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Abstract

Building a general-purpose agent is a long-standing vision
in the field of artificial intelligence. Existing agents have
made remarkable progress in many domains, yet they still
struggle to complete long-horizon tasks in an open world.
We attribute this to the lack of necessary world knowledge
and multimodal experience that can guide agents through
a variety of long-horizon tasks. In this paper, we propose a
Hybrid Multimodal Memory module to address the above
challenges. It 1) transforms knowledge into Hierarchical
Directed Knowledge Graph that allows agents to explicitly
represent and learn world knowledge, and 2) summarises his-
torical information into Abstracted Multimodal Experience
Pool that provide agents with rich references for in-context
learning. On top of the Hybrid Multimodal Memory module,
a multimodal agent, Optimus-1, is constructed with dedi-
cated Knowledge-guided Planner and Experience-Driven
Reflector, contributing to a better planning and reflection in
the face of long-horizon tasks in Minecraft. Extensive experi-
mental results show that Optimus-1 significantly outperforms
all existing agents on challenging long-horizon task bench-
marks, and exhibits near human-level performance on many
tasks. In addition, we introduce various Multimodal Large
Language Models (MLLMs) as the backbone of Optimus-1.
Experimental results show that Optimus-1 exhibits strong
generalization with the help of the Hybrid Multimodal Mem-
ory module, outperforming the GPT-4V baseline.

1. Introduction
Optimus Prime faces complex tasks alongside humans in
Transformers to protect the peace of the planet. Creating an
agent [13, 43] like Optimus that can perceive, plan, reflect,
and complete long-horizon tasks in an open world has been
a longstanding aspiration in the field of artificial intelligence
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[22, 27, 35, 36, 57]. Early research developed simple pol-
icy through reinforcement learning [7] or imitation learning
[1, 25]. A lot of work [46, 49] have utilized Large Language
Models (LLMs) as action planners for agents, generating ex-
ecutable sub-goal sequences for low-level action controllers.
Further, recent studies [33, 51] employed Multimodal Large
Language Models (MLLMs) [4, 38, 55] as planner and re-
flector. Leveraging the powerful instruction-following and
logical reasoning capabilities of (Multimodal) LLMs [24],
LLM-based agents have achieved remarkable success across
multiple domains [9, 10, 14, 54]. Nevertheless, the abil-
ity of these agents to complete long-horizon tasks still falls
significantly short of human-level performance.

According to relevant studies [28, 41, 45], the human
ability to complete long-horizon tasks in an open world
relies on long-term memory storage, which is divided into
knowledge and experience. The storage and utilization of
knowledge and experience play a crucial role in guiding
human behavior and enabling humans to adapt flexibly to
their environments in order to accomplish long-horizon tasks.
Inspired by this theory, we summarize the challenges faced
by current agents as follows:

Insufficient Exploration of Structured Knowledge:
Structured knowledge, encompassing open world rules, ob-
ject relationships, and interaction methods with the envi-
ronment, is essential for agents to complete complex tasks
[34, 43]. However, MLLMs such as GPT-4V 1 lack suffi-
cient knowledge in Minecraft. Existing agents [1, 7, 25] only
learn dispersed knowledge from video data and are unable
to efficiently represent and learn this structured knowledge,
rendering them incapable of performing complex tasks.

Lack of Multimodal Experience: Humans derive suc-
cessful strategies and lessons from information on historical
experience [8, 32], which assists them in tackling current
complex tasks. In a similar manner, agents can benefit from
in-context learning with experience demonstrations [42, 53].

1https://openai.com/index/gpt-4v-system-card/
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Figure 1. (a) Extraction process of multimodal experience. The frames are filtered through video buffer and image buffer, then MineCLIP
[7] is employed to compute the visual and sub-goal similarities and finally they are stored in Abstracted Multimodal Experience Pool. (b)
Overview of Hierarchical Directed Knowledge Graph. Knowledge is stored as a directed graph, where its nodes represent objects, and
directed edges point to materials that can be crafted by this object.

However, existing agents [33, 46, 50] only consider uni-
modal information, which prevents them from learning from
multimodal experience as humans do.

To address the aforementioned challenges, we propose
Hybrid Multimodal Memory module that consists of
Hierarchical Directed Knowledge Graph (HDKG) and
Abstracted Multimodal Experience Pool (AMEP). For
HDKG, we map the logical relationships between objects
into a directed graph structure, thereby transforming knowl-
edge into high-level semantic representations. HDKG ef-
ficiently provides the agent with the necessary knowledge
for task execution, without requiring any parameter updates.
For AMEP, we dynamically summarize and store the multi-
modal information (e.g., environment, agent state, task plan,
video frames, etc.) from the agent’s task execution process,
ensuring that historical information contains both a global
overview and local details. Different from the method of
directly storing successful cases as experience [51], AMEP
considers both successful and failed cases as references. This
innovative approach of incorporating failure cases into in-
context learning significantly enhances the performance of
the agent.

