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ABSTRACT

As a topological invariant for discrete structures, discrete curvature has been widely
adopted in the study of complex networks and graph neural networks. A prevail-
ing viewpoint posits that edges with highly negative curvature will induce graph
bottlenecks and the over-squashing phenomenon. In this paper, we critically re-
examine this view and put forward our central claim: high negative curvature
is a sufficient but not a necessary condition for over-squashing. We first con-
struct a family of counterexamples demonstrating the failure of discrete curvature,
where some edges are severely squashed, but the curvature still appears positive.
Furthermore, extensive experiments demonstrate that the most commonly used
discrete curvature measure — Ollivier–Ricci curvature — fails to detect as many
as 30% ∼ 40% of over-squashed edges. To alleviate this limitation, we propose
Weighted Augmented Forman-3 Curvature (WAF3), which significantly improves
the detection of over-squashed edges. Additionally, we develop a highly efficient
approximation algorithm for WAF3, enabling curvature computation on graphs
with five million edges in only 23.6 seconds, which is 133.7 times faster than the
existing algorithm with the lowest complexity for curvatures.

1 INTRODUCTION

In differential geometry, curvature is used to describe how volume grows within a local region and how
geodesics diverge or converge. Discrete curvature naturally extends this concept to discrete structures,
such as graphs. In complex network analysis and graph deep learning, discrete curvature plays a
critical role. It is widely applied in numerous downstream tasks, including key node identification
(Farooq et al., 2019), community detection (Park & Li, 2024; Sia et al., 2019), clustering (Tian et al.,
2025; Sun et al., 2023), sparsification (Zhang et al., 2023), and anomaly detection (Grover et al.,
2025), among others. Among these, the idea of tackling the graph over-squashing (Akansha, 2025)
based on discrete curvature has been widely studied, with one of the most notable findings being that:

“Edges with high negative curvature are those causing the graph bottleneck and thus leading
to the over-squashing phenomenon.” — Topping et al. (2021)

This perspective has garnered significant attention within the community. It has spawned a consider-
able body of follow-up research, including theoretical investigations into the relationship between
over-squashing and curvature (Di Giovanni et al., 2023a; Nguyen et al., 2023), curvature-based
graph rewiring techniques (Nguyen et al., 2023; Giraldo et al., 2023; Fesser & Weber, 2024a), and
curvature-inspired graph neural networks (Li et al., 2022; Sun et al., 2022; Fu et al., 2025).

Although the work of Topping et al. (2021) has achieved remarkable success, a subtle but important
point is that they only established the sufficiency of highly negative curvature for over-squashing,
while leaving its necessity unaddressed. To the best of our knowledge, this fundamental yet crucial
issue has long been overlooked. In this paper, we investigate it for the first time and uncover a striking
fact: the necessity does not actually hold. In other words, there exist edges in graph datasets that
suffer from severe over-squashing but cannot be detected by curvature.

In detail, our contributions are organized into four interlocking parts:
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❶ New theoretical results (Section 3). We construct a family of counterexample graphs and prove
that within them, there exist edges that, despite exhibiting severe over-squashing, still possess highly
positive discrete curvature. Here, discrete curvature can be defined in eight popular ways, including
Ollivier Ricci curvature (Ollivier, 2009) and Balanced Forman curvature (Topping et al., 2021),
among others. Theorem 4 implies that curvature may ignore some over-squashed edges, so highly
negative curvature is not a necessary condition for over-squashing.

❷ New metric and extensive empirical evidence (Section 4). To answer the question of how many
over-squashed edges in practical graph learning tasks are overlooked by curvature, we propose a new
metric: Missed Over-Squashing Ratio (MOSR). MOSR quantifies the proportion of over-squashed
edges that are ignored by curvature. Extensive experimental results show that the MOSR of Ollivier
Ricci curvature can exceed 30%, revealing a significant deficiency in one of the most widely used
discrete curvature measures. Further experimental analysis provides insights into the underlying
reasons why curvature fails to capture these edges.

❸ New discrete curvature (Section 5). Based on the aforementioned theoretical analysis and
experimental observations, we propose a new discrete curvature definition called WAF3. Not
only does WAF3 achieve a significantly lower MOSR value compared to other existing curvature
definitions, but it also maintains computational complexity on par with the most efficient one currently
available.

❹ New approximation algorithm (Section 6). Although WAF3 already boasts state-of-the-art
computational complexity, it still faces scalability limitations when processing large-scale graphs. To
address this, we propose an efficient approximation algorithm for WAF3 that further reduces the time
complexity to a linear level. This algorithm requires only 23.8 seconds to complete computations on
a graph containing five million edges, achieving a 133.7× speedup compared to exact computation.

In summary, our work is not only critical, demonstrating through both theory and experiments that
curvature cannot fully capture the over-squashing in GNNs, but also constructive: we propose new
metrics, curvature definitions, and approximation algorithms, significantly enhancing the applicability
of curvature-based tools in graph learning.

2 PRELIMINARY

Graph Convolutional Network (GCN, (Gilmer et al., 2017; Kipf, 2016)) Consider a simple,
connected, undirected graph G = (V, E) with a node set of V and an edge set E . We denote the
adjacency matrix of G by A. Each node is equipped with an initial feature vector h(0) ∈ Rd0 .
{W(l) ∈ Rdl×dl+1}l is a set of learnable parameters. The l-th layer of GCN is formalized as:

H(l+1) = ReLU
(
ÃH(l)W(l)

)
. (1)

where Ã := (D + I)−1/2(A + I)(D + I)−1/2 denotes the symmetrically normalized adjacency
matrix and D denotes the degree matrix. Hl := [h

(l)
0 ; · · · ;h(l)

|N |]
T ∈ R|N |×dl denotes the collections

of l-layer embedding of all nodes. In line with many previous works, we also introduce the following
assumptions to facilitate the analysis of the ReLU.

Assumption 1. (Di Giovanni et al., 2023a; Kawaguchi, 2016; Xu et al., 2018) All paths in the
computation graph of the model are activated with the same probability of success ρ.

Discrete curvatures For any edge u ∼ v in graph G, the edge curvature Curv(u, v) measures the
tightness of the connection between the first-order ego-graph of node u and the first-order ego-graph
of node v. As shown in Table 1, there are multiple definitions for Curv. Regardless of the specific
definition, discrete curvature typically depends only on a tiny local neighborhood of the edge u ∼ v
(except for the resistance curvature (Devriendt & Lambiotte, 2022)).

Over-squashing In graph deep learning, message passing often compresses information from large
neighborhoods into single topological structures (e.g., nodes or edges), resulting in information loss
and gradient issues — known as over-squashing (Alon & Yahav, 2020), which has emerged as a key
challenge in modern graph models. The Jacobian norm between the feature of the input node and the
embedding of the output node offers the most accurate measure of information flow, and thus the
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Table 1: We summarize all discrete curvatures defined on edges here. Curvatures defined on nodes
(such as Bakry-Émery-Ricci (Mondal et al., 2024), combination (Kamtue, 2018), and node resistance
(Devriendt & Lambiotte, 2022)) are not included. µα

u is the uniform distribution of the first-order
neighbors of u with restart probability α. W1 is the 1-Wasserstein distance. {wuv} is the pseudo-
inverse of the weighted Laplacian matrix. du is the degree of node u, and du ∨ dv := max(du, dv),
du ∧ dv := min(du, dv). △(u, v) and □(u, v) denote the number of triangles and quadrangles
containing the edge (u, v). #u

□(u, v) denote the numbers of neighbors of u forming a 4-cycle based
at the edge (u, v) without diagonals inside. γ(u, v) is the maximal number of 4-cycles based at (u, v)
traversing a common node. f is the degree-weighting function.
Curvature Definition Complexity
Ollivier ricci
(Ollivier, 2009) 1−W1(µu, µv) O(|E|d3max)

Lin-Lu-Yau
(Lin et al., 2011) limα→1−(1−W1(µ

α
u , µ

α
v ))/(1− α) O(|E|d3max)

Link resistance
(Devriendt & Lambiotte, 2022) (2−

∑
i∼u wui −

∑
j∼v wvj)/wuv O(|V|3)

Balance forman
(Topping et al., 2021)

2
du

+ 2
dv

− 2 + 2△(u,v)
du∨dv

+ △(u,v)
du∧dv

+
#u

□(u,v)+#v
□(u,v)

γ(u,v)(du∨dv)
O(|E|d2max)

Balance Forman w/o 4-cycle
(Tori et al., 2024a)

2
du

+ 2
dv

− 2 + 2△(u,v)
du∨dv

+ △(u,v)
du∧dv

O(|E|dmax)

Jost-Liu Forman
(Jost & Liu, 2014) −(1− 1

du
− 1

dv
− △(u,v)

du∨dv
)+ − (1− 1

du
− 1

dv
− △(u,v)

du∧dv
)+ + △(u,v)

du∨dv
O(|E|dmax)

Augmented Forman-3
(Forman, 2003) 4− du − dv + 3△(u, v) O(|E|dmax)

Augmented Forman-4
(Forman, 2003) 4− du − dv + 3△(u, v) + 2□(u, v) O(|E|d2max)

Weighted AF-3 (Ours)
∑

i∈B(u)∩B(v) f(di)−
(∑

i∈N (u)/B(v) f(di) +
∑

i∈N (v)/B(u) f(di)
)O(|E|dmax)
O(H|E|)

severity of over-squashing. In Lemma 2, we establish a lower bound for the Jacobian norm when the
degrees of the two ends are fixed at a and b. All proofs are provided in Appendix A.

Lemma 2 (Infimum of the over-squashing). Let N, a, b be positive integers. The set
GN ((s, a), (t, b)) denotes the collection of all simple undirected graphs G = (V, E) with |V| = N
such that there exist adjacent vertices s, t ∈ V where deg(s) = a and deg(t) = b. Assume an
L-layer GCN as in equation (1). Then:

inf
N∈Z+

G∈GN ((s,a),(t,b))

∥∥∥∥∥∂h(L)
t

∂h
(0)
s

∥∥∥∥∥ = ϕL(a, b),

where ϕL(a, b) :=
∥∥∥∏L−1

l=0 W(l)
∥∥∥( 1

a+1 + 1
b+1

)L−1
ρ√

(a+1)(b+1)
.

3 DISCRETE CURVATURES FAIL TO FULLY CAPTURES OVER-SQUASHING

Since the Jacobian matrix norm is tightly coupled with the model and entails prohibitive computational
costs, Topping et al. (2021) first proposed using discrete curvature as a surrogate criterion for detecting
over-squashing. However, through the following counterexamples and theorems, we demonstrate that
discrete curvature is in fact not a necessary condition for identifying over-squashing.

