
Under review as a conference paper at ICLR 2024

PROFITI: PROBABILISTIC FORECASTING OF
IRREGULAR TIME SERIES VIA CONDITIONAL FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Probabilistic forecasting of irregularly sampled multivariate time series with miss-
ing values is an important problem in many fields, including astronomy, finance,
and healthcare. Traditional methods for this task often rely on differential equa-
tions based models and make an assumption on the target distribution. In recent
years, normalizing flow models have emerged as a promising approach for density
estimation and uncertainty quantification, offering a flexible framework that can
capture complex dependencies. In this work, we propose a novel model ProF-
ITi for probabilistic forecasting of irregular time series with missing values using
conditional normalizing flows. In this approach, the model learns a joint proba-
bility distribution over the future values of the time series conditioned on the past
observations and query (future) time-channel information. As components of our
model, we introduce a novel invertible triangular attention layer, and an invert-
ible non-linear activation function on and onto the whole real line. We conduct
extensive experiments on 4 datasets, and demonstrate that the proposed model,
ProFITi, provides significantly better forecasting likelihoods compared to the ex-
isting baseline models. Specifically, on average, ProFITi provides 4 times higher
likelihood over the previously best model.

1 INTRODUCTION

Irregularly sampled multivariate time series with missing values (IMTS) are common in various
real-world scenarios such as astronomy, health, and finance. While accurate forecasting of these
IMTS is important for informed decision-making, estimating the uncertainty associated with these
forecasts becomes crucial to avoid overconfidence. Ordinary Differential Equations (ODE) based
models are widely used for the task. Besides the low computational efficiency, the current ODE-
based models (Schirmer et al., 2022; De Brouwer et al., 2019; Biloš et al., 2021) offer only marginal
likelihood estimates. In practical applications, joint distributions are desired to capture dependencies
and study forecasting scenarios or trajectories.

Ground Truth ProFITi GPR GLM

(a) ProFITi (b) GPR (c) GLM

Figure 1: Illustration of the predic-
tions of our model ProFITi: to quan-
tify uncertainty in a richer manner.
Distribution generated by (a) ProFITi,
(b) Gaussian Process Regression and
(c) Generalized Linear Model. ProF-
ITi provides a distribution close to the
ground truth. See Section G.

In this study, we propose two novel components that can
be used in flow models: a sorted invertible triangular at-
tention layer (SITA) parametrized by conditioning input,
and an invertible activation function, Shiesh, that is on
and onto R. We further propose a novel conditional flow
model called ProFITi, for Probabilistic Forecasting of
Irregularly sampled Multivariate Time series. ProFITi is
a permutation invariant model and designed to learn con-
ditional permutation invariant structured distributions. It
consists of several invertible blocks build using SITA and
Shiesh functions. Being a Flow-based model, ProFITi can
learn any random conditional joint distribution, while ex-
isting models (De Brouwer et al., 2019; Biloš et al., 2021)
learn only Gaussian (similar to GLM in Figure 1).

Through extensive experiments, we demonstrate that our
ProFITi achieves state-of-the-art probabilistic forecasting
results for IMTS. Our contributions are as follows:

1

Under review as a conference paper at ICLR 2024

Table 1: Summary of Important models that 1. can be applied to Time Series with irregular sampling
(Irreg. Samp.), or missing values (Miss. Vals.), 2. can predict marginal distributions (Marg. Dist.)
or joint distributions (Joint Dist.), 3. can learn on conditional densities (Condition), 4. density of
sequences with variable lengths (Dynamic) or 5. Permutation Invariant (Perm. Inv.).

Model Irreg. Miss. Marg. Joint Condition Dynamic Perm.
Samp. Vals. Dist. Dist. Inv.

GRU-ODE (De Brouwer et al., 2019) ✓ ✓ (Param) × ✓ ✓ ✓

Neural Flows (Biloš et al., 2021) ✓ ✓ (Param) × ✓ ✓ ✓

CRU (Schirmer et al., 2022) ✓ ✓ (Param) × ✓ ✓ ✓

GPR (Dürichen et al., 2015) ✓ ✓ (Param) (Param) ✓ ✓ ✓

GraFITi (Yalavarthi et al., 2023) ✓ ✓ × × ✓ ✓ ✓

RealNVP (Dinh et al., 2017) × × × ✓ × × ×

Inv. Autoreg (Kingma et al., 2016) × × × ✓ × × ×

Selv. Flow (van den Berg et al., 2018) × × × ✓ × × ×

Residual Flow (Behrmann et al., 2019) × × × ✓ × × ×

Graphical (Wehenkel & Louppe, 2021) × × × ✓ × × ×

Cond. NF Winkler et al. (2019) × × × ✓ ✓ × ×

Attn. Flow Sukthanker et al. (2022) × × × ✓ ✓ × ×

Inv. Dot. Attn Zha et al. (2021) × × × ✓ ✓ × ×

E(N) (Satorras et al., 2021) × × × ✓ × ✓ ✓

GNF (Liu et al., 2019) × × × ✓ × ✓ ✓

SNF (Biloš & Günnemann, 2021) × × × ✓ × ✓ ✓

MAF (Rasul et al., 2021) × × ✓ × ✓ ✓ ✓

CTFP (Deng et al., 2020) ✓ × ✓ × ✓ ✓ ✓

NKF (de Bézenac et al., 2020) × × × ✓ ✓ ✓ ✓

QFR (Si et al., 2022) × × × ✓ ✓ ✓ ✓

ProFITi (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

1. To the best of our knowledge, we are the first to investigate normalizing flow based models
for conditional permutation invariant structured distributions. This makes them usable
for probabilistic IMTS forecasting tasks.

2. We provide a novel invertible equivariant transformation, making the self attention mecha-
nism invertible (in the last column), sorted invertible triangular self attention.

3. We provide a novel non-linear, invertible, differentiable activation function on and onto the
whole real line, Shiesh. This activation function can be used in normalizing flows.

4. We provide a normalizing flow based model ProFITi for probabilistic forecasting of IMTS
build from invertible self attention layers and transformation layers using Shiesh activation.

5. We conduct extensive experiments on 4 IMTS datasets, and show that our proposed model,
ProFITi, significantly outperforms baselines in terms of normalized joint negative log-
likelihood. On average, ProFITi provides 4 times higher likelihood over the previously best
model. Implementation code: anonymous.4open.science/r/ProFITi-8707/.

2 LITERATURE REVIEW

Probabilistic Forecasting Models for IMTS Probabilistic IMTS forecasting often relies on vari-
ational inference or predicting distribution parameters. Neural ODE models (Chen et al., 2018) are
popular, with VAE-based variants combining probabilistic latent states with deterministic networks.
Other approaches like latent-ODE (Rubanova et al., 2019), GRU-ODE-Bayes (De Brouwer et al.,
2019), Neural-Flows (Biloš et al., 2021), and Continuous Recurrent Units (CRUs; Schirmer et al.
(2022)) have shown accurate results but provide only marginal distributions, no joint distributions.
In contrast, Gaussian Process Regression (GPR) models (Dürichen et al., 2015; Li & Marlin, 2015;
2016; Bonilla et al., 2007) offer full joint posterior distributions for forecast outputs. However, mul-
titask GPR can struggle due to positive definite covariance matrix constraints and computational
demands on long time series data due to the matrix inverting operations. All the models assume
data distribution is Gaussian and fail if the true distribution is different. However, ProFITi is a
normalizing flow model, and is not constrained by this assumption (Kong & Chaudhuri, 2020).

Normalizing Flows for variable input size We deal with predicting distribution for variable many
targets. This utilizes equivariant transformations, as shown in (Biloš & Günnemann, 2021; Satorras

2

anonymous.4open.science/r/ProFITi-8707/

Under review as a conference paper at ICLR 2024

et al., 2021; Liu et al., 2019). All the models apply continuous normalizing flows which require
solving an ODE driven by a neural network. They tend to be slow due to the numerical integration
process. Additionally, they cannot incorporate conditioning inputs.

Conditioning Normalizing Flows The modeling of conditional data densities has been exten-
sively explored within computer vision (Khorashadizadeh et al., 2023; Winkler et al., 2019; Anan-
tha Padmanabha & Zabaras, 2021). They involve applying basic normalizing flow blocks such as
affine transformations (Dinh et al., 2017), autoregressive transformations (Kingma et al., 2016) or
Sylvester flow blocks (van den Berg et al., 2018). Often the conditioning values are appended to the
target while passing through the flow layers as demonstrated in Winkler et al. (2019). For continu-
ous data representations only a few works exist (Kumar et al., 2020; de Bézenac et al., 2020; Rasul
et al., 2021; Si et al., 2022). However, methods that deal with regular multivariate time series (such
as (Rasul et al., 2021)) cannot handle IMTS due to its variable size (in both prediction length and
missing values). We solved this by combining attention (allowing flexible size) with invertibility (to
be used in a normalizing flow).

Flows with Invertible Attention To the best of our knowledge, there have been only two works
that develop invertible attention for Normalizing Flows. Sukthanker et al. (2022) proposed an invert-
ible attention mechanism by adding the identity matrix to a softmax attention. However, the major
disadvantage of this mechanism is that softmax yields only positive values in the attention matrix
and does not allow learning negative covariances. Zha et al. (2021) introduced residual attention
similar to invertible residual flow (Chen et al., 2019; Behrmann et al., 2019). It has similar problems
related to residual flows (Behrmann et al., 2019) such as the lack of an analytical inverse making
inference slow as numerical methods have to be used. Additionally, these attention mechanisms
often have problems with computing the determinant of the attention matrix as it has a complexity
ofO(K3) with K being the sequence length. We provide a summary of the related work in Table 1.

