1 we have683

(W 0)2⊙(M1)2 = [1234]⊙[1234] = [1234] ̸= [∅∅∅∅] = [1234]⊙[3412] = (M0)2⊙(W 1)2

hence EqIM(1) does not necessarily imply EqIM(2). The advantage of formulation (19) over (8) is684

that matrix sums M+ and W+ are more complicated objects than the sub-permutation matrices (19).685

Like random matrices, permutation matrices, have full rank, but unlike random matrices they can686

violate (ii), (iv), and (vi).687

J EqIM(1a)∧...∧EqIM(ia) do not imply EqIM(i+1) (⊙-version)688

Counting variables and equations made the possibility of violating (v) for k<d plausible (cf. positive689

result for k≥d). A similar counting argument indicates that (vi) and higher i analogues might actually690

hold. Unfortunately this is not the case. I.e. even providing inverse models for all action sequences up691

to length i is not sufficient to always uniquely determine the probability of longer action sequences.692

This is true even for deterministic reversible forward dynamics for any policy π(a|s)>0 ∀as. As for693

i=1, we assume k=2, π(a|s)= 1
2 , gloss over 0/0, and don’t normalize M and W .694

For i=2, M0 :=W 0 :=Id=[123456] and W 1 :=[234561]=:σ (σ for ‘cycle’) and M1 :=[231564]=:π695

can be shown to satisfy EqIM(1) and EqIM(2a) but violate EqIM(3). The calculations are not to696

onerous, but lets consider directly the general i case: Consider even d=:2d′ and identity and cycle697

(pair)698

M0 = W 0 = Id = [1,2,...,d−1,d],
W 1 = [2,3,...,d,1], M1 = [2,3,...,d′,1,d′+2,...d−1,d,d′+1]

EqIM(ia) holds iff W aW a′
...⊘MaMa′

...=W+W+...⊘M+M+... is independent aa′... iff699

W aW a′
...W ai

⊙M bM b′ ...M bi = MaMa′
...Mai

⊙W bW b′ ...W bi ∀aa′...ai,bb′...bi (20)

(While this looks like k2i matrix equations, by chaining, checking ki pairs suffices, which is the700

same number as in EqIM(ia)). Now W aW a′
...W ai

consists of only two types of matrices, a701

cycle for W 1 = σ and identity W 0. The W 0 = Id can be eliminated, leading to (W 1)a
+

, where702

a+ :=a+a′+...+ai. Similarly M bM b′ ...M bi =(M1)b
+

, etc. Hence we only need to verify703

(W 1)a
+

⊙(M1)b
+

= (M1)a
+

⊙(W 1)b
+

for 0≤a+,b+≤ i (21)
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704

(W 1)a
+

= [a++1,a++2,...,d,1,2,...,a+], while

(M1)b
+

= [b++1,...,d′,1,...,b+,d′+1+b+,...,d,d′+1,...,d′+b+]

hence (W 1)a
+⊙(M1)b

+

=[∅...∅]=0 for 0≤a+ ̸=b+<d′. For a+=b+ both sides of (21) are equal705

too. Hence if we choose d′= i+1, (21) and hence EqIM(1)...EqIM(ia) are all satisfied. If we choose706

d′= i, a+=d′, b+=0, (21) reduces to707

(W 1)d
′
⊙(M1)0 = [d′+1,...,d,1,...,d′]⊙Id = 0, and

(M1)d
′
⊙(W 1)0 = Id⊙Id = Id

which are of course not equal. Hence EqIM(i) fails for d′= i. Summing over all a′...ad
′

and b′...bd
′
,708

and noting that all other terms are 0 or cancel, shows that EqIM(i+) fails too. Together this shows709

for d′= i+1 that EqIM(1)...EqIM(ia) do not imply any version of EqIM(i+1).710

Despite Ma having full rank, A and A′ defined in Appendix G have very low rank, indicating711

potentially many more consistent W .712

A downside of this example is that it strictly only applies to the ⊙-version (20). Many entries of713

M+ and W+ and powers thereof are 0, so (8) contains many divisions by zero. We were not able to714

extend this example by mixing in e.g. a uniform matrix as done in the first counter-example to (v).715

Many real-world MDPs are sparse. Only a subset G⊆S×S of transitions s→s′ is possible. For716

(s,s′) ̸∈G, p(s′|sa)=0 ∀a, or formally Ma
ss′ =M+

ss′ =0. In this case, no action causes s→s′ and717

p(a|ss′)=Ma
ss′/M

+
ss′ being undefined is actually appropriate. So we could restrict (s,s′) to G (and718

analogously (s,...,si) and (ssi) by chaining G) in the conditions and conclusions of the various719

conjectures. It is then also natural to restrict the model class toM :={M · :M+
ss′ >0 ⇔ (s,s′)∈G}.720

For unknown G, the condition M,W ∈M then becomes M+
ss′ > 0 ⇔ W+

ss′ > 0. Unfortunately721

the above counter-example does not even satisfy this weaker condition, but the more complicated722

example of Appendix K does. See Appendix Q for how to treat 0/0 in practice.723

K Non-Uniqueness of Inverse MDP Models for i≥2724

In Appendices I/J we provided conjectured/unsatisfactory counter-examples to EqIM(1:i)⇒EqIM(i+725