On top of the Hybrid Multimodal Memory module,
we construct a multimodal composable agent, Optimus-1,

which consists of Knowledge-Guided Planner, Experience-
Driven Reflector, and Action Controller. To enhance the abil-
ity of agents to cope with complex environments and long-
horizon tasks, Knowledge-Guided Planner incorporates vi-
sual observation into the planning phase, leveraging HDKG
to capture the knowledge needed. This allows the agent to
efficiently transform tasks into executable sub-goals. Action
Controller takes the sub-goal and the current observation as
inputs and generates low-level actions, interacting with the
game environment to update the agent’s state. In open-world
complex environments, agents are prone to be erroneous
when performing long-horizon tasks. To address this, we
propose Experience-Driven Reflector, which is periodically
activated to retrieve relevant multimodal experiences from
AMEP. This encourages the agent to reflect on its current
actions and refine the plan.

We validate the performance of Optimus-1 in Minecraft,
a popular open-world game environment. Experimental re-
sults show that Optimus-1 exhibits remarkable performance
on long-horizon tasks, representing up to 30% improvement
over existing agents. Moreover, we introduce various Multi-
modal Large Language Models (MLLMs) as the backbone
of Optimus-1. Experimental results show that Optimus-1 has
a 2 to 6 times performance improvement with the help of Hy-



brid Multimodal Memory, outperforming powerful GPT-4V
baseline on lots of long-horizon tasks. Additionally, we veri-
fied that the plug-and-play Hybrid Multimodal Memory can
drive Optimus-1 to incrementally improve its performance in
a self-evolution manner. The extensive experimental results
show that Optimus-1 makes a major step toward a general
agent with a human-like level of performance. Main contri-
butions of our paper:
• We propose Hybrid Multimodal Memory module which

is composed of HDKG and AMEP. HDKG helps the agent
make the planning of long-horizon tasks efficiently. AMEP
provides refined historical experience and guides the agent
to reason about the current situation state effectively.

• On top of the Hybrid Multimodal Memory module, we
construct Optimus-1, which consists of Knowledge-
Guided Planner, Experience-Driven Reflector, and Ac-
tion Controller. Optimus-1 outperforms all baseline agents
on long-horizon task benchmarks, and exhibits capabilities
close to the level of human players.

• Driven by Hybrid Multimodal Memory, various MLLM-
based Optimus-1 have demonstrated 2 to 6 times perfor-
mance improvement, demonstrating the generalization of
Hybrid Multimodal Memory.

2. Optimus-1
In this section, we first elaborate on how to implement the
Hybrid Multimodal Memory in Sec 2.1. As a core innova-
tion, it plays a crucial role in enabling Optimus-1 to execute
long-horizon tasks. Next, we give an overview of Optimus-1
framework (Sec 2.2), which consists of Hybrid Multimodal
Memory, Knowledge-Guided Planner, Experience-Driven
Reflector, and Action Controller. Finally, we introduce a
non-parametric learning approach to expand the hybrid mul-
timodal memory (Sec 2.3), thereby enhancing the success
rate of task execution for Optimus-1.

2.1. Hybrid Multimodal Memory
In order to endow agent with a long-term memory storage
mechanism [28, 45], we propose the Hybrid Multimodal
Memory module, which consists of Abstracted Multimodal
Experience Pool (AMEP) and Hierarchical Directed Knowl-
edge Graph (HDKG).

2.1.1. Abstracted Multimodal Experience Pool
Relevant studies [15, 17, 23, 29] highlight the importance of
historical information for agents completing long-horizon
tasks. Minedojo [7] and Voyager [46] employed unimodal
storage of historical information. Jarvis-1 [51] used a mul-
timodal experience mechanism that stores task planning
and visual information without summarization, posing chal-
lenges to storage capacity and retrieval speed. To address
this issue, we propose AMEP, which aims to dynamically
summarize all multimodal information during task execu-

tion. It preserves the integrity of long-horizon data while
enhancing storage and retrieval efficiency.

Specifically, as depicted in Figure 1, to conduct the static
visual information abstraction, the video stream captured
by Optimus-1 during task execution is first input to a video
buffer, filtering the stream at a fixed frequency of 1 frame
per second. Based on the filtered video frames, to further
perform a dynamic visual information abstraction, these
frames are then fed into an image buffer with a window size
of 16, where the image similarity is dynamically computed
and final abstracted frames are adaptively updated. To align
such abstracted visual information with the corresponding
textual sub-goal, we then utilize MineCLIP [7], a pre-trained
video-text alignment model, to calculate their multimodal
correlation. When this correlation exceeds a threshold, the
corresponding image buffer and textual sub-goal are saved
as multimodal experience into a pool. Finally, we further
incorporate environment information, agent initial state, and
plan generated by Knowledge-Guided Planner, into such a
pool, which forms the AMEP. In this way, we consider the
multimodal information of each sub-goal, and summarise it
to finally compose the multimodal experience of the given
task.

2.1.2. Hierarchical Directed Knowledge Graph
In Minecraft, mining and crafting represent a complex knowl-
edge network crucial for effective task planning. For in-
stance, crafting a diamond sword requires two diamonds

and one wooden stick , while mining diamonds requires
an iron pickaxe , which involving further materials and
steps. Such knowledge is essential for an agent’s ability to
perform long-horizon complex tasks. Instead of implicit
learning through fine-tuning [33, 59], we propose HDKG,
which transforms knowledge into a graph representation. It
enables the agent to perform explicit learning by retrieving
information from the knowledge graph.