3 PROBLEM SETTING & ANALYSIS

The IMTS Forecasting Problem. An irregularly sampled multivariate times series with
missing values (called briefly just IMTS in the following), is a finite sequence xobs =
((tobs

i , cobs
i , oobs

i))i=1∶I of unique triples, where tobs
i ∈ R denotes the time, cobs

i ∈ {1, ...,C} the channel
and oobs

i ∈ R the value of an observation, I ∈ N the total number of observations across all channels
and C ∈ N the number of channels. Let TS(C) ∶= (R × {1, . . . ,C} × R)∗ denote the space of all
IMTS with C channels.1

An IMTS query is a finite sequence xqu = ((tqu
k , cqu

k))k=1∶K ∈ Q(C) ∶= (R × {1, . . . ,C})∗ of
just time points and channels (also unique), a sequence y ∈ RK we call an answer and denote by
QA(C) ∶= {(xqu, y) ∈ Q(C) ×R∗ ∣ ∣xqu∣ = ∣y∣} the space of all queries and possible answers.

The IMTS probabilistic forecasting problem then is, given a dataset Dtrain ∶=
((xobs

n , xqu
n , yn))n=1∶N ∈ TS(C) × QA(C) of triples of time series, queries and answers from

an unknown distribution p (with earliest query timepoint is beyond the latest observed timepoint for
series n, mink t

qu
n,k >maxi t

obs
n,i), to find a model p̂ that maps each observation/query pair (xobs, xqu)

to a joint density over answers, p̂(y1, . . . , yK ∣ xobs, xqu), such that the expected negative log
likelihood is minimal:

ℓNLL(p̂;p) ∶= −E(xobs,xqu,y)∼p log p̂(y ∣ xobs, xqu)
Please note, that the number C of channels is fixed, but the number I of past observations and
the number K of future observations queried may vary over instances (xobs, xqu, y). If query sizes
K vary, instead of (joint) negative log likelihood one also can normalize by query size to make
numbers comparable over different series and limit the influence of large queries, the normalized
joint negative log likelihood NJNL:

ℓNJNL(p̂;p) ∶= − E
(xobs,xqu,y)∼p

1

∣y∣ log p̂(y ∣ x
obs, xqu) (1)

1
(⋅)
∗ indicates the space of finite sequences of arbitrary length.

3

Under review as a conference paper at ICLR 2024

Problem Analysis and Characteristics. As the problem is not just an (unconditioned) density
estimation problem, but the distribution of the outputs depends on both, the past observations and
the queries, a conditional density model is required (requirement 1).

A crucial difference from many settings addressed in the related work is that we look for proba-
bilistic models of the joint distribution of all queried observation values y1, . . . , yK , not just at the
single variable marginal distributions p(yk ∣ xobs, xqu

k) (for k = 1∶K). The problem of marginal
distributions is a special case of our formulation where all queries happen to have just one element
(always K = 1).

So for joint probabilistic forecasting of IMTS, models need to output densities on a variable num-
ber of variables (requirement 2).

Furthermore, whenever two query elements get swapped, a generative model should swap its output
accordingly, a density model should yield the same density values for outputs swapped the same
way, i.e., the model should be permutation invariant (requirement 3): for every permutation π:

p̂(y1, . . . , yK ∣ xobs, xqu
1 , . . . , xqu

K) = p̂(yπ(1), . . . , yπ(K) ∣ x
obs, xqu

π(1), . . . , x
qu
π(K)) (2)

Note that permutation invariance is crucial w.r.t. channels. Permutation invariance w.r.t. time points
is not a necessary property of a good model due to the causal nature of the series. But it is a
very successful property of most state-of-the-art models in vision and time series (Zhou et al., 2021;
Dosovitskiy et al., 2020; Chen et al., 2023). This motivated us to search for a novel invertible variant
that can be used in conjunction with normalizing flows.

4 INVARIANT CONDITIONAL NORMALIZING FLOW MODELS

Normalizing flows. While parametrizing a specific distribution such as the Normal, is a simple
and robust approach to probabilistic forecasting that can be added on top of any point forecasting
model (for marginal distributions or fixed-size queries at least), such models are less suited for
targets having a more complex distribution. Then typically normalizing flows are used (Rippel
& Adams, 2013; Papamakarios et al., 2021). A normalizing flow is an (unconditional) density
model for variables y ∈ RK consisting of a simple base distribution, typically a standard normal
pZ(z) ∶= N (z; 0K , IK×K), and an invertible, differentiable, parametrized map f(z; θ); then

p̂(y; θ) ∶= pZ(f−1(y; θ)) ∣det(∂f
−1(y; θ)
∂y

)∣ (3)

is a proper density, i.e., integrates to 1, and can be fitted to data minimizing negative log likelihood
via gradient descent algorithms. A normalizing flow can be conditioned on predictor variables
x ∈ RM by simply making f dependent on predictors x, too: f(z;x, θ). f then has to be invertible
w.r.t. z for any x and θ (Trippe & Turner, 2018).

Invariant conditional normalizing flows. A conditional normalizing flow represents an invariant
conditional distribution in the sense of eq. 2, if i) its predictors x also can be grouped into K elements
x1, . . . , xK and possibly common elements xcom: x = (x1, . . . , xK , xcom), and ii) its transformation
f is equivariant in stacked x1∶K and z:

f(zπ;xπ
1∶K , xcom, θ)π

−1

= f(z;x1∶K , xcom, θ) ∀permutations π (4)

where zπ ∶= (zπ(1), . . . , zπ(K)) denotes a permuted vector. We call this an invariant conditional
normalizing flow model. If K is fixed, we call it fixed size, otherwise dynamic size. In IMTS
forecasting, we have both inputs: (x1, . . . xK) ∶= (xqu

1 , . . . , xqu
K), xcom ∶= xobs.

Invariant conditional normalizing flows via continuous flows. Invariant conditional normaliz-
ing flow models have been developed in the literature based on the continuous flow approach (Chen
et al., 2018; Grathwohl et al., 2019), where the transformation f is specified implicitly by an ordinary
differential equation with time-dependent vector field g ∶ R ×RM → RM :

f−1(z) ∶= v(1) with v ∶ [0,1]→ RK being the solution of
∂v

∂τ
= g(τ, v(τ)), v(0) ∶= z (5)

4

Under review as a conference paper at ICLR 2024

τ often is called virtual time to clearly distinguish it from time as an input variable. The vector field g
is represented by a parametrized function g(τ, v; θ) and then can be learnt. Continuous flow models
can be made conditional by simply adding the predictors x to the inputs of the vector field, too:
g(τ, v;x, θ). Unconditional structured continuous flow models can be made permutation invariant
by simply making the vector field permutation equivariant (Köhler et al., 2020; Li et al., 2020; Biloš
& Günnemann, 2021): g(τ, vπ; θ)π−1 = g(τ, v; θ). To make conditional structured continuous flow
models permutation invariant, the vector field has to be jointy permutation equivariant in outputs
v and predictors x:

g(τ, vπ;xπ, θ)π
−1

= g(τ, v;x, θ)

The primary choice for a dynamic size, equivariant, parametrized function is self attention (SA):
A(X) ∶=XWQ(XWK)T , Asoftmax(X) ∶= softmax(A(X))

SA(X) ∶= Asoftmax(X) ⋅XWV

where X is a matrix containing the elements x1∶K as rows, WQ,WK,WV are parameter matrices
(not depending on the number of rows of X) and the softmax is taken rowwise.

Self attention has been used in the literature as is for unconditional vector fields (Köhler et al., 2020;
Li et al., 2020; Biloš & Günnemann, 2021). To be used in a conditional vector field, X will have to
contain both, the condition elements x1∶K and the base samples z1∶K stacked:

X ∶=
⎡⎢⎢⎢⎢⎣

xT
1 z1
⋮ ⋮

xT
K zK

⎤⎥⎥⎥⎥⎦
Invariant conditional normalizing flows via invertible self attention. When using self attention
as vector field inside a continuous flow as in the previous section, then the continuous flow will
provide invertibility. While an elegant and generic approach, continuous flows require ODE solvers
and have been reported to be brittle and not straight-forward to train. We develop an alternative idea:
to make self attention itself invertible (in the last column of X , which contains z). Then it can be
used directly, without any need for an ODE wrapper. To get invertible self attention (ISA) (in the
last column), we i) fix the last row of attention query and key matrices WQ and WK to zero, in effect
computing the attention matrix A on the conditioners x1∶K alone, ii) fix all but the last rows of WV
to zero and its last row to all ones, in effect using the base sample z1∶K alone as attention value, and
iii) regularize the attention matrix A sufficiently to become invertible (see Section D):

Areg(X) ∶= 1

∥A(X)∥2 + ϵ
A(X) + I (6)

ISA(X) ∶= Areg(X∶,1∶∣X ∣−1)X∶,∣X ∣ (7)
where ϵ > 0 is a hyperparameter. We note that different from a simple linear flow, the slope matrix
Areg is not a parameter of the model, but computed from the conditioners x1∶K . Our approach is
different from iTrans attention (Sukthanker et al., 2022, fig. 17) that makes attention invertible more
easily via AiTrans ∶= Asoftmax(X)+ I using the fact that the spectral radius σ(Asoftmax(X)) ≤ 1, but
therefore is restricted to non-negative interaction weights.

