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ABSTRACT

This paper investigates a basic question in reinforcement learning from human
feedback (RLHF) from a theoretical perspective: how to efficiently explore in
an online manner under preference feedback and general function approximation.
We take the initial step towards a theoretical understanding of this problem by
proposing a novel algorithm, Exploratory Preference Optimization (XPO). This
algorithm is elegantly simple—requiring only a one-line modification to (online)
Direct Preference Optimization (DPO; Rafailov et al., 2023)—yet provides the
strongest known provable guarantees. XPO augments the DPO objective with a novel
and principled exploration bonus, enabling the algorithm to strategically explore
beyond the support of the initial model and preference feedback data. We prove
that XPO is provably sample-efficient and converges to a near-optimal policy under
natural exploration conditions, regardless of the initial model’s coverage. Our
analysis builds on the observation that DPO implicitly performs a form of Bellman
error minimization. It synthesizes previously disparate techniques from language
modeling and theoretical reinforcement learning in a serendipitous fashion through
the lens of KL-regularized Markov decision processes.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) is a central tool to align language models to
human values and elicit useful behavior (Christiano et al., 2017; Bai et al., 2022; Ouyang et al., 2022).
Using human-labeled preference data, RLHF achieves enhanced capabilities using a modest amount of
data compared to unsupervised pre-training (on the order of tens of millions versus trillions of tokens)
by treating the language model as a “policy” and optimizing it with reinforcement learning techniques.

Even though RLHF is typically only applied with preference data from humans or other language
models, one might hope that it has potential to produce super-human capabilities because recognizing
novel behavior and insights is typically easier than generating novel behavior. Indeed, it is often
much easier to verify correctness of a given proof or program than it is to produce one from scratch.
By repeatedly generating new proposals and labeling them with human feedback, a language model
could gradually push beyond the boundary of human capabilities. Unfortunately, even with the great
disparity in difficulty between generation and verification, a major barrier to achieving enhanced
capabilities via RLHF is the volume of human feedback, i.e., sample complexity, required by existing
methods. Thus, a promising research direction is to develop sample-efficient methods for RLHF.

A natural way to address the sample efficiency problem for RLHF is to augment algorithms with
online exploration. Online exploration exploits interactive access to human or AI feedback by
deliberately encouraging the model to produce diverse, novel responses. RLHF algorithms that
exploit online feedback have received limited investigation, and in spite of encouraging initial results,
existing approaches either do not update the language model (Dwaracherla et al., 2024), or engage
in purely passive exploration (Guo et al., 2024; Gao et al., 2024), with no mechanism to encourage
novelty or diversity. Passive exploration is intuitively insufficient, as we are unlikely to generate
novel and correct proofs by chance; we make this precise in Proposition 2.1. Thus, the full potential
of online exploration as a new paradigm for language model training has yet to be realized.

In this paper, we take a first step toward developing a theoretical understanding of efficient exploration
in language models. The central challenge in equipping language models with deliberate exploration
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is to efficiently navigate the vast, combinatorially large space of token sequences to find responses for
which feedback will be maximally informative. The contemporary theory of reinforcement learning
offers—at a conceptual level—solutions to this problem, providing algorithm design principles for ex-
ploration that can optimally take advantage of problem structure and achieve sample efficiency to the
best extent one can hope for (Jiang et al., 2017; Agarwal et al., 2019; Foster and Rakhlin, 2023). How-
ever, the most powerful approaches in this space are computationally intractable in the general RL set-
ting (Jiang et al., 2017; Jin et al., 2021; Foster et al., 2021), and prior attempts to adapt them to RLHF
either make unrealistic modeling assumptions (i.e., do not allow for general function approximation)
(Xu et al., 2020; Novoseller et al., 2020; Pacchiano et al., 2021; Wu and Sun, 2023; Zhan et al., 2023b;
Du et al., 2024; Das et al., 2024), or are computationally inefficient and not feasible to faithfully imple-
ment (Chen et al., 2022; Wang et al., 2023; Ye et al., 2024). Can we, perhaps by specializing to lan-
guage modeling, develop simple, yet provably sample-efficient online exploration methods for RLHF?

1.1 CONTRIBUTIONS

We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization
(XPO), which is simple—a one-line change to (online) Direct Preference Optimization (DPO; Rafailov
et al. (2023); Guo et al. (2024))—yet enjoys the strongest known provable guarantees. XPO augments
the DPO objective with a novel and principled exploration bonus, empowering the algorithm to
explore outside the support of the initial model. We show that XPO is provably sample-efficient, and
converges to a near-optimal language model policy under natural exploration conditions (Jin et al.,
2021; Xie et al., 2023; Zhong et al., 2022). Critically, and in contrast to prior work, our theory holds
irrespective of whether the initial model is sufficiently exploratory on its own. To summarize:

XPO offers the first simple, yet provably sample-efficient online exploration algorithm for RLHF with
general function approximation.

Technical highlights. Our design and analysis of XPO uses previously disparate techniques from
language modeling and theoretical reinforcement learning, combining them in a serendipitous fashion
through the perspective of KL-regularized Markov decision processes (Neu et al., 2017).

1. First, generalizing Rafailov et al. (2024), we observe that DPO can be viewed as implicitly perform-
ing Bellman error minimization (Xie and Jiang, 2020) to approximate the optimal value function
Q⋆ in a KL-regularized MDP. We use this to provide a novel KL-regularized regret decomposition.

2. Then, we show that global optimism (Jiang et al., 2017; Jin et al., 2021; Xie et al., 2023),
a powerful RL exploration technique that has classically been viewed as computationally
intractable (Dann et al., 2018; Kane et al., 2022; Golowich et al., 2024), can be implemented
in any KL-regularized MDP with deterministic transitions (generalizing language modeling) by
adding a surprisingly simple exploration bonus to the DPO objective. This yields the XPO objective.

We expect our analysis techniques and perspective to be useful more broadly. In particular, the
guarantees for XPO hold not just for language models, but for any RL problem with a stochastic starting
state and (potentially unknown) deterministic transition dynamics (“Deterministic Contextual MDP”).

Concurrent work. Two concurrent and independent works posted to arXiv in the same week as
this paper, Cen et al. (2024); Zhang et al. (2024), propose algorithms that equip DPO with exploration
bonuses similar to XPO. On the theoretical side, both works are restricted to the contextual bandit
formulation of RLHF, and do not consider the general reinforcement learning framework in this work
or make the connection to Q⋆-approximation and KL-regularized MDPs. Compared to our results,
which give provable sample complexity guarantees with general function approximation, Zhang et al.
(2024) do not provide sample complexity guarantees, while Cen et al. (2024) provide guarantees only
for linear contextual bandits. In addition, and importantly, the sample complexity guarantees in Cen
et al. (2024) have exponential dependence on the KL regularization parameter, which our results avoid.

We mention in passing that another concurrent work of Liu et al. (2024b) applies a similar
bonus—with a flipped sign—to implement pessimism in offline RLHF; this is complementary to
the online setting we focus on, and the analysis techniques and assumptions are quite different.

2 BACKGROUND

This section contains necessary background to present our main results. We begin by recalling the stan-
dard formulation of reinforcement learning from human feedback from offline data (Section 2.1), then
introduce the online feedback model and highlight the need for systematic exploration (Section 2.2).
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Notation. For an integer n ∈ N, we let [n] denote the set {1, . . . , n}. For a set X , we let ∆(X )
denote the set of all probability distributions over X . We adopt standard big-oh notation, and write
f = Õ(g) to denote that f = O(g · max{1,polylog(g)}) and a ≲ b as shorthand for a = O(b).

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

We study RLHF in a general reinforcement learning formulation which subsumes the token-level
MDP formulation considered in prior work (Rafailov et al., 2024), but is somewhat broader.

Markov decision processes. We consider an episodic finite-horizon Markov decision process
framework. Formally, a horizon-H MDP M = (H,S,A, P, r, ρ) consists of a (potentially very large)
state space S, action space A, probability transition function P : S ×A → ∆(S), reward function
r : S ×A → R, and initial state distribution ρ ∈ ∆(S). We assume without loss of generality that the
state space is layered such that S = S1∪S2∪ · · ·∪SH , where Sh is the set of states reachable at step
h, and Sh ∪ Sh′ = ∅ for h ̸= h′. A (randomized) policy is a mapping π : S → ∆(A), and induces a
distribution over trajectories τ = (s1, a1), . . . , (sH , aH) and rewards r1, . . . , rH via the following
process. The initial state is drawn via s1 ∼ ρ, then for h = 1, . . . ,H: ah ∼ π(sh), rh = r(sh, ah),
and sh+1 ∼ P (sh, ah). We let Eπ[·] and Pπ[·] denote expectation and probability under this process,
respectively, and define J(π) = Eπ

[∑H
h=1 rh

]
. We assume that

∑H
h=1 rh ∈ [0, Rmax] almost surely

for a parameter Rmax > 0. For a trajectory τ and policy π we define r(τ) :=
∑H

h=1 r(sh, ah) and
π(τ) :=

∏H
h=1 π(ah | sh).

In the context of language modeling, the main object of interest is the token-level MDP (Rafailov et al.,
2024). Here, s1 ∼ ρ represents a prompt, each action ah represents a token (with A representing the
vocabulary), and the state sh = (s1, a1, . . . , ah−1) is the prompt and sequence of tokens so far. The
language model is represented by a policy π, which maps the current context sh = (s1, a1, . . . , ah−1)
to a distribution over the next token ah. The trajectory τ = (s1, a1), . . . , (sH , aH) produced by this
process can be interpreted as the language model’s response to the prompt s1; we will occasionally
use the terms “trajectory” and “response” synonymously in this context.

Our main results apply to any Deterministic Contextual MDP (DCMDP) for which the initial state is
stochastic, but the subsequent transition dynamics are deterministic and potentially unknown. This
formulation encompasses but strictly generalizes the token-level MDP.

RLHF with offline data. In the classical RLHF formulation (Christiano et al., 2017; Bai et al., 2022;
Ouyang et al., 2022), we assume access to a dataset Dpref = {(τ+, τ−)} of labeled preference data.
Each pair of trajectories (responses) (τ+, τ−) represents a positive and negative example; both trajec-
tories begin from the same initial state (prompt) s1, and are generated by first sampling a pair (τ, τ̃)
via τ ∼ πref | s1 and τ̃ ∼ πref | s1 in the underlying DCMDP M (e.g., token-level MDP), and then
ordering them as (τ+, τ−) based on a binary preference y ∼ P(τ ≻ τ̃ | s1). Here, πref is a reference
policy (language model), which is typically obtained via supervised fine-tuning, and the preference
y ∼ P(τ ≻ τ̃ | s1) is obtained from a human or AI annotator. Following a standard assumption
(Christiano et al., 2017; Ouyang et al., 2022; Rafailov et al., 2023), we assume that preferences follow
the Bradley-Terry model (Bradley and Terry, 1952): For trajectories τ and τ̃ both beginning with s1,

P(τ ≻ τ̃ | s1) =
exp(r(τ))

exp(r(τ)) + exp(r(τ̃))
. (1)

Based on the preference dataset Dpref , the goal is to learn a policy π̂ with high reward. Following
prior theoretical works on RLHF, we consider a KL-regularized reward objective (Xiong et al., 2023;
Ye et al., 2024), defined for a regularization parameter β > 0, via

Jβ(π) := J(π)− β ·
H∑

h=1

Eπ[DKL(π(· | sh) ∥ πref(· | sh))] = Eπ

[
r(τ)− β log

π(τ)

πref(τ)

]
. (2)

We aim to compute a policy π̂ such that maxπ Jβ(π) − Jβ(π̂) ≤ ε for some small ε > 0. Such
a guarantee means that π̂ near-optimally maximizes reward, yet stays relatively close to πref (as a
function of β). The choice of β > 0, which is important for safety and reliability, is typically viewed
as a domain specific hyperparameter (Tang et al., 2024a). Our main focus in this paper is the small-β
regime, which allows π̂ to meaningfully deviate from πref and generate potentially novel responses.
Notably, by taking β sufficiently small, it is possible to translate suboptimality bounds for the
regularized reward into bounds for the unregularized reward (e.g., Zhu et al., 2023; Zhan et al., 2023a).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We refer to this setting as offline RLHF because the algorithm relies only on the offline dataset Dpref

for training, and does not perform any active data collection.

Direct preference optimization (DPO). Initial approaches to offline RLHF (Christiano et al., 2017;
Ouyang et al., 2022) proceed by first estimating a reward function r̂ from Dpref using the Bradley-
Terry model, then optimizing an estimated version of the KL-regularized objective in Eq. (2) using
policy optimization methods like PPO, i.e., π̂ ≈ argmaxπ∈Π Eπ

[
r(τ)− β log π(τ)

πref(τ)

]
. The starting

point for our work is an alternative approach introduced by Rafailov et al. (2023), Direct Preference
Optimization (DPO). DPO is motivated by a closed-form solution for the policy that optimizes the
KL-regularized objective in Eq. (2), and condenses the two-step process above into a single policy
optimization objective, removing the need for reward function estimation. Concretely, DPO solves1

π̂ = argmin
π∈Π

∑
(τ+,τ−)∈Dpref

− log

[
σ

(
β log

π(τ+)

πref(τ+)
− β log

π(τ−)

πref(τ−)

)]
(3)

for a user-specified policy class Π, where σ(x) := exp(x)
1+exp(x) is the sigmoid function.

2.2 ONLINE FEEDBACK AND EXPLORATION IN RLHF
DPO and other offline RLHF methods have achieved great success in language model alignment, but
are fundamentally limited to behaviors that are well-supported by the initial model πref and data
Dpref . RLHF with online feedback offers a promising approach to move beyond this limitation by
collecting feedback from responses sampled from the model during training (Guo et al., 2024).

Formally, the protocol proceeds in T rounds. At each round t, we receive an initial state s(t)

1 and sam-
ple two responses τ ∼ π(t) | s1 and τ̃ ∼ π(t) | s1 from the current policy π(t). The prompts are then
labeled as (τ (t)

+ , τ (t)

− ) and added to the preference dataset via D(t+1)

pref ← D
(t)

pref ∪{(τ
(t)

+ , τ (t)

− )}, which is
then used to compute an updated policy π(t+1). In practice, the prompts are typically labeled via human
feedback or AI feedback (e.g., a larger, more powerful language model (Guo et al., 2024; Rosset et al.,
2024)); we assume the preferences P(τ (t) ≻ τ̃ (t) | s(t)

1 ) follow the Bradley-Terry model in Eq. (1).

2.3 THE NECESSITY OF DELIBERATE EXPLORATION

Existing approaches to online RLHF adapt offline techniques by applying them iteratively. As an
example, Online DPO (Guo et al., 2024) proceeds as follows:2

1. Compute π(t) by solving the DPO objective in Eq. (3) with the current preference dataset D(t)

pref .