1). Here we provide a fully satisfactory counter-example that avoids the “bad” 0/0.726

EqIM(1) and EqIM(2a) do not imply EqIM(3). Consider two matrices Ṁ0 and Ṁ1 with727

disjoint support, i.e. Ṁ0⊙Ṁ1=0. In this case Ṁa⊘Ṁ+∈{0,1,⊥}ḋ×ḋ is a partial binary matrix728

with entry undefined (⊥) wherever Ṁ+=0 but otherwise 0 wherever Ṁa=0 and 1 wherever Ṁa>0.729

That is, it is insensitive to the actual (non-zero) values of Ṁa. A simple such Ṁ is Ṁ0=
(
1 0
0 1

)
and730

Ṁ1=
(
0 1
1 0

)
, ignoring normalization. For now we ignore ss′ for which Ṁ+

ss′ =0 and return to this731

issue later.732

We consider Ma and W a that permute states. That is, M ·
ss′ :=[[s′=π·(s)]] and W ·

ss′ :=[[s′=σ·(s)]]733

for some permutations π·,σ· : {1,...,d}→{1,...,d}. Strictly speaking, we should multiply this by734

e.g. π(a|s)= 1
k , but this global factor plays no role here, so will be dropped everywhere. Matrix735

multiplication corresponds to permutation composition: [M ·W ·]ss′′ =[[s′′=σ·(π.(s)]]. We denote736

example permutation (matrices) by [π]=[π(1)...π(d)]. Consider now737

Ṁ0Ṁ0 = [123456]

Ṁ0 := [456123] =: [π0] =⇒ Ṁ0Ṁ1 = [564312] (22)

Ṁ1 := [231645] =: [π1] Ṁ1Ṁ0 = [645231]

Ṁ1Ṁ1 = [312564]

No column contains the same number twice, hence this not only satisfies Ṁ0⊙Ṁ1=0 but also738

ṀaṀa′
⊙Ṁ bṀ b′ = 0 unless a=b and a′=b′ (23)

19



That 6→5→4→6 is in reverse oder to 1→2→3→1 is crucial for making Ṁ0 and Ṁ1 not commute.739

Note that (23) remains valid if each 1-entry of Ṁa is replaced by a different non-zero scalar, since740

(23) is purely multiplicative. So if Ẇ a=Ṁa⊙J̇ for some J >0, then Ẇ aẆ a′
=ṀaṀa′⊙K for741

some K>0. Let Ẇ a be such a matrix. Then [Ẇ aẆ a′⊘Ẇ+Ẇ+]ṡṡ′′ =1 if [ṀaṀa′
]ṡṡ′′ >0 and 0742

(or undefined) otherwise, i.e. is independent of the choice of J . So such Ẇ ̸=Ṁ satisfies EqIM(2a).743

Unfortunately the probability constraints W a
s+=1 require Ja

ss′=1 when M+
ss′>0, and hence W=M .744

But the general idea is sound and can be made work as follows:745

We split one state, e.g. s=6 into two states s=6a and s=6b. We leave the permutation structure746

intact, except that all deterministic transitions into s=6 are split into stochastic transitions to s=6a747

and s=6b, and transitions from 6a and 6b will be to the same state as from original 6. Condition (23)748

is still satisfied, so the above argument still goes through, but now we can choose different stochastic749

transitions to s=6a and s=6b in W and M .750

Finally, we have to show violation of EqIM(3). EqIM(ia) holds iff W aW a′
...⊘MaMa′

... =751

W+W+...⊘M+M+... is independent aa′... iff752

W aW a′
...W ai

⊙M bM b′ ...M bi = MaMa′
...Mai

⊙W bW b′ ...W bi ∀aa′...ai,bb′...bi (24)

(While this looks like k2i matrix equations, by chaining, checking ki pairs suffices, which is the same753

number of equations as in EqIM(ia)).754

It is easier to split every state into two states: s := (ṡ,s̈) with ṡ∈ {1,...,6} as before and splitter755

s̈∈{0,1}. Ma
ss′ := Ṁa

ṡṡ′M̈
aṡ
s̈s̈′ . Note that M̈ is flexible enough to expand each 1-entry in Ṁa to a756

different 2×2 (stochastic) matrix, while the 0-entries become
(
0 0
0 0

)
. This flexibility is important: M̈757

independent a or independent ṡ would not work. Now let us write out758

[MaMa′
Ma′′

]ss′′′ =
∑
ṡ′ṡ′′

Ṁa
ṡṡ′M̈

a′

ṡ′ṡ′′Ṁ
a′′

ṡ′′ṡ′′′

∑
s̈′s̈′′

Ṁaṡ
s̈s̈′M̈

a′ṡ′

s̈′s̈′′M̈
a′′ṡ′′

s̈′′s̈′′′ (25)

The crucial difference to the i=2 case (23) is that now there are difference permutation sequences759

leading to the same permutation, for instance Ṁ0Ṁ0Ṁ1 = Ṁ1 = Ṁ1Ṁ0Ṁ0. Let us choose760

aa′a′′ = 001 and ṡ= 1, then only ṡ′ = π0(ṡ) = 4 and ṡ′′ = π0(ṡ
′) = 1 contribute to the sum and761