The attention matrix Areg will be dense in general and thus slow to invert, taking O(K3) opera-
tions. Following ideas for autoregressive flows and coupling layers, a triangular slope matrix would
allow a much more efficient inverse pass, as its determinant can be computed in O(K) and linear
systems can be solved in O(K2). This does not restrict the expressivity of the model, as due to
the Knothe–Rosenblatt rearrangement (Villani, 2009) from optimal transport theory, any two prob-
ability distributions on RK can be transformed into each other by flows with a locally triangular
Jacobian (where the local Jacobians in ODE models of optimal transport correspond to layers in the
transformation of a normalized flow). Unfortunately, just masking the upper triangular part of the
matrix will destroy the equivariance of the model. We resort to the simplest way to make a func-
tion equivariant: we sort the inputs before passing them into the layer and revert the outputs to the
original ordering. We call this approach sorted invertible triangular self attention (SITA):

π ∶= argsort(x1S, . . . , xKS) (8)

Atri(X) ∶= softplus-diag(lower-triangular(A(X))) + ϵI (9)

SITA(X) ∶= (Atri(Xπ
∶,1∶∣X ∣−1)Xπ

∶,∣X ∣)π
−1

(10)

5

Under review as a conference paper at ICLR 2024

where π operates on the rows of X . Sorting is a simple lexicographic sort along the dimensions of
the xkS. The matrix S allows to specify a sorting criterion, e.g., a permutation matrix. For example,
we will sort time series queries first by time stamp, so that the triangular matrix corresponds to a
causal attention, second by channel, fixing some order of the channels.

5 A NEW ACTIVATION FUNCTION FOR NORMALIZING FLOWS

The transformation function f of a normalizing flow usually is realized as a stack of several simple
functions. As in any other neural network, elementwise applications of a function, called activation
functions, is one of those layers that allows for non-linear transformations. However, most of the
common activation functions used in deep learning such as ReLU are not applicable for normalizing
flows, because they are not invertible (E1). Some like ELU cannot be used throughout the layer
stack, because their output domain R+ does not cover all real numbers (E2). Some like Tanh-shrink
(tanhshrink(u) ∶= u − tanh(u)) are invertible and cover the whole real line, but they have a zero
gradient somewhere (for Tanh-shrink at 0) that will make computing the inverse of the normalizing
factor ∣det (∂f(u)

∂u
)∣ for the normalizing flow impossible (E3).

Table 2: Properties of exist-
ing activation functions.

Activation E1 E2 E3
ReLU × × ×

Leaky-ReLU ✓ ✓ ✓
P-ReLU ✓ ✓ ✓
ELU ✓ × ✓
SELU ✓ × ✓
Swish × × ×

GELU × × ✓
Tanh ✓ × ✓
Sigmoid ✓ × ✓
Tanh-shrink ✓ ✓ ×

Shiesh ✓ ✓ ✓

To be used as a standalone layer in a normalizing flow, an activation
function must fulfill these three requirements: E1. be invertible, E2.
cover the whole real line and E3. have no zero gradients. Out of all
activation functions in the pytorch library only Leaky-ReLU and P-
ReLU meet all three requirements (see table 2). Both Leaky-ReLU
and P-ReLU usually are used with a slope on their negative branch
being well less than 1, so that stacking many of them might lead to
small gradients also causing problems for the normalizing constant
of a normalizing flow.

Unconstrained monotonic neural networks (Wehenkel & Louppe,
2019) have been proposed as versatile, learnable activation functions
for normalizing flows, being basically a continuous normalizing flow
for each scalar variable u separately and a scalar field g implemented
by a neural network:

a(u) ∶= v(1) with v ∶ [0,1]→ R being the solution of
∂v

∂τ
= g(τ, v(τ)), v(0) ∶= u (11)

Lemma 2 (Section E) establishes the equivalence of unconstrained monotonic neural networks with
continuous normalizing flows.

−4 −2 2 4

−6
−4
−2

2

4

6

u

Shiesh(u; b = 1)

−4 −2 2 4

1

2

3

u

∂
∂uShiesh(u; b = 1)

Figure 2: (left) Shiesh function, (right)
partial derivative.

In consequence, they suffer from the same issues as any
continuous normalizing flow: they are slow as they re-
quire explicit integration of the underlying ODE. Besides
requirements E1–E3, activation functions will profit from
further desired properties: D1. having an analytic inverse,
D2. having an analytic Jacobian and D3. having a bounded
gradient. Unconstrained Monotonic Neural Networks do
not have desired property D1 and provide no guarantees
for property D3.

Instead of parametrizing the scalar field g and learn it from data, we make an educated guess and
choose a specific function with few parameters for which eq. 11 becomes explicitly solvable and
requires no numerics at runtime: for the scalar field g(τ, a; b) ∶= tanh(b ⋅ a(τ)) the resulting ODE

∂v

∂τ
= tanh(b ⋅ v(τ)), v(0) ∶= u

has an explicit solution (Section F.1)

v(τ ;u, b) = 1

b
sinh−1 (eb⋅τ ⋅ sinh(b ⋅ u))

yielding our activation function Shiesh:

Shiesh(u; b) ∶= a(u) ∶= v(1;u, b) = 1

b
sinh−1 (eb ⋅ sinh(b ⋅ u)) (12)

6

Under review as a conference paper at ICLR 2024

being invertible, covering the whole real line and having no zero gradients (E1–E3) and additionally
with analytical inverse and gradient (D1 and D2)

Shiesh−1(u; b) = 1

b
sinh−1 (e−b ⋅ sinh(b ⋅ u)) (13)

∂

∂u
Shiesh(u; b) = eb cosh(b ⋅ u)√

1 + (eb sinh(b ⋅ u))2

and bounded gradient (D3) in the range (1, eb] (Section F.4). Fig. 2 shows a function plot. In our
experiments we fixed its parameter b = 1.

6 OVERALL PROFITI MODEL ARCHITECTURE

grafiti

sort

(xobs, xqu)

sort

y (inputs)

S

EL(0)

f (1)
−1

f (l)
−1

f (L)
−1

rev. sortS

z (outputs)

EL(l)

SITA(l)

Shiesh

Atri(l) ⊗

NNsca(l)

NNtrs(l)

⊙

⊕

profiti-block(l)

h

h

h

h

h
y(1)

y(l)

y(L)

y(L)

h

Figure 3: ProFITi architecture. ⊗: dot prod-
uct, ⊙: Hadamard product, and ⊕: addi-
tion. We reference the functions used to their
equation numbers. S (8), grafiti (16), SITA
(10), EL (14), Shiesh (12)

Invertible attention and the Shiesh activation func-
tion systematically model inter-dependencies be-
tween variables and non-linearity respectively, but
do not move the zero point. To accomplish the lat-
ter, we use a third layer called elementwise linear
transformation layer (EL):

EL(yk;xk) ∶= yk ⋅NNsca(xk) +NNtrs (xk) (14)

where NNsca and NNtrs are neural networks for
scaling and translation. NNsca is equipped with a
exp(tanh) output function to make it positive and
bounded, guaranteeing the inverse. We combine all
three layers from eq. 7, 12, and 14 to a block

profiti-block(y;x) ∶= Shiesh(EL(SITA(z;x);x))
(15)

and stack L of those blocks to build the inverse
transformationf−1 of our conditional invertible flow
model ProFITi. We add a transformation layer with
slope fixed to 1 as initial encoding on the y-side of
the model. See Figure 3 for an overview of its archi-
tecture.

Query embedding. As discussed in Section 4, for
probabilistic time series forecasting we have to con-
dition on both, the past observations xobs and the time point/channel pairs xqu of interest that are
queried. While in principle any equivariant encoder could be used, an encoder that leverages the
relationships between those two pieces of the conditioner is crucial. We use GraFITi (Yalavarthi
et al., 2023), a graph based deterministic equivariant forecasting model for IMTS that provides
state-of-the-art performance (in terms of accuracy and efficiency) as encoder

(h1, . . . , hK) ∶= GraFITi(xqu
1 , . . . , xqu

K , xobs) (16)
The encoded conditioners h1, . . . , hK then are fed into ProFITi, i.e., take the roles of x1, . . . , xK in
eq. 15. The Grafiti encoder is trained end-to-end within the Profiti model, we did not pretrain it.

Note that for each query, IMTS forecasting models yield a scalar, the predicted value, not an embed-
ding vector. While it would be possible to use IMTS forecasting models as (scalar) encoders, due to
their limitations to a single dimension we did not follow up on this idea.

Training. We train the ProFITi model p̂ for the normalized joint negative log-likelihood loss
(NJNL; eq. 1) which written in terms of the transformation f−1(⋅; ⋅; θ) of the normalizing flow and
its parameters θ yields:

ℓNJNL(θ) ∶= ℓNJNL(p̂;p) (17)

= − E
(xobs,xqu,y)∼p

1

∣y∣
⎛
⎝

∣y∣
∑
k=1

pZ(f−1(y;xobs, xqu; θ)k) − log ∣det(∂f
−1(y;xobs, xqu; θ)

∂y
)∣
⎞
⎠

7

Under review as a conference paper at ICLR 2024

Table 3: Normalized Joint Negative Log-likelihood (NJNL), lower the better. Best is presented in
bold. OOM indicates out of memory error. LL ratio ↑ shows the ratio of Normalized Joint Likelihood
e−NJNL (not log-level NJNL) w.r.t the next best model. time

epoch denotes runtime per epoch.