2. Sample τ (t), τ̃ (t) ∼ π(t) | s(t)

1 , then label as (τ (t)

+ , τ (t)

− ) and update D(t+1)

pref ← D
(t)

pref ∪ {(τ
(t)

+ , τ (t)

− )}.

We refer to such an approach as passive exploration, as the responses are sampled directly from the
policy π(t) without an explicit mechanism to encourage diversity. The following proposition shows
that passive exploration is insufficient to discover novel behavior: Unless the initial policy πref has
good coverage, Online DPO can fail to learn a near-optimal policy.

Proposition 2.1 (Necessity of deliberate exploration). Fix β ∈ (0, 1
8 log(2)), and consider the bandit

setting (H = 1, S = ∅, and |A| = 2). There exists πref such that for all T ≤ 1
2 exp(

1
8β ), with

constant probability, all of the policies π(1), . . . , π(T+1) produced by Online DPO satisfy

max
π

Jβ(π)− Jβ(π
(t)) ≥ 1

8
∀t ∈ [T + 1].

That is, the sample complexity required by Online DPO is exponential in 1
β , which is unacceptable in

the small-β regime; inspecting the proof, it is straightforward to see that the same conclusion holds
for Iterative DPO and purely offline DPO. The idea behind Proposition 2.1 is simple: If πref places
small probability mass on the optimal action, Online DPO may fail to ever explore this action until the
number of iterations is exponentially large. This reflects the intuition that in the small-β regime, more
deliberate exploration is required to discover behaviors or capabilities not already covered by πref .

1We adopt the convention that the value of the DPO objective is +∞ if π does not satisfy π ≪ πref .
2The closely related Iterative DPO approach (Xu et al., 2023; Tran et al., 2024) proceeds in the same fashion,

but samples a large batch of preference pairs from each policy π(t), and performs fewer updates.
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Remark 2.1. Various empirical works have suggested that offline DPO can under-perform relative
to vanilla RLHF with PPO due to a lack of on-policy sampling (Xiong et al., 2023; Guo et al.,
2024; Dong et al., 2024; Tang et al., 2024a). Proposition 2.1 highlights a conceptually distinct
phenomenon, where both of the aforementioned algorithms (as well as online variants of DPO) fail
due to poor coverage from πref , in spite of on-policy sampling.

3 ONLINE EXPLORATION FOR LANGUAGE MODELS: EXPLORATORY
PREFERENCE OPTIMIZATION

We now present our main algorithm XPO, which addresses the limitations of existing alignment
methods by augmenting DPO with active exploration. We first describe the algorithm and motivation
(Section 3.1), then present theoretical guarantees (Section 3.2), and sketch the analysis (Section 3.3).

3.1 THE XPO ALGORITHM

Algorithm 1 Exploratory Preference Optimization (XPO)
input: Number of iterations T , KL-regularization coefficient β > 0, optimism coefficient α > 0.

1: Initialize π(1) ← πref , D(0)

pref ← ∅.
2: for iteration t = 1, 2, . . . , T do
3: Generate response pair (τ (t), τ̃ (t)) via: s(t)

1 ∼ ρ, τ (t) ∼ π(t) | s(t)

1 , and τ̃ (t) ∼ πref | s(t)

1 .
4: Label with preference: Label (τ (t), τ̃ (t)) as (τ (t)

+ , τ (t)

− ) with preference y(t) ∼ P(τ (t) ≻ τ̃ (t)).
5: Update preference data: D(t)

pref ← D
(t−1)

pref

⋃
{(τ (t)

+ , τ (t)

− )}.
6: Direct preference optimization with global optimism: Calculate π(t+1) via

π(t+1) ← argmin
π∈Π

α

t∑
i=1

log π(τ̃ (i))−
∑

(τ+,τ−)∈D(t)
pref

log

[
σ

(
β log

π(τ+)

πref(τ+)
− β log

π(τ−)

πref(τ−)

)].

7: return: π̂ = argmaxπ∈{π(1),...,π(T+1)} Jβ(π
(t)). // Can compute using validation data.

XPO (Exploratory Preference Optimization) is displayed in Algorithm 1. The algorithm takes as input
a user-specified policy class Π and proceeds in almost the same fashion as Online DPO. For each
step t ∈ [T ], given the current policy π(t) and an initial state s(t)

1 , the algorithm begins by sampling
a pair of trajectories τ (t) ∼ π(t) | s(t)

1 and τ̃ (t) ∼ πref | s(t)

1 , which are labeled as (τ (t)

+ , τ (t)

− ) based on
the preference feedback and used to update the preference dataset via D(t+1)

pref ← D
(t)

pref ∪ {(τ
(t)

+ , τ (t)

− )}.
The most important step is Line 6, which updates the policy to π(t+1) via the following optimistic
variant of the DPO objective:

π(t+1) ← argmin
π∈Π

α

t∑
i=1

log π(τ̃ (i))−
∑

(τ+,τ−)∈D(t)
pref

log

[
σ

(
β log

π(τ+)

πref(τ+)
− β log

π(τ−)

πref(τ−)

)]. (4)

Here, α ≥ 0 is an optimism parameter; for α = 0, the algorithm nearly equivalent to Online DPO, ex-
cept that we sample τ (t) ∼ π(t) | s(t)

1 and τ̃ (t) ∼ πref | s(t)

1 instead of sampling (τ (t), τ̃ (t)) ∼ π(t) | s(t)

1
at each iteration. As we will see now, for α > 0, the term

α

t∑
i=1

log π(τ̃ (i)) (5)

in Eq. (4) encourages the policy to behave optimistically, and produce diverse responses τ .

Motivation. Optimism in the face of uncertainty is a widely used technique in reinforcement
learning theory (Agarwal et al., 2019; Lattimore and Szepesvári, 2020; Foster and Rakhlin, 2023). In
its most standard form, the optimism principle is usually stated as follows: One should explore by
choosing their actions according to the most optimistic view of the world, given all of the data that
has already been observed. The idea is that if we choose a decision according to this principle, one
of two good things can happen: (i) the optimistic view is correct, and we receive large reward; or (ii)
the optimistic view is incorrect, but we receive useful information that will help to better estimate the
state of the world in subsequent iterations.

5
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Optimism is typically implemented by directly estimating rewards, and it is not obvious at first glance
why Eq. (5) can even be interpreted as a form of optimism. To understand, this consider a log-linear
policy πf (ah | sh) = πref(ah | sh) exp

(
f(sh,ah)−Vf (sh)

β

)
, where Vf (sh) := β log

∑
ah∈A πref(ah |

sh)e
f(sh,ah)/β. Define [Tβf ](sh, ah) := r(sh, ah) + E [Vf (sh+1) | sh, ah] as the KL-regularized

Bellman operator (Ziebart et al., 2008; Ziebart, 2010). We observe, generalizing Watson et al. (2023);
Rafailov et al. (2024), that for any DCMDP, for all trajectories τ = (s1, a1), . . . , (sH , aH),

β log
πf (τ)

πref(τ)
= r(τ)− Vf (s1) +

H∑
h=1

(f(sh, ah)− [Tβf ](sh, ah)) . (6)

That is, the policy can be viewed as maintaining an internal model for the trajectory reward,
up to (i) a constant offset Vf (s1) that depends only on s1; and (ii) the sum of Bellman errors
(f(sh, ah)− [Tβf ](sh, ah)). The optimal KL-regularized policy π⋆

β = argmaxπ Jβ(π) satisfies
π⋆
β = πQ⋆

β
, where Q⋆

β /V ⋆
β denote KL-regularized value functions (see Appendix C.4 for formal

definitions and details), and has zero Bellman error (Q⋆
β = [TβQ⋆

β ]), so that

β log
π⋆
β(τ)

πref(τ)
= r(τ)− V ⋆

β (s1) ∀τ. (7)

In other words, π⋆
β implements an accurate internal reward model. From this viewpoint:

1. The standard DPO term in Eq. (4) encourages the policy π to build an accurate internal model for
rewards under the Bradley-Terry model; this can be viewed as a form of implicit Q⋆-approximation,
since we are implicitly minimizing the Bellman errors in Eq. (6).

2. In light of Eq. (7) it is natural to approximate V π
β (s1), the regularized value function for π, by

r(τ)− β log π(τ)
πref(τ)

. Using this approximation, the first term in Eq. (4) biases the policy toward a
large value function such that V ⋆

β ≲ V π
β , implementing implicit (global) optimism in the face of

uncertainty (up to an inconsequential difference in on-policy rewards). The fact that this suffices
to drive exploration is quite subtle, and leverages non-trivial properties of the KL-regularized
MDP, including the fact that Eq. (6) holds on a per-trajectory basis.

On the sampling policy. As remarked above, another difference between XPO and online/iterative
DPO is that instead of sampling the preference pairs via (τ (t), τ̃ (t)) ∼ π(t), we sample τ (t) ∼ π(t) | s(t)

1

and τ̃ (t) ∼ πref | s(t)

1 . This small change is important: it is possible to show that in general, sampling
(τ (t), τ̃ (t)) ∼ π(t) can lead to degenerate behavior in which the algorithm fails to adequately explore
in the small-β regime, even when πref itself has good coverage.

While we use τ̃ (t) ∼ πref | s(t)

1 in Algorithm 1, XPO is significantly more general, and leads to
provable guarantees for any fixed sampling policy τ̃ (t) ∼ π̃ | s(t)

1 , as well as certain data-dependent
sampling schemes (e.g., sampling τ̃ (t) ∼ unif(π(1), . . . , π(t)) | s(t)

1 ); different choices may have
different tradeoffs and benefits in practice. A general version of XPO which leaves the sampling
distribution for τ̃ (t) as a free parameter is given in Appendix C.1 (Algorithm 2).

Simplicity. While the focus of this paper is purely theoretical, we emphasize that XPO is highly
practical, and can easily be incorporated into existing language modeling and RLHF pipelines as
a drop-in replacement for Online DPO (a one-line change to existing code). The theoretical guarantees
for the algorithm continue to hold under standard modifications such as (i) incorporating additional
preference data from πref or another reference policy; and (ii) performing a smaller number of
iterations, but collecting a larger batch of preference data from π(t) (as in Iterative DPO).

3.2 THEORETICAL GUARANTEES

To provide sample complexity guarantees for XPO, we make some standard statistical assumptions. The
first asserts that the policy class Π is powerful enough to represent the optimal KL-regularized policy.

Assumption 3.1 (Policy realizability). The policy class Π satisfies π⋆
β ∈ Π.

Policy realizability is a minimal assumption for sample-efficient reinforcement learning (Agarwal
et al., 2019; Lattimore and Szepesvári, 2020; Foster and Rakhlin, 2023); through Eq. (7), it is
equivalent to a form of reward/value realizability. For language modeling, Π will typically correspond
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to a class of language models with fixed architecture but variable weights. Next, we make a regularity
assumption on the policies in Π (Rosset et al., 2024).

Assumption 3.2 (Bounded density ratios). For all π ∈ Π and trajectories τ ,∣∣∣∣log( π(τ)

πref(τ)

)∣∣∣∣ ≤ Vmax

β
. (8)

Vmax is measurable and controllable in practice; our guarantees scale polynomially with this
parameter. For log-linear policies where π(a | s) ∝ exp(f(s,a)/β), we expect Vmax ≲ Rmax.

To quantify the rate at which the algorithm converges to an optimal policy, we require an exploration
condition, which limits the amount of times the algorithm can be surprised by substantially new
state distributions; such assumptions are necessary for reinforcement learning with general function
approximation (Jiang et al., 2017; Jin et al., 2021; Xie et al., 2023). Our main result is stated in terms
of a condition known as coverability (Xie et al., 2023), but more general guarantees are given in
Appendix C. Define dπ(τ) := Pπ((s1, a1), . . . , (sH , aH) = τ).

Definition 3.1 (Coverability). The trajectory-level coverability coefficient is given by

Ccov(Π) := inf
µ∈∆((S×A)H)

sup
τ∈(S×A)H

sup
π∈Π

dπ(τ)

µ(τ)
. (9)

Assumption 3.2 implies a trivial bound of Ccov(Π) ≲ exp
(
Vmax

β

)
. Indeed, Ccov(Π) measures coverage

with respect to the best possible distribution µ, while the bound implied by Assumption 3.2 takes
µ = πref , so we expect Ccov(Π)≪ exp(Vmax/β) when πref does not provide adequate coverage on
its own (e.g., the example in Proposition 2.1). This is precisely the setting where we expect deliberate
exploration to be helpful. We also note that there is a trivial bound Ccov(Π) ≤ |A|H , but because
coverability depends on the structure of the (restricted) class Π, the value can be significantly smaller
in general (e.g., if policies π ∈ Π are highly correlated or stochastic).

The main sample complexity guarantee for XPO is as follows.

Theorem 3.1 (Sample complexity bound for XPO). Suppose that Assumptions 3.1 and 3.2 hold. For

any β > 0 and T ∈ N, if we set α = c · β
(Vmax+Rmax)e2Rmax ·

√
log(|Π|Tδ−1)
T ·Ccov(Π) for an absolute constant

c > 0, then Algorithm 1 ensures that with probability at least 1− δ,3

Jβ(π
⋆
β)− Jβ(π̂) ≲ (Vmax +Rmax)e

2Rmax ·

√
Ccov(Π) log(|Π|Tδ−1) log2(T )

T
.

Let us discuss some key features of this result.

Statistical efficiency. Theorem 3.1 shows that XPO converges to a near-optimal policy with sample
complexity polynomial in the coverability coefficient Ccov(Π); in particular, to learn an ε-optimal
policy T = Õ

(
Ccov(Π) log|Π|

ε2

)
episodes are required.4 By scaling with Ccov(Π), Theorem 3.1 can be

viewed as a strict improvement over offline RLHF (Zhu et al., 2023; Zhan et al., 2023a), as well as
prior works on online RLHF that rely on passive exploration (Xiong et al., 2023; Gao et al., 2024;
Chang et al., 2024). In particular, these works scale with coverage parameters for πref , the simplest
of which take the form Cconc(Π) := supτ∈(S×A)H supπ∈Π

π(τ)
πref(τ)

. Under Assumption 3.2, we have
that Cconc(Π) = exp(Vmax/β) which, as discussed above, upper bounds Ccov(Π) but can be much
larger when πref has poor coverage. The dependence on Ccov(Π) in Theorem 3.1 reflects the fact that
XPO can explore responses not covered by πref .5

3Exponential dependence on the reward range Rmax is an intrinsic feature of the Bradley-Terry model, and
can be found in all prior sample complexity guarantees for this framework, offline and online (Das et al., 2024;
Rosset et al., 2024); this exponential dependence is also a focal point of the closely related literature on logistic
bandits (Faury et al., 2020; Abeille et al., 2021).

