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Abstract

The advent of large language models (LLMs)001
has spurred considerable interest in advancing002
autonomous LLMs-based agents, particularly003
in intriguing applications within smartphone004
graphical user interfaces (GUIs). When pre-005
sented with a task goal, these agents typically006
emulate human actions within a GUI environ-007
ment until the task is completed. However, a008
key challenge lies in devising effective plans009
to guide action prediction in GUI tasks, though010
planning have been widely recognized as011
effective for decomposing complex tasks into a012
series of steps. Specifically, given the dynamic013
nature of environmental GUIs following action014
execution, it is crucial to dynamically adapt015
plans based on environmental feedback and016
action history. We show that the widely-used017
ReAct approach fails due to the excessively018
long historical dialogues. To address this019
challenge, we propose a novel approach called020
Dynamic Planning of Thoughts (D-PoT) for021
LLM-based GUI agents. D-PoT involves the022
dynamic adjustment of planning based on the023
environmental feedback and execution history.024
Experimental results reveal that the proposed025
D-PoT significantly surpassed the strong GPT-026
4V baseline by +12.7% (34.66% → 47.36%) in027
accuracy. The analysis highlights the generality028
of dynamic planning in different backbone029
LLMs, as well as the benefits in mitigating030
hallucinations and adapting to unseen tasks.031
Code is available at Anonymous.032

1 Introduction033

Building autonomous agents capable of assisting034

humans in addressing real-world challenges has035

long been a central pursuit of artificial intelligence036

research (Searle, 1972; Wooldridge and Jennings,037

1995; Maes, 1994). Recently, there has been038

a surge in exploration within the realm of au-039

tonomous agents, fueled largely by the emergence040

of large language models (LLMs) (Chowdhery041

et al., 2023; Wei et al., 2022). One prevalent042
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Figure 1: The proposed dynamic planning method
incorporates the execution history to adjust the plan
to predict the action and subsequently supplements the
execution history with the predicted action.

application scenario involves automating graphical 043

user interfaces (GUIs) on smartphones, where 044

LLMs are tasked with perceiving smartphone GUIs 045

and sequentially predicting action commands until 046

the task is completed (Rawles et al., 2023; Yang 047

et al., 2023b). 048

While previous studies have made significant 049

strides by enhancing environment perception 050

through fine-grained GUI grounding (Zhang and 051

Zhang, 2023; Hong et al., 2023; Yan et al., 2023; 052

Yang et al., 2023b; Cheng et al., 2024; You et al., 053

2024), there has been limited focus on the planning 054

capabilities of GUI agents. Evidence suggests that 055

decomposing a complex task into a series of plans 056

is effective in eliciting the ability of LLMs within 057

agent systems (Zhu et al., 2024; Huang et al., 2024; 058

Song et al., 2023). Additionally, given that the 059

environment evolves based on action predictions, 060

it is crucial to dynamically adapt plans based on 061

environmental feedback and execution history. 062

Existing LLMs-based GUI agents typically takes 063

actions directly prior planning or adjustment of 064
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plans based on environmental feedback (e.g.,065

new GUI screenshot) and execution history (e.g.,066

previous steps described in natural language). For067

instance, as depicted in Figure 1, the static1068

methods (black data stream) directly predicts069

actions directly based on the screenshot and goal.070

Those approaches struggles to handle complex071

real-world scenarios, where users often adjust072

subsequent actions based on past steps. We will073

show that the widely-used ReAct approach (Yao074

et al., 2022) fails due to excessively long historical075

dialogues, revealing its inadequacy in handling076

complex real-world scenarios (Section 3).077

To address the challenge above, we propose078

a novel method called Dynamic Planning of079

Thoughts (D-PoT) method to enable the LLM-080

based agent to formulate effective plans based081

on environment feedback and execution history082

during task execution (with dashed lines in083

Figure 1). Concretely, D-PoT dynamically adjusts084

its plans by incorporating new screenshots and085

execution history throughout the goal attainment086

process. Moreover, our proposed method allows for087

continuous refinement of the current plan, ensuring088

persistent optimization until the desired goal is089

achieved. Experimental results demonstrate that090

our planning mechanism substantially improves the091

task performance. Additionally, analysis highlights092

the efficacy of dynamic planning in mitigating093

hallucinations and adapting to unseen tasks.094

Our key contributions are as follows:095

(i) D-PoT dynamically formulates plans and096

selects steps for action prediction based on the097

new screenshots and execution history, thereby098

advancing the LLMs-based agent.099

(ii) D-PoT achieves a notable improvement in100

accuracy scores of +12.7% (34.66% → 47.36%)101

compared with the strong GPT-4V baseline.102

(iii) Analysis highlights the efficacy of dynamic103

planning in not only enhancing action prediction104

accuracy but also in in mitigating hallucinations105

and adapting to previously unfamiliar tasks.106

2 Related Work107

Our work is related to LLMs-based GUI agents.108

This section will first review the recent progress109

of the work on building the GUI agents and then110

discuss the planning mechanism of the agents.111

1The methods are static due to be not aware of historical
information during task execution.