USHCN time
epoch Physioinet’12 time

epoch MIMIC-III time
epoch MIMIC-IV time

epoch
GPR 1.194±0.007 2s 1.367±0.074 35s 3.146±0.359 71s 2.789±0.057 227s
HETAVE 0.146±0.012 1s 0.561±0.012 8s 0.794±0.032 8s OOM −

GRU-ODE 0.494±0.116 100s 0.501±0.001 155s 0.837±0.012 511s 0.823±0.318 1052s
Neural-Flows 0.550±0.019 21s 0.496±0.001 34s 0.835±0.014 272s 0.689±0.087 515s
CRU 0.633±0.023 35s 0.741±0.001 40s 1.090±0.001 131s OOM −

CNF+ 0.937±0.044 24s 1.057±0.007 210s 1.123±0.005 347s 1.041±0.010 577s
GraFITi+ 0.270±0.048 3s 0.367±0.021 32s 0.695±0.019 80s 0.287±0.040 84s
ProFITi (ours) -1.998±0.158 6s -0.766±0.038 59s -0.240±0.068 97s -1.856±0.051 123s
LL ratio ↑ 8.4 3.1 2.5 8.5

7 EXPERIMENTS

7.1 EXPERIMENT FOR NORMALIZED JOINT NEGATIVE LOG-LIKELIHOOD

Datasets. For evaluating ProFITi we use 3 publicly available real-world medical IMTS datasets:
MIMIC-III (Johnson et al., 2016), MIMIC-IV (Johnson et al., 2021), and Physionet’12 (Silva
et al., 2012). Datasets contain ICU patient records collected over 48 hours. The preprocessing pro-
cedures outlined in Yalavarthi et al. (2023), Scholz et al. (2023), Biloš et al. (2021) and De Brouwer
et al. (2019) were applied to MIMIC-III and MIMIC-IV, esp. observations in MIMIC-III and
MIMIC-IV were rounded to intervals of 30 minutes and 1 min, respectively. Physionet’12 was
preprocessed according to Yalavarthi et al. (2023), Che et al. (2018), Cao et al. (2018) and Tashiro
et al. (2021) to obtain hourly observations. We also evaluated on publicly available synthetic climate
dataset USHCN (Menne et al., 2015). It consists of climate data observed for 150 years from 1218
weather stations in USA.

Baseline Models. ProFITi is compared to 3 probabilistic IMTS forecasting models:
CRU (Schirmer et al., 2022), Neural-Flows (Biloš et al., 2021), and GRU-ODE-
Bayes (De Brouwer et al., 2019). We also extend the state-of-the-art deterministic forecasting model
GraFITi (Yalavarthi et al., 2023) to the probabilistic setting by also outputting an elementwise vari-
ance for parametrizing a normal distribution, called GraFITi+. GraFIT+ helps to disentangle lifts
originating from GraFITi (encoder) and those originating from ProFITi. As often interpolation mod-
els can be used seamlessly for forecasting, too, we include HETVAE (Shukla & Marlin, 2022), a
state-of-the-art probabilistic interpolation model, for comparison. Furthermore, we include Multi-
task Gaussian Process Regression (GPR) (Dürichen et al., 2015) as a baseline able to provide joint
densities. As there is no previous continuous normalizing flow model that works for dynamic size
and conditioning input, we adapt the model from Biloš & Günnemann (2021) by making it condi-
tional following eq. 4, using vanilla attention as vector field g in eq. 5 as well as L2 regularization
for its weights, called CNF+.

Protocol. We split the dataset into Train, Validation and Test in ratio 70:10:20, respectively. We
select the hyperparameters from 10 random hyperparameter configurations based on their validation
performance. We run 5 iterations with random seeds on the train dataset with the chosen hyperpa-
rameters. Following Biloš et al. (2021), De Brouwer et al. (2019) and Yalavarthi et al. (2023), we
use the first 36 hours as observation range and forecast the next 3 time steps for medical datasets and
first 3 years as observation range and forecast the next 3 time steps. All models are implemented in
PyTorch and run on GeForce RTX-3090 and 1080i GPUs. We compare the models for Normalized
Joint Negative Log-likelihood (NJNL) loss (eq. 1). Except for GPR, CNF+ and ProFITi, we take the
average of the marginal negative log-likelihoods of all the observations in a series to compute NJNL
for that series. We would like to note that we do not use CRPS, CRPS-sum that are widely used in
regular multivariate time series as they cannot cover joint distributions.

Results. Table 3 demonstrates the Normalized Joint Negative Log-likelihood (lower the better)
and run time per epoch for all the datasets. Best results are presented in bold. ProFITi outperforms

8

Under review as a conference paper at ICLR 2024

Table 4: Results for auxiliary experiments, Marginal Negative Log-likelihood (MNL), Mean
Squared Error (MSE), lower the better. Comparing ProFITi with published results (in brackets):
† from De Brouwer et al. (2019), ‡ from Biloš et al. (2021), and ♯ from Yalavarthi et al. (2023).

USHCN MIMIC-III MIMIC-IV
MNL MSE MNL MSE MNL MSE

NeuralODE-VAE (1.460±0.100†) (0.960±0.110†) (1.350±0.010†) (0.890±0.010†) − −

Sequential-VAE (1.370±0.006†) (0.830±0.070†) (1.390±0.070†) (0.920±0.090†) − −

GRU-D (0.990±0.070†) (0.530±0.060†) (1.160±0.050†) (0.790±0.060†) − −

GRU-ODE 0.776±0.172 0.410±0.106 0.839±0.030 0.479±0.044 0.876±0.589 0.365±0.012
(0.840±0.110†) (0.430±0.070†) (0.830±0.040†) (0.480±0.010†) (0.748±0.045‡) (0.379±0.005)

Neural-Flows 0.775±0.180 0.424±0.110 0.866±0.097 0.479±0.045 0.796±0.053 0.374±0.017
− (0.414±0.102♯) (0.781±0.041‡) (0.499±0.004‡) (0.734±0.054‡) (0.364±0.008‡)

GraFITi+ 0.462±0.122 0.256±0.027 0.657±0.040 0.401±0.028 0.351±0.045 0.233±0.005
− (0.272±0.047♯) − (0.396±0.030♯) − (0.225±0.001♯)

ProFITi (ours) -1.717±0.143 0.413±0.185 0.511±0.068 0.474±0.049 -0.762±0.119 0.251±0.001

all the prior approaches with significant margin on all the three datasets. The next best performing
model is GraFITi+. We note that although GPR is predicting joint likelihoods, it performs poorly,
likely because of having very few parameters. We cannot run CRU for MIMIC-IV in our GPU with
48GB memory due to out of memory errors. Surprisingly, despite being also a flow model like
ProFITi, CNF+ did not perform as well in our tasks. The performance gains w.r.t. the next best
model shown in table 3 are for normalized joint likelihoods (e-NJNL, no log-level), as for NJNL they
would be not meaningful due to having 0 in the NJNL scale.

7.2 AUXILIARY EXPERIMENT FOR MARGINALS AND POINT FORECAST

Existing models in the related work De Brouwer et al. (2019) and Biloš et al. (2021) cannot predict
joint distributions, hence their evaluation is restricted to Marginal Negative Log-likelihood (MNL):

ℓMNL(p̂;Dtest) ∶= − 1

∑(xobs,xqu,y)∈Dtest ∣y∣ ∑
(xobs,xqu,y)∈Dtest

∣y∣
∑
k=1

log (p̂ (yk ∣ xobs, xqu
k)) (18)

For additional comparison with published results of the baselines, we evaluate ProFITi for MNL and
MSE as well. Table 4 compares ProFITi with GRU-ODE, Neural-Flows, and GraFITi+. Results
also include NeuralODE-VAE (Chen et al., 2018), Sequential-VAE (Krishnan et al., 2015; 2017)
and GRU-D (Che et al., 2018) from the published sources. For ProFITi, to yield marginal distri-
butions for MNL directly, we modify Atri by zeroing off-diagonal elements after training. Whereas
for MSE, we sample 100 predictions together with their density values and output the one with the
highest density value.

We run the experiment with the same protocol mentioned in the baseline papers. We see that ProF-
ITi outperforms baseline models again. The gains provided by ProFITi in MNL is less pronounced
than in NJNL as the model is designed and trained to learn joint distributions. Whereas for MSE,
GraFITi that is trained for Gaussian MNL performs better than ProFITi. This is expected because
Gaussian MNL has an MSE component in it. However, for (IMTS) probabilistic forecasting models
the primary metric of interest is (marginal or normalized joint) negative log likelihood, where ProF-
ITi performs the best (see previous subsection). In Section H, we have additional experiments on
ablation studies and scalability.