4We state the result for finite classes to simplify presentation, following the standard in RL theory (Agarwal
et al., 2019; Foster and Rakhlin, 2023)

5Many works consider more general notions of coverage that account for reward function structure, in the
same vein as SEC, as well as single-policy variants; both can be problematic for similar reasons.
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In Appendix C, we give a generalization of Theorem 3.1 (Theorem 3.1′) which scales with a more
comprehensive exploration parameter, the Sequential Extrapolation Coefficient (SEC), matching (for
DCMDPs) the most general results in prior work on exploration in RLHF, but with a significantly
simpler algorithm (Chen et al., 2022; Wang et al., 2023; Ye et al., 2024). The SEC also leads to
polynomial sample complexity for tabular and linear MDPs, a common setting considered in prior
work (Xu et al., 2020; Novoseller et al., 2020; Pacchiano et al., 2021; Wu and Sun, 2023; Zhan et al.,
2023b; Das et al., 2024). See Appendix A for a detailed comparison. We emphasize that Theorem 3.1
applies to any DCMDP (including but not limited to the token-level MDP), even if the dynamics are
unknown; as such, the result meaningfully extends beyond the contextual bandit formulation of RLHF
found in many prior works (Zhu et al., 2023; Xiong et al., 2023; Das et al., 2024; Ye et al., 2024).

Remark 3.1 (Nontriviality and role of β). By avoiding explicit dependence on exp( 1β ), XPO provably
improves upon Online DPO when β is small; per Proposition 2.1, the latter must pay exp( 1β )

even when Ccov(Π) ≤ 2. This improvement stems from the fact that KL-regularization does not
automatically lead to exploration or grant meaningful control of coverability in the small-β regime.

To highlight the importance of the small-β regime, we note that by taking β = poly(1/T ),
Theorem 3.1 immediately leads to bounds on the unregularized reward J(π). This would not be
possible if the sample complexity guarantee explicitly scaled with exp( 1β ).

Computational efficiency. Most prior approaches to RL with general function approximation that
incorporate global forms of optimism similar to Eq. (5) (Jiang et al., 2017; Sun et al., 2019; Du et al.,
2021; Jin et al., 2021; Xie et al., 2023; Liu et al., 2024a) are known to be computationally intractable
to implement in general (Dann et al., 2018), and involve solving non-convex, non-differentiable
constrained optimization problems. Thus, it is natural to ask why our result is not too good to be true.
The answer is that even though the objective in Eq. (4) is simple, it is still non-convex in general,
even if one employs log-linear policies of the form πθ(a | s) ∝ exp

(
1
β ⟨ϕ(s, a), θ⟩

)
for θ ∈ Rd. This

non-convexity is precisely caused by the presence of the optimistic term Eq. (5); Theorem 3.1 is valid
for all choices of β > 0, but we expect that the optimization problem in Eq. (4) will become more
difficult to solve as β → 0.6 In light of this, our work can be viewed as using the unique structure
of the KL-regularized MDP formulation and deterministic contextual MDP (DCMDP) to derive
an optimistic exploration objective which—while still non-convex—is differentiable and directly
amenable to implementation with language models. This technique is novel even in the context of
reward-driven (as opposed to preference-based) RL, and we expect it to find broader use.

Additional remarks. Separately, we mention in passing that we believe it should be possible to
derive tighter sample complexity bounds for large β > 0, in the vein of Tiapkin et al. (2023a).

Remark 3.2 (Limitations of the DPO objective). Our results are limited to MDPs with deterministic
dynamics and stochastic start state (DCMDPs). We believe that without further modifications, the DPO
objective is not suitable for stochastic dynamics, as Eq. (7) no longer holds on a per-trajectory basis.

Remark 3.3 (Trajectory coverability). A related point concerns trajectory coverabil-
ity. In the standard (as opposed to preference-based) RL setting, it is possible to
achieve guarantees that scale with state-action coverability (Xie et al., 2023), defined via
Cst(Π) := infµ∈∆(S×A) sups∈S,a∈A supπ∈Π

dπ(s,a)
µ(s,a) , where dπ(s, a) := Pπ(sh = s, ah = a). In

general, we can have Cst(Π)≪ Ccov(Π). We expect that trajectory-level coverability is necessary
for algorithms based on the DPO objective. Nonetheless, the difference is immaterial for language
modeling in the token-level MDP, which has Cst(Π) = Ccov(Π).

3.3 PROOF SKETCH FOR THEOREM 3.1
Our starting point for the proof of Theorem 3.1 is the following regret decomposition, which is proven
as a consequence of the implicit Q⋆-approximation result in Eq. (7).

Lemma 3.1 (Central regret decomposition). For any pair of policies π and ν, it holds that

Jβ(π
⋆
β)− Jβ(π) = Eτ∼ν [β log π(τ)]− Eτ∼ν

[
β log π⋆

β(τ)
]

(10)

6Interestingly, one can show that for an appropriate α, our objective converges to the standard global optimism
objective (Jin et al., 2021) under this parameterization as β → 0. Conversely for very large β (β ≳ Rmax), the
objective becomes convex. We leave a dedicated analysis of the optimization landscape for future work.
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+ Eτ∼π

[
β log

π(τ)

πref(τ)
− r(τ)

]
− Eτ∼ν

[
β log

π(τ)

πref(τ)
− r(τ)

]
. (11)

This result decomposes the error of any policy into two pairs of terms: The first pair in Eq. (10)
measures the extent to which the policy’s internal reward model overestimates the optimal value, and
directly informs the notion of optimism in XPO, while the second pair in Eq. (11) measures the reward
model’s predictive accuracy. Critically, as a consequence of the fact that Eq. (7) holds uniformly for
all trajectories, the regret decomposition measures error under (i) the policy π itself (on-policy error),
and (ii) an arbitrary reference policy ν, which we will instantiate as the historical data distribution.

Let µ(t) := 1
t−1

∑
i<t π

(i) ⊗ πref denote the policy that, given s1, samples τ ∼ π(i) for
i ∼ unif([t − 1]) and samples τ̃ ∼ πref , with the convention that µ(1) is arbitrary. Observe that
mint∈[T+1] Jβ(π

⋆
β)− Jβ(π

(t)) ≤ 1
T

∑T
t=1 Jβ(π

⋆
β)− Jβ(π

(t)). For each step t, applying Lemma 3.1
with π = π(t) and ν = πref gives

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t)) ≤ 1

T

T∑
t=1

Eτ∼πref

[
β log π(t)(τ)− β log π⋆

β(τ)
]

+
1

T

T∑
t=1

Es1∼ρ,τ∼π(t)|s1,τ̃∼πref |s1

[
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

]
. (12)

The reward estimation error term in Eq. (12) samples τ ∼ π(t) | s1 and τ̃ ∼ πref ∼ s1 (on-policy).
To relate this to the purely off-policy objective in Line 6 of XPO, we use a potential argument based
on coverability (Xie et al., 2023) which, for any α > 0, allows us to bound the above expression by

≲
α

β
· Ccov(Π) +

1

T

T∑
t=1

Eτ∼πref

[
β log π(t)(τ)− β log π⋆

β(τ)
]

+
α−1β

T

T∑
t=1

Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2
]
. (13)

Let Ψ(t)

XPO(π) := Eτ∼πref

[
β log π(τ) − β log π⋆

β(τ)
]
+ α−1βEs1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log π(τ)

πref(τ)
−

r(τ)− β log π(τ̃)
πref(τ̃)

+ r(τ̃)
)2]

. If we could choose π(t) = argminπ∈Π Ψ(t)

XPO(π), we would be done,
since by Eq. (7) this would yield

Ψ(t)

XPO(π
(t)) ≤ Ψ(t)

XPO(π
⋆
β) = Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log

π⋆
β(τ)

πref(τ)
− r(τ)− β log

π⋆
β(τ̃)

πref(τ̃)
+ r(τ̃)

)2
]
= 0.

The XPO objective in Line 6 minimizes an empirical analogue of this quantity (up to a standard trans-
lation between log-loss and square loss under the Bradley-Terry model), so a concentration argument

(Lemma C.5) allows us to conclude that the iterates of XPO satisfy Ψ(t)

XPO(π
(t)) ≲ α−1 log|Π|

t +
√

log|Π|
t .

Plugging this bound into Eq. (13) yields 1
T

∑T
t=1 Jβ(π

⋆
β)−Jβ(π(t)) ≲

√
Ccov(Π) log|Π|

T after tuning α.

4 DISCUSSION

Our work provides the first simple, yet provably sample-efficient online exploration algorithm for
RLHF with general function approximation, a step toward fully realizing the potential of online
exploration for aligning language models. Our results also show that viewing DPO as a form of implicit
Q⋆-approximation can directly inform new algorithmic interventions (e.g., implicit optimism), and
offer an example of fruitful interplay between language modeling and theoretical reinforcement
learning. Building on this viewpoint, an exciting direction for future work is to import the broader
set of tools from the literature on reinforcement learning theory (e.g., more powerful exploration
principles (Foster et al., 2021)) and harness them for language modeling and alignment; in this
context, we expect our analysis techniques based on the KL-regularized MDP to find broader use.

From a reinforcement learning perspective, interesting technical directions for future work include
(i) providing instance-dependent sample complexity bounds for XPO; and (ii) supporting RL settings
beyond deterministic contextual MDPs. On the practical side, immediate followup directions include
extending XPO to support general preference models (Munos et al., 2023; Swamy et al., 2024) or
more general feedback modalities (Ethayarajh et al., 2024).
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A RELATED WORK

Theoretical algorithms for RLHF. Theoretical analysis of algorithms for RLHF is becoming an
active area of research. Much of this research focuses on purely offline RLHF (Zhu et al., 2023;
Zhan et al., 2023a), which is complementary to our work. Many works also consider a so-called
hybrid RLHF setting, where the algorithm has access to online feedback, but requires the initial
policy πref to have good coverage (e.g., bounded concentrability or related quantities) (Xiong et al.,
2023; Gao et al., 2024; Chang et al., 2024).7 These hybrid algorithms do not engage in systematic
exploration (i.e., they explore passively), and hence cannot provide meaningful guarantees if πref

does not adequately cover the optimal policy (e.g., for the setting in Proposition 2.1).

For online RLHF, the most relevant related work can be summarized as follows:

• Most prior work (Xu et al., 2020; Novoseller et al., 2020; Pacchiano et al., 2021; Wu and Sun,
2023; Zhan et al., 2023b; Du et al., 2024; Das et al., 2024) gives algorithms and sample complexity
guarantees for the special case of tabular or linear MDPs; these algorithms use exploration bonuses
that are tailored to linear models, and are not suitable for the general function approximation setting
we consider (e.g., for LLMs). Nonetheless, we obtain polynomial sample complexity guarantees for
tabular and linear MDPs (Examples C.1 and C.2), though our results are restricted to deterministic
dynamics (we believe that moving beyond the DPO objective is likely required to handle stochastic
dynamics).

• More relevant to our work is Ye et al. (2024), who give algorithms and sample complexity guarantees
for online RLHF with general function approximation for the special case of contextual bandits
(H = 1). For contextual bandits, their sample complexity guarantees scale with a complexity
measure, the eluder coefficient, which is equivalent to the Sequential Extrapolation Coefficient in
our most general result, Theorem 3.1′. However, their exploration algorithm requires solving a
rather complicated optimization problem, and it is unclear whether it is possible to implement it
faithfully for language models (in particular, their experiments use an alternative, heuristic approach
to exploration which is only loosely inspired by the theory).

• Lastly, Chen et al. (2022); Wang et al. (2023) give guarantees for RLHF with general function
approximation based on eluder dimension-like complexity measures which are incomparable to, but

7To our knowledge, all prior works in this space require uniform notions of concentrability as opposed to
single-policy concentrability. Gao et al. (2024) state guarantees in terms of single-policy concentrability under
the assumption that certain regression errors can be bounded, but this cannot be achieved in general without
further coverage or exploration-like conditions.
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in some cases more general than Theorem 3.1′. However, these works require model-based function
approximation (as opposed to the model-free setup we consider), and do not lead to efficient or
practical algorithms when specialized to language modeling.

A difference worth highlighting between our work and some (but not all) of the works above (Zhu
et al., 2023; Xiong et al., 2023; Das et al., 2024; Ye et al., 2024) is that we model RLHF as a
general reinforcement learning problem as opposed to a contextual bandit problem. The problem of
autoregressive sequence prediction can equivalently be formulated as RL in the token-level MDP,
or as a contextual bandit problem (RL with horizon H = 1) in which the “action space” consists of
all possible token sequences. However, because our work supports general deterministic contextual
MDPs (DCMDPs) with unknown dynamics and not just the token-level MDP, it is strictly more
general than the contextual bandit formulation.

Recent work of Rafailov et al. (2024) (see also Nachum et al. (2017); Garg et al. (2021); Watson
et al. (2023); Zhong et al. (2024)) shows that DPO, when applied to the token-level MDP can be
viewed as estimating the KL-regularized value function Q⋆

β ; their work does not consider sample
complexity or online exploration. Our results extend their observation to any deterministic contextual
MDP and—more importantly—show that it is possible to harness this perspective to provide provable
end-to-end sample complexity guarantees.

Empirical algorithms for RLHF. Our work uses DPO (Rafailov et al., 2023) as a starting point.
Many algorithms prior works have built upon DPO with the aim of addressing specific shortcomings
Liu et al. (2023); Tang et al. (2024b); Azar et al. (2024); Rosset et al. (2024); Chen et al. (2024); Wu
et al. (2024); Tajwar et al. (2024), but which are largely orthogonal to exploration.

Online exploration in RLHF has received limited exploration so far, with notable examples including
Online DPO (Guo et al., 2024) and Iterative DPO (Xu et al., 2023; Tran et al., 2024; Pang et al., 2024;
Mitra et al., 2024; Dong et al., 2024). As discussed in Section 2, these methods engage in purely
passive exploration, meaning that sample from the current model π(t) without an explicit mechanism
to encourage diverse, exploratory responses.

Dwaracherla et al. (2024) perform a dedicated empirical evaluation of active exploration for language
models. However, this work does not actually train the language model, and thus cannot be viewed
as a form of RLHF; instead the authors train a reward model iteratively, and use this in tandem
with various active sampling schemes to accept or reject responses proposed by πref . Nevertheless,
the positive results achieved by Dwaracherla et al. (2024) in this limited setting are suggestive of
the potential power of online exploration in RLHF. Similarly, Ye et al. (2024) perform a limited
evaluation of empirical exploration schemes inspired by theoretical RL, but only report results for
reward modeling benchmarks, not language modeling.

Most closely related, Xiong et al. (2023); Dong et al. (2024) perform an extensive empirical evaluation
of Iterative DPO variants, and find that Iterative DPO with passive exploration can already have
significant benefits over offline DPO. These works also incorporate a “best/worst-over-n” trick for
preference pair construction, which can be viewed as a heuristic to promote exploration, but does not
have provable guarantees.