As shown in the Figure 1, we transform knowledge into
a graph D(V, E), where nodes set V represent objects, and
directed edges set E point to nodes that can be crafted by this
object. An edge e ∈ E in the D can be represented as e =
(u, v), where u, v ∈ V . The directed graph efficiently stores
and updates knowledge. For a given object x, retrieving
the corresponding node allows extraction of a sub-graph
Dj(Vj , Ej) ∈ D, where nodes set Vj and edges set Ej can
be formulated as:

Vj = {v ∈ V | x} (1)

Ej = {e = (u, v) ∈ V | u ∈ Vj ∪ v ∈ Vj} , (2)

Then by topological sorting, we can get all the materials
and their relationships needed to complete the task. This
knowledge is provided to the Knowledge-Guided Planner
as a way to generate a more reasonable sequence of sub-
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Figure 2. Overview framework of our Optimus-1. Optimus-1 consists of Knowledge-Guided Planner, Experience-Driven Reflector, Action
Controller, and Hybrid Multimodal Memory architecture. Given the task “craft stone sword”, Optimus-1 incorporates the knowledge from
HDKG into Knowledge-Guided Planning, then Action Controller generates low-level actions. Experience-Driven Reflector is periodically
activated to introduce multimodal experience from AMEP to determine if the current task can be executed successfully. If not, it will ask the
Knowledge-Guided Planner to refine the plan.

goals. With HDKG, we can significantly enhance the world
knowledge of the agent in a train-free manner.

2.2. Optimus-1: Framework

Relevant studies indicate that the human brain is essential
for planning and reflection, while the cerebellum controls
low-level actions, both crucial for complex tasks [39, 40].
Inspired by this, we divide the structure of Optimus-1 into
Knowledge-Guided Planner, Experience-Driven Reflector,
and Action Controller. In a given game environment with
a long-horizon task, the Knowledge-Guided Planner senses
the environment, retrieves knowledge from HDKG, and de-
composes the task into executable sub-goals. The action
controller then sequentially executes these sub-goals. Dur-
ing execution, the Experience-Driven Reflector is activated
periodically, leveraging historical experience from AMEP to
assess whether Optimus-1 can complete the current sub-goal.
If not, it instructs the Knowledge-Guided Planner to revise

its plan. Through iterative interaction with the environment,
Optimus-1 ultimately completes the task.

Knowledge-Guided Planner. Open-world environments
vary greatly, affecting task execution. Previous approaches
[50] using LLMs for task planning failed to consider the
environment, leading to the failure of tasks. For example, an
agent in a cave aims to catch fish. It lacks visual information
to plan conditions on the current situation, such as “leave
the cave and find a river”. Therefore, we integrate environ-
mental information into the planning stage. Unlike Jarvis-1
[51] and MP5 [33], which convert observation to textual
descriptions, Optimus-1 directly employs observation as vi-
sual conditions to generate environment-related plans, i.e.,
sub-goal sequences. This results in more comprehensive and
reasonable planning. More importantly, Knowledge-Guided
Planner retrieves the knowledge needed to complete the task
from HDKG, allowing task planning to be done once, rather
than generating the next step in each iteration. Given the



task t, observation o, the sub-goals sequence g1, g2, g3, ...,
gn can be formulated as:

g1, g2, g3, ..., gn = pθ(o, t, pη(t)), (3)

where n is the number of sub-goals, pη denotes sub-graph
retrieved from HDKG, pθ denotes MLLM. In this paper, we
employ OpenAI’s GPT-4V as Knowledge-Guided Planner
and Experience-Driven Reflector. We also evaluate other
alternatives of GPT-4V, such as open-source models like
Deepseek-VL [26] and InternLM-XComposer2-VL [6] in
Section 3.4.
Action Controller. It takes the sub-goal and the current
observation as inputs and then generates low-level actions,
which are control signals for the mouse and keyboard. Thus,
it can interact with the game environment to update the
agent’s state and the observation. The formulation is as
follows:

ak = pπ(o, gi), (4)

where ak denotes low-level action at time k, pπ denotes ac-
tion controller. Unlike generating code [33, 46, 49], generat-
ing control actions for the mouse and keyboard [1, 3, 25, 51]
more closely resembles human behavior. In this paper, we
employ STEVE-1 [25] as our Action Controller.
Experience-Driven Reflector. The sub-goals generated by
Knowledge-Guided Planner are interdependent. The failure
of any sub-goal halts the execution of subsequent ones, lead-
ing to overall task failure. Therefore, a reflection module is
essential to identify and rectify errors promptly. During task
execution, the Experience-Driven Reflector activates at reg-
ular intervals, retrieving historical experience from AMEP,
and then analyzing the current state of Optimus-1. The re-
flection results of Optimus-1 are categorized as COMPLETE,
CONTINUE, or REPLAN. COMPLETE indicates successful
execution, prompting the action controller to proceed to the
next sub-goal. CONTINUE signifies ongoing execution with-
out additional feedback. REPLAN denotes failure, requiring
the Knowledge-Guided Planner to revise the plan. The re-
flection r generated by Experience-Driven Reflector can be
formulated as:

r = pθ(o, gi, pϵ(t)), (5)

where pϵ denotes multimodal experience retrieved from
AMEP. Experimental results in Section 3.3 demonstrate that
the Experience-Driven Reflector significantly enhances the
success rate of long-horizon tasks.