2.1 LLMs-based GUI Agent 112

LLMs have spurred considerable interest in the 113

realm of language agents. Notable examples 114

include AutoGPT (Yang et al., 2023a), Hugging- 115

GPT (Shen et al., 2023), and MetaGPT (Xi et al., 116

2023), all of which explored the integration of 117

LLMs as the core of agents. 118

This work focuses on ultilizing LLMs as intelli- 119

gent assistants for smartphones. These assistants 120

are crafted to assist people in accomplishing their 121

daily tasks and meeting life’s requirements, espe- 122

cially enhancing accessibility for individuals with 123

disabilities. Notably, the advent of multi-modal 124

LLMs such as GPT-4V, showcasing robust image 125

understanding capabilities (Yang et al., 2023c), 126

has prompted previous research to predominantly 127

concentrate on comprehending GUI interactions. 128

For instance, MM-Navigator delved into leveraging 129

optical character recognition (OCR) parsing to 130

enhance GPT-4V’s GUI comprehension (Yan 131

et al., 2023), while AppAgent reinforced the 132

understanding of Application GUI elements by 133

introducing the roles of distinct GUI (Yang et al., 134

2023b). In addition to these, CogAgent fine- 135

tuned the agent’s understanding of GUI to enhance 136

performance (Hong et al., 2023). 137

In contrast to the prior research that concentrates 138

on multimodal perception, our work focuses on 139

the planning mechanism to enhance the LLMs 140

proficiency in planning and effectively tackle multi- 141

step tasks on smartphones. 142

2.2 Planning Mechanisms for LLMs 143

LLMs have shown considerable potential in 144

constructing agents with strong capabilities in 145

following instructions and maintaining coherent 146

chains of thought (CoT) via solving complex 147

problems (Wei et al., 2022; Kojima et al., 2022; 148

Zhang et al., 2022). Notably, the CoT prompting 149

technique has enabled LLMs to engage in effective 150

step-by-step problem-solving process (Huang and 151

Chang, 2023; Yao et al., 2024; Wang et al., 2022; 152

Chen et al., 2022). To address more complex 153

problems, divide-and-conquer prompting strategies 154

have been proposed, e.g., dividing problems into 155

manageable steps (Zhou et al., 2022; Lee and Kim, 156

2023) or sequential solutions (Wang et al., 2023). 157

The research above mainly focuses on enhancing 158

the reasoning abilities of LLMs. However, the 159

ReAct (Yao et al., 2022) has inspired researchers to 160

explore more suitable ways for LLMs to complete 161
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Figure 2: Overview of D-PoT. In turn, i, the D-PoT makes a plan based on visual input and textual input, predicts
the action to be performed, and then updates the execution history, and then proceeds to the next turn i+ 1.

agentic tasks by leveraging their reasoning abilities.162

This approach involves LLMs first observing and163

reasoning before taking action, such as utilizing164

external tools to identify and rectify errors (Gou165

et al., 2023; Shinn et al., 2023), or planning before166

executing (Wang et al., 2023; Hao et al., 2023).167

3 Investigating the Necessity of Dynamic168

Planning in GUI Agent169

3.1 Challenge of GUI Automation170

GUI automation is a long-episode task where the171

LLM first receives a goal and an initial screen. To172

achieve this goal, it must navigate through multiple173

screens continuously until the task is complete.174

This presents a challenge for the LLM, requiring175

it to understand the current progress of the task176

and the execution history to avoid performing177

redundant actions in similar environments.178

3.2 ReAct Fails Due to the Excessively Long179

Historical Dialogues180

ReAct is a widely used method in the LLM-based181

agent (Yao et al., 2022). It encourages the LLM182

to think before taking action when encountering183

a new environment. Each round of input includes184

all previous thoughts and actions. We experiment185

with using ReAct for the GUI Automation task.186

We sampled 20 tasks from a general dataset187

and conducted experiments using GPT-4V. The188

experimental setup is detailed in Section 5.3.189

Based on the Table 1, we observe that accuracy190

does not always improve with the increased length191

of input historical dialogues. The best performance192

is achieved when the history length is 2. This193

History
Length Accuracy Inference Cost

(tokens/ep)
Inference

Speed(s/ep)

0 32.58 22265.3 55.1
1 42.42 40961.1 63.3
2 45.45 57176.6 77.4
4 44.70 80300.2 91.1
∞ 43.94 101151.1 119.7

D-PoT 45.45 25418.7 50.3

Table 1: History Length refers to the number of
dialogue rounds inputted into ReAct, where “∞′′

indicates that all historical dialogues are included.
Accuracy calculation details can be found in Section 5.1.
Inference cost represents the average tokens used per
episode for API call, and inference speed indicates the
number of seconds required to complete each task.

is likely because, in the GUI Automation task, 194

the input length is substantial, with each round 195

containing at least 2000 tokens. Consequently, the 196

performance does not significantly improve with 197

an increase in the length of historical dialogues. 198

Correct Action

Action Type Description
Turn 3: click [1, 2, 3]

Turn 4: click [2]

Turn 5:  type What's the news in 
Pakistan? 

Turn 6: press enter

Action Type Description
Turn 3: type news in Pakistan

Turn 4: type news in Pakistan 

Turn 5: type news in Pakistan

Turn 6: press enter

ReAct

Figure 3: ReAct is misled by incorrect decisions.

Additionally, ReAct can be misled by incorrect 199

decisions made in the last turn. We speculate that 200

the reason is because ReAct focuses more on the 201

most recent interaction rather than the overall task 202

completion progress. For instance, as depicted 203
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in Figure 3. In the third turn, a "type" action is204

performed, but it is incorrect. This error persist205

until the fifth turn when it is finally resolved.206

When facing frequent interactions or complex207

task inputs, reducing inference cost and speeding208

up inference become critical challenges. The key209

issue lies in how to effectively input execution210

history to make dynamic plans and guide LLM-211

based agents in understanding task progress.212

4 Method213

In light of the above experimental results and214

analysis, we propose Dynamic Planning of215

Thoughts (D-PoT) to mitigate the challenge. On a216

high level, D-PoT consists of three stages:217

(1) planning initialization: the LLMs initiate218

the planning process by generating an overall plan,219

considering the ultimate goal, current visual input,220

and prior execution history. The plan helps the221

LLM grasp the progress of the current task. Once222

the plan is formulated, the LLMs will select the223

most plausible step for execution. (2) dynamic224

planning adjustment: the executed step is appended225

to the execution history. This updated history226

list then carefully shapes subsequent planning227

cycles. In this way, the agent can access all228

historical information rather than just focusing on229

the most recent turns. Moreover, these historical230

details occupy only a small number of tokens, this231

reduces inference cost, speeds up inference, and232

improves decision efficiency in subsequent turns.233

The framework of D-PoT is shown in Figure 2.234

4.1 Planning Initialization235

In pursuit of the task goal g, the LLMs engage236

in k turns of interactions until task completion.237

Specifically, at each turn i (i = 1, . . . , k), the238

LLMs f processes the visual input x(i)v (i.e., the239

current screenshot) and the textual input x(i)t . It240

then generates the plan pi and identifies the optimal241

step si ∈ pi to execute:242

(p(i), s(i)) = f(x(i)v , x
(i)
t ), (1)243

where the textual input x(i)t consists of the task goal244

g, screen caption x
(i)
c , and execution history x

(i)
h .245

The textual input is further wrapped with246

prompts (Appendix A.1) before feeding the LLMs247

along with the visual input. Concretely, we248

articulate our task goal at the text’s outset249

by prompting “Your ultimate goal is: <g>”.250

Step: Click on 

'CLOSE' to dismiss the 

error message.