Theoretical reinforcement learning. Outside the context of language models, an active line
of research provides structural complexity measures and algorithms that enable sample-efficient
exploration in reinforcement learning in general settings (Russo and Van Roy, 2013; Jiang et al.,
2017; Sun et al., 2019; Wang et al., 2020; Du et al., 2021; Jin et al., 2021; Foster et al., 2021; Xie
et al., 2023; Foster et al., 2023; Liu et al., 2024a). The techniques from this line of research that
support general function approximation, while sample-efficient, are computationally intractable to
implement in general (Dann et al., 2018), involving non-convex and non-differentiable constrained
optimization problems. We use the unique structure of the KL-regularized MDP formulation and
deterministic contextual MDP (DCMDP) to derive the exploration objective in XPO which—while
still non-convex—is differentiable and directly amenable to implementation with language models.

Entropy- and KL-regularized reinforcement learning. First introduced in Ziebart et al. (2008);
Ziebart (2010), a number of recent works provide sample complexity guarantees for reinforcement
learning in KL-regularized or entropy-regularized MDPs (Kozuno et al., 2022; Tiapkin et al., 2023b;a),
mainly focusing on the special case of tabular (finite-state/action) MDPs. To the best of our knowledge,
the optimistic objective in XPO is novel in this context.
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B TECHNICAL TOOLS

Lemma B.1 (Azuma-Hoeffding). Let (Xt)t≤T be a sequence of real-valued random variables
adapted to a filtration (Ft)t≤T . If |Xt| ≤ R almost surely, then with probability at least 1− δ,∣∣∣∣∣

T∑
t=1

Xt − Et−1[Xt]

∣∣∣∣∣ ≤ R ·
√
8T log(2δ−1).

Lemma B.2 (Martingale Chernoff (e.g., Foster et al., 2021)). For any sequence of real-valued random
variables (Xt)t≤T adapted to a filtration (Ft)t≤T , it holds that with probability at least 1− δ, for
all T ′ ≤ T ,

T ′∑
t=1

− log
(
Et−1

[
e−Xt

])
≤

T ′∑
t=1

Xt + log(δ−1). (14)

C PROOF OF THEOREM 3.1
This section is organized as follows. First, in Appendix C.2, we present a more general version of
XPO, which makes use of an arbitrary, user-specified sampling policy for the second response τ̃ . Then,
in Appendix C.2, we state a more general version of Theorem 3.1 (Theorem 3.1′), and show how it
implies Theorem 3.1. Examples are then given in Appendix C.3.

In the remainder of the section, we prove Theorem 3.1′. We first prove a number of intermediate
results:

• In Appendix C.4, we state preliminaries regarding the KL-regularized MDP, and use them to prove
the implicit Q⋆-approximation lemma (Lemma C.3).

• In Appendix C.5, we prove the central regret decomposition lemma (Lemma 3.1).

• In Appendix C.6, we prove a key concentration result used within Theorem 3.1′.

Finally, in Appendix C.7, we prove Theorem 3.1′, with proofs for supporting lemmas deferred to
Appendix C.8.

C.1 GENERAL VERSION OF XPO

Algorithm 2 Exploratory Preference Optimization (XPO) with general sampling policy.
input: Number of iterations T , KL-regularization coefficient β > 0, optimism coefficient
α > 0, sampling strategy πsamp.

1: Initialize π(1), π̃(1) ← πref , D(0)

pref ← ∅.
2: for iteration t = 1, 2, . . . , T do
3: Generate response pair (τ (t), τ̃ (t)) via: s(t)

1 ∼ ρ, τ (t) ∼ π(t) | s(t)

1 , and τ̃ (t) ∼ π̃(t) | s(t)

1 .
4: Label with preference: Label (τ (t), τ̃ (t)) as (τ (t)

+ , τ (t)

− ) with preference y(t) ∼ P(τ (t) ≻ τ̃ (t)).
5: Update preference data: D(t)

pref ← D
(t−1)

pref

⋃
{(τ (t)

+ , τ (t)

− )}.
6: Update optimism data: Compute dataset D(t)

opt of t samples from π̃(t).
// When π̃(t) = πref, can re-use previous samples as in Algorithm 1.

7: Direct preference optimization with global optimism: Calculate π(t+1) via

π(t+1) ← argmin
π∈Π

α
∑

τ∈D(t)
opt

log π(τ)−
∑

(τ+,τ−)∈D(t)
pref

log

[
σ

(
β log

π(τ+)

πref(τ+)
− β log

π(τ−)

πref(τ−)

)].

8: Update sampling policy: π̃(t+1) ← πsamp(π
(1), . . . , π(t+1)).

9: return: π̂ = argmaxπ∈{π(1),...,π(T+1)} Jβ(π
(t)). // Can compute using validation data.

Algorithm 2 presents a general version of XPO. The algorithm is identical to Algorithm 1, except that
it makes use of an arbitrary, user-specified user-specified sampling policy for the second response τ̃ .

In more detail, the algorithm takes as input a sampling strategy πsamp which, at step t, computes a
sampling policy π̃(t) via π̃(t) ← πsamp(π

(1), . . . , π(T )). The algorithm then samples the response pair
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(τ (t), τ̃ (t)) via τ (t) ∼ π(t) | s(t)

1 and τ̃ (t) ∼ π̃(t) | s(t)

1 . Algorithm 1 is a special case of this scheme in
which π̃(t) = πref for all t.

A secondary difference from Algorithm 1 is that Algorithm 2 assumes access to a dataset D(t)

opt
consisting of t responses sampled from π̃(t), which are used to compute the optimistic term in Line 8.
In Algorithm 1, because π̃ = πref is static, we can simply re-use the responses τ̃ (1), . . . , τ̃ (t) for this
task, setting D(t)

opt = {τ̃ (1), . . . , τ̃ (t)}. However, for general time-varying sampling scheme, it may be
necessary to draw a fresh dataset of responses from π̃(t) to compute D(t)

opt.

As a practical example, Algorithm 3—displayed below—instantiates the general scheme in Algo-
rithm 2 by setting π̃(t) = unif(π(1), . . . , π(t)) to sample from the historical data distribution at step
t. For this scheme, it suffices to set D(t)

opt = {τ (1), . . . , τ (t)}, re-using the responses sampled from
π(1), . . . , π(t).

Algorithm 3 Exploratory Preference Optimization (XPO) with historical sampling.
input: Number of iterations T , KL-regularization coefficient β > 0, optimism coefficient
α > 0, sampling strategy πsamp.

1: Initialize π(1), π̃(1) ← πref , D(0)

pref ← ∅.
2: for iteration t = 1, 2, . . . , T do
3: Generate response pair (τ (t), τ̃ (t)) via: s(t)

1 ∼ ρ, τ (t) ∼ π(t) | s(t)

1 , and τ̃ (t) ∼
unif(π(1), . . . , π(t)) | s(t)

1 .
4: Label with preference: Label (τ (t), τ̃ (t)) as (τ (t)

+ , τ (t)

− ) with preference y(t) ∼ P(τ (t) ≻ τ̃ (t)).
5: Update preference data: D(t)

pref ← D
(t−1)

pref

⋃
{(τ (t)

+ , τ (t)

− )}.
6: Update optimism data: Compute dataset D(t)

opt of t samples from π̃(t).
// When π̃(t) = πref, can re-use previous samples as in Algorithm 1.

7: Direct preference optimization with global optimism: Calculate π(t+1) via

π(t+1) ← argmin
π∈Π

α

t∑
i=1

log π(τ (i))−
∑

(τ+,τ−)∈D(t)
pref

log

[
σ

(
β log

π(τ+)

πref(τ+)
− β log

π(τ−)

πref(τ−)

)].

8: return: π̂ = argmaxπ∈{π(1),...,π(T+1)} Jβ(π
(t)). // Can compute using validation data.

C.2 GENERAL VERSION OF THEOREM 3.1
Our most general sample complexity guarantee for XPO (Algorithm 1 and Algorithm 2), Theorem 3.1′,
is stated in terms of the following preference-based analogue of the Sequential Extrapolation Coef-
ficient (SEC) from Xie et al. (2023) (also known as an eluder coefficient or decoupling coefficient
(Zhong et al., 2022; Ye et al., 2024)). Recall that for a trajectory τ = (s1, a1), . . . , (sH , aH), we
define

π(τ) =

H∏
h=1

π(ah | sh), and r(τ) =

H∑
h=1

r(sh, ah). (15)

For a pair of policies π and π̃, we define π ⊗ π̃ as the joint policy that, given s1, samples τ ∼ π | s1
and τ̃ ∼ π̃ | s1. We write (τ, τ̃) ∼ π ⊗ π̃ | s1 as shorthand for this process.

Definition C.1 (Sequential Extrapolation Coefficient). For a policy class Π, sampling strategy πsamp,
and entropy regularization parameter β > 0, we define the Sequential Extrapolation Coefficient via

SECRLHF(Π, T, β;πsamp) (16)

= sup
π(1),...,π(T )∈Π


T∑

t=1

(
Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃(t−1)|s1

[
β log π(t)(τ)

πref (τ)
− r(τ)− β log π(t)(τ̃)

πref (τ̃)
+ r(τ̃)

])2

V 2
max ∨ (t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log π(t)(τ)

πref (τ)
− r(τ)− β log π(t)(τ̃)

πref (τ̃)
+ r(τ̃)

)2
]
,

where π̃(t) = πsamp(π
(1), . . . , π(t)), and where we define µ(t) := 1

t−1

∑
i<t π

(i) ⊗ π̃(i), with the
convention that µ(1) is arbitrary.

Note that for Algorithm 1, which sets π̃(t) = πref for all t, we can simplify the definition above to

SECRLHF(Π, T, β;πref) (17)
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:= sup
π(1),...,π(T )∈Π


T∑

t=1

(
Es1∼ρ,τ∼π(t)|s1,τ̃∼πref |s1

[
β log π(t)(τ)

πref (τ)
− r(τ)− β log π(t)(τ̃)

πref (τ̃)
+ r(τ̃)

])2

V 2
max ∨ (t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log π(t)(τ)

πref (τ)
− r(τ)− β log π(t)(τ̃)

πref (τ̃)
+ r(τ̃)

)2
]
,

where µ(t) := 1
t−1

∑
i<t π

(i) ⊗ πref .

Main sample complexity guarantee. Our general sample complexity guarantee is as follows.

Theorem 3.1′ (General version of Theorem 3.1). Suppose Assumptions 3.1 and 3.2 hold. For any

β > 0 and T ∈ N, if we set α = c · β
(Vmax+Rmax)e2Rmax )

·
√

log(|Π|Tδ−1) log(T )
T ·SECRLHF(Π,T,β;πsamp)

for an absolute
constant c > 0, then Algorithm 2 ensures that with probability at least 1− δ,

Jβ(π
⋆
β)− Jβ(π̂) ≲ (Vmax +Rmax)e

2Rmax ·
√

SECRLHF(Π, T, β;πsamp) log(|Π|Tδ−1) log(T )

T
.

As a special case, if we set α = c · β
(Vmax+Rmax)e2Rmax ·

√
log(|Π|Tδ−1) log(T )
T ·SECRLHF(Π,T,β;πref)

for an absolute constant
c > 0, then Algorithm 1 ensures that with probability at least 1− δ,

Jβ(π
⋆
β)− Jβ(π̂) ≲ (Vmax +Rmax)e

2Rmax ·
√

SECRLHF(Π, T, β;πref) log(|Π|Tδ−1) log(T )

T
.

The following result shows that the SEC is always bounded by the coverability coefficient in Defini-
tion 3.1.

Lemma C.1. Suppose that πsamp sets π̃(t) = π̃ for an arbitrary fixed policy π̃ (e.g., π̃ = πref ). Then
for any policy class Π and β > 0, it holds that for all T ∈ N,

SECRLHF(Π, T, β;πsamp) ≤ O(Ccov(Π) · log(T )). (18)

Theorem 3.1 follows immediately by combining Theorem 3.1′ with Lemma C.1.

C.3 ADDITIONAL EXAMPLES FOR THEOREM 3.1′

In this section, we apply Theorem 3.1′ and bound the SEC for log-linear policy classes. For
f : S ×A → R, define

πf (a | s) = πref(a | s)e
f(s,a)−Vf (s)

β , where Vf (s) = β log

(∑
a∈A

πref(a | s)e
f(s,a)

β

)
.

We consider policy classes of the form

ΠF := {πf | f ∈ F}

for a given value function class F ⊆ (S × A → Rmax). Note that for such a class, we can take
Vmax ≤ Rmax, and that Q⋆

β ∈ F implies that π⋆
β ∈ ΠF .

The following lemma bounds the SEC for log-linear policy classes in terms of a preference-based
analogue of the value function SEC in Xie et al. (2023).

Lemma C.2 (SEC for log-linear policies). For any value function class F ⊆ (S ×A → Rmax), we
have that SECRLHF(Π, T, β;πsamp) ≤ SECRLHF(F , T ;πsamp), where

SECRLHF(F , T ;πsamp) := sup
f(1),...,f(T )∈F

T∑
t=1

(
Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃(t−1)|s1

[∑H
h=1(f

(t)(sh, ah)−
[
Tβf (t)

]
(sh, ah))− (f (t)(s̃h, ãh)−

[
Tβf (t)

]
(s̃h, ãh))

])2

R2
max ∨ (t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(∑H
h=1(f

(t)(sh, ah)− [Tβf (t)](sh, ah))− (f (t)(s̃h, ãh)− [Tβf (t)](s̃h, ãh))
)2

]
,

where π(t) := πf(t) , π̃(t) = πsamp(π
(1), . . . , π(t)), and µ(t) := 1

t−1

∑
i<t π

(i)⊗ π̃(i) (with the convention that
µ(1) is arbitrary), and where Tβ is the KL-regularized Bellman operator defined in Appendix C.4.
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Proof of Lemma C.2. This is an immediate corollary of Lemma C.4.

We first apply this bound to give a polynomial bound on the SEC in tabular DCMDPs where S and A
are finite.

Example C.1 (Tabular MDP). Suppose that πsamp sets π(t) = π̃ for all t for some fixed policy
π̃. When F = {f : S ×A → Rmax} consists of all functions over tabular state and action spaces
with |S|, |A| < ∞, we have SECRLHF(F , T ;πsamp) ≤ Õ(H|S||A|) and log|ΠF | ≲ Õ(|S||A|). It
follows that XPO (Algorithm 1) achieves

Jβ(π
⋆
β)− Jβ(π̂) ≲ Õ

(
Rmaxe

2Rmax

√
H|S|2|A|2

T

)
.

◁

Example C.1 is a corollary of the following more general result.