Definition 3 (counterexample graph). Let s
the soruce node, t the target node, N1 =
{ui}1≤i≤n the 1-hop neighbor set and N2 =
{vij}1≤i≤n,1≤j≤m the 2-hop neighbor set. The
counterexample graph Gc

n,m is such a simple,
connected and undirected graph that V :=
{s, t} ∪ N1 ∪ N2 and E := {(s, t)} ∪ E1 ∪ E2,
which E1 := {(s, ui)}1≤i≤n ∪ {(t, ui)}1≤i≤n

and E2 := {(ui, vij)}1≤i≤n,1≤j≤m.

s t

t
s

target 
node

source 
node

{(s,t)}

N_1

N_2

E_1

E_2

Figure 1: Example diagram of Gc
2,4.
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Theorem 4 (Discrete curvatures fail to fully to capture over-squashing). Consider an L-layer
GCN as in equation (1). For the family of graphs G = {Gc

n,m}n,m∈R+ with source-target pairs
(s, t), we have:

• For any fixed n∗,
∥∥∥∂h

(L)
t

∂h
(0)
s

∥∥∥→ ϕL(n
∗ + 1, n∗ + 1) at speed O(m−1) when m → +∞.

• If Curv is given by any of: α-Ollivier-Ricci curvature, Lin-Lu-Yau curvature, balanced
Forman curvature (with/without 4-cycle), Jost-Liu curvature or augmented Forman-3/4
curvature, then there exist a c > 0, such that ∀G ∈ G , Curv(s, t) > c.

• If Curv is defined as resistance curvature under symmetric normalized Laplacian, then
for any fixed n∗, there exist a m∗ and a c > 0, such that ∀G ∈ {Gc

n,m|n = n∗,m > m∗},
Curv(s, t) > c.

In simple terms, the above theorem states that in Gc
n,m, as long as m is large enough, there will be

very severe over-squashing between source node s and target node t. However, all discrete curvatures
fail to identify this — their values are all positive.

To understand this phenomenon, we need to keep in mind that the discrete curvature between (s, t)
is essentially a measure of how tightly connected the first-order neighbors of s are to the first-order
neighbors of t (Chen et al., 2025). Furthermore, this “tightness” can usually be reflected in the
number of triangles that (s, t) participates in (Topping et al., 2021; Jost & Liu, 2014; Forman, 2003).
Since any edge (u, v) can form at most min{du−1, dv −1} triangles, and in Gc

n,m, (s, t) just reaches
this upper limit (ds = dt = n+ 1 and there are n triangles: s− ui − t, ∀i ∈ [1, n]), Curv(s, t) under
any definition is almost always highly positive.

On the other hand, in Gc
n,m, when the information in node s propagates to node t, a considerable

part of the propagation path needs to pass through the nodes in N1. However, each node in N1 is
connected to m other nodes. Every time the propagation path passes through a node in N1, the
information in s is “diluted” by m nodes. As m increases, the degree of over-squashing between
s and t approaches its theoretical lower bound. Since almost all GNNs require at least two rounds
of message-passing, discrete curvature that only considers first-order neighbors is almost always
insufficient to capture all potential over-squashing fully.

4 THE MISSED OVER-SQUASHING EDGES: HOW MANY AND WHERE

Since discrete curvature cannot fully identify over-squashing in theory, two other important questions
arise: how many over-squashing edges are ignored by curvature in practice? Moreover, where are
these ignored edges?

To answer the first question, we first establish corresponding metrics. For any graph G = (V, E),
we define the multiset C := {{Curv(e)|e ∈ E}} as the collection of discrete curvature values for all
edges in E . Let C− := {{c|c < 0, c ∈ C}} be the subset of negative curvature values. The function
Percentile(C−, q) returns the value below which q % of the observations in C− lie, for q ∈ [0, 100].
We then define:

Eq := {e ∈ E|Curv(e) ≤ Percentile(C−, q)}. (2)
Note that Eq corresponds precisely to the set of “edges with high negative curvature” mentioned by
Topping et al. (2021). That is, the edges in Eq are those correctly identified as over-squashing by
curvature. Here, q represents the threshold for classifying an edge as over-squashing; a smaller q
implies a stricter criterion.

For an L-layer message passing neural network, let JacoNorm(u, v) := ∥∂h(L)
v /h

(0)
u ∥F denote the

ground-truth measure of information squashing. Define Jq := max(u,v)∈Eq
JacoNorm(u, v). We

then introduce the Missed Over-Squashing Ratio (MOSR):

MOSRq :=

∑
(u,v)∈E 1Curv(u,v)≥0 · 1JacoNorm(u,v)≤Jq∑

(u′,v′)∈E 1JacoNorm(u′,v′)≤Jq

. (3)

In MOSRq, the numerator counts edges with non-negative curvature that are nevertheless over-
squashed (i.e., JacoNorm(u, v) ≤ Jq), which are thus ignored by curvature. The denominator
counts all truly over-squashing edges (with Jq as the threshold). Therefore, MOSRq represents the
proportion of over-squashing edges that are not identified by curvature.

4
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Table 2: The values of MOSR10 and MOSR25 across different GNNs, curvatures, and datasets.
Among these, the entry “.030/.103” in the first row and first column indicates that for Ollivier Ricci
curvature, GCN, and Cora dataset, MOSR10 = 0.030 and MOSR25 = 0.103. OOR denotes “Out of
Resources”, meaning the GPU memory consumption exceeds 24 GB or the running time surpasses
12 hours. NNE (No Negative-curvature Edge) indicates that |Eq| = 0 in this scenario.

Ollivier Ricci Augmented Forman-3 Balanced Forman
GCN GAT SAGE GCN GAT SAGE GCN GAT SAGE

Cora .030/.103 .185/.224 .233/.258 .001/.027 .163/.170 .187/.187 .002/.010 .155/.217 .210/.245
Citeseer .119/.151 .172/.277 .286/.351 .008/.034 .239/.239 .289/.307 .000/.014 .087/.120 .219/.324
Pubmed .026/.073 .087/.090 .097/.097 .000/.001 .009/.009 .011/.011 .000/.000 .074/.108 .144/.142
Computers .352/.352 .353/.353 .353/.353 .003/.006 .011/.011 .011/.011 .000/.005 .010/.012 .011/.012
Photo .503/.503 .503/.503 .503/.503 .042/.043 .045/.045 .045/.045 .041/.044 .045/.046 .045/.046
CS .057/.086 .113/.128 .125/.126 .017/.030 .074/.075 .075/.075 .001/.012 .041/.073 .080/.091
Physics OOR OOR OOR .006/.027 .052/.056 OOR .001/.012 .055/.065 OOR
WikiCS .472/.473 .473/.473 .473/.473 .250/.249 .249/.249 .249/.249 .245/.244 .246/.245 .250/.246
Cora ML .204/.204 .217/.235 .210/.225 .025/.039 .096/.098 .099/.101 .056/.109 .126/.139 .126/.147
Cora Full OOR OOR OOR OOR OOR OOR OOR OOR OOR
DBLP .072/.080 .084/.089 .086/.096 .003/.004 .030/.033 .036/.038 .007/.017 .038/.052 .048/.065
Cornell .000/.000 .383/.395 .396/.410 .000/.000 .136/.138 .167/.158 .000/.364 .335/.370 .373/.390
Texas .093/.174 .308/.308 .308/.308 .000/.000 .112/.116 .126/.130 .000/.254 .385/.370 .342/.366
Wisconsin .000/.246 .334/.334 .332/.342 .000/.000 .113/.118 .128/.135 .175/.191 .257/.256 .221/.260
Chameleon .643/.643 .643/.643 .643/.643 .115/.116 .125/.125 .129/.129 .010/.120 .131/.135 .136/.136
Squirrel .723/.723 .723/.723 .723/.723 .137/.137 .133/.133 .133/.133 .130/.129 .130/.130 .132/.132
Roman-empire .014/.097 .276/.446 .497/.547 .001/.080 .430/.520 .524/.524 .000/.000 .247/.532 .695/.753
Tolokers .657/.657 OOR .657/.657 .002/.002 OOR .003/.003 .003/.003 OOR .003/.003
Questions OOR OOR OOR .000/.002 .008/.008 .010/.010 .048/.074 .083/.085 .103/.100
Amazon-ratings .639/.655 .524/.638 .638/.653 .228/.285 .292/.297 .309/.310 .335/.378 .117/.275 .357/.357
Minesweeper NNE NNE NNE .502/.502 .502/.502 .502/.502 .502/.502 .502/.502 .502/.502
Average .271/.307 .336/.366 .386/.398 .067/.079 .148/.155 .160/.161 .078/.124 .161/.196 .210/.227

As shown in Table 2, we comprehensively report the results of MOSR10 and MOSR25 along with
their average values across three of the most commonly used curvatures, three of the most widely
adopted graph neural networks, and 21 datasets, amounting to a total of 350 numerical results.

• Observation 1: At q = 10, discrete curvature was systematically ignored 6.7% ∼ 38.6%
of over-squashing edges. When q increased to 25, this range increased to 7.9% ∼ 39.8%.
This indicates that discrete curvature fails to identify over-squashing phenomena perfectly.
• Observation 2: Across different datasets, discrete curvature generally demonstrates supe-
rior performance on GAT compared to GraphSAGE, while GCN consistently achieves the
optimal results. This indicates that model architecture significantly influences the accurate
identification of over-squashing edges.
• Observation 3: The Ollivier Ricci curvature, with its computational complexity as high
as O(|E|d3max), missed the most significant number of over-squashing edges, whereas the
Augmented Forman-3 curvature — the one with the lowest complexity — achieved the best
average performance. Therefore, we recommend prioritizing the latter in GNNs.

To answer the second question, we introduce edge betweenness (Freeman, 1977; Girvan & Newman,
2002). According to Girvan & Newman (2002), the edge betweenness of an edge e is defined as:

Between(e) =
∑

u̸=v∈V

σuv(e)

σuv
. (4)

Where σuv denotes the total number of shortest paths between nodes u and v; σuv(e) denotes the
number of those shortest paths that pass through edge e. Simply put, a high Between(e) usually
means that edge e forms a bridge between two clusters, and a low Between(e) indicates that e is
inside a cluster. We further introduce the following three statistics to characterize the average edge

5
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Table 3: The model is fixed as GCN, q is set to 25, and we report BetwIden, BetwAll, and BetwIgno
on three curvature definitions and 21 datasets, respectively. NIE (No Ignored Edge) means no edges
are ignored by curvature, so BetwIgno cannot be calculated.