Action: {'action_type': 

'click', 'idx': 10}

Action Click

Step: Swipe up from 

the bottom of the 

screen to access the 

app drawer or home 

screen.

Action: {'action_type': 

'scroll', 'direction': 'up'}

Action Scroll

Step: Type 

'GameTrailers' into the 

search bar to find the 

channel.

Action: {'action_type': 

'type', 'text': 

'GameTrailers'}

Action Type

Step: Tap the back 

arrow icon to exit the 

Settings of Google 

Photos and return to 

the main screen of the 

app.

Action: {'action_type': 

'navigate_home'}

Action Navigate

Step: Mark the task as 

complete.

Action: {'action_type': 

'status_complete'}

Action Status

Step: Press the 'Enter' 

key to initiate the 

search for 'macbook'.

Action: {'action_type': 

'press_enter'}

Action Press

Figure 4: Examples of six types of available actions.

Subsequently, we append the screen caption results 251

under the heading “The current on-screen input 252

is: <x(i)c >”. Then, we include execution history, 253

structured as “Here are previous actions: <x(i)h >”. 254

After feeding the inputs, we request the LLMs 255

to generate a plan p(i) = [p
(i)
1 , p

(i)
2 , . . .], which 256

consists of a sequence of steps to achieve the 257

ultimate goal. Within those steps, the LLMs is also 258

required to identify the optimal step s(i) ∈ p(i). 259

Action Type Action Description

Click Idx
Scroll Direction (up, down, left and right)
Typ Text
Navigate Home / Back
Status Complete
Press Enter

Table 2: Six types of available actions.

In practice, s(i) is confined to a finite set of 260

available actions in the GUI automation task and 261

will be transformed into the JSON format for 262

execution. Following Rawles et al. (2023), we 263

utilize six distinct types of actions as presented in 264

Table 2. There is no overlap between the different 265

actions. Examples are provided in Figure 4. 266

4.2 Dynamic Planning Adjustment 267

After the execution of s(i), the LLMs becomes 268

anchored in the subsequent interaction turn with an 269

updated visual input x(i+1)
v (e.g., a new screenshot). 270

Simultaneously, we refine the execution history 271

x
(i+1)
h by concatenating x

(i)
h and s(i): 272

x
(i+1)
h = CONCAT(x

(i)
h , s(i)), (2) 273

where CONCAT denotes the concatenation opera- 274

tion between strings. 275
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Model Overall General GoogleApps Install Single WebShopping

PaLM-2 ZS (Rawles et al., 2023) 30.9 - - - - -
ChatGPT 5-shot (Zhang and Zhang, 2023) 7.72 5.93 10.47 4.38 9.39 8.42

GPT-4V ZS 34.66 29.69 35.75 43.50 32.95 31.42
GPT-4V 4FS 39.71 34.90 34.97 50.10 41.62 36.96
GPT-4V ReAct 42.73 36.20 42.49 46.60 49.13 39.22
D-PoT 46.47 40.10 49.74 47.18 58.96 36.34
D-PoT w/ reference 47.36 42.19 49.48 49.61 58.96 36.55

Table 3: Main results (%). Segment 1: fine-tuned Llama 2 baseline; Segment 2: in-context learning LLM baselines,
“ZS” stands for “zero-shot” and “5-shot” stands for using 5-shot in-content learning (Section 5.2); Segment 3:
GPT-4V as agent model, “D-PoT” represents our proposed framework. “D-PoT w/ reference” represents seeking
similar task goals during the planning initialization stage as a reference (Detailed discussion provided in Section
5.5). The best result is reported in boldface.

Consequently, the execution history is organized276

with consecutive elements in the format of “step277

<turn id>: <action>”. This updated execution278

history x
(i+1)
h is subsequently employed according279

to the planning initialization process outlined in280

Section 4.1 for turn (i + 1) until the task reaches281

completion. The task is considered complete when282

i = k or the LLMs predicts the “Status” action283

type with the “Complete” action description.284

5 Experiments285

5.1 Dataset and Setup286

We utilize the popular AITW dataset (Rawles287

et al., 2023) for evaluating our D-PoT. More details288

about the AITW dataset are in Appendix A.2. We289

sampled 60 episodes from each subset for analysis290

to get more convincing results, and incorporated291

screen caption results into textual input, detecting292

GUI icons using OCR and IconNet (Sunkara293

et al., 2022). Each GUI icon is associated with294

a bounding box and OCR-detected text. In line295

with prior research (Zhang and Zhang, 2023; Yan296

et al., 2023), our primary evaluation metric is the297

screen-wise action matching score, computed as298

the ratio of correct actions to the episode length.299

More details are shown in Appendix A.3.300

5.2 Baseline301

To verify the proposed D-PoT, we used several302

recent agent methods as our comparison systems:303

• PaLM-2 ZS (Rawles et al., 2023): This setting304

evaluates the zero-shot performance of PaLM-2 by305

providing a textual description of the screen and306

prompting it to predict an action from the supported307

actions in AITW.308

• ChatGPT 5-shot (Zhang and Zhang, 2023):309

ChatGPT’s performance is assessed with a 5-shot310

prompt format similar to PaLM-2. The experiments 311

are conducted using the ChatGPT API. 312

• GPT-4V ZS: Zero-shot prompting with GPT- 313

4V. The model is presented with a screenshot image 314

and a textual description of the screen, tasked with 315

predicting an action from the available actions. 316

• GPT-4V 4FS: Few-shot prompting with 317

4 examples. The model is presented with a 318

screenshot image and a textual description of the 319

screen, tasked with predicting an action from the 320

available actions. 321

• GPT-4V ReAct: It represents that the 322

interaction method of LLM is ReAct, which 323

includes a history input of 4 turns. The inputs 324

of every turns are screenshots, goals, and screen 325

captions. 326

5.3 Implementation Details 327

We use the GPT-4V (Achiam et al., 2023) interface 328

provided by OpenAI as the backbone of our 329

agent. The GPT-4V model we use is “gpt-4-vision- 330

preview”. We set the “max_tokens” as 300 and the 331

“temperature” as 0. We also fine-tune public large 332

models, i.e., Llama2-7B (Touvron et al., 2023) and 333

LLaVa-7B (Liu et al., 2024), to verify the general 334

effectiveness of our approach. For the finetuning 335

experimental setup, training epochs are set as 3, 336

without eval set between epochs. The maximum 337

length of the input sequence is 2560 tokens. Text 338

input includes the goal, screen descriptions in 339

HTML syntax, and execution history. For inputs 340

with a “Plan” experimental group, the step is 341

spliced at the end of the input. The fine-tuning 342

results of these open source LLMs we put in 343

Section 5.8. 344

5.4 Main Results 345

Table 3 presents the main results of the test sets for 346

AITW. Based on the results, we have the following 347
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findings:348