Example C.2 (Linear MDP). In a Linear MDP (Jin et al., 2020), we have

P (s′ | s, a) = ⟨ϕ(s, a), µ(s′)⟩, (19)

and

r(s, a) = ⟨ϕ(s, a), ϑ⟩, (20)

where ϕ(s, a) ∈ Rd is a known feature map with ∥ϕ(s, a)∥ ≤ 1, µ(s′) ∈ Rd is an unknown feature
map with ∥

∑
s′ µ(s

′)∥ ≤
√
d, and φ ∈ Rd is an unknown parameter with ∥φ∥ ≤ 1. Here, the

optimal KL-regularized value function Q⋆
β (cf. Appendix C.4) is linear with respect to the feature

map ϕ(s, a). In particular, if we take

F :=
{
f(s, a) = ⟨ϕ(s, a), θ⟩ | θ ∈ Rd, ∥θ∥ ≤ B, |f(s, a)| ≤ R

}
for B = O(

√
d) and R = O(Rmax), then π⋆

β ∈ ΠF , satisfying Assumption 3.1. For this setting,
when πsamp sets π(t) = π̃ for all t for some fixed policy π̃, we have SECRLHF(F , T ;πsamp) ≤ Õ(dH)

and log|ΠF | ≲ Õ(d). It follows that XPO (Algorithm 1) achieves

Jβ(π
⋆
β)− Jβ(π̂) ≲ Õ

(
Rmaxe

2Rmax

√
Hd2

T

)
.

◁

C.4 KL-REGULARIZED MDP PRELIMINARIES AND Q⋆-APPROXIMATION

In this section, we give some basic background on value functions and dynamic programming for
the KL-regularized MDP (Ziebart et al., 2008; Ziebart, 2010), then use these properties to prove
Lemmas C.3 and C.4, which show that the optimal KL-regularized policy implicitly performs models
rewards and performs Q⋆-approximation.

Dynamic programming and value functions for KL-regularized MDP. First, for any function
f : S ×A → R, define

Vf (sh) := β log
∑
ah∈A

πref(ah | sh)e
f(sh,ah)/β ∀s ∈ Sh.

It is straightforward to verify that

Vf (sh) = max
π:S→∆(A)

(
Eah∼π(·|sh)

[
f(sh, ah)− β log

π(ah | sh)
πref(ah | sh)

])
, (21)

and that the policy that obtains the maximum above is

πf (ah | sh) = πref(ah | sh)e(f(sh,ah)−Vf (sh))/β . (22)
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From here, beginning with Q⋆
β(sH , aH) := r(sH , aH), π⋆

β(aH | sH) = πQ⋆
β
(aH | sH), and

V ⋆
β (sH) = VQ⋆

β
(sH) for sH ∈ SH , for each sh ∈ Sh, we can inductively define for each h ∈ [H]:

Q⋆
β(sh, ah) := r(sh, ah) + E

[
V ⋆
β (sh+1) | sh, ah

]
,

π⋆
β(ah | sh) := πQ⋆

β
(ah | sh),

V ⋆
β (sh) := VQ⋆

β
(sh).

(23)

In light of Eq. (21), it is clear that π⋆
β ∈ argmaxπ:S→∆(A) Jβ(π). In addition, if we define the

KL-regularized Bellman operator as

[Tβf ](sh, ah) := r(sh, ah) + Esh+1∼P (·|sh,ah) [Vf (sh+1)] ,

we have that
Q⋆

β(sh, ah) =
[
TβQ⋆

β

]
(sh, ah).

Implicit Q⋆-approximation. The next lemma, following Watson et al. (2023); Rafailov et al. (2024),
shows that the optimal KL-regularized policy π⋆

β can be viewed as implicitly modeling rewards.

Lemma C.3 (Implicit Q⋆-Approximation). For any DCMDP, it holds that for all admissible8

trajectories τ = (s1, a1), . . . , (sH , aH),

β log
π⋆
β(τ)

πref(τ)
= r(τ)− V ⋆

β (s1), (24)

where V ⋆
β is the KL-regularized value function defined in Eq. (23).

Proof of Lemma C.3. Let τ = (s1, a1), . . . , (sH , aH), and recall that for any DCMDP, all state
transitions except for s1 ∼ ρ are deterministic. Then we have

0 =

H∑
h=1

(
Q⋆

β(sh, ah)−
[
TβQ⋆

β

]
(sh, ah)

)
=

H∑
h=1

(
Q⋆

β(sh, ah)− r(sh, ah)− V ⋆
β (sh+1)

)
=

H∑
h=1

(
V ⋆
β (sh) + β log

π⋆
β(ah | sh)

πref(ah | sh)
− r(sh, ah)− V ⋆

β (sh+1)

)

= V ⋆
β (s1) +

H∑
h=1

(
β log

π⋆
β(ah | sh)

πref(ah | sh)
− r(sh, ah)

)
,

where the second equality uses that (Tβf)(sh, ah) = r(sh, ah) + Vf (sh+1) for any admissible
trajectory in a deterministic MDP, and the third equality uses the explicit form for π⋆

β in terms of V ⋆
β

and Q⋆
β given in Eq. (22). Rearranging yields the result.

We can also prove the following, more general version of Lemma C.4.

Lemma C.4 (Implicit Q⋆-Approximation (general version)). For any DCMDP, it holds that for any
function f : S ×A → R and all admissible trajectories τ = (s1, a1), . . . , (sH , aH),

β log
πf (τ)

πref(τ)
= r(τ)− Vf (s1) +

H∑
h=1

(f(sh, ah)− [Tβf ](sh, ah)) . (25)

8We use “admissible" to a refer to a trajectory generated by executing an arbitrary policy π : S → ∆(A) in
the MDP.
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Proof of Lemma C.4. Let τ = (s1, a1), . . . , (sH , aH). Then we have

H∑
h=1

(f(sh, ah)− [Tβf ](sh, ah))

=

H∑
h=1

(f(sh, ah)− r(sh, ah)− Vf (sh+1))

=

H∑
h=1

(
Vf (sh) + β log

πf (ah | sh)
πref(ah | sh)

− r(sh, ah)− Vf (sh+1)

)

= Vf (s1) +

H∑
h=1

(
β log

πf (ah | sh)
πref(ah | sh)

− r(sh, ah)

)
,

where the first equality uses the definition of Vf , the second equality uses that
(Tβf)(sh, ah) = r(sh, ah) + Vf (sh+1) for any admissible trajectory in a deterministic MDP,

and the third equality uses that πf (a | s) = πref(a | s)e
f(s,a)−Vf (s)

β . Rearranging yields the result.

C.5 REGRET DECOMPOSITION

In this section we prove the central regret decomposition for XPO, restated below.

Lemma 3.1 (Central regret decomposition). For any pair of policies π and ν, it holds that

Jβ(π
⋆
β)− Jβ(π) = Eτ∼ν [β log π(τ)]− Eτ∼ν

[
β log π⋆

β(τ)
]

(10)

+ Eτ∼π

[
β log

π(τ)

πref(τ)
− r(τ)

]
− Eτ∼ν

[
β log

π(τ)

πref(τ)
− r(τ)

]
. (11)

Proof of Lemma 3.1. It follows immediately from the definition of the KL-regularized reward that

Jβ(π
⋆
β)− Jβ(π) = Eπ

[
β log

π(τ)

πref(τ)
− r(τ)

]
− Eπ⋆

β

[
β log

π⋆
β(τ)

πref(τ)
− r(τ)

]
.

However, since β log
π⋆
β(τ)

πref(τ)
− r(τ) = V ⋆

β (s1) for all admissible trajectories by Lemma C.3, we have
that

Eπ⋆
β

[
β log

π⋆
β(τ)

πref(τ)
− r(τ)

]
= Eν

[
β log

π⋆
β(τ)

πref(τ)
− r(τ)

]
for all policies ν, as the initial state s1 does not depend on the policy under consideration. The result
now follows by rearranging

Eπ

[
β log

π(τ)

πref(τ)
− r(τ)

]
− Eν

[
β log

π⋆
β(τ)

πref(τ)
− r(τ)

]
= Eν [β log π(τ)]− Eν

[
β log π⋆

β(τ)
]
+ Eπ

[
β log

π(τ)

πref(τ)
− r(τ)

]
− Eν

[
β log

π(τ)

πref(τ)
− r(τ)

]
.

C.6 CONCENTRATION LEMMAS

Recall that we define µ(t) = 1
t−1

∑
i<t π

(i) ⊗ π̃(i). For a given policy π, define

fπ(τ, τ̃) = β log
π(τ)

πref(τ)
− β log

π(τ̃)

πref(τ̃)
.

The following lemma is our central concentration guarantee for Algorithm 1.
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Lemma C.5 (Concentration for XPO). Suppose that Assumptions 3.1 and 3.2 hold. Then Algorithm 1
guarantees that with probability at least 1− δ, for all steps t ∈ [T ],

α · Es1∼ρ,τ∼π̃(t−1)

[
log(π(t)(τ))− log(π⋆

β(τ))
]
+ κ · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
fπ(t)(τ, τ̃)− fπ⋆

β
(τ, τ̃)

)2]
≤ 2 log(2|Π|Tδ−1)

t− 1
+

α

β
Vmax

√
24 log(2|Π|Tδ−1)

t− 1
,

for κ := (8(Rmax + Vmax)e
2Rmax)−2.

Proof of Lemma C.5. Let t ∈ {2, . . . , T + 1} be fixed.

L̂(t)(π)

=
∑
i<t

−y(i) log

[
σ

(
β log

π(τ (i))

πref(τ (i))
− β log

π(τ̃ (i))

πref(τ̃ (i))

)]
− (1− y(i)) log

[
σ

(
β log

π(τ̃ (i))

πref(τ̃ (i))
− β log

π(τ (i))

πref(τ (i))

)]
(26)

and B̂(t)(π) = α
∑

τ∈D(t−1)
opt

log π(τ). Then we can equivalently write

π(t) = argmin
π∈Π

{
L̂(t)(π) + B̂(t)(π)

}
.

For a given policy π, recall that we define

fπ(τ, τ̃) = β log
π(τ)

πref(τ)
− β log

π(τ̃)

πref(τ̃)
,

and let

Pπ(y | τ, τ̃) = y · σ(fπ(τ, τ̃)) + (1− y) · (1− σ(fπ(τ, τ̃))).

Then, in light of Lemma C.3, under the Bradley-Terry model (Eq. (1)), we have that for all t,

y(t) ∼ Pπ⋆
β
(· | τ (t), τ̃ (t)). (27)

In addition, we can rewrite Eq. (26) as

L̂(π) =
∑
i<t

− log(Pπ(y
(t) | τ (t), τ̃ (t))).

Using this observation, we begin by proving an intermediate concentration result. For a pair of
probability measures P and Q, we define squared Hellinger distance via

D2
H(P,Q) =

∫ (√
dP−

√
dQ
)2

. (28)

Lemma C.6. For any fixed t ≥ 1, with probability at least 1− δ, all π ∈ Π satisfy∑
i<t

Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃(i)|s1

[
D2

H

(
Pπ(· | τ, τ̃), Pπ⋆

β
(· | τ, τ̃)

)]
≤ L̂(t)(π)− L̂(t)(π⋆

β) + 2 log(|Π|δ−1).

Rearranging Lemma C.6, with probability at least 1− δ, all π ∈ Π satisfy

B̂(t)(π)− B̂(t)(π⋆
β) +

∑
i<t

Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃(i)|s1

[
D2

H

(
Pπ(· | τ, τ̃), Pπ⋆

β
(· | τ, τ̃)

)]
≤ L̂(t)(π) + B̂(t)(π)− L̂(t)(π⋆

β)− B̂(t)(π⋆
β) + 2 log(|Π|δ−1).

Hence, as long as π⋆
β ∈ Π (Assumption 3.1), the definition of π(t) in Algorithm 2 implies that

B̂(t)(π(t))− B̂(t)(π⋆
β) +

∑
i<t

Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃(i)|s1

[
D2

H

(
Pπ(t)(· | τ, τ̃), Pπ⋆

β
(· | τ, τ̃)

)]
≤ 2 log(|Π|δ−1).

(29)

We next appeal to another basic concentration result.
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Lemma C.7. For any fixed t ≥ 1, with probability at least 1− δ, all π ∈ Π satisfy

α · (t− 1) · Es1∼ρ,τ∼π̃(t−1)|s1
[
log(π(τ))− log(π⋆

β(τ))
]
≤ B̂(t)(π)− B̂(t)(π⋆

β) +
α

β
Vmax

√
24(t− 1) log(|Π|δ−1).

Combining Lemma C.7 with Eq. (29), we conclude that with probability at least 1− 2δ,

α · (t− 1) · Es1∼ρ,τ∼π̃(t−1)|s1
[
log(π(t)(τ))− log(π⋆

β(τ))
]

+
∑
i<t

Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃(i)|s1

[
D2

H

(
Pπ(t)(· | τ, τ̃), Pπ⋆

β
(· | τ, τ̃)

)]
≤ 2 log(|Π|δ−1) +

α

β
Vmax

√
26(t− 1) log(|Π|δ−1),

or equivalently,

α · Es1∼ρ,τ∼π̃(t−1)|s1
[
log(π(t)(τ))− log(π⋆

β(τ))
]
+ Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[
D2

H

(
Pπ(t)(· | τ, τ̃), Pπ⋆

β
(· | τ, τ̃)

)]
≤ 2 log(|Π|δ−1)

t− 1
+

α

β
Vmax

√
26 log(|Π|δ−1)

t− 1
, (30)

To conclude, we further simplify the expression via

Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[
D2

H

(
Pπ(t)(· | τ, τ̃), Pπ⋆

β
(· | τ, τ̃)

)]
≥ Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(√
σ(fπ(t)(τ, τ̃))−

√
σ(fπ⋆

β
(τ, τ̃))

)2]
≥ 1

8
Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
σ(fπ(t)(τ, τ̃))− σ(fπ⋆

β
(τ, τ̃))

)2]
,

where the last inequality uses that for x, y ≥ 0, (x− y)2 ≤ 4(x+ y)(
√
x−√y)2.

Finally, using Lemma C.3, we have fπ⋆
β
∈ [−Rmax, Rmax] almost surely, while fπ(t) ∈ [−Vmax, Vmax]

by Assumption 3.2. We appeal to the following lemma.

Lemma C.8 (e.g., Rosset et al. (2024)). If x ∈ [−X,X] and y ∈ [−Y, Y ] for X ≥ 0, Y ≥ 1, then

|x− y| ≤ 8(X + Y )e2Y |σ(x)− σ(y)|.

From this, we conclude that

Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
σ(fπ(t)(τ, τ̃))− σ(fπ⋆

β
(τ, τ̃))

)2]
≥ (8(Rmax + Vmax)e

2Rmax)−2 · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
fπ(t)(τ, τ̃)− fπ⋆

β
(τ, τ̃)

)2]
This proves the result after taking a union bound over all steps t.