Ollivier Ricci Augmented Forman-3 Balanced Forman
BetwIden BetwAll BetwIgno BetwIden BetwAll BetwIgno BetwIden BetwAll BetwIgno

Cora 1.04× 104 3.69× 103 7.58× 102 8.41× 103 3.69× 103 4.75× 102 9.91× 103 3.69× 103 2.36× 103

Citeseer 1.75× 104 4.60× 103 1.02× 103 9.44× 103 4.60× 103 5.06× 102 1.16× 104 4.60× 103 1.09× 103

Pubmed 6.75× 104 2.78× 104 1.55× 104 4.74× 104 2.78× 104 2.62× 103 5.93× 104 2.78× 104 NIE
Computers 4.32× 103 1.23× 103 2.98× 102 2.44× 103 1.23× 103 1.79× 102 2.19× 103 1.23× 103 2.70× 102

Photo 4.02× 103 9.53× 102 2.81× 102 1.50× 103 9.53× 102 2.36× 102 1.91× 103 9.53× 102 3.31× 102

CS 2.54× 104 1.11× 104 2.19× 103 2.22× 104 1.11× 104 1.39× 103 2.35× 104 1.11× 104 1.54× 103

Physics OOR OOR OOR 1.86× 104 1.24× 104 1.43× 103 2.30× 104 1.24× 104 1.03× 103

WikiCS 3.36× 103 8.94× 102 1.77× 102 3.01× 103 8.94× 102 7.94× 101 1.82× 103 8.94× 102 1.81× 102

Cora ML 7.10× 103 2.55× 103 7.96× 102 5.24× 103 2.55× 103 2.54× 102 5.64× 103 2.55× 103 1.24× 103

Cora Full OOR OOR OOR OOR OOR OOR OOR OOR OOR
DBLP 3.79× 104 1.64× 104 4.53× 103 2.56× 104 1.64× 104 1.02× 103 2.89× 104 1.64× 104 9.19× 103

Cornell 5.37× 102 1.92× 102 NIE 3.30× 102 1.92× 102 NIE 4.71× 102 1.92× 102 1.82× 102

Texas 4.08× 102 1.81× 102 8.45× 101 3.10× 102 1.81× 102 NIE 3.44× 102 1.81× 102 1.82× 102

Wisconsin 5.93× 102 2.27× 102 1.32× 102 4.65× 102 2.27× 102 NIE 4.21× 102 2.27× 102 1.17× 102

Chameleon 1.66× 103 2.94× 102 9.02× 101 7.25× 102 2.94× 102 3.45× 101 4.72× 102 2.94× 102 6.64× 101

Squirrel 1.63× 103 2.31× 102 6.54× 101 3.40× 102 2.31× 102 4.03× 101 5.44× 102 2.31× 102 6.95× 101

Roman-empire 5.28× 107 1.82× 107 7.48× 105 3.54× 107 1.82× 107 1.90× 106 4.18× 107 1.82× 107 NIE
Tolokers 1.64× 103 3.71× 102 1.39× 102 7.76× 102 3.71× 102 3.15× 101 4.71× 102 3.71× 102 2.31× 103

Questions OOR OOR OOR 5.37× 104 3.34× 104 5.24× 104 4.83× 104 3.34× 104 4.89× 104

Amazon-ratings 3.23× 105 5.23× 104 1.13× 104 1.12× 105 5.23× 104 1.03× 104 1.90× 105 5.23× 104 1.07× 104

Minesweeper NNE NNE NNE NNE NNE NNE NNE NNE NNE

betweenness of different types of edges:

BetwIdenq := Mean(Between(e), ∀e ∈ Eq),
BetwAll := Mean(Between(e), ∀e ∈ E),

BetwIgnoq := Mean(Between(e), ∀e ∈ E ,Curv(e) ≥ 0, JacoNorm(e) ≤ Jq).

(5)

BetwAll indicates the average betweenness of all edges, while BetwIden and BetwIgno represent the
average betweenness of identified or ignored edges by curvature, respectively. See Table 3 for results.

• Observation 4: In most cases, there is BetwAll > BetwIgno. This means that even
within a cluster, there may be over-squashing edges, and discrete curvature ignores them
systematically.
• Observation 5: In most cases, there is BetwIden > BetwAll, which indicates that discrete
curvature can only identify over-squashing edges that appear as “bridges” between clusters.

Previous studies have often, perhaps unconsciously, conflated terms such as “over-squashing” and
“bottleneck” with “bridge edges connecting clusters” (a classical example can be found in Figure 1
of Topping et al. (2021)). However, our experimental results demonstrate that bottlenecks and over-
squashing can also arise within clusters. The neglect of such edges by discrete curvature is precisely
the key reason why curvature cannot serve as a necessary condition for detecting over-squashing.
In this sense, curvature is not the gold standard for identifying over-squashing, but rather the gold
standard for identifying bridge edges between clusters.

5 WEIGHTED AUGMENTED FORMAN-3 CURVATURE

u v

AF3(u,v) = #Blue - #Green

Figure 2: Calculation of AF3.

In this section, we discuss how to leverage previous results
to enhance existing discrete curvatures. According to the re-
sults in Table 2, we consider improving augmented Forman-3
curvature, which has the lowest time complexity and the best
actual performance. We first provide an equivalent form for
AF3 (Equation 6), where u and v are any pair of adjacent nodes
in a graph, N (v) = {i|i ∼ v, i ∈ V} represents all first-order
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Table 4: The values of MOSR10 and MOSR25 across different GNNs and datasets when the discrete
curvature si set to WAF3 and f(x) ≡ 1/(1 + x).

GCN GAT SAGE GCN GAT SAGE
Cora .000/.014 .157/.166 .183/.183 Citeseer .020/.040 .210/.216 .279/.280
Pubmed .001/.002 .013/.014 .015/.015 Computers .002/.005 .011/.011 .011/.011
Photo .021/.024 .027/.027 .027/.027 CS .009/.034 .075/.075 .076/.076
Physics .020/.040 .055/.058 OOR WikiCS .140/.141 .144/.144 .144/.144
Cora ML .025/.056 .098/.103 .103/.103 DBLP .020/.022 .052/.055 .057/.059
Cornell .000/.000 .116/.122 .138/.143 Texas .000/.000 .134/.139 .143/.149
Wisconsin .000/.000 .108/.117 .122/.134 Chameleon .065/.066 .075/.076 .079/.079
Squirrel .039/.039 .041/.041 .041/.041 Roman-empire .000/.001 .351/.431 .453/.453
Tolokers .002/.002 OOR .003/.003 Questions .003/.011 .023/.024 .025/.025
Amazon-ratings .159/.218 .223/.231 .245/.246 Minesweeper .191/.192 .192/.192 .192/.192

Average .036/.045 .111/.118 .123/.124

neighbors of v, and B(v) = N (v) ∪ {v} represents all nodes within a distance of 1 from v. The
detailed derivation is provided in Appendix A.

AF3(u, v) = 4− du − dv + 3△(u, v)

= |B(u) ∩ B(v)|︸ ︷︷ ︸
Number of nodes in triangles

− (|N (u)/B(v)|+ |N (v)/B(u)|)︸ ︷︷ ︸
Number of nodes not in triangles

. (6)

According to Equation 6, AF3 actually calculates the difference between the number of nodes
that make up the triangle and the number of remaining first-order neighbors (Figure 2). However,
as discussed in Chapter 3, triangle counting ignores the degree of nodes; however, high-degree
nodes actually do little to enhance the information flow from the source node to the target node.
Therefore, we propose weighted augmented Forman-3 curvature (WAF3). WAF3 weights each node’s
contribution to the curvature based on its degree by a function f : R → R, which corrects for the
influence of high-degree nodes. Obviously, AF3 is a special case of WAF3 when f ≡ 1.

WAF3f (u, v) :=
∑

i∈B(u)∩B(v)

f(di)−

 ∑
i∈N (u)/B(v)

f(di) +
∑

i∈N (v)/B(u)

f(di)

 . (7)

Theorem 5 (WAF3 gets rid of counterexamples). Consider an L-layer GCN as in equation (1).
Suppose f(+∞) = 0+. For the family of graphs G = {Gc

n,m}n,m∈R+ with source-target pairs
(s, t), There dose not exist a c > 0 such that for every G ∈ G , WAF3(s, t) > c.

The above theorem clearly shows the difference between WAF3 and all other discrete curvatures,
namely correcting the inappropriate contribution of high-degree nodes — only requiring the weight
function f to satisfy f(+∞) = 0+. Furthermore, we report the MOSR10 and MOSR10 values of
AF3 in Table 4, where we set f to be a GCN-style weighting function, i.e., f = 1/(1 + x), which
satisfies the condition required in Theorem 5.

• Observation 6: The MOSR10 values of WAF3 range from 3.6% to 12.3%, while the
MOSR25 values range from 4.5% to 13.4%. This is a further reduction of more than 3%
compared to the best-performing AF3 in Table 2.

6 ACCELERATING WAF3 VIA MINHASH

In terms of complexity, AF3 has a time complexity of O(|E|dmax), while WAF3 has O(|E|dmax ·
Complex(f)), in which the factor dmax comes from the intersection of sets (B(u) ∩ B(v)). When
Complex(f) = O(1) (such as the function f = 1/(1 + x) we use), the complexity of WAF3 is
equivalent to that of AF3, which is the curvature with the lowest complexity at present (Table 1).

7
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Algorithm 1 Approximating WAF3

1: Input: Graph G = (V, E), weighting function f , number of hashing H .
2: for u ∈ V do
3: u′ = f(du); ▷ Θ(|V| × Complex(f))
4: end for
5: for u ∈ V do
6: Su = {v′|v ∈ N (u)};
7: u′′ = Sum(Su); ▷ Θ(2|E|)
8: end for
9: for (u, v) ∈ E do

10: Jaccardf (N (u),N (v)) ≈ Minhash(Su, Sv) (Ioffe, 2010); ▷ Θ(H|E|)
11: Compute WAF3f (u, v) via Theorem 6; ▷ Θ(|E|)
12: end for

However, this is still unacceptable in large graphs, since dmax usually also grows with the number
of nodes in graphs. This dilemma has largely hindered the promotion of curvature tools to graph
learning. To solve this problem, we first prove that an equivalent form of WAF3 is as follows:

Theorem 6 (Equivalent form of WAF3 based on Jaccard similarity). Let weighted Jaccard

similarity Jaccardf (N (u),N (v)) :=
∑

i∈N(u)∩N(v) f(di)∑
i∈N(u)∪N(v) f(di)

, then the following equation holds:

WAF3f (u, v) =2f(u) + 2f(v)

+

(
2− 3

1 + Jaccardf (N (u),N (v))

) ∑
i∈N (u)

f(di) +
∑

i∈N (v)

f(di)

 .

Theorem 6 converts the time-consuming intersection operation into a weighted Jaccard similarity
operation. Fortunately, the acceleration algorithm of the latter has been widely studied (Wu et al.,
2020). In particular, a class of algorithms called weighted Minhash (Manasse, 2010; Ioffe, 2010; Wu
et al., 2016; 2017; 2018) can reduce the complexity of computing Jaccard similarity to a constant
(O(H)) by sampling H hash functions, where the larger H is, the smaller the approximation error
is. At this point, the overall complexity of WAF3 will be further advanced to O(H|E|), reaching its
theoretical lower bound (because it has constant complexity for each edge).

23.5s

3142s

133.7 ×
 Speed U

p

Figure 3: Computation time of different discrete curvatures
with p = 0.0005, 104–105 nodes, and 24 GB GPU limit.
Here, ŴAF3 denotes the WAF3 approximation with different
number of hashing (Algorithm 1).

