

RETHINKING THE GOLD STANDARD: WHY DISCRETE CURVATURE FAILS TO FULLY CAPTURE OVER-SQUASHING IN GNNS?

000
001
002
003
004
005
006
007 **Anonymous authors**
008 Paper under double-blind review
009
010
011
012

ABSTRACT

013 As a topological invariant for discrete structures, discrete curvature has been widely
014 adopted in the study of complex networks and graph neural networks. A prevailing
015 viewpoint posits that edges with highly negative curvature will induce graph
016 bottlenecks and the over-squashing phenomenon. In this paper, we critically re-
017 examine this view and put forward our central claim: **high negative curvature**
018 **is a sufficient but not a necessary condition for over-squashing**. We first con-
019 struct a family of counterexamples demonstrating the failure of discrete curvature,
020 where some edges are severely squashed, but the curvature still appears positive.
021 Furthermore, extensive experiments demonstrate that the most commonly used
022 discrete curvature measure — Ollivier–Ricci curvature — fails to detect as many
023 as 30% \sim 40% of over-squashed edges. To alleviate this limitation, we propose
024 Weighted Augmented Forman-3 Curvature (WAF3), which significantly improves
025 the detection of over-squashed edges. Additionally, we develop a highly efficient
026 approximation algorithm for WAF3, enabling curvature computation on graphs
027 with five million edges in only 23.6 seconds, which is 133.7 times faster than the
028 existing algorithm with the lowest complexity for curvatures.
029

1 INTRODUCTION

030 In differential geometry, curvature is used to describe how volume grows within a local region and how
031 geodesics diverge or converge. Discrete curvature naturally extends this concept to discrete structures,
032 such as graphs. In complex network analysis and graph deep learning, discrete curvature plays a
033 critical role. It is widely applied in numerous downstream tasks, including key node identification
034 (Farooq et al., 2019), community detection (Park & Li, 2024; Sia et al., 2019), clustering (Tian et al.,
035 2025; Sun et al., 2023), sparsification (Zhang et al., 2023), and anomaly detection (Grover et al.,
036 2025), among others. Among these, the idea of tackling the graph over-squashing (Akansha, 2025)
037 based on discrete curvature has been widely studied, with one of the most notable findings being that:
038

039 *“Edges with high negative curvature are those causing the graph bottleneck and thus leading
040 to the over-squashing phenomenon.” — Topping et al. (2021)*

041 This perspective has garnered significant attention within the community. It has spawned a consider-
042 able body of follow-up research, including theoretical investigations into the relationship between
043 over-squashing and curvature (Di Giovanni et al., 2023a; Nguyen et al., 2023), curvature-based
044 graph rewiring techniques (Nguyen et al., 2023; Giraldo et al., 2023; Fesser & Weber, 2024a), and
045 curvature-inspired graph neural networks (Li et al., 2022; Sun et al., 2022; Fu et al., 2025).
046

047 Although the work of Topping et al. (2021) has achieved remarkable success, a subtle but important
048 point is that they only established the sufficiency of highly negative curvature for over-squashing,
049 while leaving its necessity unaddressed. To the best of our knowledge, this fundamental yet crucial
050 issue has long been overlooked. In this paper, we investigate it for the first time and uncover a striking
051 fact: the necessity does not actually hold. In other words, there exist edges in graph datasets that
052 suffer from severe over-squashing but cannot be detected by curvature.
053

In detail, our contributions are organized into four interlocking parts:

054 **1 New theoretical results (Section 3).** We construct a family of counterexample graphs and prove
 055 that within them, there exist edges that, despite exhibiting severe over-squashing, still possess highly
 056 positive discrete curvature. Here, discrete curvature can be defined in eight popular ways, including
 057 Ollivier Ricci curvature (Ollivier, 2009) and Balanced Forman curvature (Topping et al., 2021),
 058 among others. Theorem 4 implies that curvature may ignore some over-squashed edges, so highly
 059 negative curvature is not a necessary condition for over-squashing.