C.6.1 PROOFS FOR SUPPORTING LEMMAS

Proof of Lemma C.6. To begin, define

ℓ(i)(π) = − log(Pπ(y
(t) | τ (t), τ̃ (t))).

For a fixed policy π ∈ Π, define Z(i)(π) = 1
2 (ℓ

(i)(π) − ℓ(i)(π⋆
β)). Define a filtration F (t) =

σ((τ (1), τ̃ (1)), . . . , (τ (t−1), τ̃ (t−1))). Applying Lemma B.2 with the sequence (Zi(π)) and taking a
union bound over π ∈ Π, have that with probability at least 1− δ, all π ∈ Π satisfy

−
∑
i<t

log

(
Ei−1

[
exp

(
−1

2
Zi(π)

)])
≤ 1

2

(
L̂(t)(π)− L̂(t)(π⋆

β)
)
+ log(|Π|δ−1).
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Next, using Eq. (27) and a somewhat standard argument from van de Geer (2000); Zhang (2006), we
calculate that

Ei−1

[
exp

(
1

2
Zi(π)

)]
= Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃(i)|s1,y∼Pπ⋆

β
(·|τ,τ̃)

[
exp

(
1

2
log(Pπ(y | τ, τ̃)/Pπ⋆

β
(y | τ, τ̃))

)]

= Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃(i)|s1

 ∑
y∈{0,1}

√
Pπ(y | τ, τ̃)Pπ⋆

β
(y | τ, τ̃)


= Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃(i)|s1

[
1− 1

2
D2

H

(
Pπ(· | τ, τ̃), Pπ⋆

β
(· | τ, τ̃)

)]
.

Since D2
H(·, ·) ≤ 2 and − log(1− x) ≥ x for x ≤ 1, we conclude that∑

i<t

Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃(i)|s1

[
D2

H

(
Pπ(· | τ, τ̃), Pπ⋆

β
(· | τ, τ̃)

)]
≤ L̂(t)(π)− L̂(t)(π⋆

β) + 2 log(|Π|δ−1)

Proof of Lemma C.7. Let τ (1), . . . , τ (t−1) denote the trajectories in D(t−1)

opt . Let b̂(i)(π) =
α log π(τ (i)), and let

Z(i)(π) = b̂(i)(π)− b̂(i)(π⋆
β).

We can equivalently re-write this as

Z(i)(π) = α

(
log

(
π(τ (i))

πref(τ (i))

)
− log

(
π⋆
β(τ

(i))

πref(τ (i))

))
,

which implies that |Z(i)(π)| ≤ 2α
βVmax. From here, the result follows immediately by applying

Lemma B.1 with the sequence (Zi(π)) and taking a union bound over π ∈ Π.

Proof of Lemma C.8. We consider three cases. First, if x ∈ [−2Y, 2Y ], then

|σ(x)− σ(y)| ≥ σ′(z)|x− y|

for some z ∈ [−2Y, 2Y ]. In this regime, we have σ′(z) ≥ σ′(2Y ) = e2Y /(1 + e2Y )2 ≥ (4e2Y )−1.
Next, if x ≥ 2Y > 0, we can directly bound

σ(x)− σ(y) ≥ σ(2Y )− σ(Y ) =
e2Y − eY

(1 + e2Y )(1 + eY )
≥ 1− e−Y

4eY
≥ 1

8eY
,

where the last line holds whenever Y ≥ 1. We conclude in this case that

|x− y|
σ(x)− σ(y)

≤ X + Y

σ(x)− σ(y)
≤ 8(X + Y )eY .

Finally, we consider the case where x ≤ − 2Y ≤ 0. In this case, we can similarly lower bound

σ(y)− σ(x) ≥ σ(−Y )− σ(−2Y ) =
e−Y − e−2Y

(1 + e−Y )(1 + e−2Y )
≥ 1− e−Y

4e2Y
≥ 1

8e2Y

as long as Y ≥ 1. From here, proceeding in the same fashion as the second case yields the result.

C.7 PROOF OF THEOREM 3.1′

Proof of Theorem 3.1′. Before diving into the proof, we re-state two central technical lemmas.
The first lemma, generalizing Watson et al. (2023); Rafailov et al. (2024), shows that the optimal
KL-regularized policy π⋆

β can be viewed as implicitly modeling rewards.
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Lemma C.3 (Implicit Q⋆-Approximation). For any DCMDP, it holds that for all admissible9

trajectories τ = (s1, a1), . . . , (sH , aH),

β log
π⋆
β(τ)

πref(τ)
= r(τ)− V ⋆

β (s1), (24)

where V ⋆
β is the KL-regularized value function defined in Eq. (23).

This lemma allows us to view the DPO objective as a form of implicit Q⋆-approximation. Building on
this lemma, we prove the following regret decomposition.

Lemma 3.1 (Central regret decomposition). For any pair of policies π and ν, it holds that

Jβ(π
⋆
β)− Jβ(π) = Eτ∼ν [β log π(τ)]− Eτ∼ν

[
β log π⋆

β(τ)
]

(10)

+ Eτ∼π

[
β log

π(τ)

πref(τ)
− r(τ)

]
− Eτ∼ν

[
β log

π(τ)

πref(τ)
− r(τ)

]
. (11)

This result shows that the (regularized) regret of any policy π can be decomposed into two terms.
The term in Eq. (11) measures the extent to which π (implicitly) models the reward; by Lemma C.3,
this term is zero when π = π⋆

β . Meanwhile, the term in Eq. (10) measures the extent to which the
policy π over-estimates the internal reward; we will control this term using optimism. Importantly,
the regret decomposition in Lemma 3.1 holds for an arbitrary roll-in policy ν. This will facilitate
minimizing the terms in the regret decomposition in a data-driven fashion. Before proceeding, we
remark that Lemma C.3 and Lemma 3.1 together imply that

Jβ(π
⋆
β)− Jβ(π) ≤ 6Vmax (31)

for all π ∈ Π.

We now begin the proof by writing

Jβ(π
⋆
β)− Jβ(π̂) = min

t∈[T+1]
Jβ(π

⋆
β)− Jβ(π

(t)) ≤ 1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t)).

For each step t, we apply Lemma 3.1 with π = π(t) and ν = π̃(t−1), which gives

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≤ 1

T

T∑
t=1

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]

+
1

T

T∑
t=1

Eτ∼π(t)

[
β log

π(t)(τ)

πref(τ)
− r(τ)

]
− Eτ∼π̃(t−1)

[
β log

π(t)(τ)

πref(τ)
− r(τ)

]
.

=
1

T

T∑
t=1

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]

+
1

T

T∑
t=1

Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃(t−1)|s1

[
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

]
.

≤ 6Vmax

T
+

1

T

T∑
t=2

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]

(32)

+
1

T

T∑
t=2

Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃(t−1)|s1

[
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

]
,

where the last line follows by Eq. (42).

9We use “admissible" to a refer to a trajectory generated by executing an arbitrary policy π : S → ∆(A) in
the MDP.
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Next, recall that we define µ(t) = 1
t−1

∑
i<t π

(t) ⊗ π̃(t) Consider a fixed step t ≥ 2, and define

I(t) :=

(
Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃(t−1)|s1

[
β log π(t)(τ)

πref(τ)
− r(τ)− β log π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

])2
V 2
max ∨ (t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log π(t)(τ)

πref(τ)
− r(τ)− β log π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2] .
Then, using the AM-GM inequality, for any η > 0 we can bound

Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃(t−1)|s1

[
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

]
≤ I

(t)

2η
+

η

2
·

(
V 2
max ∨ (t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2
])

≤ I
(t)

2η
+

η

2
·

(
V 2
max + (t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2
])

.

(33)

Note that by definition, we have that
∑T

t=1 I(t) ≤ SECRLHF(Π, T, β;πsamp). Hence, by plugging
Eq. (33) into Eq. (32) and summing, we conclude that

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≤ 6Vmax

T
+

SECRLHF(Π, T, β;πsamp)

2ηT
+

η

2
V 2
max +

1

T

T∑
t=2

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]

+
η

2T

T∑
t=2

(t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2
]
.

(34)

Fix t, and consider the term

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]
+

η(t− 1)

2
Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2
]

(35)

above. Let fπ(τ, τ̃) := β log π(τ)
πref(τ)

− β log π(τ̃)
πref(τ̃)

. By Lemma C.3, we have that for any pair of
admissible trajectories (τ, τ̃) that share the initial state s1, fπ⋆

β
(τ, τ̃) = r(τ)−r(τ̃), so we can rewrite

Eq. (35) as

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]
+

η(t− 1)

2
Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
fπ(t)(τ, τ̃)− fπ⋆

β
(τ, τ̃)

)2]
.

(36)

We now recall the central concentration lemma for XPO (Lemma C.5).

Lemma C.5 (Concentration for XPO). Suppose that Assumptions 3.1 and 3.2 hold. Then Algorithm 1
guarantees that with probability at least 1− δ, for all steps t ∈ [T ],

α · Es1∼ρ,τ∼π̃(t−1)

[
log(π(t)(τ))− log(π⋆

β(τ))
]
+ κ · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
fπ(t)(τ, τ̃)− fπ⋆

β
(τ, τ̃)

)2]
≤ 2 log(2|Π|Tδ−1)

t− 1
+

α

β
Vmax

√
24 log(2|Π|Tδ−1)

t− 1
,

for κ := (8(Rmax + Vmax)e
2Rmax)−2.
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It follows that if we set η = βκ
αT ≤

βκ
α(t−1) , then with probability at least 1− δ, for all t ∈ [T ],

Eq. (36) ≲
β

α
·

(
log(|Π|Tδ−1)

t− 1
+

α

β
Vmax

√
log(|Π|Tδ−1)

t− 1

)

=
β log(|Π|Tδ−1)

α(t− 1)
+ Vmax

√
log(|Π|Tδ−1)

t− 1
.

Plugging this bound back into Eq. (34), we have that

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≲
Vmax

T
+

SECRLHF(Π, T, β;πsamp)

ηT
+ ηV 2

max +
1

T

T∑
t=2

(
β log(|Π|Tδ−1)

α(t− 1)
+ Vmax

√
log(|Π|Tδ−1)

t− 1

)

≲
Vmax

T
+

SECRLHF(Π, T, β;πsamp)

ηT
+ ηV 2

max +
β log(|Π|Tδ−1) log(T )

αT
+ Vmax

√
log(|Π|Tδ−1)

T

=
Vmax

T
+

α · SECRLHF(Π, T, β;πsamp)

βκ
+

βκV 2
max

αT
+

β log(|Π|Tδ−1) log(T )

αT
+ Vmax

√
log(|Π|Tδ−1)

T

≲
α · SECRLHF(Π, T, β;πsamp)

βκ
+

βκV 2
max

αT
+

β log(|Π|Tδ−1) log(T )

αT
+ Vmax

√
log(|Π|Tδ−1)

T

≲
α · SECRLHF(Π, T, β;πsamp)

βκ
+

β log(|Π|Tδ−1) log(T )

αT
+ Vmax

√
log(|Π|Tδ−1)

T
,

where the last line uses that κ ≤ V −2
max. It follows that by choosing

α ∝

√
βκ · β log(|Π|Tδ−1) log(T )

T · SECRLHF(Π, T, β;πsamp)
, (37)

we obtain

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t)) (38)

≲

√
κ−1 log(|Π|Tδ−1) log(T )) · SECRLHF(Π, T, β;πsamp)

T
+ Vmax

√
log(|Π|Tδ−1)

T
(39)

≤ O(Vmax + κ−1/2) ·
√

SECRLHF(Π, T, β;πsamp) log(|Π|δ−1) log(T )

T
. (40)

Finally, we note that (Vmax + κ−1/2) = O((Vmax +Rmax)e
2Rmax).

C.8 PROOFS FOR SEC BOUNDS

Proof of Lemma C.1. This proof is based on Proposition 19 of Xie et al. (2023), with some additional
modifications to handle the preference-based setting. Let T ∈ N and policies π(1), . . . , π(T ) be given,
and recall that π̃(t) = πsamp(π

(1), . . . , π(t)). Define

δ(t)(τ, τ̃) = β log
π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃),

and note that by Lemma C.3, we have |δ(t)(τ, τ̃)| ≤ 4Vmax whenever τ and τ̃ share the same initial
state s1. Let Eπ,π′ denote the expectation over trajectories induced by sampling s1 ∼ ρ, τ ∼ π | s1,
and τ̃ ∼ π′ | s1. Meanwhile, let Eµ(t) denote the expectation over trajectories induced by sampling
s1 ∼ ρ and (τ, τ̃) ∼ µ(t) | s1. Then our goal is to bound

Val :=
T∑

t=1

(
Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)]

)2
V 2
max ∨ (t− 1) · Eµ(t) [(δ(t)(τ, τ̃))2]

.
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Let

ν = argmin
ν∈∆((S×A)H)

sup
τ∈(S×A)H

sup
π∈Π

dπ(τ)

ν(τ)

be the distribution that achieves the value of the coverability coefficient in Definition 3.1. Let us
abbreviate Ccov ≡ Ccov(Π). For a trajectory τ , let

t(τ) := min

{
t |
∑
i<t

dπ
(i)

(τ) ≥ Ccov · ν(τ)

}
.

Then we can bound

Val ≤
T∑

t=1

(
Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)I{t < t(τ)}]

)2
V 2
max ∨ (t− 1) · Eµ(t) [(δ(t)(τ, τ̃))2]︸ ︷︷ ︸

=:(I)

+

T∑
t=1

(
Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)I{t ≥ t(τ)}]

)2
V 2
max ∨ (t− 1) · Eµ(t) [(δ(t)(τ, τ̃))2]︸ ︷︷ ︸

=:(II)

.

We begin by bounding the first term by

(I) ≤ 1

V 2
max

T∑
t=1

(
Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)I{t < t(τ)}]

)2 ≤ 16

T∑
t=1

Eπ(t) [I{t < t(τ)}].

Letting T := (S ×A)H , we can further bound this by

T∑
t=1

Eπ(t) [I{t < t(τ)}] =
∑
τ∈T

T∑
t=1

dπ
(t)

(τ)I{t < t(τ)}

=
∑
τ∈T

t(τ)−2∑
i=1

dπ
(i)

(τ)

+ dπ
(t(τ)−1)

(τ)

≤ 2Ccov

∑
τ∈T

ν(τ) = 2Ccov,

so that (I) ≤ 32Ccov.