During task execution, even in cases where task failure
necessitates REPLAN, multimodal experiences are stored
in AMEP. Thus, during the reflection phase, Optimus-1 can
retrieve the most relevant cases from each of the three scenar-
ios COMPLETE, CONTINUE, and REPLAN from AMEP as
references. Experimental Results in Section 3.3 demonstrate
the effectiveness of this innovative method of incorporating
failure cases into in-context learning.

2.3. Non-parametric Learning of Hybrid Multi-
modal Memory

To implement the Hybrid Multimodal Memory and enhance
Optimus-1’s capacity, we propose a non-parametric learning
method named “free exploration-teacher guidance”. In the
free exploration phase, Optimus-1’s equipment and tasks are
randomly initialized, and it explores random environments,
acquiring world knowledge through environmental feedback.
For example, it learns that “a stone sword can be crafted
with a wooden stick and two cobblestones ”, storing
this in the HDKG. Additionally, successful and failed cases
are stored in the AMEP, providing reference experience for
the reflection phase. We initialize multiple Optimus-1, and
they share the same HDKG and AMEP. Thus the memory is
filled up efficiently. After free exploration, Optimus-1 has
basic world knowledge and multimodal experience. In the
teacher guidance phase, Optimus-1 needs to learn a small
number of long-horizon tasks based on extra knowledge. For
example, it learns “a diamond sword is obtained by a stick

and two diamonds ” from the teacher, then perform the
task “craft diamond sword”. During the teacher guidance
phase, Optimus-1’s memory is further expanded and it gains
the experience of executing complete long-horizon tasks.

Unlike fine-tuning, this method enhances Optimus-1 in-
crementally without updating parameters, in a self-evolution
manner. Starting with an empty Hybrid Multimodal Mem-
ory, Optimus-1 iterates between “free exploration-teacher
guidance” learning and unseen task inference. With each
iteration, its memory capacity grows, enabling mastery of
tasks from easy to hard.

3. Experiments

3.1. Experiments Setting
Environment. To ensure realistic gameplay like human
players, we employ MineRL [11] with Minecraft 1.16.5
as our simulation environment. The agent operates at a
fixed speed of 20 frames per second and only interacts with
the environment via low-level action control signals of the
mouse and keyboard.
Benchmark. We constructed a benchmark of 67 tasks to
evaluate the Optimus-1’s ability to complete long-horizon
tasks. As illustrated in Appendix Table 4, we divide the 67
Minecraft tasks into 7 groups according to recommended
categories in Minecraft.
Baseline. We compare Optimus-1 with various agents, in-
cluding GPT-3.5 2, GPT-4V, DEPS [50], and Jarvis-1 [51] on
the challenging long-horizon tasks benchmark. In addition,
we employed 10 volunteers to perform the same task on
the benchmark, and their average performance served as a
human-level baseline. Note that we initialize Optimus-1 with

2https://openai.com/research/gpt-3.5



Table 1. Main Result of Optimus-1 on long-horizon tasks benchmark. We report the average success rate (SR), average number of steps
(AS), and average time (AT) on each task group, the results of each task can be found in the Appendix D. Lower AS and AT metrics mean
that the agent is more efficient at completing the task, while +∞ indicates that the agent is unable to complete the task. Overall represents
the average result on the five groups of Iron, Gold, Diamond, Redstone, and Armor.

Group Metric GPT-3.5 GPT-4V DEPS Jarvis-1 Optimus-1 Human-level

Wood

SR ↑ 40.16 41.42 77.01 93.76 98.60 100.00
AT ↓ 56.39 55.15 85.53 67.76 47.09 31.08
AS ↓ 1127.78 1103.04 1710.61 1355.25 841.94 621.59

Stone

SR ↑ 20.40 20.89 48.52 89.20 92.35 100.00
AT ↓ 135.71 132.77 138.71 141.50 129.94 80.85
AS ↓ 2714.21 2655.47 2574.30 2830.05 2518.88 1617.00

Iron

SR ↑ 0.00 0.00 16.37 36.15 46.69 86.00
AT ↓ +∞ +∞ 944.61 722.78 651.33 434.38
AS ↓ +∞ +∞ 8892.24 8455.51 6017.85 5687.60

Gold

SR ↑ 0.00 0.00 0.00 7.20 8.51 17.31
AT ↓ +∞ +∞ +∞ 787.37 726.35 557.08
AS ↓ +∞ +∞ +∞ 15747.13 15527.07 13141.60

Diamond

SR ↑ 0.00 0.00 0.60 8.98 11.61 16.98
AT ↓ +∞ +∞ 1296.96 1255.06 1150.98 744.82
AS ↓ +∞ +∞ 23939.30 25101.25 23019.64 16237.54

Redstone

SR ↑ 0.00 0.00 0.00 16.31 25.02 33.27
AT ↓ +∞ +∞ +∞ 1070.42 932.50 617.89
AS ↓ +∞ +∞ +∞ 17408.40 12709.99 12357.00

Armor

SR ↑ 0.00 0.00 9.98 15.82 19.47 28.48
AT ↓ +∞ +∞ 997.59 924.60 824.53 551.30
AS ↓ +∞ +∞ 17951.95 16492.96 16350.56 11026.00

Overall SR ↑ 0.00 0.00 5.39 16.89 22.26 36.41

an empty inventory, while DEPS [50] and Jarvis-1 [51] have
tools in their initial state. This makes it more challenging for
Optimus-1 to perform the same tasks.
Evaluation Metrics. The agent always starts in survival
mode, with an empty inventory. We conducted at least 30
times for each task using different world seeds and reported
the average success rate (SR) to ensure fair and thorough
evaluation. Additionally, we add the average steps (AS) and
average time (AT) as evaluation metrics.