060 **2 New metric and extensive empirical evidence (Section 4).** To answer the question of how many
 061 over-squashed edges in practical graph learning tasks are overlooked by curvature, we propose a new
 062 metric: **Missed Over-Squashing Ratio** (MOSR). MOSR quantifies the proportion of over-squashed
 063 edges that are ignored by curvature. Extensive experimental results show that the MOSR of Ollivier
 064 Ricci curvature can exceed 30%, revealing a significant deficiency in one of the most widely used
 065 discrete curvature measures. Further experimental analysis provides insights into the underlying
 066 reasons why curvature fails to capture these edges.

067 **3 New discrete curvature (Section 5).** Based on the aforementioned theoretical analysis and
 068 experimental observations, we propose a new discrete curvature definition called WAF3. Not
 069 only does WAF3 achieve a significantly lower MOSR value compared to other existing curvature
 070 definitions, but it also maintains computational complexity on par with the most efficient one currently
 071 available.

072 **4 New approximation algorithm (Section 6).** Although WAF3 already boasts state-of-the-art
 073 computational complexity, it still faces scalability limitations when processing large-scale graphs. To
 074 address this, we propose an efficient approximation algorithm for WAF3 that further reduces the time
 075 complexity to a linear level. This algorithm requires only 23.8 seconds to complete computations on
 076 a graph containing five million edges, achieving a 133.7 \times speedup compared to exact computation.

077 In summary, our work is not only critical, demonstrating through both theory and experiments that
 078 curvature cannot fully capture the over-squashing in GNNs, but also constructive: we propose new
 079 metrics, curvature definitions, and approximation algorithms, significantly enhancing the applicability
 080 of curvature-based tools in graph learning.

2 PRELIMINARY

085 **Graph Convolutional Network (GCN, (Gilmer et al., 2017; Kipf, 2016))** Consider a simple,
 086 connected, undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with a node set of \mathcal{V} and an edge set \mathcal{E} . We denote the
 087 adjacency matrix of \mathcal{G} by \mathbf{A} . Each node is equipped with an initial feature vector $\mathbf{h}^{(0)} \in \mathbb{R}^{d_0}$.
 088 $\{\mathbf{W}^{(l)} \in \mathbb{R}^{d_l \times d_{l+1}}\}_l$ is a set of learnable parameters. The l -th layer of GCN is formalized as:

$$\mathbf{H}^{(l+1)} = \text{ReLU} \left(\tilde{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right). \quad (1)$$

091 where $\tilde{\mathbf{A}} := (\mathbf{D} + \mathbf{I})^{-1/2}(\mathbf{A} + \mathbf{I})(\mathbf{D} + \mathbf{I})^{-1/2}$ denotes the symmetrically normalized adjacency
 092 matrix and \mathbf{D} denotes the degree matrix. $\mathbf{H}^l := [\mathbf{h}_0^{(l)}; \dots; \mathbf{h}_{|\mathcal{V}|}^{(l)}]^T \in \mathbb{R}^{|\mathcal{V}| \times d_l}$ denotes the collections
 093 of l -layer embedding of all nodes. In line with many previous works, we also introduce the following
 094 assumptions to facilitate the analysis of the ReLU.
 095

096 **Assumption 1.** (Di Giovanni et al., 2023a; Kawaguchi, 2016; Xu et al., 2018) All paths in the
 097 computation graph of the model are activated with the same probability of success ρ .

099 **Discrete curvatures** For any edge $u \sim v$ in graph \mathcal{G} , the edge curvature $\text{Curv}(u, v)$ measures the
 100 tightness of the connection between the first-order ego-graph of node u and the first-order ego-graph
 101 of node v . As shown in Table 1, there are multiple definitions for Curv. Regardless of the specific
 102 definition, discrete curvature typically depends only on a tiny local neighborhood of the edge $u \sim v$
 103 (except for the resistance curvature (Devriendt & Lambiotte, 2022)).