We now bound term (II). Define dπ,π
′
(τ ′, τ̃ ′) = Ps1∼ρ,τ∼π|s1,τ̃∼π′|s1(τ = τ ′, τ̃ = τ̃ ′) and

dµ
(t)

(τ ′, τ̃ ′) = 1
t−1

∑
i<t d

π(i),π̃(i)

(τ ′, τ̃ ′). For each t, we can write

Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)I{t < t(τ)}]

=
∑

τ,τ̃∈T

dπ
(t),π̃(t−1)

(τ, τ̃)δ(t)(τ, τ̃)I{t ≥ t(τ)}

=
∑

τ,τ̃∈T

dπ
(t),π̃(t−1)

(τ, τ̃)δ(t)(τ, τ̃)

(
dµ

(t)

(τ, τ̃)

dµ(t)(τ, τ̃)

)1/2

I{t ≥ t(τ)}

≤

 ∑
τ,τ̃∈T

(dπ
(t),π̃(t−1)

(τ, τ̃))2I{t ≥ t(τ)}
(t− 1) · dµ(t)(τ, τ̃)

1/2

·
(
(t− 1) · Eµ(t)

[
(δ(t)(τ, τ̃))2

])1/2
,

where the last inequality is by Cauchy-Schwarz. We conclude that

(II) ≤
T∑

t=1

∑
τ,τ̃∈T

(dπ
(t),π̃(t−1)

(τ, τ̃))2I{t ≥ t(τ)}
(t− 1) · dµ(t)(τ, τ̃)

.

To proceed, we restrict our attention to the case where π̃(t) = π̃ for all t for some fixed π̃. We observe
that in this case, for all t,

dπ
(t),π̃(t−1)

(τ, τ̃)

dµ(t)(τ, τ̃)
=

dπ
(t),π̃(τ, τ̃)

1
t−1

∑
i<t d

π(i),π̃(τ, τ̃)
=

dπ
(t)

(τ)
1

t−1

∑
i<t d

π(i)(τ)
,
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since τ and τ̃ are conditionally independent given s1, and since dπ,π
′
(τ, τ̃) = 0 if τ, τ̃ do not share

the same s1. It follows that

(II) ≤
T∑

t=1

∑
τ,τ̃∈T

dπ
(t)

(τ)dπ
(t),π̃(τ, τ̃)I{t ≥ t(τ)}∑
i<t d

π(i)(τ)

=
∑
τ

T∑
t=1

(dπ
(t)

(τ))2I{t ≥ t(τ)}∑
i<t d

π(i)(τ)

≤ 2
∑
τ

T∑
t=1

(dπ
(t)

(τ))2∑
i<t d

π(i)(τ) + Ccovν(τ)

≤ 2Ccov

∑
τ

ν(τ)

T∑
t=1

dπ
(t)

(τ)∑
i<t d

π(i)(τ) + Ccovν(τ)
.

Finally, by Lemma 4 of Xie et al. (2023), we have that for all τ ∈ T ,
∑T

t=1
dπ(t)

(τ)∑
i<t d

π(i)
(τ)+Ccovν(τ)

≤
O(log(T )), which yields (II) ≤ O(Ccov log(T )). This proves the result.

Proof for Example C.2. We claim for any pair of trajectories τ, τ̃ and function f ∈ F , we can write

H∑
h=1

(f(sh, ah)− [Tβf ](sh, ah))− (f(s̃h, ãh)− [Tβf ](s̃h, ãh)) = ⟨X(τ, τ̃),W (f)⟩ (41)

for embeddings X(τ, τ̃),W (f) ∈ Rd. To see this, note that f(sh, ah) = ⟨ϕ(sh, ah), θf ⟩ for some
θf ∈ Rd with ∥θf∥ ≤ B by definition, while the linear MDP property implies that we can write
[Tβf ](sh, ah) = ⟨ϕ(sh, ah), wf ⟩ for some wf ∈ Rd with ∥wf∥ ≤ O(

√
d). It follows that we can

take

X(τ, τ̃) =

H∑
h=1

ϕ(sh, ah)− ϕ(s̃h, ãh) ∈ Rd

and
W (f) = θf − wf ∈ Rd.

With this definition, we observe that in the case where π̃(t) = π̃ for all t, we can write the value of
SECRLHF for a sequence of policies π(1), . . . , π(T ) as

T∑
t=1

(
Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃|s1 [⟨X(τ, τ̃),W (f (t))⟩]

)2
V 2
max ∨

∑
i<t Es1∼ρ,τ∼π(i)|s1,τ̃∼π̃|s1

[
⟨X(τ, τ̃),W (f (t))⟩2

]
In particular, if we define W (t) := W (f (t)) and X(t) = Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃|s1 [X(τ, τ̃)], it follows
from Jensen’s inequality that we can bound the quantity above by

T∑
t=1

⟨X(t),W (t)⟩2

V 2
max ∨

∑
i<t⟨X(i),W (t)⟩2

Using that ∥X(τ, τ̃)∥, ∥W (f)∥ ≤ poly(H, d), it now follows from the standard elliptic potential
argument (e.g., Du et al. (2021); Jin et al. (2021)) that SECRLHF(F , T ;πsamp) ≤ Õ(d).

D GUARANTEES FOR XPO WITH LARGE BATCH SIZE

This section presents a general version of XPO which draws a large batch of responses for each update,
allowing for fewer updates over all
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Algorithm 4 Exploratory Preference Optimization (XPO) with general sampling policy and large
batch size.

input: Number of iterations T , batch size K, KL-regularization coefficient β > 0, optimism
coefficient α > 0, sampling strategy πsamp.

1: Initialize π(1), π̃(1) ← πref , D(0)

pref ← ∅.
2: for iteration t = 1, 2, . . . , T do
3: for k = 1, . . . ,K do
4: Generate pair (τ (t,k), τ̃ (t,k)): s(t,k)

1 ∼ ρ, τ (t,k) ∼ π(t) | s(t,k)

1 , and τ̃ (t,k) ∼ π̃(t) | s(t,k)

1 .
5: Label (τ (t,k), τ̃ (t,k)) as (τ (t,k)

+ , τ (t,k)

− ) with preference y(t,k) ∼ P(τ (t,k) ≻ τ̃ (t,k)).
6: Update preference data: D(t)

pref ← D
(t−1)

pref

⋃
{(τ (t,1)

+ , τ (t,1)

− ), . . . , (τ (t,K)

+ , τ (t,K)

− )}.
7: Update optimism data: Compute dataset D(t)

opt of t ·K samples from π̃(t).
// When π̃(t) = πref, can re-use previous samples as in Algorithm 1.

8: Direct preference optimization with global optimism: Calculate π(t+1) via

π(t+1) ← argmin
π∈Π

α
∑

τ∈D(t)
opt

log π(τ)−
∑

(τ+,τ−)∈D(t)
pref

log

[
σ

(
β log

π(τ+)

πref(τ+)
− β log

π(τ−)

πref(τ−)

)].

9: Update sampling policy: π̃(t+1) ← πsamp(π
(1), . . . , π(t+1)).

10: return: π̂ = argmaxπ∈{π(1),...,π(T+1)} Jβ(π
(t)). // Can compute using validation data.

D.1 XPO WITH LARGE BATCH SIZE

Algorithm 4 presents a version of XPO which is identical to Algorithm 2, except that the algorithm
draws a batch of K responses for each update.

Main sample complexity guarantee. Our general sample complexity guarantee is as follows.

Theorem D.1 (Guarantee for XPO with large batch size). Suppose that Assumptions 3.1 and 3.2
hold. Consider Algorithm 4 with π̃(t) = π̃ for all t ∈ [T ]. For any β > 0 and T,K ∈ N, if we set

α = c · β
(Vmax+Rmax)e2Rmax ·

√
log(|Π|Tδ−1)
KT ·Ccov(Π) for an absolute constant c > 0, then Algorithm 4 ensures

that with probability at least 1− δ,

Jβ(π
⋆
β)− Jβ(π̂) ≲

VmaxCcov(Π)

T
+ (Vmax +Rmax)e

2Rmax ·

√
Ccov(Π) log(|Π|Tδ−1) log2(T )

KT
.

In particular, to learn an ε-optimal policy, it suffices to set T = Õ
(

VmaxCcov(Π)
ε

)
and K =

Õ
(

(Vmax+Rmax)e
4Rmax log(|Π|δ−1)
ε

)
. That is, compared to Algorithm 1, we only require O(1/ε) policy

updates instead of O(1/ε2) policy updates.

D.2 PROOF OF THEOREM D.1
Proof of Theorem D.1. This proof closely follows that of Theorem 3.1. We begin by re-stating the
two central technical lemmas.

Lemma C.3 (Implicit Q⋆-Approximation). For any DCMDP, it holds that for all admissible10

trajectories τ = (s1, a1), . . . , (sH , aH),

β log
π⋆
β(τ)

πref(τ)
= r(τ)− V ⋆

β (s1), (24)

where V ⋆
β is the KL-regularized value function defined in Eq. (23).

Lemma 3.1 (Central regret decomposition). For any pair of policies π and ν, it holds that

Jβ(π
⋆
β)− Jβ(π) = Eτ∼ν [β log π(τ)]− Eτ∼ν

[
β log π⋆

β(τ)
]

(10)

10We use “admissible" to a refer to a trajectory generated by executing an arbitrary policy π : S → ∆(A) in
the MDP.
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+ Eτ∼π

[
β log

π(τ)

πref(τ)
− r(τ)

]
− Eτ∼ν

[
β log

π(τ)

πref(τ)
− r(τ)

]
. (11)

This result shows that the (regularized) regret of any policy π can be decomposed into two terms.
The term in Eq. (11) measures the extent to which π (implicitly) models the reward; by Lemma C.3,
this term is zero when π = π⋆

β . Meanwhile, the term in Eq. (10) measures the extent to which the
policy π over-estimates the internal reward; we will control this term using optimism. Importantly,
the regret decomposition in Lemma 3.1 holds for an arbitrary roll-in policy ν. This will facilitate
minimizing the terms in the regret decomposition in a data-driven fashion. Before proceeding, we
remark that Lemma C.3 and Lemma 3.1 together imply that

Jβ(π
⋆
β)− Jβ(π) ≤ 6Vmax (42)

for all π ∈ Π.

We now begin the proof by writing

Jβ(π
⋆
β)− Jβ(π̂) = min

t∈[T+1]
Jβ(π

⋆
β)− Jβ(π

(t)) ≤ 1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t)).

For each step t, we apply Lemma 3.1 with π = π(t) and ν = π̃(t−1), which gives

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≤ 1

T

T∑
t=1

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]

+
1

T

T∑
t=1

Eτ∼π(t)

[
β log

π(t)(τ)

πref(τ)
− r(τ)

]
− Eτ∼π̃(t−1)

[
β log

π(t)(τ)

πref(τ)
− r(τ)

]
.

=
1

T

T∑
t=1

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]

+
1

T

T∑
t=1

Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃(t−1)|s1

[
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

]
(43)

≤ 6Vmax

T
+

1

T

T∑
t=2

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]

(44)

+
1

T

T∑
t=2

Es1∼ρ,τ∼π(t)|s1,τ̃∼π̃(t−1)|s1

[
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

]
,

where the last line follows by Eq. (42).

Let δ(t)(τ, τ̃) := β log π(t)(τ)
πref(τ)

− r(τ) − β log π(t)(τ̃)
πref(τ̃)

+ r(τ̃), and recall that we define µ(t) =
1

t−1

∑
i<t π

(t) ⊗ π̃(t). Using Lemma D.2 and the AM-GM inequality, we have that for any η > 0,

T∑
t=2

Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)] ≤ η

2
·

T∑
t=2

(t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1
[
(δ(t)(τ, τ̃))2

]
+

4Ccov(Π) log(T )

η
+ 12VmaxCcov(Π).

Plugging this result into Eq. (44) and summing, we conclude that

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≤ 4Ccov(Π) log(T )

ηT
+ 18VmaxCcov(Π) +

1

T

T∑
t=2

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]
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+
η

2T

T∑
t=2

(t− 1) · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2
]
.

(45)

Fix t, and consider the term

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]
+

η(t− 1)

2
Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
β log

π(t)(τ)

πref(τ)
− r(τ)− β log

π(t)(τ̃)

πref(τ̃)
+ r(τ̃)

)2
]

(46)

above. Let fπ(τ, τ̃) := β log π(τ)
πref(τ)

− β log π(τ̃)
πref(τ̃)

. By Lemma C.3, we have that for any pair of
admissible trajectories (τ, τ̃) that share the initial state s1, fπ⋆

β
(τ, τ̃) = r(τ)−r(τ̃), so we can rewrite

Eq. (46) as

Eτ∼π̃(t−1)

[
β log π(t)(τ)− β log π⋆

β(τ)
]
+

η(t− 1)

2
Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
fπ(t)(τ, τ̃)− fπ⋆

β
(τ, τ̃)

)2]
.

(47)

We now state a concentration lemma for XPO; this result is a straightforward generalization of
Lemma C.5, and we omit the proof.

Lemma D.1 (Concentration for XPO). Suppose that Assumptions 3.1 and 3.2 hold. Then Algorithm 4
guarantees that with probability at least 1− δ, for all steps t ∈ [T ],

α · Es1∼ρ,τ∼π̃(t−1)

[
log(π(t)(τ))− log(π⋆

β(τ))
]
+ κ · Es1∼ρ,(τ,τ̃)∼µ(t)|s1

[(
fπ(t)(τ, τ̃)− fπ⋆

β
(τ, τ̃)

)2]
≤ 2 log(2|Π|Tδ−1)

K(t− 1)
+

α

β
Vmax

√
24 log(2|Π|Tδ−1)

K(t− 1)
,

for κ := (8(Rmax + Vmax)e
2Rmax)−2.

It follows that if we set η = βκ
αT ≤

βκ
α(t−1) , then with probability at least 1− δ, for all t ∈ [T ],

Eq. (47) ≲
β

α
·

(
log(|Π|Tδ−1)

K(t− 1)
+

α

β
Vmax

√
log(|Π|Tδ−1)

K(t− 1)

)

=
β log(|Π|Tδ−1)

αK(t− 1)
+ Vmax

√
log(|Π|Tδ−1)

K(t− 1)
.

Plugging this bound back into Eq. (45), we have that

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t))

≲
VmaxCcov(Π)

T
+

Ccov(Π) log(T )

ηT
+

1

T

T∑
t=2

(
β log(|Π|Tδ−1)

αK(t− 1)
+ Vmax

√
log(|Π|Tδ−1)

K(t− 1)

)

≲
VmaxCcov(Π)

T
+

Ccov(Π) log(T )

ηT
+

β log(|Π|Tδ−1) log(T )

αKT
+ 33Vmax

√
log(|Π|Tδ−1)

KT

=
VmaxCcov(Π)

T
+

α · Ccov(Π) log(T )

βκ
+

β log(|Π|Tδ−1) log(T )

αKT
+ Vmax

√
log(|Π|Tδ−1)

KT

It follows that by choosing

α ∝

√
βκ · β log(|Π|Tδ−1)

KT · Ccov(Π)
, (48)
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we obtain

1

T

T∑
t=1

Jβ(π
⋆
β)− Jβ(π

(t)) (49)

≲
VmaxCcov(Π)

T
+

√
κ−1 log(|Π|Tδ−1) log2(T )) · Ccov(Π)

KT
+ Vmax

√
log(|Π|Tδ−1)

KT
(50)

≲
VmaxCcov(Π)

T
+ (Vmax + κ−1/2) ·

√
Ccov(Π) log(|Π|δ−1) log2(T )

KT
. (51)

Finally, we note that (Vmax + κ−1/2) = O((Vmax +Rmax)e
2Rmax).