Two experiments are conducted to
evaluate the practicality of Algorithm
1. First, in order to verify the compu-
tational efficiency, we randomly gen-
erated Erdős–Rényi random graphs
(ERDdS & R&wi, 1959) with the
number of nodes being {104, 2 ×
104, 3 × 104, 4 × 104, 5 × 104, 105},
where the connection probability p
between any two nodes was set to
0.0005, which is comparable to the
sparsity level of most commonly used
graph datasets. Under the constraint
of a maximum GPU memory of 24GB,
the running times of different curva-
ture computations are reported in Fig-
ure 3.

Secondly, we evaluate whether the ap-
proximation error is within an accept-
able range. It is worth noting that, for
most curvature-based graph learning
methods, the relative ordering of curvature values is often more critical than their absolute magnitudes
(for example, in rewiring-based approaches (Nguyen et al., 2023; Giraldo et al., 2023; Fesser &

8
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Figure 4: The Kendall Tau-b similarity between WAF3 and ŴAF3 values calculated for different
datasets when H is 100, 1000, and 10000. The average value is also reported.

Weber, 2024a), typically only the edges with the smallest curvature are considered). Based on this
observation, we report in Figure 4 the Kendall Tau-b similarity (Kendall, 1938) between WAF3 and
its approximated values. This rank-based metric measures the consistency between two sequences,
with higher values indicating greater agreement in their orderings.

• Observation 7: When the random graph scales to 105 nodes and 5 × 106 edges, ORC
(O(|E|d3max)) and BFC (O(|E|d2max)) can no longer complete the computation within a
tolerable time. WAF3 O(|E|dmax) also requires over 3,000 seconds. However, the Minhash-
based approximation algorithm has a significant acceleration effect, especially when H = 100,
with a speedup of 133.7 times.
• Observation 8: Even when H = 100, the average Kendall tau-b similarity across all
datasets is approximately 95%. This means that only (100% − 95%)/2 = 2.5% of edge
pairs are misordered. When H = 1000, the similarity rises to over 98%. On this basis, the
similarity improvement for H = 10, 000 is less than 1%, a significant marginal benefit.

According to Figure 3, for large-scale graphs, even the exact computation of the least complex curva-
ture becomes prohibitively expensive. However, our proposed algorithm facilitates the emergence of
a new paradigm for curvature-based learning: first, a small subset of candidate edges is identified
through an approximation algorithm, and then the final set of highly negatively curved edges is
determined via exact computation.

We provide more experiments and observations in Appendix, including the impact of model training
and the value of q on MOSR (Appendix D.1); insights into designing the weighting function f
(Appendix D.2); and the effect of WAF3 in actual curvature garph learning (Appendix D.3).

7 CONCLUSION

This work revisits the belief that discrete curvature reliably captures over-squashing in graph neural
networks. We prove through constructive counterexamples that even highly positive-curvature edges
can suffer from severe squashing, showing that curvature is not a necessary condition. To quantify
this gap, we introduce MOSR, a metric that measures the proportion of over-squashed edges missed
by curvature-based criteria, and we find that common curvatures such as Ollivier–Ricci may overlook
more than 30%. We further present WAF3, a weighted refinement of Forman-3 curvature, which
addresses the theoretical limitations of existing definitions. By reformulating it as a weighted Jaccard
similarity and applying weighted MinHash, we achieve practical scalability with over two orders of
magnitude speedup.

Overall, this work both challenges an implicit assumption in the community and provides a feasible
alternative. It encourages more principled ways to characterize over-squashing and supports the
design of graph learning methods that move beyond curvature as a universal surrogate.

9
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8 REPRODUCIBILITY STATEMENT

We provide detailed proofs and derivations of all theoretical results presented in the main text in
the appendix. We also provide an anonymous link to the code of this project and state all necessary
implementation details in the appendix. We provide a statement of use for the LLMs at the end of the
appendix.
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Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power of gnns?
arXiv preprint arXiv:2306.03589, 2023b.

P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Hamza Farooq, Yongxin Chen, Tryphon T Georgiou, Allen Tannenbaum, and Christophe Lenglet.
Network curvature as a hallmark of brain structural connectivity. Nature communications, 10(1):
4937, 2019.

Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmentations
of forman-ricci curvature. In Learning on Graphs Conference, pp. 19–1. PMLR, 2024a.

Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmentations
of forman-ricci curvature. In Learning on Graphs Conference, pp. 19–1. PMLR, 2024b.

10

http://dx.doi.org/10.1088/2632-072x/ac730d


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. Discrete &
Computational Geometry, 29(3):323–374, 2003.

Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pp. 35–41,
1977.

Xingcheng Fu, Jian Wang, Yisen Gao, Qingyun Sun, Haonan Yuan, Jianxin Li, and Xianxian Li.
Discrete curvature graph information bottleneck. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 16666–16673, 2025.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros. On the trade-
off between over-smoothing and over-squashing in deep graph neural networks. In Proceedings of
the 32nd ACM international conference on information and knowledge management, pp. 566–576,
2023.

Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

Karish Grover, Geoffrey J Gordon, and Christos Faloutsos. Curvgad: Leveraging curvature for
enhanced graph anomaly detection. arXiv preprint arXiv:2502.08605, 2025.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning, pp. 12252–12267. PMLR, 2023.

Sergey Ioffe. Improved consistent sampling, weighted minhash and l1 sketching. In 2010 IEEE
international conference on data mining, pp. 246–255. IEEE, 2010.

Jürgen Jost and Shiping Liu. Ollivier’s ricci curvature, local clustering and curvature-dimension
inequalities on graphs. Discrete & Computational Geometry, 51(2):300–322, 2014.

Supanat Kamtue. Combinatorial, bakry-\’emery, ollivier’s ricci curvature notions and their motivation
from riemannian geometry. arXiv preprint arXiv:1803.08898, 2018.

Kenji Kawaguchi. Deep learning without poor local minima. Advances in neural information
processing systems, 29, 2016.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Haifeng Li, Jun Cao, Jiawei Zhu, Yu Liu, Qing Zhu, and Guohua Wu. Curvature graph neural
network. Information Sciences, 592:50–66, 2022.

Yong Lin, Linyuan Lu, and Shing-Tung Yau. Ricci curvature of graphs. Tohoku Mathematical
Journal, 63(4):605 – 627, 2011. doi: 10.2748/tmj/1325886283. URL https://doi.org/10.
2748/tmj/1325886283.

Yang Liu, Chuan Zhou, Shirui Pan, Jia Wu, Zhao Li, Hongyang Chen, and Peng Zhang. Curvdrop:
A ricci curvature based approach to prevent graph neural networks from over-smoothing and
over-squashing. In Proceedings of the ACM Web Conference 2023, pp. 221–230, 2023.

Mark S Manasse. Consistent weighted sampling. 2010.

Madhumita Mondal, Areejit Samal, Florentin Münch, and Jürgen Jost. Bakry–émery–ricci curvature:
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A PROOFS & DERIVATIONS

A.1 PROOF OF LEMMA 2

Lemma 7. Let A be the adjacency matrix of an undirected, unweighted, simple graph, and D the
degree matirx. For any two adjacent points i and j in the graph, for any L ∈ Z+ we have:(

(D+ I)−1/2(A+ I)(D+ I)−1/2
)L
ij
≥
(

1

di + 1
+

1

dj + 1

)L−1
1√

(di + 1)(dj + 1)
.

The equal sign is obtained iff di = dj = 1.

Proof. Define M = (D+ I)−1/2(A+ I)(D+ I)−1/2. The element of M is given by:

Mij =



1

di + 1
for the diagonal,

1√
(di + 1)(dj + 1)

if i ∼ j,

0 otherwise.

The (i, j)-th entry of ML, denoted ML
ij , represents the sum of the weights of all walks of length L

from node i to node j. The weight of a walk is the product of the M-weights of the edges traversed at
each step. To bound ML

ij , we consider the subgraph restricted to nodes i and j. Since i and j are
adjacent, this subgraph includes the edge (i, j), along with self-loops at both nodes. The matrix M
restricted to these two nodes is:

P =

[
Mii Mij

Mji Mjj

]
=

 1
di+1

1√
(di+1)(dj+1)

1√
(dj+1)(dj+1)

1
dj+1

 .

We now compute the (1, 2)-th entry of PL, which corresponds to walks from i (index 1) to j (index
2) within this subgraph. Note that P can be expressed as the outer product P = vvT , where:

v =
[

1√
di+1

1√
dj+1

]T
.

Thus for any integer L ≥ 1:

PL = (vvT )L = (vTv)L−1(vvT ) =

(
1

di + 1
+

1

dj + 1

)L−1

P.

Specifically, we have:

PL
12 =

(
1

di + 1
+

1

dj + 1

)L−1
1√

(di + 1)(dj + 1)
.

In the full graph, ML
ij includes all walks of length L from i to j, not only those confined to {i, j}.

The walks restricted to {i, j} form a subset of these walks, and their total weight is exactly PL
12. Since

all entries of M are non-negative (Muv ≥ 0 for all u, v), the weight of every walk is non-negative.
Therefore, the sum over all walks is at least the sum over the subset of walks confined to {i, j}:

ML
ij ≥ PL

12.

This establishes the desired inequality. The equal sign holds iff P ≡ M, which means di = dj =
1.

Before we prove Lemma 2, we first further explain Assumption 1. When we compute the ∂h(L)
t /∂h

(0)
s

, we obtain a sum of different terms over all possible paths from s to t of length L. In this case, the
derivative of ReLU acts as a Bernoulli variable evaluated along all these possible paths. So follow the
very same argument in Di Giovanni et al. (2023a); Kawaguchi (2016); Xu et al. (2018), we can get:

E

[
∂h

(L)
t

∂h
(0)
s

]
= ρ

L−1∏
l=0

W(l)
(
(D+ I)−1/2(A+ I)(D+ I)−1/2

)L
s,t

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Which the expectation means that we are taking the average over such Bernoulli variables. Then we
can take the norm (in expectation) and leverage Lemma 5:∥∥∥∥∥∂h(L)

t

∂h
(0)
s

∥∥∥∥∥ ≥ ρ

∥∥∥∥∥
L−1∏
l=0

W(l)

∥∥∥∥∥
(

1

a+ 1
+

1

b+ 1

)L−1
1√

(a+ 1)(b+ 1)

Which a := ds and b := dt. Note that the right side of the inequality has nothing to do with the graph
structure. And by Lemma 7, this bound is tight. So the proof is complete.

A.2 PROOF OF THEOREM 4

Lemma 8. Consider a family of n × n matrices A(α) = {a(α)ij } parameterized by α > 0,
satisfying:

• Diagonal invariance: For all 1 ≤ i ≤ n, the diagonal elements a
(α)
ii are constant

(independent of α).
• Upper-left block invariance: There exists a fixed integer m (1 ≤ m ≤ n) such that the

submatrix Asub = (a
(α)
ij )1≤i,j≤m is constant (independent of α).