(i) The proposed D-PoT achieves substantial349

performance gains on all comparison methods350

in terms of Overall scores. Particularly, D-PoT351

exhibits +12.7% (34.66% → 47.36%) improve-352

ment on the strong baseline GPT-4V ZS. This353

presents the effectiveness of our D-PoT, that is,354

both environmental feedback and action history are355

beneficial for the GUI task.356

(ii) We observe that our D-PoT gains improve-357

ment on the comparison methods (PaLM-2 ZS,358

ChatGPT 5-shot, Fine-tuned Llama-2, GPT-4V ZS,359

GPT-4V 4FS and GPT-4V ReAct) in almost all five360

categories (General, GoogleApps, Install, Single,361

and WebShopping). This indicates that our D-PoT362

is generalized to different GUI tasks.363

Accuracy w/ GPT-4V w/ Human

Click 17.83 27.39
Scroll 0.00 1.27
Typ 2.55 9.55
Navigate Home 0.64 3.82
Navigate Back 0.00 0.00
Press 0.00 2.55
Complete 2.55 7.64

Total 23.57 52.23

Table 4: Comparison of GPT-4V generated planning
and human-annotated planning in the Install dataset (%).
The best average result is reported in boldface.

(iii) We observed that improvement of D-364

PoT on certain tasks, such as the Install and365

WebShopping datasets, is not significant. We think366

that this slight improvement may be attributed367

to the generated low-quality plans. To verify it,368

we select 20 episodes from the Install dataset369

and label them with corresponding plans (e.g.,370

Click, Scroll, Typ, Navigate Home, Navigate Back,371

Press, and Complete, see Table 2). These human-372

annotated plans are input into LLMs instead of373

plans generated by GPT-4V and are prompted to374

select steps and predict actions. Table 4 shows375

a significant improvement for these 20 episodes,376

with the Total accuracy scores increasing from377

23.57%→52.23%. The high-quality plans are378

beneficial for the GUI task, which means that one379

of the slight decrease reasons is attributable to380

low-quality planning generated by GPT-4V, likely381

failing to stimulate this ability to generate high-382

quality plans during supervision fine-tuning.383

5.5 Alleviating Planning Hallucinations and 384

Errors 385

To mitigate planning hallucinations and errors, 386

we additionally seek similar task goals during 387

the planning initialization stage as a reference. 388

Initially, we encode the goal of each episode using 389

sentence-transformer and identify the goals of the 390

two most similar episodes from the remaining 391

testsets (Reimers and Gurevych, 2019). We then 392

combine the predicted actions of these two episodes 393

as a reference for the plan. Additionally, we utilize 394

InstructBlip to extract captions from the initial 395

screen of each episode task, indicating starting 396

point of the task (Li et al., 2023). These inputs 397

are incorporated into the prompt for planning 398

initialization, as outlined in the Appendix A.1. 399

The experimental results are shown in Table 3. 400

We observe that when all predicted actions from 401

similar tasks are as a reference, the proposed 402

D-PoT with reference gains the improvement 403

of 0.89% accuracies on the D-PoT in terms of 404

Overall scores. Specifically, on the General 405

and Install datasets, incorporating references 406

result in accuracy improvements of 2.09% and 407

2.43%, respectively. This indicates that D-PoT 408

is effective at alleviating planning hallucinations 409

and errors. 410

5.6 Ablation Study of Varied Planning 411

To study the impact of dynamic planning, we 412

randomly sampled 20 episodes from each data 413

subset, with a total of 100 episodes as the dataset 414

for the ablation experiment, and built several 415

baselines. 416

• No Planning (NP): Its inputs are screenshots, 417

goals, and screen captions. We ask the LLMs 418

to predict actions directly based on these inputs 419

without specifying a plan. 420

• ReAct: It represents that the interaction method 421

of LLM is ReAct, which includes a history input of 422

4 turns. The inputs of every turns are screenshots, 423

goals, and screen captions. 424

• Static Planning (SP): It represents the utilization 425

of planning statically. We will ask LLMs to 426

generate a plan at the beginning of the episode 427

and add the plan to the prompt during the whole 428

episode. 429

• Dynamic Planning (DP): It represents the 430

utilization of planning, excluding selecting steps 431

and updating execution history. The inputs of 432

DP are screenshots, goals, and screen captions. 433
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Methods Static
Planning

Dynamic
Planning

Updating
History Overall General GoogleApps Install Single WebShopping

NP ✗ ✗ ✗ 32.45 28.03 40.32 33.79 26.98 33.13
ReAct ✗ ✗ ✓ 38.97 35.61 46.77 37.24 39.68 35.54
SP ✓ ✗ ✗ 28.58 21.97 38.71 20.69 42.86 18.67
DP ✗ ✓ ✗ 42.01 31.06 50.81 40.69 57.14 30.72
D-PoT ✗ ✓ ✓ 45.75 45.45 52.42 44.14 52.38 34.34

Table 5: The ablation studies on planning mechanisms. Static Planning: Create a plan based on the provided
screenshot and goal at the outset of the episode. And utilize this plan consistently throughout the episode to direct
LLMs in predicting actions; Dynamic Planning: Continuously adapt and formulate plans during task execution,
considering all available input information; Updating History: Incorporate the steps into the execution history and
utilize them in the planning process. Each experiment’s execution or omission of a particular process is denoted by
✓ (if performed) or ✗ (if not performed). The best average result is in boldface.