CONCLUSIONS

In this work, we propose a novel model ProFITi for probabilistic forecasting of irregularly sam-
pled multivariate time series with missing values using conditioning normalizing flows. ProFITi
is a permutation invariant normalizing flow model for conditional permutation invariant structured
distributions. We propose two novel model components, sorted invertible triangular self attention
and Shiesh activation function in order to learn any random target distribution. Our experiments on
3 IMTS datasets demonstrate that ProFITi provides better likelihoods than a state-of-the-art IMTS
forecasting baselines.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Govinda Anantha Padmanabha and Nicholas Zabaras. Solving inverse problems using conditional
invertible neural networks. Journal of Computational Physics, 433:110194, May 2021. ISSN
0021-9991. doi: 10.1016/j.jcp.2021.110194. URL https://www.sciencedirect.com/
science/article/pii/S0021999121000899.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacobsen.
Invertible residual networks. In Proceedings of the 36th International Conference on Machine
Learning, pp. 573–582. PMLR, May 2019. URL https://proceedings.mlr.press/
v97/behrmann19a.html.

Marin Biloš and Stephan Günnemann. Normalizing flows for permutation invariant densities. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 957–967. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/bilos21a.html.

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan
Günnemann. Neural flows: Efficient alternative to neural odes. Advances in Neural Informa-
tion Processing Systems, 34:21325–21337, 2021.

Edwin V Bonilla, Kian Chai, and Christopher Williams. Multi-task gaussian process prediction. In
Advances in Neural Information Processing Systems, volume 20, 2007.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. Advances in neural information processing systems, 31, 2018.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):1–12,
2018.

Ricky T. Q. Chen, Jens Behrmann, David K Duvenaud, and Joern-Henrik Jacobsen. Residual flows
for invertible generative modeling. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Si-An Chen, Chun-Liang Li, Sercan O Arik, Nathanael Christian Yoder, and Tomas Pfister.
TSMixer: An all-MLP architecture for time series forecast-ing. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=
wbpxTuXgm0.

Emmanuel de Bézenac, Syama Sundar Rangapuram, Konstantinos Benidis, Michael Bohlke-
Schneider, Richard Kurle, Lorenzo Stella, Hilaf Hasson, Patrick Gallinari, and Tim
Januschowski. Normalizing kalman filters for multivariate time series analysis. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 2995–3007. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1f47cef5e38c952f94c5d61726027439-Paper.pdf.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. Advances in neural information processing sys-
tems, 32, 2019.

Ruizhi Deng, Bo Chang, Marcus A Brubaker, Greg Mori, and Andreas Lehrmann. Mod-
eling continuous stochastic processes with dynamic normalizing flows. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 7805–7815. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/58c54802a9fb9526cd0923353a34a7ae-Paper.pdf.

10

https://www.sciencedirect.com/science/article/pii/S0021999121000899
https://www.sciencedirect.com/science/article/pii/S0021999121000899
https://proceedings.mlr.press/v97/behrmann19a.html
https://proceedings.mlr.press/v97/behrmann19a.html
https://proceedings.mlr.press/v139/bilos21a.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://openreview.net/forum?id=wbpxTuXgm0
https://openreview.net/forum?id=wbpxTuXgm0
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f47cef5e38c952f94c5d61726027439-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f47cef5e38c952f94c5d61726027439-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/58c54802a9fb9526cd0923353a34a7ae-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/58c54802a9fb9526cd0923353a34a7ae-Paper.pdf

Under review as a conference paper at ICLR 2024

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Robert Dürichen, Marco A. F. Pimentel, Lei Clifton, Achim Schweikard, and David A. Clifton. Mul-
titask gaussian processes for multivariate physiological time-series analysis. IEEE Transactions
on Biomedical Engineering, 62(1):314–322, 2015. doi: 10.1109/TBME.2014.2351376.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
generative models with free-form continuous dynamics. In International Conference on Learning
Representations, pp. 7, 2019.

A Johnson, L Bulgarelli, T Pollard, S Horng, and LA Celi. Mark. R. MIMIC-IV (version 1.0).
PhysioNet, 2021.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

AmirEhsan Khorashadizadeh, Konik Kothari, Leonardo Salsi, Ali Aghababaei Harandi, Maarten
de Hoop, and Ivan Dokmanić. Conditional injective flows for bayesian imaging. IEEE Transac-
tions on Computational Imaging, 9:224–237, 2023. doi: 10.1109/TCI.2023.3248949.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 29. Curran Associates, Inc., 2016. URL
https://proceedings.neurips.cc/paper_files/paper/2016/file/
ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf.

Jonas Köhler, Leon Klein, and Frank Noe. Equivariant flows: Exact likelihood generative learn-
ing for symmetric densities. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 5361–5370. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/kohler20a.html.

Zhifeng Kong and Kamalika Chaudhuri. The expressive power of a class of normalizing flow
models. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pp. 3599–3609. PMLR, 26–28 Aug 2020. URL https:
//proceedings.mlr.press/v108/kong20a.html.

Rahul Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent
Dinh, and Durk Kingma. Videoflow: A conditional flow-based model for stochastic video gen-
eration. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/
forum?id=rJgUfTEYvH.

Steven Cheng-Xian Li and Benjamin Marlin. A scalable end-to-end gaussian process adapter for
irregularly sampled time series classification. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, pp. 1812–1820, Red Hook, NY, USA, 2016.
Curran Associates Inc. ISBN 9781510838819.

11

https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.mlr.press/v119/kohler20a.html
https://proceedings.mlr.press/v119/kohler20a.html
https://proceedings.mlr.press/v108/kong20a.html
https://proceedings.mlr.press/v108/kong20a.html
https://openreview.net/forum?id=rJgUfTEYvH
https://openreview.net/forum?id=rJgUfTEYvH

Under review as a conference paper at ICLR 2024

Steven Cheng-Xian Li and Benjamin M Marlin. Classification of sparse and irregularly sampled
time series with mixtures of expected gaussian kernels and random features. In UAI, pp. 484–
493, 2015.

Yang Li, Haidong Yi, Christopher Bender, Siyuan Shan, and Junier B Oliva. Exchangeable neu-
ral ode for set modeling. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 6936–6946. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/4db73860ecb5533b5a6c710341d5bbec-Paper.pdf.

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows.
Advances in Neural Information Processing Systems, 32, 2019.

Matthew J Menne, CN Williams Jr, and Russell S Vose. United states historical climatology network
daily temperature, precipitation, and snow data. Carbon Dioxide Information Analysis Center,
Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2015.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn.
Res., 22(1), jan 2021. ISSN 1532-4435.

Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs M Bergmann, and Roland Vollgraf. Mul-
tivariate probabilistic time series forecasting via conditioned normalizing flows. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=WiGQBFuVRv.

Oren Rippel and Ryan Prescott Adams. High-dimensional probability estimation with deep density
models. arXiv preprint arXiv:1302.5125, 2013.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Bernd Fuchs, Ingmar Posner, and Max Welling.
E(n) equivariant normalizing flows. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=N5hQI_RowVA.

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time
series with continuous recurrent units. In Proceedings of the 39th International Conference on
Machine Learning, volume 162, pp. 19388–19405. PMLR, 17–23 Jul 2022. URL https://
proceedings.mlr.press/v162/schirmer22a.html.

Randolf Scholz, Stefan Born, Nghia Duong-Trung, Mariano Nicolas Cruz-Bournazou, and Lars
Schmidt-Thieme. Latent linear ODEs with neural kalman filtering for irregular time series fore-
casting, 2023. URL https://openreview.net/forum?id=a-bD9-0ycs0.

Satya Narayan Shukla and Benjamin Marlin. Heteroscedastic temporal variational autoencoder for
irregularly sampled time series. In International Conference on Learning Representations, 2022.

Phillip Si, Volodymyr Kuleshov, and Allan Bishop. Autoregressive quantile flows for predictive
uncertainty estimation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=z1-I6rOKv1S.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012 Com-
puting in Cardiology, pp. 245–248. IEEE, 2012.

Rhea Sanjay Sukthanker, Zhiwu Huang, Suryansh Kumar, Radu Timofte, and Luc Van Gool. Gener-
ative flows with invertible attentions. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11234–11243, 2022.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based
diffusion models for probabilistic time series imputation. Advances in Neural Information Pro-
cessing Systems, 34:24804–24816, 2021.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/4db73860ecb5533b5a6c710341d5bbec-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4db73860ecb5533b5a6c710341d5bbec-Paper.pdf
https://openreview.net/forum?id=WiGQBFuVRv
https://openreview.net/forum?id=WiGQBFuVRv
https://openreview.net/forum?id=N5hQI_RowVA
https://openreview.net/forum?id=N5hQI_RowVA
https://proceedings.mlr.press/v162/schirmer22a.html
https://proceedings.mlr.press/v162/schirmer22a.html
https://openreview.net/forum?id=a-bD9-0ycs0
https://openreview.net/forum?id=z1-I6rOKv1S

Under review as a conference paper at ICLR 2024

Brian L Trippe and Richard E Turner. Conditional density estimation with bayesian normalising
flows, 2018.

Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. In Amir Globerson and Ricardo Silva (eds.), Pro-
ceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018,
Monterey, California, USA, August 6-10, 2018, pp. 393–402. AUAI Press, 2018. URL http:
//auai.org/uai2018/proceedings/papers/156.pdf.

Cédric Villani. Optimal Transport, volume 338 of Grundlehren der mathematischen Wis-
senschaften. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-540-71049-
3. doi: 10.1007/978-3-540-71050-9. URL http://link.springer.com/10.1007/
978-3-540-71050-9.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/2a084e55c87b1ebcdaad1f62fdbbac8e-Paper.pdf.

Antoine Wehenkel and Gilles Louppe. Graphical normalizing flows. In Arindam Banerjee and Kenji
Fukumizu (eds.), Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine Learning Research, pp. 37–45. PMLR, 13–15
Apr 2021. URL https://proceedings.mlr.press/v130/wehenkel21a.html.

Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods with
conditional normalizing flows, 2019.

Vijaya Krishna Yalavarthi, Kiran Madusudanan, Randolf Scholz, Nourhan Ahmed, Johannes
Burchert, Shayan Javed, Stefan Born, and Lars Schmidt-Thieme. Forecasting irregularly sam-
pled time series using graphs. arXiv preprint arXiv:2305.12932, 2023.

Jiajun Zha, Yiran Zhong, Jing Zhang, Richard Hartley, and Liang Zheng. Invertible attention. CoRR,
abs/2106.09003, 2021. URL https://arxiv.org/abs/2106.09003.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11106–11115, 2021.

13

http://auai.org/uai2018/proceedings/papers/156.pdf
http://auai.org/uai2018/proceedings/papers/156.pdf
http://link.springer.com/10.1007/978-3-540-71050-9
http://link.springer.com/10.1007/978-3-540-71050-9
https://proceedings.neurips.cc/paper_files/paper/2019/file/2a084e55c87b1ebcdaad1f62fdbbac8e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2a084e55c87b1ebcdaad1f62fdbbac8e-Paper.pdf
https://proceedings.mlr.press/v130/wehenkel21a.html
https://arxiv.org/abs/2106.09003

Under review as a conference paper at ICLR 2024

Table 5: Statistics of the datasets used our experiments. Sparsity means the percentage of missing
observations in the time series. Time Sparsity means the percentage of time steps missing after
discretizing the time series.

Name #Samples #Chann. Max. len. Max. Obs. Sparsity Time Sparsity
USHCN 1100 5 290 320 77.9% 84.3%
Physionet’12 12,000 37 48 520 85.7% 4.4%
MIMIC-III 21,000 96 96 710 94.2% 72.9%
MIMIC-IV 18,000 102 710 1340 97.8% 94.9%

A IMPORTANT NOTATIONS

Here, we explain some important notations used in the paper.

• ∣.∣: outer length of a sequence.
• X∶,1∶∣X ∣−1: all columns of X except the last one
• X∶,∣X ∣: last column of X
• π: permutations
• π−1: inverse of permutations π
• xπ: application of permutation π to vector x

• xπ−1 : application of permutation π−1 to vector x, (xπ)π−1 = x

B DATASET DETAILS

Three datasets are used for evaluating the proposed model. Basic statistics of the datasets is provided
in Table 5.

Physionet2012 Silva et al. (2012) encompasses the medical records of 12,000 patients who were
hospitalized in the ICU. During the initial 48 hours of their admission, 37 vital signs were measured.
We follow the protocol used in previous studies Che et al. (2018); Cao et al. (2018); Tashiro et al.
(2021); Yalavarthi et al. (2023). After pre-processing, dataset consists of hourly observations making
a total of up to 48 observations in each series.

MIMIC-III Johnson et al. (2016) constitutes a medical dataset containing data from ICU patients
admitted to Beth Israeli Hospital. 96 different variables from a cohort of 18,000 patients were
observed over an approximately 48-hour period. Following the preprocessing procedures outlined
in (Biloš et al., 2021; De Brouwer et al., 2019; Yalavarthi et al., 2023), we rounded the observations
to 30-minute intervals.

MIMIC-IV Johnson et al. (2021) is an extension of the MIMIC-III database, incorporating data
from around 18,000 patients admitted to the ICU at a tertiary academic medical center in Boston.
Here, 102 variables are monitored. We followed the preprocessing steps of (Biloš et al., 2021;
Yalavarthi et al., 2023) and rounded the observations to 1 minute interval.

USHCN Menne et al. (2015) is a climate dataset consists of the measurements of 5 variables
(daily temperatures, precipitation and snow) observed over 150 years from 1218 meteorological
stations in the USA. We followed the same pre-processing steps given in (De Brouwer et al., 2019;
Yalavarthi et al., 2023) and se- lected a subset of 1114 stations and an observation window of 4 years
(1996-2000).

C IMPLEMENTING CNF+

We detail the CNF+ model that is used for comparison in Section 7.1. First, to the best of our
knowledge, there exists no continuous normalizing flow that can be applied directly to the current

14

Under review as a conference paper at ICLR 2024

problem setup of predicting conditional density of sequences with variable lengths. Hence, inspired
from the CNF proposed by (Biloš & Günnemann, 2021), we implement CNF+ that can be applied
for our case. First, we concatenate the conditioning inputs x and answers y. Used canonical dot
product attention as the vector filed g and [x∥y] as v(0) in eq. 5. The output of the continuous flow
v(1) is considered z.

D INVERTIBILITY OF Areg

We prove that Areg presented in Section 4 is invertible.

Lemma 1. For any K × K matrix A and ϵ > 0, the matrix IK + 1
∥A∥2+ϵA is invertible. Here,

∥A∥2 ∶=max
x≠0

∥Ax∥2
∥x∥ denotes the spectral norm.

Proof. Assume it was not the case. Then there exists a non-zero vector x such that (IK +
1

∥A∥2+ϵA)x = 0. But then (∥A∥2 + ϵ)x = −Ax, and taking the norm on both sides and rearrang-

ing yields ∥A∥2 ≥ ∥Ax∥2
∥x∥2 = ∥A∥2 + ϵ > ∥A∥2, contradiction! Hence the lemma.

E UNCONSTRAINED MONOTONIC NEURAL NETWORKS ARE JUST
CONTINUOUS NORMALIZING FLOWS

Any unconstrained monotonic neural network (Wehenkel & Louppe, 2019) can equivalently be writ-
ten as a standard continuous normalizing flow. To make our deduction of the Shiesh activation
function in section slightly more streamlined, we therefore have presented unconstrained monotonic
neural network as continuous normalizing flows from the beginning.

Lemma 2. Any UMNN function aUMNN defined by

aUMNN(u) ∶= ∫
u

0
f(τ)dτ + b

with a positive function f can be represented as a continuous normalizing flow for a suitable scalar
field g:

aCNF(u) ∶= v(1) with v ∶ R→ R being the solution of
∂v

∂τ
= g(τ, v(τ)), v(0) ∶= u

Proof. Let aUMNN ∶ R → R, u ↦ aUMNN(u) be a UMNN function. The continuous normalizing
flow to be constructed must connect each (0, u) by a flowline to (1, aUMNN(u)) in the product space
[0,1] ×R (see Figure 4). The easiest way to do this is via a line segment, namely the flowline

ϕt(u) = (0, u) + t(1, aUMNN(u) − u) , t ∈ [0,1] .

These lines do not intersect, as for all t ∈ [0,1] the second coordinate is strictly monotounously
increasing with respect to u: ∂ϕt(u)

∂u
= (0, (1 − t) + aUMNN′(u)), (1 − t) + aUMNN′(u) > 0 (by

UMNN).

We now have to write the curves ϕt(u) as integral curves of a time dependent vector field g(t, u) on
[0,1] ×R, or rather the second component of ϕt(u), namely at(u) = u(1 − t) + aUMNN(u)t as the
solution of a differential equation

∂at(u)
∂t

= g(t, at(u)) = g(ϕt(u)) .

Now ∂at(u)
∂t

= aUMNN(u) − u, so we have to set g(ϕt(u)) ∶= aUMNN(u) − u for any t ∈ [0,1] and
u ∈ R. We can explicitly write g(t, u) = aUMNN(a−1t (u)) − a−1t (u). The inverse of the continuously
differentiable function at with positive derivative exists and is continuously differentiable.

15

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0

0u

Figure 4: Demonstrating UMNN flowlines

b = 1 b = 2 b = 3

−2 −1 0 1 2

u

−3

−1

1

3

shiesh(u; b)

−1 1

u

0

4

8

12

16

∂
∂ushiesh(u; b)

Figure 5: Demonstration of Shiesh activation function with varying b.

F Shiesh ACTIVATION FUNCTION

F.1 SOLVING ODE

The differential equation dv(τ)
dτ
= tanh(bv(τ)), v(0) ∶= u can be solved by separation of variables.

However, we can also proceed as follows by multiplying the equation with b cosh(b ⋅ v(τ)):

b cosh(bv(τ))dv(τ)
dτ

= b sinh(bv(τ))

⇔ d sinh(bv(τ))
dτ

= b sinh(bv(τ))

⇔ sinh(bv(τ)) = Cebτ for some C

⇔ v(τ) = 1

b
sinh−1(Cebτ) for some C .

The initial condition yields C = sinh(bu)

F.2 INVERTIBILITY OF Shiesh

A function F ∶ R→ R is invertible if it is strictly monotonically increasing.

Theorem 1. Function Shiesh(u; b) = 1
b
sinh−1(eb sinh(b ⋅ u)) is strictly monotonically increasing

for u ∈ R.

Proof. A function is strictly monotonically increasing if its first derivate is always positive. From
eq. 13, ∂

∂u
Shiesh(u; b) ∶= eb cosh(b⋅u)√

1+(eb⋅τ sinh(b⋅u))2
. We known that eb⋅τ and cosh(u) are always positive

hence ∂
∂u

Shiesh(u; b) is always positive.

16

Under review as a conference paper at ICLR 2024

F.3 IMPLEMENTATION DETAILS

Implementing Shiesh on the entire R will have numerical overflow. Hence, we implement it in
piece-wise manner. In this work, we are interested in b > 0 and show all the derivations for it.