• Uniform decay outside block: All other elements are bounded by α, i.e.,

|a(α)ij | ≤ α for all (i > m or j > m) and i ̸= j.

Let Ak,(α) denote the k-th power of A(α), and Ak
sub the k-th power of the fixed submatrix Asub.

Then for any fixed integer k ≥ 1 and all 1 ≤ i, j ≤ m:

lim
α→0

∣∣∣(Ak,(α))ij − (Ak
sub)ij

∣∣∣ = 0

with convergence rate O(α2).

Proof. Fix k ≥ 1 and i, j ∈ {1, · · · ,m}. We interpret A(α) as the adjacency matrix of a weighted
directed graph on n nodes, where a

(α)
ij is the edge weight from node i to j. The (i, j)-entry of

A(α),k equals the sum of weights of all paths of length k from i to j, with path weight defined as
the product of edge weights. Similarly, (Ak

sub)ij sums weights of paths confined to the subgraph of
nodes {1, · · · ,m}.

Let Psub be the set of paths from i to j of length k within {1, · · · ,m}, and Pelse the set that visits at
least one node in {m+ 1, · · · , n}. Then:

(Ak,(α))ij =
∑

p∈Psub

w(p) +
∑

p∈Pelse

w(p), (Ak
sub)ij =

∑
p∈Psub

w(p),

so: ∣∣∣(Ak,(α))ij − (Ak
sub)ij

∣∣∣ =
∣∣∣∣∣∣
∑

p∈Pelse

w(p)

∣∣∣∣∣∣ =
∑

p∈Pelse

|w(p)| .

Where w(p) denotes the weight of the path p, which is always nonnegative. for each path p ∈ Pelse, it
contains at least one edge that move from node set {1, · · · ,m} to node set {m+ 1. · · · , n}, and also
contains at least one edge that move from node set{m+ 1. · · · , n} to node set {1, · · · ,m}. Thus:

w(p) ≤ α2 ·
(
max

{
α,max

i
{a(α)ii }, max

1≤i,j≤m
{a(α)ik }

})k−2

.

When α ≤ maxi{a(α)ii } and α ≤ max1≤i,j≤m{a(α)ik }, the above formula is simplified to:

w(p) ≤ α2 ·
(
max

{
max

i
{a(α)ii }, max

1≤i,j≤m
{a(α)ik }

})k−2

= α2Ck−2
1 .

Because |Ppath|+ |Pelse| = nk−1 and |Ppath| = mk−1, so∣∣∣(Ak,(α))ij − (Ak
sub)ij

∣∣∣ ≤ α2Ck−2
1 (nk−1 −mk−1) = α2C2

which implies limα→0

∣∣(Ak,(α))ij − (Ak
sub)ij

∣∣ = 0 with convergence rate O(α2).
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We first prove the second property in Theorem 3, namely the convergence of ∥∂h(L)
t /∂h

(0)
s ∥. Let Ac

the adjcent matrix of Gc
n,m, and Dc the degree matrix. Similar to the proof of Lemma 2, we have:∥∥∥∥∥∂h(L)

t

∂h
(0)
s

∥∥∥∥∥ = ρ

∥∥∥∥∥
L−1∏
l=0

W(l)

∥∥∥∥∥((Dc + I)−1/2(Ac + I)(Dc + I)−1/2
)L
s,t

Let Mc := (Dc + I)−1/2(Ac + I)(Dc + I)−1/2, we have:

Mc
ij =



1

n+ 2
if i ∈ {s, t} and j ∈ {s, t},

1

m+ 3
if i = j ∈ N1,

1

2
if i = j ∈ N2,

1√
(n+ 2)(m+ 3)

if (i ∈ {s, t} and j ∈ N1) or (i ∈ N1 and j ∈ {s, t}),

1√
2(m+ 3)

if (i ∈ N1 and j ∈ N2) or (i ∈ N2 and j ∈ N1),

0 otherwise.

Since

max

(
0,

1√
(n+ 2)(m+ 3)

,
1√

2(m+ 3)

)
=

1√
2(m+ 3)

,

According to Lemma 6, we have:

(Mc,L)s,t →

([
1/(n+ 2) 1/(n+ 2)
1/(n+ 2) 1/(n+ 2)

]L)
1,2

=
2L−1

(n+ 2)L
= ϕL(n+ 1, n+ 1).

with convergence rate O(1/(2(m+ 3))) = O(m−1) when m → +∞.

Then we prove separately that for all n,m ∈ R+, the seven discrete curvatures (except link resistance
curvature) between nodes s and t are always positive in graph Gc

n,m.

Augmented Forman-3 curvature & Augmented Forman-4 curvature Note that edge (s, t) is not
contained in any 4-cycle in Gc

n,m, thus □(s, t) = 0. Thus for all n,m ∈ R+, we have:

AF3(s, t) = AF4(s, t) = 4− n− n+ 3n = 4 + n ≥ 5.

Jost-Liu forman curvature Note that △(s, t) = n and ds ∧ dt = ds ∨ dt = n+1. Thus for all Gc
n,m:

JLF(s, t) =− (1− 1

ds
− 1

dt
− △(s, t)

ds ∨ dt
)+ − (1− 1

ds
− 1

dt
− △(s, t)

ds ∧ dt
)+ +

△(s, t)

ds ∨ dt

=− (1− 1

n+ 1
− 1

n+ 1
− n

n+ 1
)+ − (1− 1

n+ 1
− 1

n+ 1
− n

n+ 1
)+ +

n

n+ 1

=
n

n+ 1
≥ 1

2
.

Balance forman curvature with/without 4-cycle For all n,m ∈ R+:

BFw/o4(s, t) =
2

ds
+

2

dt
− 2 + 2

△(s, t)

ds ∨ dt
+

△(s, t)

ds ∧ dt

=
2

n+ 1
+

2

n+ 1
− 2 + 2

n

n+ 1
+

n

n+ 1

=
n+ 2

n+ 1
> 1.

Note that #s
□(s,t)+#t

□(s,t)

γ(s,t)(ds∨dt)
≥ 0, Thus:

BF(s, t) ≥ BFw/o4(s, t) > 1.
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Ollivier Ricci curvature Note that:

µα
s (v) =


α v = s,

1− α

n+ 1
v ∈ N1 ∪ {t},

0 else.

and

µα
t (v) =


α v = t,

1− α

n+ 1
v ∈ N1 ∪ {s},

0 else.

To calculate W1(µ
α
s , µ

α
t ), when α > 1−α

n+1 , we need to move α − 1−α
n+1 probability mass directly

from s to t; when α < 1−α
n+1 , we need to move 1−α

n+1 − α probability mass directly from t to s. So
W1(µ

α
s , µ

α
t ) = |α− 1−α

n+1 | and αOR(s, t) = 1− |α− 1−α
n+1 | and thus OR(s, t) = 1− 1

n+1 ≥ 1
2 when

we take α = 0.

Lin-Lu-Yau curvature By using the definition:

LLY(s, t) = lim
α→1−

αOR(s, t)

1− α
= lim

α→1−

1− |α− 1−α
n+1 |

1− α

Define g(α) = α− 1−α
n+1 . For α sufficiently close to 1, specifically when α > 1

n+2 (which holds for
α in a left neighborhood of 1 since 1

n+2 < 1 for all positive integers n), we have g(α) ≥ 0. Thus,
|g(α)| = g(α) in this region. The numerator simplifies as follows:

1− |g(α)| = 1− g(α) = 1−
(
α− 1− α

n+ 1

)
= (1− α)

n+ 2

n+ 1
.

Therefore:

lim
α→1−

1− |g(α)|
1− α

= lim
α→1−

(1− α)n+2
n+1

1− α
= lim

α→1−

n+ 2

n+ 1
=

n+ 2

n+ 1
> 1.

Which means LLY(s, t) > 1.

Link resistance curvature Finally, we prove that in link resistance curvature, for any fixed n∗, there
exists an m∗ such that for all m > m∗, and node-pair (s, t) in Gc

n∗,m, LR(s, t) > 0.

To calculate the link resistance curvature, we first need to calculate the equivalent resistance of each
edge in Gc

n,m. Looking back at the definition of Gc
n,m, there are three equivalent types of edges.

Let’s assume that the edges in {(s, t)}, {(s, ui), (t, ui)}1≤i≤n, and {(ui, vij)}1≤i≤n,1≤j≤m have
resistance values of r1, r2, and r3 respectively. And their equivalent resistances are recorded as w1,
w2, and w3 respectively.

Calculate w1: Note that there are n + 1 resistors in parallel between s and t, n of which have a
resistance of 2r2 and one has a resistance of r1, so:

w1 =

(
1

r1
+

n

2r2

)−1

.

Calculate w2: Since the equivalent resistance of all edges in {(s, ui), (t, ui)}1≤i≤n is equal, let’s
take the calculation of the equivalent resistance between s and u1 as an example. According to the
topology of the graph, the calculation is divided into three steps. First, we connect n resistors in
parallel: s − t, s − u2 − t, s − u3 − t, · · · ,s − un − t, where the resistance of s − t is r1 and the
resistance of the remaining n− 1 resistors is 2r2. Then, we connect the resulting resistor in series
with t− u1 (with a resistance of r2). Finally, we connect the resulting resistor in parallel with s− u1

(with a resistance of r2). Therefore, w2 is calculated as:

w2 =

 1

r2 +
(

1
r1

+ n−1
2r2

)−1 +
1

r2


−1

.
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Calculate w3: Since any vij is only connected to ui, the equivalent resistance between vij and ui is
not affected by any other resistance, so:

w3 = r3.

From the definition,

LR(s, t) =
2(1− nw2)

w1
.

since w1 > 0, making LR(s, t) > 0 is equivalent to making 1 − nw2 > 0 true, which is further
equivalent to ensure: [

r2 +

(
1

r1
+

n− 1

2r2

)−1
]−1

+
1

r2
> n.

Simplify the left side of the above inequality:

left =

[
r2 +

(
2r2 + (n− 1)r1

2r1r2

)−1
]−1

+
1

r2
=

[
r2 +

2r1r2
2r2 + (n− 1)r1

]−1

+
1

r2

=

[
2r22 + (n+ 1)r1r2
2r2 + (n− 1)r1

]−1

+
1

r2
=

2r2 + (n− 1)r1
2r22 + (n+ 1)r1r2

+
1

r2
=

2r2 + 2nr1
2r22 + (n+ 1)r1r2

.

Considering that in the symmetric normalized Laplacian, the value of any edge (u, v) is
1√

(du+1)(dv+1)
, so r1 = 1

n+1 and r2 = 1√
(n+1)(m+2)

. Thus (n + 1)r1 = 1. We can further

deduce the equivalent conditions as follows:

2r2 + 2nr1
2r22 + (n+ 1)r1r2

> n ⇒ 2r2 + 2nr1
2r22 + r2

> n ⇒ (2− n)r2 + 2nr1 − 2nr22 > 0.