ṡ′′′=π1(ṡ
′′)=2. For this choice, (25) becomes 1·1·1·[M̈01M̈04M̈11]s̈s̈′′′ . If we replace aa′a′′ in762

(25) by bb′b′′ and then choose bb′b′′=100 and again ṡ=1, then only ṡ′=π1(ṡ)=2 and ṡ′′=π0(ṡ
′)=5763

contribute and ṡ′′′=π0(ṡ
′′)=2. For this choice, (25) becomes 1·1·1·[M̈11M̈02M̈05]s̈s̈′′′ . We now764

define W a
ss′ :=Ṁa

ṡṡ′Ẅ
aṡ
s̈s̈′ . Since Ṁ remains the same, the same action and state sequences above765

lead to the same result for W , just with M̈ replaced by Ẅ . If we plug the four expressions into (24)766

(for i=3) we get767

Ẅ 01Ẅ 04Ẅ 11⊙M̈11M̈02M̈05 = M̈01M̈04M̈11⊙Ẅ 11Ẅ 02Ẅ 05

Since this expressions involves 10 different 2×2 stochastic matrices, there are plenty of choices to768

make both sides different. If we choose all 2×2 matrices to have full support, then by construction,769

W and M have the same support, hence constitute a proper counter-example to EqIM(3). We now770

extend this construction to i>2.771

EqIM(1a)∧...∧EqIM(ia) do not imply EqIM(i+1). The construction in the previous para-772

graph generalizes to i>2: We need to find two permutations Ṁ0=π0 and Ṁ1=π1 such that for each773

fixed j≤i all possible 2j concatenations (products) of these permutation (matrices) differ in the sense774

that no s is mapped to the same sj (they have disjoint support). Since all ṀaṀa′
...Ṁaj ∈{0,1}, we775

can write this condition compactly as776 ∑
aa′...aj

ṀaṀa′
...Ṁaj

∈ {0,1}d×d

By factoring the sum, this is equivalent to (Ṁ+)j ∈ {0,1}d×d. Note that [(Ṁ+)j ]ssi counts the777

number of action sequences aa′...aj of length j that lead from s to si. For j= i+1, we want this778

condition to be violated. So in order to disprove the implication we need to find two permutations779

M0 and M1 such that780

(Ṁ+)j ∈{0,1}d×d ∀j≤ i but (Ṁ+)i+1 ̸∈{0,1}d×d (26)
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The rest of the argument is the same as for the i=2 case above: creating two versions Ma and W a of781

Ṁa by spitting one or all states into two, and replacing the 1s by 2×2 different stochastic matrices.782

As for the choice of Ṁa, for i=3 we can choose 3-cycle and 5-cycle783

Ṁ0 = [6,7,8,9,10,11,12,13,14,15,1,2,3,4,5]

= (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15) (27)

Ṁ1 = [2,3,4,5,1,8,9,10,6,7,14,15,11,12,13]

= (1,2,3,4,5)(6,8,10,7,9)(11,14,12,15,13)

where we also provide the more conventional cycle notation in round brackets. Crucially the 5-cycles784

have been chosen to not commute with the 3-cycles (M0M1 ̸=M1M0). Conditions (26) can easily785

be verified numerically. For higher i we need p cycles and q cycles, where p and q are relative786

prime and sufficiently large. We need at least d=p·q≥2i, otherwise Ṁ+ ̸∈ {0,1}d×d by a simple787

pigeon-hole argument. To prove EqIM(1a)∧...∧EqIM(ia) ̸⇒EqIM(i+1) in general for arbitrarily788

large i, we need to invoke some group theory. All-together we have shown that789

Proposition 4 ((i)-(vi) can fail) EqIM(1a)∧...∧EqIM(ia) do not necessarily imply EqIM(i+1) for790

any i. This in turn implies that (i)-(vi) each can fail for some M ·.791

L Computational Complexity792

Maybe even just characterizing all M for which EqIM(1) and EqIM(2) uniquely determine W is793

hopeless, not to speak of finding some or all W in case not. More formally, we can ask the question of794

whether there exists an efficient algorithm that can decide whether EqIM(i) has a unique solution. We795

provide some weak preliminary evidence, why this problem may be NP-hard. Appendix O contains796

fully self-contained a few versions of this open problem in their simplest instantiation and most797

elegant form.798

Decidability and computability. EqIM(2) converted to (24) and (7), or (28) or (29) below form a799

System of Quadratic Equations (SQE). The constraint W ̸=M can also be expressed as a quadratic800

equation (see below). As such, the existence and uniqueness of solutions is formally decidable801

by computing a Gröbner basis [Stu02], and (some) solutions can be found by cylindrical algebraic802

decomposition in (double) exponential time. ε-approximate solutions can of course be found by803

exponential brute-force search through all W on a finite ε′-grid, and verified in polynomial time.804

Complexity considerations. 3SAT is NP complete. A CNF formula in n boolean variables can805

easily be converted to a System of Quadratic Equations (SQE). Therefore SQE is also NP hard.806

EqIM(2+) explicitly written in quadratic form807

MaM+⊙(W+)2−W aW+⊙(M+)2 = 0 (28)

constitutes an SQE in W given M , also if we include linear EqIM(1) and probability constraints808