3.2. Experimental Results
The overall experimental results on benchmark are shown in
Table 1, see SR for each task in Appendix D. Optimus-1 has

a success rate near 100% on the Wood Group . Compared
with Jarvis-1, Optimus-1 has 29.28% and 53.40% improve-
ment on the Diamond Group and Redstone Group , re-
spectively. Optimus-1 achieves the best performance and the
shortest elapsed time among all task groups. It reveals the ef-
fectiveness and efficiency of our proposed Optimus-1 frame-
work. Moreover, compared with all baselines, Optimus-1
performance was closer (average 5.37% improvement) to
human levels on long-horizon task groups.

3.3. Ablation Study

We conduct extensive ablation experiments on 18 tasks, ex-
periment setting can be found in Appendix Table 5. As



Table 2. Ablation study results. We report average success rate (SR)
on each task group. P., R., K., E. represent Planning, Reflection,
Knowledge, and Experience, respectively.

Ablation Setting Task Group

P. R. K. E. Wood Stone Iron Gold Diamond

14.29 0.00 0.00 0.00 0.00

! 42.95 25.67 0.00 0.00 0.00

! ! 55.00 47.37 18.11 2.08 1.11

! ! ! 73.53 64.20 24.19 3.08 1.86

! ! ! 92.37 69.63 38.33 3.49 2.42

! ! ! ! 97.49 94.26 53.33 11.54 9.59

Table 3. Ablation study on AMEP. We report the average success
rate (SR) on each task group. Zero, Suc., and Fail. represent
retrieving from AMEP without getting the case, getting the success
case, and getting the failure case, respectively.

Ablation Setting Task Group

Zero Suc. Fai. Wood Stone Iron Gold Diamond

! 92.00 79.26 36.32 4.25 3.25

! 95.00 84.29 46.98 9.36 7.89

! 95.00 81.10 45.47 7.50 6.39

! ! 97.49 94.26 53.33 11.54 9.59

shown in Table 2, we first remove Knowledge-Driven Plan-
ner and Experience-Driven Reflector, the performance of
Optimus-1 on all task groups drops dramatically. It demon-
strates the necessity of Knowledge-Guided Planner and
Experience-Driven Reflector modules for performing long-
horizon tasks. As for Hybrid Multimodal Memory, we re-
move HDKG from Optimus-1. Without the help of world
knowledge, the performance of Optimus-1 decreased by an
average of 20% across all task groups. We then removed
AMEP, this resulted in the performance of Optimus-1 de-
creased by an average of 12%. Finally, we performed abla-
tion experiments on the way of retrieving cases from AMEP.
As shown in Table 3, without retrieving cases from AMEP,
the success rate shows an average of 10% decrease across
all groups. It reveals that this reflection mechanism, which
considers both success and failure cases, has a significant
impact on the performance of Optimus-1.

3.4. Generalization Ability
In this section, we explore an interesting issue: whether
generic MLLMs can effectively perform various long-
horizon complex tasks in Minecraft using Hybrid Multi-
modal Memory. As shown in Figure 3, We employ Deepseek-
VL [26] and InternLM-XComposer2-VL [6] as Knowledge-
Guided Planner and Experience-Driven Reflector. The ex-
perimental results show that the original MLLM has low
performance on long-horizon tasks due to the lack of knowl-
edge and experience of Minecraft. With the assistance of
Hybrid Multimodal Memory, the performance of MLLMs
has improved by 2 to 6 times across various task groups,
outperforming the GPT-4V baseline. This encouraging re-
sult demonstrates the generalization of the proposed Hybrid
Multimodal Memory.

3.5. Self-Evolution via Hybrid Multimodal Memory
As shown in Section 2.3, we randomly initialize the Hybrid
Multimodal Memory of Optimus-1, then update it multi-
ple times by using the “free exploration-teacher guidance”
learning method. We set the epoch to 4, and the number of

learning tasks to 160. At each period, Optimus-1 performs
free exploration on 150 tasks and teacher guidance learning
on the remaining 10 tasks, we then evaluate Optimus-1’s
learning ability on the task groups same as ablation study.
Experimental results are shown in Figure 3. It reveals that
Optimus-1 keeps getting stronger through the continuous
expansion of memory during the learning process of mul-
tiple periods. Moreover, it demonstrates that MLLM with
Hybrid Multimodal Memory can incarnate an expert agent
in a self-evolution manner [44].