We further narrow the left side of the above inequality to make its validity condition more stringent:

(2− n)r2 + 2nr1 − 2nr22 > −nr2 + 2nr1 − 2nr22 = n(2r1 − r2 − 2r22)

=n

(
2

n+ 1
− 1√

(n+ 1)(m+ 2)
− 2

(n+ 1)(m+ 2)

)
:= n× f(n,m).

Obviously, ∂f(n,m)/∂m > 0, and f(n,+∞) = 2
n+1 > 0, so for any fixed n∗, there must exist a

m∗ such that for any m > m∗, f(n∗,m) approaches 2
n+1 arbitrarily, thus the original proposition is

proved.

A.3 DERIVATION OF EQUATION 6

4− di − dj + 3△ij

=4− |N (u)| − |N (v)|+ 3(|N (u) ∩N (v)|)
=4− (|N (u)| − |N (u) ∩N (v)|)− (|N (v)| − |N (u) ∩N (v)|) + |N (u) ∩N (v)|
=4− |N (u)/N (v)| − |N (v)/N (u)|+ |N (u) ∩N (v)|
=(2 + |N (u) ∩N (v)|)− (|N (u)/N (v)| − 1)− (|N (v)/N (u)| − 1)

=|B(u) ∩ B(v)| − |N (u)/B(v)| − |N (v)/B(u)|

A.4 PROOF OF THEOREM 5

By definition, we know that for any Gc
n,m, we have:

WAF3(s, t) = 2f(n+ 1) + nf(m+ 2)

The original proposition is equivalent to proving that for any ϵ > 0, there exists a set of positive
integers n∗ and m∗ such that 2f(n+1)+nf(m+2) < ϵ. Since f(+∞) = 0+, for any ϵ > 0, there
exists N1 > 0 such that when x > N1, we have f(x) < ϵ

4 . Choose a positive integer n∗ such that
n∗ + 1 > N1. Then, f(n∗ + 1) < ϵ

4 , and thus

2f(n∗ + 1) <
ϵ

2
.
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For a fixed n∗, since f(x) → 0 as x → ∞, there exists N2 > 0 such that when x > N2, we have
f(x) < ϵ

2n∗ . Choose a positive integer m∗ such that m∗ + 2 > N2. Then, f(m∗ + 2) < ϵ
2n∗ , and

thus
n∗f(m∗ + 2) <

ϵ

2
.

Therefore,
2f(n∗ + 1) + n∗f(m∗ + 2) <

ϵ

2
+

ϵ

2
= ϵ.

A.5 PROOF OF THEOREM 6

Notice that:

Jaccardf (N (u),N (v)) =

∑
i∈N (u)∩N (v) f(di)∑
i∈N (u)∪N (v) f(di)

⇐⇒Jaccardf (N (u),N (v)) =

∑
i∈N (u)∩N (v) f(di)∑

i∈N (u) f(di) +
∑

i∈N (v) f(di)−
∑

i∈N (u)∩N (v) f(di)

⇐⇒ 1

Jaccardf (N (u),N (v))
=

∑
i∈N (u) f(di) +

∑
i∈N (v) f(di)∑

i∈N (u)∩N (v) f(di)
− 1

⇐⇒
∑

i∈N (u)∩N (v)

f(di) =

∑
i∈N (u) f(di) +

∑
i∈N (v) f(di)

Jaccard−1
f (N (u),N (v)) + 1

So:
WAF3f (u, v)

=
∑

i∈B(u)∩B(v)

f(di)−
∑

i∈N (u)/B(v)

f(di)−
∑

i∈N (v)/B(u)

f(di)

=

f(du) + f(dv) +
∑

i∈N (u)∩N (v)

f(di)

−

 ∑
i∈N (u)/N (v)

f(di)− f(dv)

−

 ∑
i∈N (v)/N (u)

f(di)− f(du)


=2f(du) + 2f(dv) +

∑
i∈N (u)∩N (v)

f(di)−
∑

i∈N (u)/N (v)

f(di)−
∑

i∈N (v)/N (u)

f(di)

=2f(du) + 2f(dv) +
∑

i∈N (u)∩N (v)

3f(di)−
∑

i∈N (u)

f(di)−
∑

i∈N (v)

f(di)

=2f(du) + 2f(dv) +

(
3

Jaccard−1
f (N (u),N (v)) + 1

− 1

) ∑
i∈N (u)

f(di) +
∑

i∈N (v)

f(di)


=2f(du) + 2f(dv) +

(
3Jaccardf (N (u),N (v))

1 + Jaccardf (N (u),N (v))
− 1

) ∑
i∈N (u)

f(di) +
∑

i∈N (v)

f(di)


=2f(du) + 2f(dv) +

(
2− 3

1 + Jaccardf (N (u),N (v))

) ∑
i∈N (u)

f(di) +
∑

i∈N (v)

f(di)


B RELATED WORK

Alon & Yahav (2020) first proposed that information flowing through a graph can be over-squashed
due to bottleneck structures. This idea was quickly recognized by the graph learning community, and
over-squashing has become one of the core challenges faced by subsequent researchers designing new
deep graph models. The next notable breakthrough in over-squashing research came from Topping
et al. (2021), who demonstrated the use of the discrete decrement as an upper bound on the Jacobian
matrix norm, thus transforming the ambiguous problem of determining over-squashed edges into a
precisely defined curvature calculation.
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Table 5: The values of MOSR10 and MOSR25 across different GNNs and datasets when the discrete
curvature si set to WAF3 and f(x) ≡ 1/(1 + x).

GCN GAT SAGE GCN GAT SAGE
Cora .000/.014 .157/.166 .183/.183 Citeseer .020/.040 .210/.216 .279/.280
Pubmed .001/.002 .013/.014 .015/.015 Computers .002/.005 .011/.011 .011/.011
Photo .021/.024 .027/.027 .027/.027 CS .009/.034 .075/.075 .076/.076
Physics .020/.040 .055/.058 OOR WikiCS .140/.141 .144/.144 .144/.144
Cora ML .025/.056 .098/.103 .103/.103 DBLP .020/.022 .052/.055 .057/.059
Cornell .000/.000 .116/.122 .138/.143 Texas .000/.000 .134/.139 .143/.149
Wisconsin .000/.000 .108/.117 .122/.134 Chameleon .065/.066 .075/.076 .079/.079
Squirrel .039/.039 .041/.041 .041/.041 Roman-empire .000/.001 .351/.431 .453/.453
Tolokers .002/.002 OOR .003/.003 Questions .003/.011 .023/.024 .025/.025
Amazon-ratings .159/.218 .223/.231 .245/.246 Minesweeper .191/.192 .192/.192 .192/.192

Average .036/.045 .111/.118 .123/.124

Since then, discrete curvature has garnered significant interest within the graph learning community.
One of the most typical approaches is curvature-based graph rewiring, whose core idea involves
performing curvature-based preprocessing on graph data before executing graph deep learning to
eliminate edges with extremely high or low curvature. Representative methods include those by SDRF
(Topping et al., 2021), BORF (Nguyen et al., 2023), SJLR (Giraldo et al., 2023), AFR-3 (Fesser &
Weber, 2024a), among others. Another approach involves directly integrating curvature into end-to-
end GNN models. For instance, Li et al. (2022) utilized discrete curvature to improve aggregation
weights in message passing; Sun et al. (2022) employed a hierarchical attention mechanism based
on mixed-curvature spaces to capture complex graph structures and enhance performance; Fu et al.
(2025) et al. proposed a curvature-optimized variational information bottleneck principle to optimize
information transmission on graphs; while Chen et al. (2025) designed a continuous-depth GNN with
effects similar to rewiring methods via curvature Ricci flow. In addition, there is another type of
method that proposes the asynchronous message passing mechanism (Gutteridge et al., 2023; Chen
et al., 2024; Bose & Das, 2025). Their core innovation lies in combining the above two categories:
graph reconnection and end-to-end graph network.

In terms of theoretical progress, Di Giovanni et al. (2023a) discussed how factors such as network
width, depth, and graph topology affect over-squeezing with the help of arrival time; Di Giovanni
et al. (2023b) studied the relationship between over-squeezing and expressiveness; Nguyen et al.
(2023) et al. established a unified understanding of over-smoothing and over-squeezing through ORC;
Chen et al. (2024) gave the conditions for GNN to exhibit local priority through curvature. Tori et al.
(2024b) proposed that the effectiveness of curvature-based graph rewiring methods may be due to the
correction of outliers.

C COMPUTE MOSR

In this paper, we introduce the metric MOSRq, which measures the proportion of over-squashed
edges that are ignored by the discrete curvature. MOSR is calculated using the Jacobian matrix norm,
making it a tightly coupled metric with the model. This section details the calculation of MOSR.

To ensure fairness, we want the network model to be optimal when calculating the Jacobian matrix
norm. To achieve this, we used Optuna Akiba et al. (2019) to perform 200 times hyperparameter
search for each model on each dataset, with the hyperparameter search range fixed uniformly (as
shown in Table 6. The hyperparameter search results are shown in Table 7, Table 8 and Table 9.

We then randomly initialize the GNN with the optimal hyperparameter combination and calculate

the Jacobian matrix norm
∥∥∥∥∂h

(L)
j

∂h
(0)
i

∥∥∥∥ for each edge (i, j) in the dataset via the autograd module in

pytorch. We directly use randomly initialized GNNs without any training (See Appendix D.1 for
more discussion on this).
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Following the definition of discrete curvature, we compute a curvature value for each edge and
then compute MOSR as defined in Section 4. We repeat each experiment 10 times with different
initialization and report the average value. Our experimental platform is Intel(R) Xeon(R) Gold 6240C
CPU @ 2.60GHz and NVIDIA GeForce RTX 4090 × 4. We set the resource consumption limit
for a single experiment to 12 hours of runtime and 24GB of GPU memory. Experiments exceeding
this limit will be marked as Out of Resources (OOR). The anonymized code is provided here:
https://anonymous.4open.science/r/rethinking_discrete_curvature

Table 6: Scope of hyperparameter search

Hyperparameter Range
n layer [2,3,4,5]

n hidden [64, 128, 256]
dropout [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]

lr [0.01, 0.005, 0.002, 0.001, 0.0005]
weight decay [0.005, 0.001, 0.0005, 0.0001, 0]

norm [”batch nrom”, ”layer norm”, none]

D SUPPLEMENTARY EXPERIMENTS

D.1 EFFECTS OF TRAINING AND q ON MOSR.

We explore the impact of the number of training rounds of the GNN model and the choice of p value
on the value of MOSR. Our experimental settings cover different models, datasets, and curvature
definitions.

• Observation 9: As the number of training epochs increases, the value of MOSR will
slowly increase and gradually stabilize as the training converges (because the difference in
MOSR between epoch=200 and epoch=500 is significantly smaller than the difference in
MOSR between epoch=0 and epoch=50).
• Observation 10: When p is smaller, the criteria for being considered an over-squashing
edge will be stricter, and the value of MOSRp will also become smaller.
• Observation 11: Observation 9 and observation 10 hold for all discrete curvatures (com-
pare Figure 5 with Figures 6 and 7), all models (compare Figure 5 with Figures 8 and 9), and
all dataset (compare Figure 5 with Figures 10 and 11).