104 **Over-squashing** In graph deep learning, message passing often compresses information from large
 105 neighborhoods into single topological structures (e.g., nodes or edges), resulting in information loss
 106 and gradient issues — known as over-squashing (Alon & Yahav, 2020), which has emerged as a key
 107 challenge in modern graph models. The Jacobian norm between the feature of the input node and the
 embedding of the output node offers the most accurate measure of information flow, and thus the

108 Table 1: We summarize all discrete curvatures defined on edges here. Curvatures defined on nodes
109 (such as Bakry-Émery-Ricci (Mondal et al., 2024), combination (Kamtue, 2018), and node resistance
110 (Devriendt & Lambiotte, 2022)) are not included. μ_u^α is the uniform distribution of the first-order
111 neighbors of u with restart probability α . W_1 is the 1-Wasserstein distance. $\{w_{uv}\}$ is the pseudo-
112 inverse of the weighted Laplacian matrix. d_u is the degree of node u , and $d_u \vee d_v := \max(d_u, d_v)$,
113 $d_u \wedge d_v := \min(d_u, d_v)$. $\triangle(u, v)$ and $\square(u, v)$ denote the number of triangles and quadrangles
114 containing the edge (u, v) . $\#_\square^u(u, v)$ denote the numbers of neighbors of u forming a 4-cycle based
115 at the edge (u, v) without diagonals inside. $\gamma(u, v)$ is the maximal number of 4-cycles based at (u, v)
116 traversing a common node. f is the degree-weighting function.

Curvature	Definition	Complexity
Ollivier ricci (Ollivier, 2009)	$1 - W_1(\mu_u, \mu_v)$	$\mathcal{O}(\mathcal{E} d_{\max}^3)$
Lin-Lu-Yau (Lin et al., 2011)	$\lim_{\alpha \rightarrow 1^-} (1 - W_1(\mu_u^\alpha, \mu_v^\alpha)) / (1 - \alpha)$	$\mathcal{O}(\mathcal{E} d_{\max}^3)$
Link resistance (Devriendt & Lambiotte, 2022)	$(2 - \sum_{i \sim u} w_{ui} - \sum_{j \sim v} w_{vj}) / w_{uv}$	$\mathcal{O}(\mathcal{V} ^3)$
Balance forman (Topping et al., 2021)	$\frac{2}{d_u} + \frac{2}{d_v} - 2 + 2 \frac{\triangle(u, v)}{d_u \vee d_v} + \frac{\triangle(u, v)}{d_u \wedge d_v} + \frac{\#_\square^u(u, v) + \#_\square^v(u, v)}{\gamma(u, v)(d_u \vee d_v)}$	$\mathcal{O}(\mathcal{E} d_{\max}^2)$
Balance Forman w/o 4-cycle (Tori et al., 2024a)	$\frac{2}{d_u} + \frac{2}{d_v} - 2 + 2 \frac{\triangle(u, v)}{d_u \vee d_v} + \frac{\triangle(u, v)}{d_u \wedge d_v}$	$\mathcal{O}(\mathcal{E} d_{\max})$
Jost-Liu Forman (Jost & Liu, 2014)	$-(1 - \frac{1}{d_u} - \frac{1}{d_v} - \frac{\triangle(u, v)}{d_u \vee d_v})_+ - (1 - \frac{1}{d_u} - \frac{1}{d_v} - \frac{\triangle(u, v)}{d_u \wedge d_v})_+ + \frac{\triangle(u, v)}{d_u \vee d_v}$	$\mathcal{O}(\mathcal{E} d_{\max})$
Augmented Forman-3 (Forman, 2003)	$4 - d_u - d_v + 3\triangle(u, v)$	$\mathcal{O}(\mathcal{E} d_{\max})$
Augmented Forman-4 (Forman, 2003)	$4 - d_u - d_v + 3\triangle(u, v) + 2\square(u, v)$	$\mathcal{O}(\mathcal{E} d_{\max}^2)$
Weighted AF-3 (Ours)	$\sum_{i \in \mathcal{B}(u) \cap \mathcal{B}(v)} f(d_i) - \left(\sum_{i \in \mathcal{N}(u) / \mathcal{B}(v)} f(d_i) + \sum_{i \in \mathcal{N}(v) / \mathcal{B}(u)} f(d_i) \right)$	$\mathcal{O}(\mathcal{E} d_{\max})$ $\mathcal{O}(H \mathcal{E})$

133 severity of over-squashing. In Lemma 2, we establish a lower bound for the Jacobian norm when the
134 degrees of the two ends are fixed at a and b . All proofs are provided in Appendix A.