4. Related Work

4.1. Agents in Minecraft

Earlier work [2, 3, 30, 56] introduced policy models for
agents to perform simple tasks in Minecraft. MineCLIP [7]
used text-video data to train a contrastive video-language
model as a reward model for policy, while VPT [1] pre-
trained on unlabelled videos but lacked instruction as input.
Building on VPT and MineCLIP, STEVE-1 [25] added text
input to generate low-level action sequences from human
instructions and images. However, these agents struggle with
complex tasks due to limitations in instruction comprehen-
sion and planning. Recent work [46, 49] incorporated LLMs
as planning and reflection modules, but lacked visual infor-
mation integration for adaptive planning. MP5 [33], Mine-
Dreamer [59], and Jarvis-1 [51] enhanced situation-aware
planning by obtaining textual descriptions of visual informa-
tion, yet lacked detailed visual data. Optimus-1 addresses
these issues by directly using observation as situation-aware
conditions in the planning phase, enabling more rational, vi-
sually informed planning. Additionally, unlike other agents
requiring multiple queries for task refinement, Optimus-1
generates a complete and effective plan in one step with
the help of HDKG. This makes Optimus-1 planning more
efficient.
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Figure 3. (a) With the help of Hybrid Multimodal Memory, various MLLM-based Optimus-1 have demonstrated 2 to 6 times performance
improvement. (b) Illustration of the change in Optimus-1 success rate on the unseen task over 4 epochs.

4.2. Memory in Agents

In the agent-environment interaction process, memory is
key to achieving experience accumulation [21], environment
exploration [16], and knowledge abstraction [58]. There
are two forms to represent memory content in LLM-based
agents: textual form [15, 17, 31] and parametric form
[5, 20, 29, 47]. In textual form, the information is explicitly
retained and recalled by natural languages. In parametric
form, the memory information [37] is encoded into param-
eters and implicitly influences the agent’s actions. Recent
work [12, 48, 52] has explored the long-term visual informa-
tion storage [18, 19] and summarisation in MLLM. Our pro-
posed hybrid multimodal memory module is plug-and-play
and can provide world knowledge and multimodal experi-
ence for Optimus-1 efficiently.

5. Conclusion

In this paper, we propose Hybrid Multimodal Memory mod-
ule, which consists of two parts: HDKG and AMEP. HDKG
provides the necessary world knowledge for the planning
phase of the agent, and AMEP provides the refined histor-
ical experience for the reflection phase of the agent. On
top of the Hybrid Multimodal Memory, we construct the
multimodal composable agent, Optimus-1, in Minecraft. Ex-
tensive experimental results show that Optimus-1 outper-
forms all existing agents on long-horizon tasks. Moreover,
we validate that general-purpose MLLMs, based on Hy-
brid Multimodal Memory and without additional parameter
updates, can exceed the powerful GPT-4V baseline. The
extensive experimental results show that Optimus-1 makes a
major step toward a general agent with a human-like level of
performance.
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A. Limitation and Future Work
In the framework of Optimus-1, we are dedicated to leverage
proposed Hierarchical Directed Knowledge Graph and Ab-
stracted Multimodal Experience Pool can be used to enhance
the agent’s ability to plan and reflect. For Action Controller,
we directly introduce STEVE-1 [25] as a generator of low-
level actions. However, limited by STEVE-1’s ability to
follow instructions and execute complex actions, Optimus-1
is weak in completing challenging tasks such as “beat ender
dragon” and “build a house”. Therefore, a potential future
research direction is to enhance the instruction following and
action generation capabilities of action controller.

In addition, most of the work, including Optimus-1, uti-
lize a multimodal large language model for planning and
reflection, which then drives an action controller to perform
the task. Building an end-to-end vision-language-action
agent will be future work.

B. Broader Impact
With the increasing capability level of Multimodal Large
Language Models (MLLM) comes many potential benefits
and also risks. On the positive side, we anticipate that the
techniques that used to create Optimus-1 could be applied
to the creation of helpful agents in robotics, video games,
and the web. This plug-and-play architecture that we have
created can be quickly adapted to different MLLMs, and the
proposed methods also provide a viable solution for other ap-
plication areas in the agent domain. However, on the negative
side, it is imperative to acknowledge the inherent stochas-
tic nature of MLLMs in text generation. If not addressed
carefully, this could lead to devastating consequences for
society. Prior to deploying MLLMs in conjunction with the
Hybrid Multimodal Memory methodology, a comprehensive
assessment of their potential risks must be undertaken. We
hope that while the stakes are low, works such as ours can
improve access to safety research on instruction-following
models in multimodal agents domains.

C. Benchmark Suite
C.1. Benchmark
We constructed a benchmark of 67 tasks to evaluate Optimus-
1’s ability to complete long-horizon tasks in Minecraft. Ac-
cording to recommended categories in Minecraft, we have
classified these tasks into 7 groups: Wood , Stone , Iron

, Gold , Diamond , Redstone , Armor . The statistics
for benchmark are shown in Table 4. Due to the varying com-
plexity of these tasks, we adopt different maximum gameplay
steps (Max. Steps) for each task. The maximum steps are
determined by the average steps that human players need
to complete the task. Due to the randomness of Minecraft,
the world and initial spawn point of the agent could vary a

lot. In our benchmark setting, We initialize the agent with
an empty inventory, which makes it necessary for the agent
to complete a series of sub-goals (mining materials, crafting
tools) in order to perform any tasks. This makes every task
challenging, even for human players.