When receiving a new screenshot, we ask LLMs434

to generate a plan and then take action. Table 5435

presents the detailed results of the test set for the436

AITW dataset.437

First, the accuracy scores of DP and D-PoT are438

higher than those of NP, SP and ReAct. This means439

that dynamic planning is significantly superior440

to static planning in the graphical user interface441

automation task. We think that this superiority442

contributes to two potential or possible factors: 1)443

This planning greatly stimulates the understanding444

ability of the LLMs-based agent for the graphical445

user interface automation task; 2) Throughout446

task execution, the historical information extracted447

by steps helps the LLMs-based agent flexibly448

update its plan for the environment changes and449

unseen scenarios, especially compared to ReAct,450

reduces inference cost and greatly improves the451

performance.452

Second, the comparison among NP, ReAct,453

DP, and D-PoT reveals that integrating planning454

leads to substantial enhancements preceding the455

predicted action. We think that this effect arises456

as the generative planning may prompt LLMs to457

engage in GUI automation, thereby enhancing458

their comprehension of the intended goal. This459

demonstrates that the proposed D-PoT obtains460

notable enhancement via plan integration before461

action prediction.462

Third, we observe that D-PoT outperformed DP463

in terms of Overall scores. This indicates that in-464

corporating execution history into LLMs enhances465

GUI automation through dynamic planning. In466

other words, historical information is beneficial467

for LLMs in GUI automation, especially dynamic468

planning based on historical steps. Moreover, the469

accuracy scores of D-PoT are inferior to those470

of DP on the Single datasets. In addition to the471

generated low-quality plans in Table 4, part of 472

the reasons may be that the short episode length 473

reduces the reliance on historical information for 474

the Single dataset. 475

5.7 Exploring the Proportion and Correct 476

Rate of Predicted Actions 477

To conduct a detailed analysis of the impact 478

of dynamic planning, we dive into the correct 479

rate and the proportion of predicted actions. 480

Specifically, we combine five categories for an 481

overarching analysis, more details of the correct 482

rate of predicted actions are in Appendix A.4. 483

Table 6 presents the overall predicted ratio and the 484

predicted accuracy ratio for different actions. Due 485

to the potential occurrence of unpredictable actions 486

in LLMs, it’s possible that the sum of predicted 487

probabilities may not equal 1. 488

Our observations based on these statistics reveal 489

the following two findings: 490

(i) Dynamic planning empowers LLMs to 491

enhance their task management capabilities. 492

Within the DP and D-PoT experimental groups, 493

we observed a noteworthy increase in both 494

the prediction proportion and accuracy rate of 495

“Complete” actions. This suggests that dynamic 496

planning enhances the comprehension of LLMs- 497

based agent in the current task. 498

(ii) Dynamic planning reduces the invalid 499

predicted click action. We observed a 500

significant decrease in the prediction ratio for 501

“Click” with the introduction of dynamic planning, 502

but the prediction accuracy rate is not affected. 503

Existing work indicates that GPT-4V is more likely 504

to predict the “Click” action (Yan et al., 2023). 505

However, the proposed D-PoT minimizes invalid 506

and erroneous click actions, showcasing a better 507

comprehension of the implementation progress of 508
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Model Click Scroll Typ Home Back Press Complete

NP 78.57 / 26.67 4.29 / 1.27 4.29 / 2.38 4.13 / 1.11 1.59 / 0 0.48 / 0.16 1.43 / 1.43
ReAct 70.79 / 27.14 4.92 / 1.59 7.94 / 4.92 3.02 / 1.43 1.90 / 0.16 2.54 / 0.32 3.33 / 3.02
SP 71.11 / 19.84 8.41 / 1.43 1.43 / 0.63 8.73 / 0.48 2.06 / 0 2.7 / 0.48 3.81 / 3.33
DP 71.90 / 25.08 3.49 / 1.11 3.17 / 2.54 6.98 / 2.06 0.63 / 0 1.59 / 0.32 11.75 / 8.57
D-PoT 68.45 / 26.83 7.01 / 2.7 3.51 / 3.02 1.03 / 0.79 0.41 / 0 0.62 / 0 18.14 / 9.52
D-PoT w/ reference 64.29 / 29.37 10.48 / 2.7 5.87 / 3.33 2.38 / 0.95 0.95 / 0 3.49 / 0.16 11.9 / 8.10

Table 6: The predicted ratio and the predicted accuracy ratio for different actions(%). the number on the left of “/” is
the predicted ratio, and the number on the right of “/” is the predicted accuracy ratio. The best result is in boldface.

the current plan.509

5.8 Adaptation to Unfamiliar Tasks510

As new applications continually emerge, their511

interfaces often pose unfamiliarity to agents.512

Despite the diversity of GUI tasks, there exists a513

semblance of similarity in screen navigation logic.514

Even when the interface is unknown, certain screen515

transition patterns remain consistent. Consequently,516

the proposed D-PoT utilizes dynamic planning to517

capture environmental changes and historical steps,518

which will be beneficial for adaptation to unfamiliar519

tasks. To validate this, we select two base520

models, Llama2-7B and LLaVa-7B, for fine-tuning.521

Llama2-7B serves to verify the effectiveness of522

the D-PoT method on plain text, while LLaVa-7B523

serves to verify its effectiveness on multimodal524

data. We randomly choose the GoogleApps dataset525

as the training set and the remaining datasets as526

the test set. The five datasets contain various task527

categories. We utilize both the D-PoT instruction528

from our method and the action instruction from529

AITW for fine-tuning.530

Methods General Install Single WebShopping

Llama2-7B(in-domain)
w/ all data 28.56 35.18 27.35 19.92

Llama2-7B(out-domain)
NP Baseline 13.08 17.12 3.87 8.71
Plan by GPT-4V 24.67 23.46 39.48 19.48
Plan by Itself 17.81 17.58 15.87 12.46

LLaVa-7B(out-domain)
NP Baseline 17.81 17.98 1.66 10.91
Plan by GPT-4V 27.19 26.77 44.46 20.61
Plan by Itself 30.73 29.39 45.94 21.67

Table 7: Finetuning results of Llama2-7B and LLaVa-
7B. Segment 1: “w/ all data” stands for the model is fine-
tuned with 1% randomly sampled training data to help
adapt to this task (Zhang and Zhang, 2023). Segments 2
& 3: The training set is 180 episodes in the GoogleApps,
and the test set is 180 episodes in other datasets. “GPT-
4V” stands for planning is made by GPT-4V. “itself ”
stands for planning made by the finetuned model itself.
The best average result is in boldface.