135 **Lemma 2** (Infimum of the over-squashing). *Let N, a, b be positive integers. The set
136 $\mathbb{G}_N((s, a), (t, b))$ denotes the collection of all simple undirected graphs $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with $|\mathcal{V}| = N$
137 such that there exist adjacent vertices $s, t \in \mathcal{V}$ where $\deg(s) = a$ and $\deg(t) = b$. Assume an
138 L -layer GCN as in equation (1). Then:*

$$\inf_{\substack{N \in \mathbb{Z}^+ \\ \mathcal{G} \in \mathbb{G}_N((s, a), (t, b))}} \left\| \frac{\partial \mathbf{h}_t^{(L)}}{\partial \mathbf{h}_s^{(0)}} \right\| = \phi_L(a, b),$$

$$\text{where } \phi_L(a, b) := \left\| \prod_{l=0}^{L-1} \mathbf{W}^{(l)} \right\| \left(\frac{1}{a+1} + \frac{1}{b+1} \right)^{L-1} \frac{\rho}{\sqrt{(a+1)(b+1)}}.$$

3 DISCRETE CURVATURES FAIL TO FULLY CAPTURES OVER-SQUASHING

147 Since the Jacobian matrix norm is tightly coupled with the model and entails prohibitive computational
148 costs, Topping et al. (2021) first proposed using discrete curvature as a surrogate criterion for detecting
149 over-squashing. However, through the following counterexamples and theorems, we demonstrate that
150 discrete curvature is in fact not a necessary condition for identifying over-squashing.

151 **Definition 3** (counterexample graph). *Let s be the source node, t the target node, $\mathcal{N}_1 =$
152 $\{u_i\}_{1 \leq i \leq n}$ the 1-hop neighbor set and $\mathcal{N}_2 =$
153 $\{v_{ij}\}_{1 \leq i \leq n, 1 \leq j \leq m}$ the 2-hop neighbor set. The
154 counterexample graph $\mathcal{G}_{n,m}^c$ is such a simple,
155 connected and undirected graph that $\mathcal{V} :=$
156 $\{s, t\} \cup \mathcal{N}_1 \cup \mathcal{N}_2$ and $\mathcal{E} := \{(s, t)\} \cup \mathcal{E}_1 \cup \mathcal{E}_2$,
157 which $\mathcal{E}_1 := \{(s, u_i)\}_{1 \leq i \leq n} \cup \{(t, u_i)\}_{1 \leq i \leq n}$
158 and $\mathcal{E}_2 := \{(u_i, v_{ij})\}_{1 \leq i \leq n, 1 \leq j \leq m}$.*

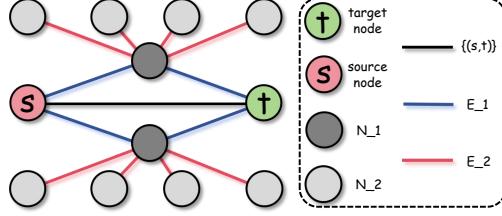


Figure 1: Example diagram of $\mathcal{G}_{2,4}^c$.

162

Theorem 4 (Discrete curvatures fail to fully to capture over-squashing). *Consider an L -layer GCN as in equation (1). For the family of graphs $\mathcal{G} = \{\mathcal{G}_{n,m}^c\}_{n,m \in \mathbb{R}^+}$ with source-target pairs (s, t) , we have:*

163

164

165

166

167

168

169

170

171

172

173

174

175

176

- For any fixed n^* , $\left\| \frac{\partial \mathbf{h}_s^{(L)}}{\partial \mathbf{h}_s^{(0)}} \right\| \rightarrow \phi_L(n^* + 1, n^* + 1)$ at speed $\mathcal{O}(m^{-1})$ when $m \rightarrow +\infty$.
- If Curv is given by any of: α -Ollivier-Ricci curvature, Lin-Lu-Yau curvature, balanced Forman curvature (with/without 4-cycle), Jost-Liu curvature or augmented Forman-3/4 curvature, then there exist a $c > 0$, such that $\forall \mathcal{G} \in \mathcal{G}$, $\text{Curv}(s, t) > c$.
- If Curv is defined as resistance curvature under symmetric normalized Laplacian, then for any fixed n^* , there exist a m^* and a $c > 0$, such that $\forall \mathcal{G} \in \{\mathcal{G}_{n,m}^c | n = n^*, m > m^*\}$, $\text{Curv}(s, t) > c$.