(7). Non-negativity of W can be enforced with (slack) variables (Y a
ss′)

2 =W a
ss′ . (Similarly (17)809

plus constraints (16) constitute an SQE in ∆.) To reduce the uniqueness question to a solvability810

problem we need to avoid the trivial solution W ≡M , e.g. by introducing further (slack) variables811

t∈R and Γa
ss′ :=(W a

ss′−Ma
ss′)

2 and constraint t·Γ+
++=1. Due to the minus sign in (28), this cannot812

be converted to a convex (optimization) problem. The choice of M gives significant freedom in813

creating SQE problems, even if only considering permutation matrices Ma∈{0,1}d×d. If one could814

show that every SQE can be represented as (28) [plus W ̸=M constraint] for a suitable choice of M ,815

this would imply that proving the existence of W ̸=M satisfying (28) is NP hard. This in turn would816

imply that computing (any) p(a|ss′′′) from p(a|ss′) and p(a|ss′′) is NP hard. On the other hand,817

matrix multiplication W aW b is a very specific quadratic form, which may not be flexible enough to818

incorporate every SQE within (28).819

We could not find any work on NP-hardness of Systems of Polynomial Matrix Equations (SPME).820

There is work on the NP-hardness of tensor problems [HL13], but this refers to the design tensors, e.g.821 ∑
jkA

jk
i xjxk+

∑
jB

j
i xj+Ci=0 ∀i, but the unknowns are always treated as scalars or vectors. Of822

course [X ·Y ]ik=
∑

abcdA
abcd
ik XabYcd, but Aabcd

ik =δaiδdkδbc is a very special fixed tensor (actually823

of low tensor rank d) with no flexibility of encoding NP-hard problems therein.824
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That inference in Bayesian networks is NP-complete [KF09] does not help us either for two reasons:825

First, in our problem the probability distribution over states and actions is only partially given. More826

importantly, our network for i=2 has only 5 nodes (s,a,s′,a′,s′′), while the NP-hardness proofs we827

are aware of require large networks. Even for fixed i>2, it is not obvious how to encode NP-hard828

problems into EqIM(i), due to the severe structural constraints in EqIM(i) compared to a general829

network with 2i+3 nodes. It is not clear how to exploit the fact that our (few) state nodes are large.830

SQE are polynomially equivalent to Systems of Quadratic Matrix Equations (SQME), which may be831

the reason complexity theorists have ignored the latter. We suspect but do not know whether SQME832

of bounded structural complexity (only the definitions of the constant matrices scale with d×d) is833

NP-hard (Open Problem 7). If we allow sparse encoding of SQE variables in W , i.e. we allow one834

equation involving ⊙ of the form B⊙W =0 with boolean matrix B, then bounded SQME becomes835

NP-hard. See Appendix M for details.836

Below we directly reduce 1in3SAT to a Bounded-SQME with ⊙ that resembles our problem as close837

as we were able to make it.838

An NP-hard matrix problem. From EqIM(1) we know that W a=Ba⊙W+. Plugging this into839

EqIM(2a) gives840

Baa′
⊙(W+ ·W+) = (Ba⊙W+)(Ba′

⊙W+) with constraints [Ba⊙W+]s+=π(a|s) (29)

This set of equations is purely in terms of what is given (Ba and Baa′
) and only involves unknowns841

W+ without reference to W a. See Appendix N for some further simplification and discussion. We842

will show:843

Proposition 5 (An NP-hard matrix problem) Given A,B,C,Π, deciding whether the following844

quadratic matrix problem has a solution in W is NP-hard:845

A⊙(W ·W )=(C⊙W )(C⊙W ), [B⊙W ]s+=1, Π·W =W (30)

This has some resemblance to (29). Since the boundary between P and NP is very fractal/subtle,846

this in-itself may not imply much, but is more meant as a demonstration of how one may approach847

proving NP-hardness of (29).848

Proof. We reduce 1in3SAT, which is an NP-complete variant of 3SAT, where each clause must have849

exactly one satisfying assignment, to (30). A 3CNF(n,m,g) formula is a boolean conjunction of m850

clauses in n variables, where each clause ci=ℓi1∨̇ℓi2∨̇ℓi3 for i∈{1:m} is a 1-in-3 disjunction of 3851

literals, and each literal is ℓia=xj or it’s complement ℓia=¬xj≡ x̄j , where j=g(i,a) is the variable852

index of clause i in position a.853

We arithmetize the 3CNF expression in the standard way by replacing True;1, False;0, and ∨̇;+,854

i.e. we ask whether the system of linear equations ℓi1+ℓi2+ℓi3=1 ∀i has a solution in xj ∈{0,1}.855

We need to encode the x’s into W somehow: We aim at the following embedding:856

W =

 x1 x̄1 ... xn x̄n y0 ... yk
...

...
. . .

...
...

...
. . .