The results in Table 7 indicate that LLMs 531

fine-tuned with D-PoT data exhibit significant 532

improvements in other tasks and demonstrate 533

robust adaptability to unknown tasks compared to 534

direct fine-tuning with action instructions. Even 535

on the Llama2-7B model, the experimental results 536

of fine-tuning using only a small amount of D- 537

PoT data are comparable to those of fine-tuning 538

using the full AITW dataset. This verifies the 539

effectiveness of D-PoT for out-of-domain tasks. 540

Additionally, in the experiment with LLaVa- 541

7B, we observed that allowing LLaVa-7B to learn 542

dynamic planning rather than following the planned 543

prediction actions formulated by GPT-4V, yielded 544

higher accuracy scores. This indicates that our 545

fine-tuned LLaVa-7B model learned the plan from 546

the GoogleApp dataset and is capable of planning 547

effectively for tasks in other domains. This further 548

supports the notion that D-PoT can adapt LLMs 549

to unfamiliar tasks. 550

5.9 Error Analysis. 551

To dive into the mistakes of GPT-4V in dynamic 552

planning and facilitate future studies, we categorize 553

three common errors that lead to discrepancies 554

between the predictions of GPT-4V and human- 555

annotated predictions. More details are presented 556

in Appendix B. 557

6 Conclusion 558

This study introduces a prompting approach called 559

D-PoT, designed to facilitate interactions in a 560

multimodal environment. D-PoT encourages 561

LLMs to dynamically update planning based on 562

feedback from the environment and execution 563

history. Through the application of D-PoT, we 564

demonstrate that the D-PoT surpasses the widely 565

adopted GPT-4V baseline on the AITW benchmark 566

dataset. Meanwhile, our findings indicate that the 567

D-PoT excels in adapting to unfamiliar tasks, and 568

can predict different actions more correctly. 569
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7 Limitation570

This study utilizes the powerful zero-shot capability571

of LLMs to forecast smartphone actions by572

incorporating prompt constraints. Our focus573

lies predominantly on exploring the efficacy of574

dynamic planning in enhancing action prediction575

within a given scenario during an episode. In terms576

of social impact, employing LLM-based agents577

on mobile phones holds promise for assisting578

individuals with disabilities. It’s worth noting579

that applying LLMs-based agents on smartphones580

presents certain constraints. While we find promise581

in the observed improvement in predicted action582

accuracy over longer episodes through dynamic583

planning, practical implementation remains a584

distant goal. Many challenges stem from the585

limited knowledge of the mobile phone domain586

within LLMs, highlighting inherent imperfections.587

These issues warrant further investigation in future588

research endeavors.589
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A Example Appendix 781

A.1 Dynamic planning prompting 782

We use the following prompt for Planning Initialization. 783
784

Imagine that you are a robot operating a mobile. Like how humans operate the mobile, you can click on 785
the screen, type some text, go home, go back to the last screen, scroll up, down, left and 786

right, or mark the status as complete. Given a goal and a mobiel screen, you need to make a plan 787
to achieve your goals based on the current screen, and choose the steps that should be achieved 788
on the current screen from the plan you have made. Since achieving this goal is a **continuous 789

process**, you will be given the **previous steps and actions** that have been performed, so 790
please pay attention to this information. There may be multiple ways to achieve your goals, but 791
what you need to do is create the plan that best suits your current situation based on the 792
current screen input. 793

794
**Your ultimate goal is: check out phone information.** 795
The current on-screen input is: 796
Screen: 797
<p id=0 class=‘‘text’’ alt=‘‘vvaiipaper,’’>vvaiipaper,</p> 798
<p id=1 class=‘‘text’’ alt=‘‘sieep,’’>sieep,</p> 799
<p id=2 class=‘‘text’’ alt=‘‘iolL’’>iolL</p> 800
<p id=3 class=‘‘text’’ alt=‘‘SIZE’’>SIZE</p> 801
<p id=4 class=‘‘text’’ alt=‘‘Sound’’>Sound</p> 802
<img id=5 class=ICON\_VOLUME\_STATE alt=‘‘’’></p>\n <p id=6 class=‘‘text’’ alt=‘‘Volume,’’>Volume,</p 803

> 804
<p id=7 class=‘‘text’’ alt=‘‘vibration,’’>vibration,</p> 805
<p id=8 class=‘‘text’’ alt=‘‘Do’’>Do</p> 806
<p id=9 class=‘‘text’’ alt=‘‘Not’’>Not</p> 807
<p id=10 class=‘‘text’’ alt=‘‘Disturb’’>Disturb</p>\newline <p id=11 class=‘‘text’’ alt=‘‘Storage’’> 808

Storage</p> 809
<p id=12 class=‘‘text’’ alt=‘‘used’’>used</p> 810
<p id=13 class=‘‘text’’ alt=‘‘GB free’’>GB free</p> 811
<p id=14 class=‘‘text’’ alt=‘‘49\%’’>49\%</p> 812
<p id=15 class=‘‘text’’ alt=‘‘-32.63’’>-32.63</p> 813
<p id=16 class=‘‘text’’ alt=‘‘Privacy’’>Privacy</p> 814
<p id=17 class=‘‘text’’ alt=‘‘Permissions,’’>Permissions,</p> 815
<p id=18 class=‘‘text’’ alt=‘‘account’’>account</p> 816
<p id=19 class=‘‘text’’ alt=‘‘personal’’>personal</p> 817
<p id=20 class=‘‘text’’ alt=‘‘data’’>data</p> 818
<p id=21 class=‘‘text’’ alt=‘‘activity,’’>activity,</p> 819
<p id=22 class=‘‘text’’ alt=‘‘Location’’>Location</p> 820
<img id=23 class=ICON\_LOCATION alt=‘‘’’></p> 821
<p id=24 class=‘‘text’’ alt=‘‘On’’>On</p> 822
<p id=25 class=‘‘text’’ alt=‘‘have access’’>have access</p> 823
<p id=26 class=‘‘text’’ alt=‘‘- 4 apps’’>- 4 apps</p> 824
<p id=27 class=‘‘text’’ alt=‘‘location’’>location</p> 825
<p id=28 class=‘‘text’’ alt=‘‘to’’>to</p> 826
<p id=29 class=‘‘text’’ alt=‘‘Security’’>Security</p> 827
<p id=30 class=‘‘text’’ alt=‘‘lock, fingerprint’’>lock, fingerprint</p> 828
<p id=31 class=‘‘text’’ alt=‘‘Screen’’>Screen</p> 829
Here are previous actions: (format: action \u2192 action description) 830
Previous Actions: 831
{’’step\_idx’’: 0, ’’action\_description’’: ’’scroll up’’} 832
{’’step\_idx’’: 1, ’’action\_description’’: ’’click []’’} 833
{’’step\_idx’’: 2, ’’action\_description’’: ’’scroll up’’} 834
And the previous steps: 835
Previous Steps: 836
Step 1. Swipe up from the bottom of the screen to access the app drawer. 837
Step 2. Tap on the ’Settings’ icon to open the settings menu. 838
Step 3. Scroll up to reveal more settings options. 839