Note that Diamonds are a very rare item that only
spawns in levels 2 to 16 and have a 0.0846% chance of
spawning in Minecraft 1.16.5. Diamonds are usually found
near level 9, or in man-made or natural mines no higher
than level 16. To mitigate the significant impact of diamond
generation probability on the agent’s likelihood of success-
fully completing the task, we have adjusted the diamond
generation probability to 20%, spawns in levels 2 to 16.
This setting applies to human players as well.

In the ablation study, we select the subset of our bench-
mark as the evaluation set (shown in Table 5). The environ-
ment setting is the same as the benchmark.

C.2. Baselines
Existing Baseline. On the one hand, we employ GPT-3.5
and GPT-4V as baseline, which are evaluated without inte-
grating hybrid multimodal memory modules. During the
planning phase, they generate a plan for the action controller
based on task prompt (and observation). During the reflec-
tion phase, they generate reflection results in a zero-shot
manner. On the other hand, we compare existing SOTA
Agents [50, 51] in Minecraft.
Human-level Baseline. To better demonstrate agent’s per-
formance level in Minecraft, we hired 10 volunteers to play
the game as a human-level baseline. The volunteers played
the game with the same environment and settings, and every
volunteer asked to perform the each task on the benchmark
10 times. Ultimately, we used the average scores of 10
volunteers as the human-level baseline. The results of the
human-level baseline are shown in Table 1. To ensure the va-
lidity of the experiment, we ensured that each volunteer had
at least 20 hours of Minecraft gameplay before conducting
the experiment. For each volunteer, we pay $25 as reward.

D. Experimental Results
We list the results of each task on the benchmark below,
with details including task name, sub-goal numbers, success
rate (SR), average number of steps (AS), average time (AT),
and eval times. All tasks are evaluated in Minecraft 1.16.5
Survival Mode. Note that each time Optimus-1 performs
a task, we initial it with an empty initial inventory and a
random start point. This makes it challenging for Optimus-1
to perform each task.

Experimental results show that Optimus-1’s average task
completion step (AS) is significantly lower than other base-
lines.



Table 4. Setting of 7 groups encompassing 67 Minecraft long-horizon tasks.

Group Task Num. Example Task Max. Steps Initial Inventory Avg. Sub-goal Num.

Wooden 10 Craft a wooden axe 3600 Empty 5

Stone 9 Craft one stone pickaxe 7200 Empty 9

Iron 16 Craft a iron pickaxe 12000 Empty 13

Golden 6 Mine gold and smelt into golden ingot 36000 Empty 16

Redstone 6 Craft a piston 36000 Empty 17

Diamond 7 Dig down and mine a diamond 36000 Empty 15

Armor 13 Craft one iron helmet 36000 Empty 16

Table 5. We evaluate Optimus-1 on these tasks in ablation study which are the subset of our benchmark.

Group Task Sub-Goal Num. Max. Step Initial Inventory

Wooden
Craft a wooden axe 5 3600 Empty

Craft a crafting table 3 3600 Empty

Stone
Craft a stone pickaxe 10 7200 Empty

Craft a stone axe 10 7200 Empty
Craft a furnace 9 7200 Empty

Iron

Craft a iron pickaxe 13 12000 Empty
Craft a bucket 13 12000 Empty

Craft a rail 13 12000 Empty
Craft a iron sword 12 12000 Empty

Craft a shears 12 12000 Empty

Golden
Craft a golden pickaxe 16 36000 Empty

Craft a golden axe 16 36000 Empty
Smelt a golden ingot 15 36000 Empty

Diamond

Craft a diamond pickaxe 15 36000 Empty
Craft a diamond axe 16 36000 Empty
Craft a diamond hoe 15 36000 Empty

Craft a diamond sword 15 36000 Empty
Dig down and mine a diamond 15 36000 Empty



Table 6. The results of Optimus-1 on various tasks in the Wood group. SR, AS, AT denote success rate, average number of steps, and average
time (seconds), respectively.

Task Sub-Goal Num. SR AS AT(s) Eval Times
Craft a wooden shovel 6 95.00 995.58 49.78 40

Craft a wooden pickaxe 5 100.00 1153.91 57.70 30
Craft a wooden axe 5 96.67 1010.28 50.51 30
Craft a wooden hoe 5 100.00 1042.80 52.14 30

Craft a stick 4 97.14 372.97 18.65 70
Craft a crafting table 3 98.55 448.63 22.43 69

Craft a wooden sword 5 100.00 1214.90 60.74 30
Craft a chest 4 100.00 573.80 28.69 30
Craft a bowl 4 100.00 744.30 37.21 30

Craft a ladder 4 100.00 820.30 41.02 30

Table 7. The results of Optimus-1 on various tasks in the Stone group. SR, AS, AT denote success rate, average number of steps, and average
time (seconds), respectively.