The MOSR values reported in the main paper are all based on an untrained model (epoch=0) and
small p-values (10 and 25). Based on the above observations, this means that we are reporting a lower
bound on the probability that the discrete curvature ignores over-squashing edges. Under any other
settings (e.g., more epochs and higher p), the discrete curvature will ignore even more over-squashing
edges than we report.

D.2 WEIGHTING FUNCTION

Assuming that node u and node v have a common node i, for an MPNN as shown in Equation (1),
the norm of the Jacobian matrix of u’s information flowing through i to v is:
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Table 7: The optimal hyperparameter combination of GCN on different datasets

n layer n hidden dropout lr weight decay norm
Cora 2 64 0.7 0.001 0.005 none
Citeseer 2 256 0.5 0.001 0.005 none
Pubmed 2 64 0.6 0.005 0.0001 none
Computers 2 256 0.3 0.002 0.0001 none
Photo 2 256 0.5 0.0005 0 ln
CS 2 128 0.7 0.0005 0.001 none
Physics 2 64 0.1 0.005 0.001 none
WikiCS 2 256 0.5 0.0005 0 ln
Cora ML 5 64 0.6 0.001 0.0001 none
Cora Full 2 128 0.5 0.01 0.001 none
DBLP 3 256 0.3 0.005 0.005 none
Cornell 2 64 0.4 0.0005 0.005 none
Texas 2 256 0.2 0.002 0.0005 none
Wisconsin 3 128 0.2 0.01 0.001 bn
Chameleon 2 64 0.6 0.001 0.0005 none
Squirrel 4 128 0.2 0.01 0.0001 bn
Roman-empire 2 256 0.1 0.002 0.0001 none
Tolokers 2 256 0.7 0.01 0 ln
Questions 2 256 0.6 0.01 0.001 ln
Amazon-ratings 2 256 0.2 0.01 0 ln
Minesweeper 3 256 0.5 0.005 0 ln

Table 8: The optimal hyperparameter combination of GAT on different datasets

n layer n hidden dropout lr weight decay norm
Cora 3 128 0.6 0.0005 0.005 none
Citeseer 2 64 0.4 0.005 0.005 none
Pubmed 2 64 0.5 0.0005 0 bn
Computers 4 128 0.5 0.001 0.001 ln
Photo 3 128 0.5 0.005 0.0001 none
CS 2 256 0.6 0.01 0.0001 none
Physics 2 256 0.7 0.002 0.001 ln
WikiCS 2 256 0.6 0.0005 0.0001 bn
Cora ML 5 64 0.7 0.0005 0 ln
Cora Full 2 256 0.7 0.01 0.005 bn
DBLP 3 64 0.5 0.01 0.005 none
Cornell 4 64 0.4 0.005 0.005 bn
Texas 5 256 0.7 0.002 0 ln
Wisconsin 4 128 0.7 0.01 0.005 none
Chameleon 5 128 0.3 0.0005 0.005 ln
Squirrel 2 256 0.6 0.002 0.001 bn
Roman-empire 2 128 0.3 0.005 0 none
Tolokers 3 256 0.6 0.005 0.0001 none
Questions 4 256 0.3 0.001 0.0001 none
Amazon-ratings 2 128 0.1 0.0005 0.0001 bn
Minesweeper 3 128 0.4 0.01 0.0001 none
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Table 9: The optimal hyperparameter combination of GraphSAGE on different datasets

n layer n hidden dropout lr weight decay norm
Cora 2 64 0.5 0.0005 0.005 none
Citeseer 2 128 0.2 0.005 0.005 none
Pubmed 2 256 0.5 0.005 0.001 none
Computers 4 256 0.7 0.0005 0.0001 none
Photo 2 64 0.6 0.002 0 none
CS 2 256 0.6 0.001 0.0001 none
Physics 3 256 0.7 0.005 0.0001 ln
WikiCS 3 256 0.7 0.005 0 ln
Cora ML 3 256 0.1 0.001 0.0005 none
Cora Full 2 256 0.2 0.0005 0.005 ln
DBLP 5 64 0.7 0.01 0.0005 bn
Cornell 3 64 0.1 0.0005 0.001 none
Texas 2 64 0.2 0.001 0.005 none
Wisconsin 3 64 0.3 0.01 0.001 none
Chameleon 2 128 0.7 0.01 0 none
Squirrel 3 256 0.7 0.005 0 ln
Roman-empire 4 256 0.5 0.01 0 bn
Tolokers 4 64 0.5 0.005 0 bn
Questions 5 128 0.7 0.0005 0.0005 none
Amazon-ratings 3 256 0.5 0.002 0 bn
Minesweeper 5 256 0.4 0.001 0.0005 none

Figure 5: When the dataset is Citeseer, the model is GCN, and the discrete curvature is Ollivier Ricci
Curvature, the impact of different training epochs and p-values on MOSR.
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Figure 6: When the dataset is Citeseer, the model is GCN, and the discrete curvature is balanced
Forman Curvature, the impact of different training epochs and p-values on MOSR.

Figure 7: When the dataset is Citeseer, the model is GCN, and the discrete curvature is augmented
Forman-3 Curvature, the impact of different training epochs and p-values on MOSR.

Figure 8: When the dataset is Citeseer, the model is GAT, and the discrete curvature is Ollivier Ricci
Curvature, the impact of different training epochs and p-values on MOSR.
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Figure 9: When the dataset is Citeseer, the model is GraphSAGE, and the discrete curvature is Ollivier
Ricci Curvature, the impact of different training epochs and p-values on MOSR.

Figure 10: When the dataset is Cora, the model is GCN, and the discrete curvature is Ollivier Ricci
Curvature, the impact of different training epochs and p-values on MOSR.

Figure 11: When the dataset is Pubmed, the model is GCN, and the discrete curvature is Ollivier
Ricci Curvature, the impact of different training epochs and p-values on MOSR..
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Table 10: The impact of different attenuation functions on the calculation of WAF3. The values in
the table represent MOSR10 and MOSR25.

f(d) = (1 + d)−2 f(d) = (1 + d)−1/2 f(d) = (1 + d)−1

GCN GAT SAGE GCN GAT SAGE GCN GAT SAGE
Cora .009/.056 .169/.178 .196/.196 .000/.016 .147/.154 .172/.172 .000/.014 .157/.166 .183/.183
Citeseer .044/.092 .223/.235 .286/.286 .007/.026 .205/.205 .255/.273 .020/.040 .210/.216 .279/.280
Pubmed .008/.013 .023/.023 .025/.025 .000/.001 .009/.010 .011/.011 .001/.002 .013/.014 .015/.015
Computers .014/.017 .018/.018 .018/.018 .001/.004 .009/.009 .010/.010 .002/.005 .011/.011 .011/.011
Photo .020/.025 .026/.026 .026/.026 .029/.030 .033/.033 .033/.033 .021/.024 .027/.027 .027/.027
CS .070/.079 .092/.093 .094/.094 .011/.021 .068/.068 .069/.069 .009/.034 .075/.075 .076/.076
Physics .060/.069 .071/.072 OOR .019/.023 .049/.053 OOR .020/.040 .055/.058 OOR
WikiCS .065/.069 .070/.071 .071/.071 .203/.203 .205/.205 .205/.205 .140/.141 .144/.144 .144/.144
Cora ML .074/.085 .115/.119 .119/.119 .020/.048 .088/.090 .091/.093 .025/.056 .098/.103 .103/.103
Cora Full OOR OOR OOR OOR OOR OOR OOR OOR OOR
DBLP .056/.069 .084/.086 .088/.092 .002/.010 .034/.037 .039/.043 .020/.022 .052/.055 .057/.059
Cornell .000/.000 .127/.138 .141/.156 .000/.000 .120/.124 .143/.143 .000/.000 .116/.122 .138/.143
Texas .000/.000 .132/.132 .140/.143 .000/.000 .118/.123 .128/.137 .000/.000 .134/.139 .143/.149
Wisconsin .000/.000 .122/.132 .130/.130 .000/.000 .102/.109 .116/.126 .000/.000 .108/.117 .122/.134
Chameleon .037/.043 .040/.044 .044/.044 .090/.091 .100/.101 .104/.104 .065/.066 .075/.076 .079/.079
Squirrel .015/.015 .015/.015 .015/.015 .103/.103 .100/.100 .100/.101 .039/.039 .041/.041 .041/.041
Roman-empire .000/.002 .293/.432 .452/.454 .000/.004 .352/.431 .452/.453 .000/.001 .351/.431 .453/.453
Tolokers .007/.007 OOR .007/.007 .001/.001 OOR .002/.002 .002/.002 OOR .003/.003
Questions .011/.018 .031/.031 .032/.032 .001/.006 .016/.016 .018/.018 .003/.011 .023/.024 .025/.025
Amazon-ratings .194/.219 .201/.209 .223/.224 .178/.235 .240/.248 .261/.263 .159/.218 .223/.231 .245/.246
Minesweeper .270/.270 .271/.271 .271/.271 .233/.233 .234/.234 .233/.233 .191/.192 .192/.192 .192/.192
Average .048/.057 .118/.122 .125/.126 .045/.053 .117/.124 .128/.129 .036/.045 .111/.118 .123/.124

Therefore, we set f(di) to 1/(1 + di) to balance the contribution of any first-order neighbor node in
computing the discrete curvature. We also explore the effects of weight functions that decay faster or
slower than 1/(1 + di) (i.e., (1 + di)

−2 and (1 + di)
−1/2) in Table 10.

• Observation 12: On average, when f(d) = (1 + d)−1, the value of MOSR is generally
slightly smaller (better) than when f(d) = (1 + d)−2 or f(d) = (1 + d)−1/2.

D.3 CURVATURE-BASED GRAPH LEARNING

We explore the impact of different discrete curvature definitions on graph learning. We select
Stochastic Discrete Ricci Flow (SDRF, (Topping et al., 2021)) as a representative graph rewiring
method and Graph Neural Ricci Flow (GNRF, (Chen et al., 2025)) as a representative end-to-end
method. The results are shown in Tables 11 and 12, respectively.
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Table 11: Accuracy on downstream classification tasks after graph rewiring using SDRF (Topping
et al., 2021) with different curvature definitions. The experimental setup for this experiment remains
identical to the original paper. *Indicates data referenced from Topping et al. (2021).