840
Please formulate an operational guide for future operations for solving the goal. The guide includes: 841
1. Plan: A **multi-step future** plan **(start from current screen, DON’T include previous steps)**; 842

steps indexed by numbers. 843
2. Step: Based on the current screen and Previous Steps, provide the **immediate** step that needs to 844

be taken from the Plan. 845
"**Output Format:** A JSON dictionary strictly following the format: "{’plan’: ’...<Your Plan Here>’, 846

’step’: ’...<Your Step Here>’} "If the goal has already been implemented, no more planning is 847
required, Provide {’plan’: ’1. Mark the task as complete’, ’step’: ’Mark the task as complet’}. 848

**Please do not output any content other than the JSON format.** 849
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850

We use the following prompt for Planning Initialization with references.851
852

Imagine that you are a robot operating a mobile. Like how humans operate the mobile, you can click on853
the screen, type some text, go home, go back to the last screen, scroll up, down, left and854

right, or mark the status as complete. Given a goal and a mobiel screen, you need to make a plan855
to achieve your goals based on the current screen, and choose the steps that should be achieved856
on the current screen from the plan you have made. Since achieving this goal is a **continuous857

process**, you will be given the **previous steps and actions** that have been performed, so858
please pay attention to this information. There may be multiple ways to achieve your goals, but859
what you need to do is create the plan that best suits your current situation based on the860
current screen input.861

**Your ultimate goal is: What is the price of a 12’ ladder at Home Depot?.**862
I also give you two similar examples as a reference, here are their goal, the initial caption of863

mobile screen, and all the execution actions to complete goal:864
Goal: What’s the price of the 1000-Watt EGO Power+ Snow Blower?865
Caption: The information on the phone screen is a screenshot of the Google Play Store, displaying866

various apps available for download. The screenshot provides a visual representation of the apps867
that can be found on the Google Play Store, allowing users to easily browse and choose from a868

variety of options.869
Execution history: {\"step_idx\": 0, \"action_description\": \"click [9]\"}870

871
{\"step_idx\": 1, \"action_description\": \"click [9]\"}872

873
{\"step_idx\": 2, \"action_description\": \"click []\"}874

875
{\"step_idx\": 3, \"action_description\": \"type\"}876

877
{\"step_idx\": 4, \"action_description\": \"press_enter\"}878

879
{\"step_idx\": 5, \"action_description\": \"click [Shopping]\"}880

881
{\"step_idx\": 6, \"action_description\": \"scroll up\"}882

883
{\"step_idx\": 7, \"action_description\": \"click [Official Site - Shop Ego Lb5300]\"}884

885
\\{\"step_idx\": 8, \"action_description\": \"status_complete\"\\}886

887
Goal: What’s the price of the new iPhone on eBay?888
Caption: The information displayed on the phone screen is a screenshot of the Google Calendar app.889

The screenshot shows the current date and time, as well as a list of upcoming events for the890
next few days. It also highlights some of the features of the Google Calendar app, such as the891
ability to add events, set reminders, and manage multiple calendars. The screenshot provides an892
overview of the user’s schedule and helps them stay organized and on top of their upcoming893
events.894

Execution history: {\"step_idx\": 0, \"action_description\": \"click [9]\"}895
896

{\"step_idx\": 1, \"action_description\": \"click [weather like in]\"}897
898

{\"step_idx\": 2, \"action_description\": \"click [google.com/search?q=wea]\"}899
900

{\"step_idx\": 3, \"action_description\": \"type\"}901
902

{\"step_idx\": 4, \"action_description\": \"click [iPhone on]\"}903
904

{\"step_idx\": 5, \"action_description\": \"scroll up\"}905
906

{\"step_idx\": 6, \"action_description\": \"click [iPhones for Sale - New & Used]\"}907
908

{\"step_idx\": 7, \"action_description\": \"scroll up\"}909
910

{\"step_idx\": 8, \"action_description\": \"click [H]\"}911
912

\\{\"step_idx\": 9, \"action_description\": \"status_complete\"\\}913
914

The current on-screen input is:915
Screen: <p id=0 class=\"text\" alt=\"Mon, Oct 10\">Mon, Oct 10</p>916
<img id=1 class=ICON_CLOUD alt=\"\"></p>917
<p id=2 class=\"text\" alt=\"56\u00b0F\">56\u00b0F</p>918
<img id=3 class=ICON_CALL alt=\"\"></p>919
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<img id=4 class=ICON_CHAT alt=\"\"></p> 920
<img id=5 class=ICON_PLAY alt=\"\"></p> 921
<img id=6 class=ICON_GOOGLE alt=\"\"></p> 922
<img id=7 class=ICON_MIC alt=\"\"></p> 923
<img id=8 class=ICON_NAV_BAR_RECT alt=\"\"></p> 924
<img id=9 class=ICON_NAV_BAR_CIRCLE alt=\"\"></p> 925
<img id=10 class=ICON_V_BACKWARD alt=\"\"></p> 926

927
Here are previous actions: (format: action \u2192 action description) 928
Previous Actions: 929
{’action_type’: ’click’, ’idx’: 15} 930
And the previous steps: 931
Previous Steps: 932
Step 1. Press the home button to exit the email setup screen. 933