In simple terms, the above theorem states that in $\mathcal{G}_{n,m}^c$, as long as m is large enough, there will be very severe over-squashing between source node s and target node t . However, all discrete curvatures fail to identify this — their values are all positive.

177

178

179

180

181

182

183

To understand this phenomenon, we need to keep in mind that the discrete curvature between (s, t) is essentially a measure of how tightly connected the first-order neighbors of s are to the first-order neighbors of t (Chen et al., 2025). Furthermore, this “tightness” can usually be reflected in the number of triangles that (s, t) participates in (Topping et al., 2021; Jost & Liu, 2014; Forman, 2003). Since any edge (u, v) can form at most $\min\{d_u - 1, d_v - 1\}$ triangles, and in $\mathcal{G}_{n,m}^c$, (s, t) just reaches this upper limit ($d_s = d_t = n + 1$ and there are n triangles: $s - u_i - t, \forall i \in [1, n]$), $\text{Curv}(s, t)$ under any definition is almost always highly positive.

184

185

186

187

188

189

190

On the other hand, in $\mathcal{G}_{n,m}^c$, when the information in node s propagates to node t , a considerable part of the propagation path needs to pass through the nodes in \mathcal{N}_1 . However, each node in \mathcal{N}_1 is connected to m other nodes. Every time the propagation path passes through a node in \mathcal{N}_1 , the information in s is “diluted” by m nodes. As m increases, the degree of over-squashing between s and t approaches its theoretical lower bound. Since almost all GNNs require at least two rounds of message-passing, discrete curvature that only considers first-order neighbors is almost always insufficient to capture all potential over-squashing fully.

191

192

4 THE MISSED OVER-SQUASHING EDGES: HOW MANY AND WHERE

193

194

195

196

Since discrete curvature cannot fully identify over-squashing in theory, two other important questions arise: *how many over-squashing edges are ignored by curvature in practice? Moreover, where are these ignored edges?*

197

198

199

200

To answer the first question, we first establish corresponding metrics. For any graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, we define the multiset $\mathcal{C} := \{\{\text{Curv}(e) | e \in \mathcal{E}\}\}$ as the collection of discrete curvature values for all edges in \mathcal{E} . Let $\mathcal{C}_- := \{\{c | c < 0, c \in \mathcal{C}\}\}$ be the subset of negative curvature values. The function $\text{Percentile}(\mathcal{C}_-, q)$ returns the value below which q % of the observations in \mathcal{C}_- lie, for $q \in [0, 100]$. We then define:

201

$$\mathcal{E}_q := \{e \in \mathcal{E} | \text{Curv}(e) \leq \text{Percentile}(\mathcal{C}_-, q)\}. \quad (2)$$

202

203

204

205

206

Note that \mathcal{E}_q corresponds precisely to the set of “edges with high negative curvature” mentioned by Topping et al. (2021). That is, the edges in \mathcal{E}_q are those correctly identified as over-squashing by curvature. Here, q represents the threshold for classifying an edge as over-squashing; a smaller q implies a stricter criterion.

207

208

209

For an L -layer message passing neural network, let $\text{JacoNorm}(u, v) := \|\partial \mathbf{h}_v^{(L)} / \mathbf{h}_u^{(0)}\|_F$ denote the ground-truth measure of information squashing. Define $J_q := \max_{(u,v) \in \mathcal{E}_q} \text{JacoNorm}(u, v)$. We then introduce the **Missed Over-Squashing Ratio** (MOSR):

210

211

212

$$\text{MOSR}_q := \frac{\sum_{(u,v) \in \mathcal{E}} \mathbf{1}_{\text{Curv}(u,v) \geq 0} \cdot \mathbf{1}_{\text{JacoNorm}(u,v) \leq J_q}}{\sum_{(u',v') \in \mathcal{E}} \mathbf{1}_{\text{JacoNorm}(u',v') \leq J_q}}. \quad (3)$$

213

214

215

In MOSR_q , the numerator counts edges with non-negative curvature that are nevertheless over-squashed (i.e., $\text{JacoNorm}(u, v) \leq J_q$), which are thus ignored by curvature. The denominator counts all truly over-squashing edges (with J_q as the threshold). Therefore, MOSR_q represents the proportion of over-squashing edges that are not identified by curvature.