Cornell Texas Wisconsin
Balanced Forman 57.54± 0.34∗ 70.35± 0.60∗ 61.55± 0.84∗

Ollivier Ricci 55.56± 1.05 64.51± 0.26 58.51± 0.60

Augmented Forman 3 58.29± 0.92 73.29± 0.64 63.19± 0.96

Weighted AF3 57.91± 0.54 73.62± 0.62 65.64± 0.24

Approximately Weighted AF3 (100 hash) 58.21± 0.64 71.96± 0.68 63.74± 0.34

Approximately Weighted AF3 (1000 hash) 57.88± 0.78 70.55± 0.61 65.10± 0.63

Approximately Weighted AF3 (10000 hash) 57.67± 0.62 72.11± 0.51 65.99± 0.67

Table 12: The accuracy of end-to-end model GNRF (Chen et al., 2025) on downstream classification
tasks using different curvature definitions. The experimental setup for this experiment remains exactly
the same as the original GNRF paper.

Cornell Texas Wisconsin
Balanced Forman 84.37± 3.11 83.15± 6.25 83.15± 3.25

Ollivier Ricci 81.26± 5.45 79.95± 5.14 81.26± 2.36

Augmented Forman 3 84.21± 5.26 85.66± 3.25 79.26± 1.59

Weighted AF3 84.62± 3.26 87.11± 1.03 84.66± 0.34

Approximately Weighted AF3 (100 hash) 84.16± 4.10 84.26± 2.34 82.56± 1.26

Approximately Weighted AF3 (1000 hash) 83.12± 2.16 85.79± 1.26 85.11± 1.26

Approximately Weighted AF3 (10000 hash) 84.99± 2.13 86.35± 2.11 84.25± 0.67

• Observation 13: In the graph rewiring method SDRF, WAF3 (and its approximations)
outperform other curvatures on two datasets; and in the end-to-end GNRF, they outperform
other curvatures on all three datasets.
• Observation 14: When hash=100, approximately WAF3 performs as well as or better than
balanced Forman curvature and Ollivier Ricci curvature on both SDRF and GNRF.

The above observations show that WAF3 can achieve better performance in curvature-based graph
learning than previous curvature methods, and can do well enough even with rough approximations.

E MORE DISCUSSIONS

E.1 STATISTICS OF THE DATASETS

We provide statistics for all the datasets used in this paper in Table 13.

E.2 THE MOSR VALUE OF ŴAF3

Another intuitive way to test the effectiveness of WAF3 based on the MinHash approximation is to
directly observe their MOSR values. We report these results in Table 14. We found that the MOSR
values are quite stable for different orders of magnitude of H , and even when H = 100, the MOSR
value is very close to that of the non-approximate WAF3, and significantly lower than that of AF3.

E.3 MOSR VALUES FOR MORE DISCRETE CURVATURE

Given that the Balance Forman curvature with 4-cycle and the Jost-Liu Forman curvature have the
same time complexity as Augmented Forman-3, we also report the MOSR values for these two
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Table 13: statistics of the datasets

#Node #Edge #Feature #Class
Cora 2708 10556 1433 7
Citeseer 3327 9104 3703 6
Pubmed 19717 88648 500 3
Computers 13752 491722 767 10
Photo 7650 238162 745 8
CS 18333 163788 6805 15
Physics 34493 495924 8415 5
WikiCS 11701 216123 300 10
Cora ML 2995 16316 2879 7
Cora Full 19793 126842 8710 70
DBLP 17716 105734 1639 4
Cornell 183 298 1703 5
Texas 183 325 1703 5
Wisconsin 251 515 1703 5
Chameleon 2277 36101 2325 5
Squirrel 5201 217073 2325 5
Roman-empire 22662 32927 300 18
Tolokers 11758 519000 10 2
Questions 48921 153540 301 2
Amazon-ratings 24492 93030 300 5
Minesweeper 10000 39402 7 2

Table 14: The MOSR value of WAF3 based on MinHash approximation when H takes different
values.

H = 100 H = 1000 H = 10000

GCN GAT SAGE GCN GAT SAGE GCN GAT SAGE
Cora .000/.014 .155/.164 .181/.181 .000/.015 .156/.165 .182/.182 .000/.015 .158/.166 .184/.184
Citeseer .019/.041 .209/.215 .278/.279 .020/.039 .210/.216 .279/.279 .019/.039 .210/.216 .279/.279
Pubmed .001/.002 .013/.014 .015/.015 .001/.002 .013/.014 .015/.015 .001/.002 .013/.014 .015/.015
Computers .002/.006 .011/.012 .012/.012 .002/.005 .011/.011 .011/.011 .002/.005 .011/.011 .011/.011
Photo .022/.025 .027/.028 .028/.028 .021/.024 .027/.027 .027/.027 .021/.024 .027/.027 .027/.027
CS .010/.036 .076/.076 .077/.077 .009/.034 .075/.075 .076/.076 .009/.034 .075/.075 .076/.076
Physics .022/.047 .057/.060 OOR .020/.040 .055/.059 OOR .020/.040 .055/.058 OOR
WikiCS .145/.145 .149/.149 .149/.149 .140/.140 .144/.144 .144/.144 .139/.140 .143/.143 .143/.143
Cora ML .025/.055 .098/.102 .103/.103 .025/.056 .098/.103 .104/.104 .025/.055 .098/.103 .103/.103
Cora Full OOR OOR OOR OOR OOR OOR OOR OOR OOR
DBLP .021/.023 .052/.056 .058/.060 .021/.023 .052/.055 .058/.060 .020/.022 .052/.055 .057/.059
Cornell .000/.000 .113/.120 .134/.139 .000/.000 .118/.126 .141/.147 .000/.000 .116/.122 .138/.143
Texas .000/.000 .134/.139 .139/.149 .000/.000 .130/.135 .139/.145 .000/.000 .134/.139 .143/.149
Wisconsin .000/.000 .114/.119 .124/.136 .000/.000 .108/.117 .122/.134 .000/.000 .108/.117 .122/.134
Chameleon .064/.065 .074/.075 .078/.078 .065/.066 .075/.077 .079/.079 .065/.065 .075/.076 .079/.079
Squirrel .046/.047 .048/.048 .048/.049 .039/.039 .041/.041 .041/.041 .039/.039 .041/.041 .041/.041
Roman-empire .001/.011 .351/.426 .448/.448 .000/.002 .350/.429 .451/.451 .000/.001 .349/.429 .451/.451
Tolokers .002/.002 OOR .003/.003 .002/.002 OOR .003/.003 .002/.002 OOR .003/.003
Questions .003/.011 .023/.024 .025/.025 .003/.011 .023/.024 .025/.025 .003/.011 .023/.024 .025/.025
Amazon-ratings .203/.233 .223/.228 .244/.246 .217/.218 .224/.231 .245/.246 .159/.218 .223/.231 .245/.246
Minesweeper .243/.243 .243/.243 .243/.243 .248/.248 .249/.249 .248/.248 .250/.250 .251/.251 .250/.250
Average .041/.050 .114/.120 .125/.127 .041/.048 .113/.120 .125/.127 .038/.048 .113/.120 .125/.127

curvatures in Table 15. The results show that, on average, their MOSR values are similar to those of
Augmented Forman-3, but still significantly lower than the MOSR value of WAF3.
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Table 15: The MOSR value of ŴAF3

Balance Forman w/o 4-cycle Jost-Liu Forman
GCN GAT SAGE GCN GAT SAGE

Cora .003/.011 .105/.144 .150/.175 .004/.011 .099/.137 .143/.168
Citeseer .000/.020 .039/.088 .163/.225 .000/.020 .039/.087 .159/.221
Pubmed .000/.001 .064/.107 .142/.139 .000/.001 .064/.107 .141/.137
Computers .000/.004 .008/.010 .008/.009 .000/.004 .008/.009 .008/.009
Photo .036/.039 .040/.041 .040/.041 .036/.039 .039/.040 .040/.040
CS .001/.009 .027/.050 .052/.066 .001/.009 .026/.047 .049/.063
Physics .002/.010 .040/.053 OOR .002/.010 .039/.051 OOR
WikiCS .239/.238 .241/.239 .244/.240 .239/.238 .240/.239 .244/.239
Cora ML .042/.081 .090/.117 .078/.107 .040/.077 .085/.113 .075/.104
Cora Full OOR OOR OOR OOR OOR OOR
DBLP .006/.025 .030/.040 .040/.045 .006/.024 .029/.038 .038/.043
Cornell .385/.286 .282/.282 .325/.325 .385/.286 .261/.261 .310/.310
Texas .039/.216 .298/.291 .268/.290 .286/.216 .264/.260 .245/.257
Wisconsin .142/.143 .181/.183 .170/.190 .132/.135 .172/.175 .165/.181
Chameleon .007/.114 .125/.129 .132/.130 .005/.113 .124/.127 .131/.128
Squirrel .127/.128 .129/.127 .128/.129 .127/.127 .129/.127 .128/.129
Roman-empire .000/.000 .155/.252 .471/.478 .000/.000 .059/.245 .465/.472
Tolokers .003/.003 OOR .003/.003 .003/.003 OOR .002/.003
Questions .048/.070 .083/.085 .103/.100 .048/.070 .083/.085 .103/.100
Amazon-ratings .302/.302 .048/.194 .280/.287 .291/.291 .038/.184 .270/.276
Minesweeper NNE NNE NNE NNE NNE NNE
Average .073/.089 .110/.135 .155/.165 .085/.088 .100/.130 .151/.160

E.4 OVER-SMOOTHING AND OVER-SQUASHING

Over-smoothing and over-squashing are both significant challenges in designing GNNs, and they
are distinct but also deeply connected. On the one hand, Arnaiz-Rodriguez & Errica (2025) clearly
points out the obvious difference between the two concepts: oversmoothing refers to the problem of
node features becoming too smooth when the number of layers in a GNN is too large; over-squashing
refers to the problem of long-range information not being effectively utilized due to bottleneck
structures in the graph. On the other hand, papers Giraldo et al. (2023); Nguyen et al. (2023) provide
a unified perspective on over-smoothing and over-squashing from the perspectives of spectral theory
and curvature, respectively. Specifically, Giraldo et al. (2023) argues that excessively large/small
spectral gaps lead to over-smoothing/over-squashing; while Nguyen et al. (2023) argues that highly
positive/negative Ollivier-Ricci curvatures lead to over-smoothing/over-squashing. Furthermore,
Arroyo et al. (2025) points out the consistency between over-smoothing and over-squashing in
causing gradient vanishing.

As for the methodological level, many works have attempted to alleviate both challenges simul-
taneously. Among them, Liu et al. (2023) proposed a dropout and sampling method based on
Ollivier-Ricci curvature; Pei et al. (2024) proposed a track propagation mechanism to avoid informa-
tion “hybridization” from different sources; and Fesser & Weber (2024b) designed a graph rewiring
method based on Augmented Forman-Ricci Curvature.

Although our paper focuses on the relationship between curvature and over-squashing, given the
central role of curvature in understanding and solving over-squashing problems, we have reason
to believe that our work will also briefly inspire researchers dedicated to studying over-smoothing
problems. In particular, we can similarly consider whether the statement in Nguyen et al. (2023)
that ”highly positive curvature leads to over-smoothing” is sufficient or necessary. We will leave the
discussion here to future work.
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F USE OF LLMS

In this project, we only used LLMs to find and correct grammatical errors and polish the text.
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