...
x1 x̄1 ... xn x̄n y0 ... yk


The y are k+1:=max{1,m−n+2} extra dummy variables to make the matrix a square d×d matrix857

with d :=max{m+n+2,2n+1}.858

Choosing a cyclic permutation matrix Π=[234...d1] ensures that all rows of W are indeed the same859

via Π·W =W . The standard way of achieving xj ,yj ∈{0,1} is via x2
j =xj and y2j =yj . This can be860

achieved via (Id⊙W )2= Id⊙W , were Idss′ =δss′ is the identity matrix.861

We use [B⊙W ]s+=1 to ensure x̄j =1−xj , y0=1, and y1= ...=yk=0 and ℓi1+ℓi2+ℓi3=1 by862

setting Bs,2s−1=Bs,2s=1 for s∈{1:n}, and Bi+n,2j−1=1 if ℓia=xj and Bi+n,2j=1 if ℓia=¬xj863

for i∈{1:m} and a∈{1,2,3}, and Bd−1,2n+1= ...=Bd−1,2n+m=1, and Bd,2n+1=1, and Bss′ =0864

for all other ss′. This also ensures that all rows of W sum to n+1, hence W ·W =(n+1)W , so865

xj ∈{0,1} can be achieved via C= Id and A= 1
n+1 Id in A⊙(W ·W )=(C⊙W )(C⊙W ).866

The construction implies that the 3CNF(n,m,g) formula is satisfiable iff (30) has a solution in W867

with the A,B,C,Π as constructed above. This shows NP-hardness of deciding whether (30) has a868
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solution. A solution can trivially be verified (in the rationals or to ε-precision over the reals) in time869

O(d3), hence the problem is in NP, hence NP-complete.870

M Systems of Quadratic Matrix Equations871

A System of Polynomial Equations (SPE) is a set of multivariate polynomial equations872

Polyj(x,y,z,...) = 0 over R in n variables x,y,z,u,v,w,... ∈R for j ∈ {1 :m}. This class is NP-873

hard (via a simple reduction from 1in3SAT, see Section L). We can recursively replace each product874

xy (sum bu+cv) in the polynomials by a new variable z (w) and add “polynomial” equation z=xy875

(w=bu+cv). This results in SPEs consisting of only linear equations with a single + (bu+cv=w)876

and quadratic equations without any + (xy=z), which are still (even with all a=b=1 and x=y=z)877

NP-hard. We call them Simple Systems of Quadratic Equations (Simple SQE). For the reduction pro-878

cess to actually work we need one further dummy variable and equation q=1 (to reduce bu+c=w).879

Alternatively, with some extra work, we can reduce any SPE into a Simple SQE asking for a non-zero880

solution. We will pursue the latter, since this is closer to our interest (SQE (17) with solution ∆ ̸≡0).881

We can even merge the linear and quadratic equations into a single form xy=bu+cv by choosing882

b=1 and c=0 (replacing xy by w and adding xy=0·u+1·w).883

We define a System of Polynomial/Quadratic Matrix Equations (SPME/SQME) as a set of m884

multivariate (quadratic) polynomials Polyj(∆,Γ,...|A,B,C,...)=0 in the (unknown) matrix variables885

∆,Γ,... and the (given) matrix constants (“coefficients”) A,B,C,.... Alternatively, Polyj might be886

viewed as generalized polynomials over a non-commutative matrix ring in the unknowns only. In any887

case, note that888

A·∆·A′ ·∆·A′′+B ·∆·B′+C ̸= (A·A′ ·A′′)·∆2+(B ·B′)·∆+C

By writing out all matrix operations in terms of their scalar operations, SPME is of course a sub-class889

of SPE. SPE is also a sub-class of SPME (choose all matrices to be 1×1 matrices), which implies890

SPME is NP-hard. But we are interested in NP-hard small subclasses of SPME, so will construct891

a more economical embedding: Assume we have a Simple SQE with n variables x,y,z,u,v,.... We892

place them into d×d matrix ∆ (d≥
√
n) introducing dummy variables for the remaining entries. We893

can extract variable w=∆ss′ via w=es⊤·∆·es′ , where es is basis vector (d×1-matrix) (es)s′1=δss′ .894

If we replace all variables in the Simple SQE expressions xy=au+bv by such expressions, we get a895

Simple SQME with Polyj equations of the form (dropping · as usual)896

aj∆A′j∆a′′j = bj∆b′j+cj∆c′j ∀j (31)

While these are scalar equations, since the outer matrices are 1×d on the left and d×1 on the right,897

technically they are matrix equations. We could pad all involved matrices, including the outer ones,898

with zeros to square Rd×d matrices of the same size (for sufficiently large d, and only polynomial899

overhead).900

We can reduce (31) to just one equation at the cost of making the equations more complicated as901

follows: Write each equation Polyj=0 in the form es ·Polyj ·es
′⊤=0, with a different (s,s′)-pair for902

each j. These are now “proper” matrix equations, but with all entries identically 0 except entry (s,s′)903

being Polyj . This allows us to sum all equations without conflating them into one (complex) matrix904

equations905 ∑
jA

j∆A′j∆A′′j =
∑

jB
j∆B′j+Cj∆C ′j (32)

Another way to combine (31) into one equation is by putting all M j for all j into one block-diagonal906

matrix M̃ :=Diag(M1,...,Mm) for M ∈{a,A′,a′′,b,b′,c,c′,∆}. For ∆̃ we need to ensure that indeed907

all blocks ∆j=∆ are equal. This can be done via Π̃⊤∆̃Π̃=∆̃ for some cyclic block permutation Π̃.908