D.3 SUPPORTING LEMMAS

Lemma D.2. Suppose that π̃(t) = π̃ for all t. Then for any sequence of functions δ(1), . . . , δ(T ) with
|δ(t)| ≤ B,

T∑
t=1

Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)] ≤

√√√√8Ccov(Π) log(T ) ·
T∑

t=1

∑
i<t

Eπ(i),π̃(i) [(δ(t)(τ, τ̃))2] + 2BCcov(Π).

Proof of Lemma D.2. Define µ(t) := 1
t−1

∑
i<t π

(i) ⊗ π̃(i). Let

ν = argmin
ν∈∆((S×A)H)

sup
τ∈(S×A)H

sup
π∈Π

dπ(τ)

ν(τ)

be the distribution that achieves the value of the coverability coefficient in Definition 3.1. Let us
abbreviate Ccov ≡ Ccov(Π). For a trajectory τ , let

t(τ) := min

{
t |
∑
i<t

dπ
(i)

(τ) ≥ Ccov · ν(τ)

}
.

Then we can bound
T∑

t=1

Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)]

≤
T∑

t=1

Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)I{t < t(τ)}]︸ ︷︷ ︸
=:(I)

+

√√√√√√
T∑

t=1

(
Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)I{t ≥ t(τ)}]

)2
(t− 1) · Eµ(t) [(δ(t)(τ, τ̃))2]︸ ︷︷ ︸

=:(II)

·
T∑

t=1

∑
i<t

Eπ(i),π̃(i) [(δ(t)(τ, τ̃))2].

We begin by bounding the first term by

(I) ≤
T∑

t=1

Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)I{t < t(τ)}] ≤ B

T∑
t=1

Eπ(t) [I{t < t(τ)}].

Letting T := (S ×A)H , we can further bound this by

T∑
t=1

Eπ(t) [I{t < t(τ)}] =
∑
τ∈T

T∑
t=1

dπ
(t)

(τ)I{t < t(τ)}

=
∑
τ∈T

t(τ)−2∑
i=1

dπ
(i)

(τ)

+ dπ
(t(τ)−1)

(τ)

≤ 2Ccov

∑
τ∈T

ν(τ) = 2Ccov,
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so that (I) ≤ 2BCcov.

We now bound term (II). Define dπ,π
′
(τ ′, τ̃ ′) = Ps1∼ρ,τ∼π|s1,τ̃∼π′|s1(τ = τ ′, τ̃ = τ̃ ′) and

dµ
(t)

(τ ′, τ̃ ′) = 1
t−1

∑
i<t d

π(i),π̃(i)

(τ ′, τ̃ ′). For each t, we can write

Eπ(t),π̃(t−1) [δ(t)(τ, τ̃)I{t < t(τ)}]

=
∑

τ,τ̃∈T

dπ
(t),π̃(t−1)

(τ, τ̃)δ(t)(τ, τ̃)I{t ≥ t(τ)}

=
∑

τ,τ̃∈T

dπ
(t),π̃(t−1)

(τ, τ̃)δ(t)(τ, τ̃)

(
dµ

(t)

(τ, τ̃)

dµ(t)(τ, τ̃)

)1/2

I{t ≥ t(τ)}

≤

 ∑
τ,τ̃∈T

(dπ
(t),π̃(t−1)

(τ, τ̃))2I{t ≥ t(τ)}
(t− 1) · dµ(t)(τ, τ̃)

1/2

·
(
(t− 1) · Eµ(t)

[
(δ(t)(τ, τ̃))2

])1/2
,

where the last inequality is by Cauchy-Schwarz. We conclude that

(II) ≤
T∑

t=1

∑
τ,τ̃∈T

(dπ
(t),π̃(t−1)

(τ, τ̃))2I{t ≥ t(τ)}
(t− 1) · dµ(t)(τ, τ̃)

.

To proceed, we use the assumption that π̃(t) = π̃ for all t for some fixed π̃. We observe that in this
case, for all t,

dπ
(t),π̃(t−1)

(τ, τ̃)

dµ(t)(τ, τ̃)
=

dπ
(t),π̃(τ, τ̃)

1
t−1

∑
i<t d

π(i),π̃(τ, τ̃)
=

dπ
(t)

(τ)
1

t−1

∑
i<t d

π(i)(τ)
,

since τ and τ̃ are conditionally independent given s1, and since dπ,π
′
(τ, τ̃) = 0 if τ, τ̃ do not share

the same s1. It follows that

(II) ≤
T∑

t=1

∑
τ,τ̃∈T

dπ
(t)

(τ)dπ
(t),π̃(τ, τ̃)I{t ≥ t(τ)}∑
i<t d

π(i)(τ)

=
∑
τ

T∑
t=1

(dπ
(t)

(τ))2I{t ≥ t(τ)}∑
i<t d

π(i)(τ)

≤ 2
∑
τ

T∑
t=1

(dπ
(t)

(τ))2∑
i<t d

π(i)(τ) + Ccovν(τ)

≤ 2Ccov

∑
τ

ν(τ)

T∑
t=1

dπ
(t)

(τ)∑
i<t d

π(i)(τ) + Ccovν(τ)
.

Finally, by Lemma 4 of Xie et al. (2023), we have that for all τ ∈ T ,
∑T

t=1
dπ(t)

(τ)∑
i<t d

π(i)
(τ)+Ccovν(τ)

≤
4 log(T ), which yields (II) ≤ 8Ccov log(T ). This proves the result.

E ADDITIONAL PROOFS

This section contains proofs for supporting results found throughout Section 2 and Section 3.

E.1 PROOFS FROM SECTION 2
Proof of Proposition 2.1. Consider the bandit setting where H = 1, S = ∅, and A = {a, b}. Let
β > 0 be given. We consider the reward function r given by r(a) = 1 and r(b) = 1

2 . We choose the
reference model to set πref(a) = ε and πref(b) = 1− ε for a parameter ε := exp(− c

β ), where c > 0
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is an absolute constant whose value will be chosen at the end of the proof. We choose Π = {πref , π
⋆
β},

which we note satisfies Assumption 3.1 and Assumption 3.2 with Vmax = O(1).

Specialized to the bandit setting, Online DPO takes the following simplified form:

1. Sample pair of actions a(t), ã(t) ∼ π(t).

2. Label the actions as (a(t)

+ , a(t)

− ) according the Bradley-Terry model:

P(a(t) ≻ ã(t)) =
exp(r(a(t)))

exp(r(a(t))) + exp(r(ã(t)))
,

and update D(t+1)

pref ← D
(t)

pref ∪ {(a
(t)

+ , a(t)

− )}.

3. Compute π(t+1) via

π(t+1) = argmin
π∈Π

∑
(a+,a−)∈D(t+1)

pref

− log

[
σ

(
β log

π(a+)

πref(a+)
− β log

π(a−)

πref(a−)

)]
. (52)

Our construction uses the fact that depending on the preference dataset D(t)

pref , the minimizer in
Eq. (52) may not be uniquely defined. Let E (t) denote the event that at iteration t, a(t) = ã(t) = b.
We appeal to a technical lemma.

Lemma E.1. Suppose we initialize with π(1) = πref . As long as c ≤ 1
8 , ε ≤ 1/2, the following

properties hold:

• P(E (t) | E (1), . . . E (t−1)) ≥ 1− 2ε.

• Whenever E (1), . . . , E (t) hold, we can choose the policy π(t+1) to satisfy π(t+1) = πref , which has

max
π

Jβ(π)− Jβ(π
(t+1)) = max

π
Jβ(π)− Jβ(πref) ≥

1

8

By Lemma E.1 and the union bound, we have that

P(E (1), . . . , E (T )) ≥ (1− 2ε)T ≥ 1

4
,

as long as ε ≤ 1/4 and T ≤ 1
2ε . It follows that whenever this occurs, maxπ Jβ(π)− Jβ(π

(t)) ≥ 1
8

for all t ∈ [T + 1].

Note that since online DPO selects π(t) = πref for all t in our counterexample above, this also
immediately implies a lower bound for offline DPO (interpreting π(T+1) as the policy returned by
offline DPO).

Proof of Lemma E.1. We prove this claim inductively. Let t ∈ [T ] be fixed, and suppose the claim
holds for 1, . . . , t− 1. If we assume E (1), . . . , E (t−1) hold, then we have π(t) = πref inductively. In
this case,

P(a(t) = ã(t) = b) = (πref(b))
2 = (1− ε)2 ≥ 1− 2ε,

so that P(E (t) | E (1), . . . E (t−1)) ≥ 1− 2ε as desired.

Now, for the second part of the claim, suppose that E (1), . . . , E (t+1) hold. Then for all t′ ∈ [t + 1],
a(t′)
+ = a(t′)

− = b, which implies that∑
(a+,a−)∈D(t+1)

pref

− log

[
σ

(
β log

π(a+)

πref(a+)
− β log

π(a−)

πref(a−)

)]
= − log(σ(0)) · t

for all π ∈ Π such that π ≪ πref . It follows that π(t+1) = πref is a valid minimizer for Eq. (52).

Finally, we compute that as long as ε ≤ 1/2 and c ≤ 1
8

max
π

Jβ(π)− Jβ(πref) ≥ max
π

J(π)− J(πref)− β log(ε−1)
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= (1− (1− ε) · 12 − ε · 1)− β log(ε−1) ≥ 1

4
− c ≥ 1

8
.

The following hardness result generalizes Proposition E.1 with a large action space construction,
which illustrates the necessity of deliberate exploration with an arbitrary reference policy.

Proposition E.1 (Necessity of deliberate exploration, large action space). Fix β ∈ (0, 1
16 log(2) ).

Given an arbitrary policy πref , there exists a bandit instance with H = 1, S = ∅, and
|A| = K ∈ [4, exp(1/8β)], but Ccov(Π) = O(1), such that for all T ≤ K

2 , with constant probability,
all of the policies π(1), . . . , π(T+1) produced by Online DPO satisfy

max
π

Jβ(π)− Jβ(π
(t)) ≥ 1

8
∀t ∈ [T + 1].

Proof of Proposition E.1. The proof closely resembles the proof of Proposition 2.1, but with a large
action space construction. For completeness and readability, we include the full proof below.

Consider the bandit instance where H = 1, S = ∅, and A = {a1, a2, . . . , aK}. Let β > 0 be given.
We consider the reward function r given by r(a1) = 1 and r(a2) = r(a3) = · · · = r(aK) = 0.
Without loss of generality, we suppose argmina∈A πref(a) = a1 and πref(a1) ≤ 1/K for the given
πref (since we could construct the bandit instance given πref ). We choose Π = {πref , π

⋆
β}, which we

note satisfies Assumption 3.1 and Assumption 3.2 with Vmax = O(1), as well as Ccov(Π) = O(1).
This means that the constructed instance has polynomial sample complexity for XPO as shown in
Theorem 3.1.

Specialized to the bandit setting, Online DPO takes the following simplified form:

1. Sample pair of actions a(t), ã(t) ∼ π(t).

2. Label the actions as (a(t)

+ , a(t)

− ) according the Bradley-Terry model:

P(a(t) ≻ ã(t)) =
exp(r(a(t)))

exp(r(a(t))) + exp(r(ã(t)))
,

and update D(t+1)

pref ← D
(t)

pref ∪ {(a
(t)

+ , a(t)

− )}.

3. Compute π(t+1) via

π(t+1) = argmin
π∈Π

∑
(a+,a−)∈D(t+1)

pref

− log

[
σ

(
β log

π(a+)

πref(a+)
− β log

π(a−)

πref(a−)

)]
. (53)

Our construction uses the fact that depending on the preference dataset D(t)

pref , the minimizer in
Eq. (53) may not be uniquely defined.

Let E (t) denote the event that at iteration t, a(t) ̸= a1 and ã(t) ̸= a1. We appeal to a technical lemma.

Lemma E.2. Suppose we initialize with π(1) = πref , the following properties hold:

• P(E (t) | E (1), . . . E (t−1)) ≥ 1− 2/K.

• Whenever E (1), . . . , E (t) hold, we can choose the policy π(t+1) to satisfy π(t+1) = πref , which has

max
π

Jβ(π)− Jβ(π
(t+1)) = max

π
Jβ(π)− Jβ(πref) ≥

1

4

By Lemma E.2 and the union bound, we have that

P(E (1), . . . , E (T )) ≥ (1− 2/K)
T ≥ 1

4
,

as long as K ≥ 4 and T ≤ K
2 . It follows that whenever this occurs, maxπ Jβ(π)− Jβ(π

(t)) ≥ 1
8 for

all t ∈ [T + 1].
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Note that since online DPO selects π(t) = πref for all t in our counterexample above, this also
immediately implies a lower bound for offline DPO (interpreting π(T+1) as the policy returned by
offline DPO).

Proof of Lemma E.1. We prove this claim inductively. Let t ∈ [T ] be fixed, and suppose the claim
holds for 1, . . . , t− 1. If we assume E (1), . . . , E (t−1) hold, then we have π(t) = πref inductively. In
this case,

P(a(t) ̸= a1, ã
(t) ̸= a1) = (1− πref(a1))

2 =

(
1− 1

K

)2

≥ 1− 2

K
,

so that P(E (t) | E (1), . . . E (t−1)) ≥ 1− 2/K as desired.

Now, for the second part of the claim, suppose that E (1), . . . , E (t+1) hold. Then for all t′ ∈ [t + 1],
π(a

(t′)
+ )

πref(a
(t′)
+ )

=
π(a

(t′)
− )

πref(a
(t′)
− )

for all π ∈ Π, because β log
π⋆
β(a

(t′)
+ )

πref(a
(t′)
+ )
−β log

π⋆
β(a

(t′)
− )

πref(a
(t′)
− )

= r(a(t′)
+ )− r(a(t′)

− ) =

0, which implies that∑
(a+,a−)∈D(t+1)

pref

− log

[
σ

(
β log

π(a+)

πref(a+)
− β log

π(a−)

πref(a−)

)]
= − log(σ(0)) · t

for all π ∈ Π such that π ≪ πref . It follows that π(t+1) = πref is a valid minimizer for Eq. (53).

Finally, we compute that as long as ε ≤ 1/2

max
π

Jβ(π)− Jβ(πref) ≥ max
π

J(π)− J(πref)− β log(K)

=
exp(1/β)

exp(1/β) +K − 1
− 1

K
− β log(K)

≥ exp(1/β)

exp(1/β) + exp(1/8β)
− 1

4
− 1

8
≥ 1

8
.
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