Task Sub-Goal Num. SR AS AT(s) Eval Times
Craft a stone shovel 8 90.32 2221.00 111.05 31

Craft a stone pickaxe 10 96.77 2310.09 115.50 31
Craft a stone axe 10 96.88 2112.59 105.63 32
Craft a stone hoe 8 94.64 2684.60 134.23 56
Craft a charcoal 9 88.57 3083.35 154.17 35
Craft a smoker 9 90.24 3118.89 155.94 41

Craft a stone sword 8 94.29 2067.92 103.40 35
Craft a furnace 9 93.75 2842.71 142.14 32
Craft a torch 8 85.71 2109.00 105.45 95



Table 8. The results of Optimus-1 on various tasks in the Iron group. SR, AS, AT denote success rate, average number of steps, and average
time (seconds), respectively.

Task Sub Goal Num. SR AS AT(s) Eval Times
Craft an iron shovel 13 54.79 5677.35 637.81 73

Craft an iron pickaxe 13 59.42 6157.39 591.81 69
Craft an iron axe 13 54.29 6026.26 676.97 70
Craft an iron hoe 13 52.70 6650.97 743.82 74

Craft a bucket 13 54.29 6124.61 591.35 70
Craft a hopper 14 46.67 7242.14 710.17 60

Craft a rail 13 42.19 6713.07 754.48 64
Craft an iron sword 12 57.14 5625.49 633.91 70

Craft a shears 12 53.62 5058.00 570.35 69
Craft a smithing table 12 44.93 5317.39 594.81 69
Craft a tripwire hook 13 48.57 4968.74 562.66 70

Craft a chain 13 44.93 5764.42 645.33 69
Craft an iron bars 12 42.00 6508.43 723.13 50

Craft an iron nugget 12 30.99 4697.23 525.29 71
Craft a blast furnace 14 25.71 7760.67 711.05 35
Craft a stonecutter 13 34.78 5993.38 675.52 46

Table 9. The results of Optimus-1 on various tasks in the Gold group. SR, AS, AT denote success rate, average number of steps, and average
time (seconds), respectively.

Task Sub Goal Num. SR AS AT(s) Eval Times
Craft a golden shovel 16 9.80 13734.75 686.74 51

Craft a golden pickaxe 16 13.75 9672.00 783.60 80
Craft a golden axe 16 4.44 10158.75 707.94 45
Craft a golden hoe 16 3.33 13120.50 756.03 27

Craft a golden sword 16 3.33 9792.00 789.60 26
Smelt and craft a golden ingot 15 16.42 9630.27 681.51 67



Table 10. The results of Optimus-1 on various tasks in the Diamond group. SR, AS, AT denote success rate, average number of steps, and
average time (seconds), respectively.

Task Sub Goal Num. SR AS AT(s) Eval Times
Craft a diamond shovel 15 18.75 23696.75 1184.84 64

Craft a diamond pickaxe 15 15.71 32189.50 1609.46 70
Craft a diamond axe 16 4.00 21920.50 1096.03 75
Craft a diamond hoe 15 4.61 24031.00 1201.55 65

Craft a diamond sword 15 14.52 27555.50 1377.78 62
Dig down and mine a diamond 15 9.09 20782.13 1039.11 64

Craft a jukebox 15 14.58 25056.00 1252.80 48

Table 11. The results of Optimus-1 on various tasks in the Redstone group. SR, AS, AT denote success rate, average number of steps, and
average time (seconds), respectively.

Language Instruction Sub-Goal Num. SR AS AT(s) Eval Times
Craft a piston 16 28.57 6457.10 822.85 35

Craft a redstone torch 16 29.63 6787.87 939.39 27
Craft an activator rail 18 15.68 8685.62 934.28 51

Craft a compass 23 15.00 14908.67 845.43 40
Craft a dropper 16 37.50 7272.80 1063.64 40

Craft a note block 16 24.32 6727.89 936.39 37



Table 12. The results of Optimus-1 on various tasks in the Armor group. SR, AS, AT denote success rate, average number of steps, and
average time (seconds), respectively.

Task Sub Goal Num. SR AS AT(s) Eval Times
Craft shield 14 43.33 7229.00 861.45 30

Craft iron chestplate 14 47.22 7230.24 851.51 36
Craft iron boots 14 23.81 6597.33 729.87 42

Craft iron leggings 14 6.67 9279.00 763.95 30
Craft iron helmet 14 58.14 6287.11 814.36 43

Craft diamond helmet 17 2.08 7342.00 867.10 48
Craft diamond chestplate 17 2.70 7552.00 777.60 37
Craft diamond leggings 17 9.68 7664.67 883.23 31

Craft diamond boots 17 16.67 10065.60 803.28 30
Craft golden helmet 17 12.50 11563.25 778.16 32

Craft golden leggings 17 14.60 10107.33 805.37 41
Craft golden boots 17 6.06 10311.00 915.55 33

Craft golden chestplate 17 9.67 10407.58 820.38 31


	Introduction
	Optimus-1
	Hybrid Multimodal Memory
	Abstracted Multimodal Experience Pool
	Hierarchical Directed Knowledge Graph

	Optimus-1: Framework
	Non-parametric Learning of Hybrid Multimodal Memory

	Experiments
	Experiments Setting
	Experimental Results
	Ablation Study
	Generalization Ability
	Self-Evolution via Hybrid Multimodal Memory

	Related Work
	Agents in Minecraft
	Memory in Agents

	Conclusion
	Limitation and Future Work
	Broader Impact
	Benchmark Suite
	Benchmark
	Baselines

	Experimental Results