We further need to ensure that the off-diagonal blocks of ∆̃ are zero. We can zero each block with909

one equation, but it seems impossible to zero all with a bounded number of Simple QMEs. We can910

modify the decision problem to decide whether specific sparse solutions ∆̃ exist. Formally, we can911

introduce element-wise multiplication ⊙ and allow one equation of the form B̃⊙∆̃=0 with B̃ being912

0/1 on the on/off-diagonal blocks. This leads to a Simple SQME with ⊙ in 3 equations (dropping the913

∼)914

A∆A′∆A′′ = B∆B′+C∆C ′, Π⊤∆Π=∆, B⊙∆=0 (33)
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Proposition 6 (NP-hardness of Simple SQME) Systems of Polynomial Equations (SPE) can be915

polynomially reduced to Simple Systems of Quadratic Matrix Equations (Simple SQME) (31). The916

number of equations can be reduced to 1 at the expense of making the equations complex (32), or to917

2 by asking for sparse solutions or by enforcing sparsity via B⊙∆=0 (33). Since SPE are NP-hard,918

deciding the existence of non-zero solutions for all three SQME versions is also NP-hard.919

An NP-hardness proof for a Simple SQME with ⊙ with 3 equations via reduction from 1in3SAT920

that looks much closer to the desired form (29) or (34) is given in Section L. By a similar reduction,921

encoding all n variables and their complement in the diagonal of ∆=Diag(x,x̄,y,ȳ,...,), one can also922

show that solvability of923

∆2=∆, A∆1=1, Id⊙∆=∆, with A∈{0,1}m×2n

is NP-complete (1 is the all-1 vector, sparse A with 2 or 3 ones in each row suffice), but not all SPE924

can be reduced to this form.925

Open Problem 7 (Are Bounded SPME NP-hard?) Are Systems of Polynomial Matrix Equations926

(without ⊙) of bounded structural complexity NP-hard? Bounded means, only the definitions of the927

constant matrices scale with d×d, but the polynomial degrees, number of equations, and number of928

matrix operations are bounded.929

N Compact Representation of EqIM(2+)930

If only Ba+ (EqIM(2+)) is given, we can sum (29) over a′. If we further assume a=2 and define931

B=B0 and A=B0+ and W =W+ and exploit B+=B++=1, this reduces to the elegant quadratic932

matrix equation933

A⊙(W ·W ) = (B⊙W )·W (34)

with constraints as in (29), or even simpler Ws+=1 if π is unknown. This is the most pure formulation934

of the problem we are trying but are unable to solve we could come up with. For A and B defined via935

M , we know that (34) has a solution (namely W =M+).936

We neither know whether there exists an efficient algorithm to find some solution (34), nor to find the937

solution in case it is unique, nor to decide whether there exist solutions in case A and B are chosen938

arbitrarily.939

The condition Ws+=1 can be relaxed to Ws+>0. If Wss′ is a solution of (34), then also v−1
s Wss′vs′940

for any v·> 0 (most easily checked via (11)). Every non-negative matrix has a real non-negative941

Eigenvector v, and Ws+>0 implies vs>0 and Eigenvalue λ>0, hence for W norm
ss′ :=(λvs)

−1Wss′vs′ ,942

we have W norm
s+ =1.943

Ba ≥ 0 and B+ = 1 iff B ∈ [0;1] (and B1 = 1−B). Ba+ ≥ 0 and B++ = 1 iff A ∈ [0;1] (and944

B1+=1−A). But we can scale back any A and B by the same 0<λ<1 to satisfy these without945

changing (34), i.e. these extra conditions (A and B bounded by 1) do not make the problem any946

simpler.947

O Open Problem948

We present the most important open problem(s) in their simplest instantiation and most elegant form,949

fully self-contained here: Consider matrices A,B,W ∈ [0;1]d×d with d∈N, tied by the quadratic950

matrix equation951

A⊙(W ·W ) = (B⊙W )·W and Ws+=1 ∀s (35)

where⊙ is element-wise (Hadamard) multiplication and · is standard matrix multiplication. The open952

problems are as follows: Given A and B, are there efficient algorithms which953

(a) decide whether there exists a W satisfying (35)?954

(b) decide whether the solution is unique, assuming (35) has a solution?955

(c) compute a solution, assuming (35) has a solution?956

(d) compute the solution, assuming (35) has a unique solution?957
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Figure 4: Reconstructing inverse and forward models from inverse models with noise injected. Rows,
from top to bottom, show reconstructions of Ba,Ba+,Ba++, and Ma. Noise increases exponentially
across columns, from left to right, [0,10−6,10−5,10−4,10−3]. The subplot titles show the average
KL divergence of the recovered distribution from the ground truth.