With sinh(x) = ex−e−x
2

and sinh−1(x) = log(x +
√
1 + x2) Shiesh can be rewritten as follows:

Shiesh(u; b) ∶= 1

b
sinh−1 (exp(b) ⋅ sinh(b ⋅ u))

= 1

b
log (exp(b) ⋅ sinh(b ⋅ u) +

√
1 + (exp(b) ⋅ sinh(b ⋅ u))2)

= 1

b
log
⎛
⎝
(exp(b) ⋅ exp(b ⋅ u) − exp(−b ⋅ u)

2
) +
√

1 + (exp(b) ⋅ exp(b ⋅ u) − exp(−b ⋅ u)
2

)
2⎞
⎠

When u≫ 0, Shiesh can be approximated to the following:

Shiesh(u; b) ≈ 1

b
log
⎛
⎝
exp(b) ⋅ (exp(b ⋅ u)

2
) +
√

1 + (exp(b) ⋅ exp(b ⋅ u)
2

)
2⎞
⎠
, exp(−b ⋅ u)→ 0

≈ 1

b
log
⎛
⎝
exp(b) ⋅ exp(b ⋅ u)

2
+ exp(b) ⋅ exp(b ⋅ u)

2

⎞
⎠
,

√
1 + u2 ≈ u for u≫ 0

= 1

b
log
⎛
⎝
exp(b) ⋅ exp(b ⋅ u)

⎞
⎠

= 1

b
log
⎛
⎝
exp(b)

⎞
⎠
+ 1

b
log
⎛
⎝
exp(b ⋅ u)

⎞
⎠

= 1 + u

Now for u≪ 0, we know that sinh−1(u) and sinh(u) are odd functions meaning

sinh−1(−u) = − sinh−1(u) (19)
sinh (−u) = − sinh(u) (20)

Also, we know that composition of two odd functions is an odd function making Shiesh an odd
function. Now,

Shiesh(u; b) ≈ u + 1 for u >> 0
Ô⇒ Shiesh(u; b) ≈ −(−u + 1) for u << 0

Hence, to avoid numerical overflow in implementing Shiesh, we apply it in piece-wise manner as
follows:

Shiesh(u; b) = {
1
b
sinh−1(exp(b) sinh(b ⋅ u)) if ∣x∣ ≤ 5

u + 1 ⋅ sign(u) else

Similarly, its partial derivative is implemented using:

∂

∂u
Shiesh(u; b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

eb cosh(b⋅u)√
1+(eb sinh(b⋅u))2

if ∣x∣ ≤ 5

1 else
(21)

F.4 BOUNDS OF THE DERIVATIVES

Assume DShiesh(u; b) = ∂
∂u

Shiesh(u; b) and b > 0. For larger values of u, from eq. 21,
DShiesh(u; b) ≈ 1. Now we show that for the values u ∈ [−5,5] the maximum value for

17

Under review as a conference paper at ICLR 2024

(a) Pytorch implementation of Shiesh.

(b) Pytorch implementation of Shiesh−1 .

Figure 6: Implementation of Shiesh and its inverse in Pytorch.

DShiesh(u; b). For this we compute D2Shiesh(u; b):

D2Shiesh(u; b) ∶=
beb sinh(bu) (e2b sinh2(bu) − e2b cosh2(bu) + 1)

(e2b sinh2(bu) + 1)3/2

∶= beb sinh(bu)(1 − e2b)
(e2b sinh2(bu) + 1)3/2

In order to compute the maximum of the function DShiesh(u; b), we equate D2Shiesh(u; b) to zero:

beb sinh(bu)(1 − e2b) = 0 ((e2b sinh2(bu) + 1)3/2 > 0)

Ô⇒ sinh(bu) = 0
Ô⇒ u = 0

Now, we compute D3Shiesh(u; b) for u = 0. D3Shiesh(u; b) can be given as:

D3Shiesh(u; b) = −b
2eb(2e2b sinh2(bu) − 1) cosh(bx)(e2b sinh2(bu) − e2b cosh2(bu) + 1)

(e2b sinh2(bu) + 1)5/2
Substituting u = 0, we get

D3Shiesh(0; b) = −b
2eb(2e2b ⋅ 0 − 1) ⋅ 1 ⋅ (e2b ⋅ 0 − e2b ⋅ 1 + 1)

(e2b ⋅ 0 + 1)5/2

= b2eb(1 − e2b) < 0 (b > 0)

Hence, the bounds for the DShiesh(u; b) is {1, eb}.

18

Under review as a conference paper at ICLR 2024

Ground Truth

ProFITi
(100 samples)

ProFITi
(200 samples)

ProFITi
(300 samples)

ProFITi
(400 samples)

ProFITi
(500 samples)

ProFITi
(600 samples)

ProFITi
(700 samples)

ProFITi
(800 samples)

ProFITi
(900 samples)

ProFITi
(1000 samples)

Ground Truth

ProFITi
(100 samples)

ProFITi
(200 samples)

ProFITi
(300 samples)

ProFITi
(400 samples)

ProFITi
(500 samples)

ProFITi
(600 samples)

ProFITi
(700 samples)

ProFITi
(800 samples)

ProFITi
(900 samples)

ProFITi
(1000 samples)

Figure 7: Demonstrating the distributions generated by ProFITi. MC sampling of 1000, sorted them
with increasing likelihood. With increase in samples after sorting, the distribution deviates from
the true distribution. For the images showing distributions of ProFITi, Ground Truth distribution is
shown in the background.

19

Under review as a conference paper at ICLR 2024

G CREATING TOY EXAMPLE FOR CONDITIONAL HETEROSCEDASTIC
DISTRIBUTIONS: FIGURE 1

Here, we show how to generate the toy example used in the Section 1. It is a mixture of two bi-
variate Gaussian distributions. We first generate the conditioning variables xk ∼ N(0,1), k = 1 ∶ 2
(Eq. 22). Then, we use the generated x to create a covariance matrix Σ (Eq. 23). Now, we draw the
samples using the mixture of Gaussians as in Eq 24. We allow large gap between two Gaussians so
that the plots can look separable.

xk ∼ N (0,1), k ∈ 1∶2, xcom ∶= () (22)

Σ(x) ∶= (1 + ∣x1∣ sgn(x1x2)
√
(1 + ∣x1∣)(1 + ∣x2∣) − 1

sgn(x1x2)
√
(1 + ∣x1∣)(1 + ∣x2∣) − 1 1 + ∣x2∣

) (23)

y1∶2 ∼ N ([
5 + x1,1

5 + x2,1
]),Σ(x.,2)) +N ([

−5 + x1,1

−5 + x2,1
]),Σ(x.,2)) (24)

For GPR, we implemented (Dürichen et al., 2015), whereas for Generalized Linear Model, we sim-
ply pass the (x1, x2) to a single layer feed forward neural network and predicted mean and standard
deviation of a normal distribution.

In Figure 7, we demonstrate the density generated by ProFITi. We randomly generated 1000 samples
and sorted them according to their likelihoods. Then, we plot the density of those sorted samples in
the increase order. As expected with all the samples (ProFITi (1000 samples)), samples with least
likelihood will fall far outside the true distribution.

H ADDITIONAL EXPERIMENTS

H.1 ABLATION STUDIES: VARYING MODEL COMPONENTS
Table 6: Varying model compo-
nents. Shown is NJNL. ProFITi-
A+B indicates component A is
removed and B is added.

Model Physionet2012
ProFITi -0.766±0.038
ProFITi-SITA -0.470±0.017
ProFITi-Shiesh 0.285±0.061
ProFITi-SITA-Shiesh 0.372±0.021
ProFITi-Shiesh+PReLU 0.384±0.060
ProFITi-Atri+AiTrans -0.199±0.141
ProFITi-Atri+Areg -0.778±0.016

We show the impact of different ProFITi components using
Physionet’12. We see that the Shiesh activation function pro-
vides a significant improvement as it can help learning non-
Gaussian distributions (compare ProFITi and ProFITi-Shiesh).
Similarly, learning joint distributions (ProFITi) provides bet-
ter NJNL compared to ProFITi-SITA. Learning only Gaussian
marginal distributions (ProFITi-SITA-Shiesh) performs signif-
icantly worse than ProFITi. Using PReLU instead of Shiesh
(ProFITi-Shiesh+PReLU) deteriorates the performance of ProF-
ITi. Using Leaky-ReLU leads to very small Jacobians and also
has a vanishing gradient problem. We see that AiTrans (ProFITi-
Atri + AiTrans) perform bad as it can learn only positive covari-
ances. Finally, we see that ProFITi with either Areg or Atri per-
forms comparably, however, Areg has scalability problems as computing the determinant of the full
attention matrix has computational complexity O(K3), while for the triangular attention matrix
only O(K). Also, it performs worse with increasing forecast lengths (see Section H.3). We tried
Leaky-ReLU instead of PReLU for the study but due to very small slope (0.01) for the negative
values, it suffers from the vanishing gradient problem. Therefore no results are shown.

H.2 EXPERIMENT ON VARYING THE ORDER OF THE CHANNELS

123456

ProFITi-π5
ProFITi-π4
ProFITi-π3ProFITi-π1

ProFITi-π2
ProFITi-πlatent

Critical Difference Diagram

Figure 8: Statistical test on the
results of various channel or-
ders for ProFITi.