934
Please formulate an operational guide for future operations for solving the goal. The guide includes: 935
1. Plan: A **multi-step future** plan **(start from current screen, DON’T include previous steps)**; 936

steps indexed by numbers. 937
2. Step: Based on the current screen and Previous Steps, provide the **immediate** step that needs to 938

be taken from the Plan. 939
"**Output Format:** A JSON dictionary strictly following the format: "{’plan’: ’...<Your Plan Here>’, 940

’step’: ’...<Your Step Here>’} "If the goal has already been implemented, no more planning is 941
required, Provide {’plan’: ’1. Mark the task as complete’, ’step’: ’Mark the task as complet’}. 942

**Please do not output any content other than the JSON format.** 943944
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A.2 The statistics for AITW dataset945

AITW is a comprehensive benchmark tailored for GUI control, comprising natural language instructions,946

screenshots, and associated actions. Agent predicts execution actions based on screenshots and task947

goals across five categories shown in Table 8. The dataset spans over 350 applications and websites,948

totaling 715,000 episodes with 30,000 unique instructions. Subsequently, each filtered subset is partitioned949

episode-wise into training, validation, and test sets following 80/10/10 splits.

Dataset Episodes Screens Instructions

General 9,476 85,413 545
Install 25,760 250,058 688
GoogleApps 625,542 4,903,601 306
Single 26,303 85,668 15,366
WebShopping 28,061 365,253 13,473

Table 8: Statistics for AITW dataset.

950

A.3 Evaluation metrics951

Specifically, for click actions, correctness is determined if the selected element is within a 14% screen952

distance from the gold gestures or falls within the same detected bounding box as the user’s gestures.953

Given the error in OCR identification, we select the top left, top right, bottom left, bottom right, and center954

of the box as sample points for calculating coordinate distances. Regarding scroll actions, correctness is955

assessed if the selected direction aligns with the scroll direction of the user’s gestures. For other actions,956

correctness is established only if the types of actions match (Rawles et al., 2023).957

A.4 The correct rate of predicted actions in ablation studies958

We compute the proportion of actions within the dataset in Table 9.959

Category Proportion (%)

Click 52.54
Scroll 13.97
Typ 10.67
Navigate Home 4.44
Navigate Back 0.79
Press 1.75
Complete 15.87

Table 9: The proportion of actions on AITW.
We provide the predicted action accuracy for all datasets of ablation experiments in Table 10.960

14



Model Action General GoogleApps Install Single Webshopping

NP

Click 23.48 33.06 25.52 23.81 26.51
Scroll 0.67 2.42 2.07 - 0.60
Typ 3.03 - 2.76 - 4.22
Navigate Home - 1.61 2.07 - 1.20
Navigate Back - - - - -
Press Enter - - - 1.59 -
Complete 0.76 3.23 1.38 1.59 0.60

SP

Click 16.67 30.65 14.48 25.40 16.87
Scroll 3.03 0.81 2.76 - -
Typ - - 0.69 3.17 0.60
Navigate Home - 0.81 0.69 - 0.60
Navigate Back - - - - -
Press Enter - - - - -
Complete 2.27 6.45 2.07 26.98 0.60

DP

Click 16.67 36.29 24.14 30.16 22.29
Scroll 0.76 1.61 2.07 - 0.60
Typ 2.27 0.81 4.14 1.59 3.01
Navigate Home 4.52 2.42 3.45 - 1.81
Navigate Back - - - - -
Press Enter - - - - -
Complete 9.85 9.68 6.90 22.22 3.01

D-PoT

Click 27.27 35.48 21.38 23.81 25.90
Scroll 3.03 3.23 5.52 - 0.60
Typ 3.79 0.81 3.45 1.59 4.22
Navigate Home - 1.61 1.38 - 0.60
Navigate Back - - - - -
Press Enter - - - - -
Complete 11.36 11.29 6.21 26.98 3.01

D-PoT
w/ reference

Click 21.21 37.90 28.28 28.57 30.72
Scroll 4.55 3.23 4.83 - -
Typ 2.77 - 4.14 6.35 4.82
Navigate Home 0.76 1.61 1.38 - 0.60
Navigate Back - - - - -
Press Enter - - - - -
Complete 9.85 11.29 5.52 22.22 1.2

Table 10: The correct rate of predicted actions of GPT-4V and D-PoT in ablation studies. We mainly collected the
correct rate of “Click”, “Scroll”, “Typ’, “Navigate” and “Complete” actions. To make it look nice, we’ll replace 0
with “-”. The best average result is in boldface.

B Errors Examples 961

The three errors are shown here. 962

The first common error we identify is a bias of GPT-4V on mobile tasks. GPT-4V often exhibits 963

“preferences” in its planning. As illustrated in Figure 5(a), when tasked with searching for specific 964

information, GPT-4V tends to click on Google, while the human-annotated prediction suggests clicking 965

on Chrome. Similarly, in Figure 5(b), when required to input text in the search bar, GPT-4V may plan to 966

clear the search bar first, whereas the human prediction is to directly input the text. 967

The second common error we recognize is instruction overlap in the AITW dataset. The same operation 968

on one mobile screen can correspond to two different actions. For instance, in Figure 5(a), when searching 969

for an item, GPT-4V may click on ’search’ or the search entry, whereas the human prediction is to press. 970

In Figure 5(b), when returning to the home page, GPT-4V often clicks on the “home” button below, while 971

the human instruction is to “navigate home”. The third common error we classify as confusion in gesture 972

operations. For example, in Figure 7, when swiping down to view more apps, the corresponding gesture 973

should be from bottom to top, indicating “scroll up”. However, GPT-4V also suggests swiping down, but 974

its predicted instruction is “scroll down”. 975
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(a) (b)

Figure 5: The first common error is a bias of GPT-4V on mobile tasks. The red circles are the steps that GPT-4V
performs in a dynamic schedule.

(a) (b)

Figure 6: The second common error we recognize is instruction overlap in the AITW dataset. The red circles are the
steps that GPT-4V performs in a dynamic schedule

Figure 7: The third common error we classify as confusion in gesture operations. The red arrow indicates that the
GPT-4V wants to slide under in dynamic planning
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