Computing a real number means, given any ε>0, computing an ε-approximation. Efficient means958

running time is polynomial in d, ideally with a degree independent of 1/ε. General systems of959

quadratic equations are known to be NP-hard, but we do not know the complexity of this particular960

matrix sub-class.961

The upper bounds A,B,W≤1 can always be satisfied by scaling, hence are irrelevant. Ws+=1 can be962

relaxed to Ws+>0 except in the uniqueness questions. If helpful: One may assume A,B,W strictly963

positive. Also, any finite (d-independent) number of equations of the form A′⊙(W ·W ) = (B′⊙W )·964

W with other general matrices A′,B′∈ [0;1]d×d may be added, which further constrain the solution965

space.966

P Experimental Details967

Here we provide further experiments supporting and illustrating the theory. In Appendix Q we968

show how we numerically dealt with B=0/0=⊥. Appendix R derives the formulas for the plotted969

solution dimensions.970

Experiments illustrating robustness to noise. As mentioned in the main text, rather than commit-971

ting to a specific learning algorithm, we instead directly inject noise into the true inverse distributions.972

This is done by adding ε×10c to the true distribution and renormalizing B, where ε is drawn from973

the unit uniform distribution: ε∼U [0,1]). In Figure 2, this noise is evaluated across several orders of974

magnitude (c varied −7 to 0).975

The main text also mentions that the effect of this noise is substantially diminished as the horizon of976

the inverse model is increased (from B1:=Ba to B3:=Ba++). Figure 4 buttresses this interpretation977
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Figure 5: Reproduced from [LFLDP21], this ‘half-cheetah’ environment has been augmented with
videos of complex scenes. This highlights how non-controllable aspects of the environment can
be made more complex without changing the underlying control problem. The fact that such
environments are of interest motivates our focus on the Tensor-product special case.

by showing that the recovered Ba++ is qualitatively similar to the ground truth even with substantial978

noise.979

Experiments on the Tensor-product special case. As mentioned in the main text, if M factors980

into two processes Ṁa⊗M̈ , where M̈ is action-independent, then only the complexity of the981

action-dependent process Ṁa matters for all of our questions.982

This particular special case is important because of its frequency in applied work. Many environments983

have most of their complexity in sub-spaces that the agent has no control over. This is illustrated by984

Figure 5, reproduced from [LFLDP21], wherein naturalistic videos are superimposed on relatively985

simple continuous control environments. Clearly, the background dynamics can be arbitrarily complex986

without impacting the underlying control problem.987

We can construct small environments of this form via a simple procedure. We construct Ṁa with ḋ988

states and k actions by sampling each element of the appropriately sized matrices from U [0,1] and989

then normalizing. M̈ has d̈=2 states that transition uniformly regardless of the action. For the results990

shown in Figure 3, k=5 as in the main text, and d=2ḋ is varied from 2 to 32.991

Note that in Figure 3, the solution dimension is non-zero even when ḋ≤k<d=2ḋ (here k=5, hence992

for d=6|8|10) despite there necessarily being a unique solution as per Section 4. This is due to the993

fact that the algorithm does not exploit knowledge of the fact that M is a tensor product, resulting994

in the solution dimension being correct for the more general case where W is not confined to being995

tensor product.996

Q How to Deal with 0/0997

If for some pair of states (s,s′), no action a of positive π-probability leads from state s to s′, i.e. if998

M+
ss′ =0, then B+

ss′ and Ba
ss′∀a are 0/0=⊥= undefined. To also handle B·

ss′ =⊥, we need to adapt999

the linear algorithm in Section 4. We provide 2 different ways of doing so, with a couple of variations,1000

all leading to the same correct result.1001

We have to restrict the sum in
∑

s′B
a
ss′Jss′ =π(a|s) to those s′ for which Ba

ss′ is defined. We then1002

solve for Jss′ , again for s′ for which Ba
ss′ is defined, and set Jss′ =0 for those s′ for which Ba

ss′ =⊥.1003

Technically this can be achieved by removing the s′ columns from matrix B·
s· and J·· for which1004

B·
ss′ =⊥, solve the reduced linear equation system, and finally reinsert Jss′ =0 for the removed s′.1005

Simpler is to replace Ba
ss′ =⊥ by Ba

ss′ =0, solve the equation for J , and then set Jss′ =0 for the s′1006

for which the original Ba
ss′ was ⊥. Some solvers automatically result in Jss′ =0, since this is the1007

minimum norm solution, but it is better not to reply on this. Instead of setting Jss′ =0 after solving1008

the linear system, one could also augment B·
s· with extra rows that enforce Jss′ =0.1009

Alternatively, we could replace B·
ss′ =⊥ by a random vector which sums to 1, e.g. Ba

ss′ = ra/r+,1010

where ra=−logua with ua∼Uniform[0;1]. Provided that the solution is unique, this also leads to the1011

correct solution (almost surely), and in this way Jss′ =0 automatically. If the solution is not unique,1012

W · will still satisfy Ba=W a⊘W+ when for Ba
ss′ ̸=⊥, but W ·

ss′ may not be 0.1013

The adaptation of the Linear Relaxation Algorithm in Section 5 follows the same pattern: A··
ssisj =⊥1014

in (12), whenever one of the three involved B’s is undefined. For such ssisj , we need to ensure that1015

Ûssisj =0, which can be done with any of the variations described above. Once we have Ûssisj , we1016

set Cai

ssisj =0 if Bai

sisj =⊥. No further intervention is needed, since Ûssisj =0 already.1017
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R Solution Dimensions of W and Baa′ .1018

In Section 4 we presented an algorithm for inferring W and Baa′
from Ba. Even if M cannot1019

uniquely be reconstructed ¬(i), Baa′
may still be unique (iii). More generally, the solutions J and1020