In ProFITi, we fix the order of channels to make SITA equivari-
ant. In Figure 8, through critical difference diagram, we demon-
strate that changing the permutation used to fix the channel order
does not provide statistically significant difference in the results.
ProFITi−π1∶5 indicate ProFITi with 5 different pre-fixed permu-
tations on channels while time points are left in causal order. The
order in which we sort channels and time points is a hyperpa-
rameter. To avoid this hyperparamerter and even allow different
sorting criteria for different instances, one can parametrize Pπ as a function of X1∶∣X ∣−1,. (learned

20

Under review as a conference paper at ICLR 2024

Table 7: Varying observation and forecast horizons of Physionet’12 dataset

obs/forc : 36/12hrs obs/forc : 24/24hrs obs/forc : 12/36hrs
NJNL run time (s) NJNL run time (s) NJNL run time (s)

epoch A epoch A epoch A

Neural Flows 0.709±0.483 109.6 - 1.097±0.044 46.6 - 1.436±0.187 45.5 -
GraFITi+ 0.522±0.015 42.9 - 0.594±0.009 43.1 - 0.723±0.004 37.5 -
ProFITi -0.768±0.041 64.8 3.3 -0.355±0.243 66.2 5.2 -0.291±0.415 82.1 8.6
ProFITi-Atri+Areg -0.196±0.096 89.9 7.1 0.085±0.209 142.1 30.1 0.092±0.168 245.8 73.1

sorted triangular invertible self attention). ProFITi−πlatent indicate ProFITi where the permutation
of all the observations (including channels and time points) are set on the latent embedding. Specif-
ically, we pass h through an MLP and selected the permutation by sorting its output. Significant
difference in results is not observed because the ordering in lower triangular matrix can be seen as a
Bayesian network, and the graph with the triangular matrix as adjacency is a full directed graph, and
all of them induce the same factorization. Also, a triangular linear map z ↦ Lz to a distribution can
describe any covariance matrix Σ via a Cholesky decomposition Σ = LT L, as ρ(Lz) = ce− 1

2 z
T LT Lz .

H.3 VARYING OBSERVATION AND FORECAST HORIZONS

In Table 7, we compare ProFITi with two next best models, GraFITi+ and Neural Flows. Our
evaluation involves varying the observation and forecast horizons on the Physionet’12 dataset. Fur-
thermore, we also compare with ProFITi-Atri+Areg, wherein the triangular attention mechanism in
ProFITi is replaced with a regularized attention mechanism.

ProFITi exhibits superior performance compared to both Neural Flows and GraFITi+, demonstrating
a significant advantage. We notice that when we substitute Atri with Areg; this change leads to a
degradation in performance as the forecast sequence length increases. Also, note that the run time
for computing Areg and its determinant is an order of magnitude larger than that of Atri. This is
because, it requires O(K3) complexity to compute spectral radius σ(A) and determinant of Areg,
whereas computing determinant of Atri requires O(K) complexity.

Additionally, we see that as the sequence length increases, there is a corresponding increase in the
variance of the NJNL. This phenomenon can be attributed to the escalating number of target values
(K), which increases with longer sequences. Predicting the joint distribution over a larger set of
target values can introduce noise into the results, thereby amplifying the variance in the outcomes.
Whereas for the GraFIT+ and Neural Flows it is not the case as they predict only marginal distribu-
tions. Further, as expected the NJNL of all the models decrease with increase in sequence lengths
as it is difficult to learn longer horizons compared to short horizons of the forecast.

In Figure 9, we show the qualitative performance of ProFITi. We compare the trajectories predicted
by ProFITi by random sampling of z with the distribution predicted by the GraFITi+ (next best
model).

H.4 EXPERIMENT WITH VARYING ϵ IN EQ. 6 Table 8: Varying ϵ in Eq. 6. Used
Physionet’12 dataset, evaluation
metric NJNL, lower the best.

ϵ Physionet’12
0.001 -0.753±0.046
0.01 -0.698±0.033
0.1 -0.766±0.038
1 -0.443±0.096
10 > 1e7

Here, we show the performance of ProFITi with varying ϵ in
Eq. 6. We varied the ϵ among {0.001,0.01,0.1,1,10}. Results
are presented in Table 8. Other than ϵ, best hyperparameters
used to obtain results for Physionet’12 in Table 3 are used. We
observe that for smaller values of ϵ results does not change sig-
nificantly. But with larger values, ProFITi performs very poorly.
In all our experiments we set ϵ = 0.1.

21

Under review as a conference paper at ICLR 2024

Ground Truth ProFITi GraFITi+

0.0 0.2 0.4 0.6 0.8
Time

4
2
0
2
4

Ob
se

rv
at

io
n

Va
lu

e

0.0 0.2 0.4 0.6 0.8
Time

4
2
0
2
4

Ob
se

rv
at

io
n

Va
lu

e

0.0 0.2 0.4 0.6 0.8
Time

4
2
0
2
4

Ob
se

rv
at

io
n

Va
lu

e

0.2 0.4 0.6 0.8 1.0
Time

4
2
0
2
4

Ob
se

rv
at

io
n

Va
lu

e

(a) Obs/forc: 36/12hrs

0.2 0.4 0.6 0.8 1.0
Time

4
2
0
2
4

Ob
se

rv
at

io
n

Va
lu

e

(b) Obs/forc: 24/24hrs

0.2 0.4 0.6 0.8 1.0
Time

4
2
0
2
4

Ob
se

rv
at

io
n

Va
lu

e

(c) Obs/forc: 12/36hrs

Figure 9: Demonstrating (10) trajectories generated using ProFITi for Physionet’12 dataset.

Table 9: Varying #observations in the time series. Physionet’12 dataset, evaluation metric NJNL.

% missing observations
10% 50% 90%

Neural Flow 0.497±0.042 0.542±0.031 0.677±0.018
GraFITi+ 0.402±0.016 0.481±0.018 0.666±0.012
ProFITi -0.141±0.036 0.077±0.012 0.336±0.033

H.5 EXPERIMENT WITH VARYING NUMBER OF MISSING VALUES

Here, we experimented on Physionet’12 dataset with varying sparsity levels. We randomly removed
x%, x ∈ {10,50,900} of observations in the series. Compared GraFITi+, Neural Flow and ProFITi.
We observe that even with 90% missing values, ProFITi perform significantly better.

H.6 EXPERIMENT WITH VARYING TIME SPARSITY

Table 10: Varying #observation events i.e., time points in the time series. Physionet’12 dataset,
evaluation metric NJNL.

% missing observation events
10% 50% 90%

Neural Flow 0.528±0.037 0.578±0.048 0.858±0.006
GraFITi+ 0.469±0.032 0.520±0.022 0.767±0.004
ProFITi -0.106±0.112 -0.160±0.056 0.128±0.056

We use Physionet’12 dataset to experiment on varying number of observation events i.e. time points.
We randomly removed x%, x ∈ {10,50,900} of observation events in the series and compared
GraFITi+, Neural Flow and ProFITi. Again, we observe that even with 90% of time points missing,
ProFITi perform significantly better.

I HYPERPARAMETERS SEARCHED

Following the original works of the baseline models, we search the following hyperparameters:

HETVAE (Shukla & Marlin, 2022) :

• Latent Dimension: {8, 16, 32, 64, 128}
• Width : {128,256,512}
• # Reference Points: {4, 8, 16, 32}

22

Under review as a conference paper at ICLR 2024

• # Encoder Heads: {1, 2, 4}
• MSE Weight: {1, 5, 10}
• Time Embed. Size: {16, 32, 64, 128}
• Reconstruction Hidden Size: {16, 32, 64, 128}

GRU-ODE-Bayes (De Brouwer et al., 2019) :

• solver: {euler, dopri5}
• # Hidden Layers: {3}
• Hidden Dim.: {64}

Neural Flows (Biloš et al., 2021) :

• Flow Layers: {1, 4}
• # Hidden Layers: {2}
• Hidden Dim.: {64}

CRU (Schirmer et al., 2022) :

• # Basis: {10, 20}
• Bandwidth: {3, 10}
• lsd: {10, 20, 30}

CNF+ :

• # Attention layers: {1,2,3,4}
• # Projection matrix dimension for attention: {32,64,128,256}

GraFITi+ (Yalavarthi et al., 2023) :

• # layers: {2, 3, 4}
• # MAB heads: {1, 2, 4}
• Latent Dim.: {32, 64, 128}

ProFITi (Ours) :

• # Flow layers: {8, 9, 10}
• ϵ: {0.1}
• Latent Dim.: {32, 64, 128, 256}

23

	Introduction
	Literature Review
	Problem Setting & Analysis
	Invariant Conditional Normalizing Flow Models
	A New Activation Function for Normalizing Flows
	Overall ProFITi Model Architecture
	Experiments
	Experiment for Normalized Joint Negative Log-likelihood
	Auxiliary Experiment for Marginals and Point forecast

	Important Notations
	Dataset Details
	Implementing CNF+
	Invertibility of Areg
	Unconstrained monotonic neural networks are just continuous normalizing flows
	Shiesh activation function
	Solving ODE
	Invertibility of Shiesh
	Implementation details
	Bounds of the derivatives

	Creating toy example for conditional heteroscedastic distributions: Figure 1
	Additional experiments
	Ablation studies: Varying model components
	Experiment on varying the order of the channels
	Varying observation and forecast horizons
	Experiment with varying in Eq. 6
	Experiment with varying number of missing values
	Experiment with varying time sparsity

	Hyperparameters searched