W a form linear spaces of dimension dJ =dW ≤d(d−1) (dJ≥dW since W · is a linear function of J1021

and dJ ≤dW since W+=J). Baa′
is a (non-linear, polynomial) variety of dimension dB≤dW at1022

regular points (it is a smooth function of W ).1023

Parameterizing the solutions for J and W and B. We can determine the solution dimensions1024

dJ , dW , and dB as follows: Let Γss′ be a solution of [Ba⊙Γ]s+ = 0. If Jss′ is a solution of1025

[Ba⊙J ]s+=π(a|s), then so is J̄ :=J+Γ, hence W a :=Ma+Λa is a solution of Ba=W a⊘W+1026

and W a
s+=π(a|s), where Ma :=Ba⊙J and Λa :=Ba⊙Γ.1027

If we plug in W a≡Ma+Λa into B̄aa′
:=W aW a′⊘(MW+)2, we get the variety of B̄aa′

parame-1028

terized in terms Λa. If we expand this non-linear expression up to linear order in Λa, we get after1029

some algebra1030

Baa′
=[MaMa′

+MaΛa′
+ΛaMa′

−(MaMa′
)⊘(M+)2⊙(M+Λ++Λ+M+)]⊘(M+)2+O(Λ2)

(36)

The linear part forms a tangent direction on the B̄aa′
variety at Baa′

:=MaMa′⊘(M+)2.1031

Determining the solution dimensions for J and W and B. Now, for each s, let Γr
ss′ for1032

r∈{1 :dJs} span all solutions of [Ba⊙Γ]s+=0, which can easily be determined by SVD: dJs is1033

the number zero singular values of matrix B·
s·:, and Γr

s· the corresponding singular vectors. Then,1034

J̄ss′ =Jss′+
∑

rΓ
r
ss′zsr for any z∈RdJ with dJ =

∑
sdJs is a solution of [Ba⊙J ]s+=π(a|s).1035

Similarly, W a
ss′ :=Ma

ss′+
∑

rΛ
ar
ss′zsr with Λar :=Ba⊙Γr span all solutions consistent with Ba and1036

π. The solution dimension is dW =
∑

sdWs, where for each s, dWs is the rank of Λ··
s· if interpreted1037

as a kd×dJs matrix in as′×r. dWs may be smaller than dJs, since unlike Γr
s·, Λ

··
s· may not be full1038

rank.1039

If we plug Λa
ss′ =

∑
rΛ

ar
ss′zsr into (36), after some index manipulation we get1040

B̄aa′
= Baa′

+

d∑
t=1

dJt∑
r=1

Caa′rtztr⊘(M+)2⊘(M+)2 + O(z2) with

Caa′rt
ss′′ := (Ma

stΛ
a′r
ts′′+[ΛarMa′

]ss′′δts)[(M
+)2]ss′′ − [MaMa′

]ss′′(M
+
stΛ

+r
ts′′+[Λ+rM+]ss′′δts)

B̄aa′
(z) is a local parametrization of B, and if we drop the +O(z2), it parameterizes its tangential1041

hyperplane at Baa′
. Its dimension dB is the rank of C interpreted as a k2d2×dJ matrix in aa′ss′′×rt.1042

Again, dB may be smaller than dW , since C may not be full rank.1043

Remarks. For r∈{1:dJ}, the columns of matrix C span the tangential space of “rescaled” variety1044

B̄aa′
at Baa′

. Again, the columns may not be linearly independent. If [(M+)2]ss′′ = 0, then1045

Baa′

ss′′ =⊥ ∀aa′, hence all such ss′′ should be ignored in Caa′r
ss′′ , but since the corresponding rows in1046

C are 0, they don’t contribute to the rank anyway. Numerically, we need to regard all singular values1047

below some threshold as 0. For (to numerical precision) exact B, the threshold can be fairly small1048

(10−13 in all our experiments). For approximate/learned B, the threshold needs to be of the order of1049

the accuracy of B.1050

Sampling estimate of dB . A simpler, but less elegant, and more fragile method to estimate dB is1051

as follows: Fix one solution J . Add random noise in direction of the null-space spanned by Γr so1052

that it stays a solution, i.e. compute J̄=J+
∑

rΓ
rz·r for random z, and from this, W and B̄aa′

for1053

many such random J . The resulting point cloud spans covers the solution variety B̄aa′
. Various tools1054

could be used to analyze this point cloud, e.g. determine its dimension. If z is chosen small, the point1055

cloud concentrates around Baa′
and forms a near-linear space, whose dimension dB can easily be1056

determined by PCA.1057
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Higher-order B and higher i. In the same way we can derive the solution dimensions dB... for1058

higher-order B.... Also, even though we don’t have (yet) an efficient algorithm for solving EqIM(i)1059

for i> 1 if the solution is not unique, we still can determine the dimension of the solutions (at a1060

particular point M ). Algorithmically already covered is the case of W satisfying EqIM(1)∧EqIM(2),1061

whose solution dimension turns out to be dW−dB . The general procedure is to plug W =M+Λ into1062

and linearly expand EqIM(i) for i we to hold. Together they form a system of linear equations whose1063

solution dimension can be determined by SVD as above.1064
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