216 Table 2: The values of MOSR_{10} and MOSR_{25} across different GNNs, curvatures, and datasets.
217 Among these, the entry “.030/.103” in the first row and first column indicates that for Ollivier Ricci
218 curvature, GCN, and Cora dataset, $\text{MOSR}_{10} = 0.030$ and $\text{MOSR}_{25} = 0.103$. OOR denotes “Out of
219 Resources”, meaning the GPU memory consumption exceeds 24 GB or the running time surpasses
220 12 hours. NNE (No Negative-curvature Edge) indicates that $|\mathcal{E}_q| = 0$ in this scenario.

	Ollivier Ricci			Augmented Forman-3			Balanced Forman		
	GCN	GAT	SAGE	GCN	GAT	SAGE	GCN	GAT	SAGE
Cora	.030/.103	.185/.224	.233/.258	.001/.027	.163/.170	.187/.187	.002/.010	.155/.217	.210/.245
Citeseer	.119/.151	.172/.277	.286/.351	.008/.034	.239/.239	.289/.307	.000/.014	.087/.120	.219/.324
Pubmed	.026/.073	.087/.090	.097/.097	.000/.001	.009/.009	.011/.011	.000/.000	.074/.108	.144/.142
Computers	.352/.352	.353/.353	.353/.353	.003/.006	.011/.011	.011/.011	.000/.005	.010/.012	.011/.012
Photo	.503/.503	.503/.503	.503/.503	.042/.043	.045/.045	.045/.045	.041/.044	.045/.046	.045/.046
CS	.057/.086	.113/.128	.125/.126	.017/.030	.074/.075	.075/.075	.001/.012	.041/.073	.080/.091
Physics	OOR	OOR	OOR	.006/.027	.052/.056	OOR	.001/.012	.055/.065	OOR
WikiCS	.472/.473	.473/.473	.473/.473	.250/.249	.249/.249	.249/.249	.245/.244	.246/.245	.250/.246
Cora_ML	.204/.204	.217/.235	.210/.225	.025/.039	.096/.098	.099/.101	.056/.109	.126/.139	.126/.147
Cora_Full	OOR	OOR	OOR	OOR	OOR	OOR	OOR	OOR	OOR
DBLP	.072/.080	.084/.089	.086/.096	.003/.004	.030/.033	.036/.038	.007/.017	.038/.052	.048/.065
Cornell	.000/.000	.383/.395	.396/.410	.000/.000	.136/.138	.167/.158	.000/.364	.335/.370	.373/.390
Texas	.093/.174	.308/.308	.308/.308	.000/.000	.112/.116	.126/.130	.000/.254	.385/.370	.342/.366
Wisconsin	.000/.246	.334/.334	.332/.342	.000/.000	.113/.118	.128/.135	.175/.191	.257/.256	.221/.260
Chameleon	.643/.643	.643/.643	.643/.643	.115/.116	.125/.125	.129/.129	.010/.120	.131/.135	.136/.136
Squirrel	.723/.723	.723/.723	.723/.723	.137/.137	.133/.133	.133/.133	.130/.129	.130/.130	.132/.132
Roman-empire	.014/.097	.276/.446	.497/.547	.001/.080	.430/.520	.524/.524	.000/.000	.247/.532	.695/.753
Tolokers	.657/.657	OOR	.657/.657	.002/.002	OOR	.003/.003	.003/.003	OOR	.003/.003
Questions	OOR	OOR	OOR	.000/.002	.008/.008	.010/.010	.048/.074	.083/.085	.103/.100
Amazon-ratings	.639/.655	.524/.638	.638/.653	.228/.285	.292/.297	.309/.310	.335/.378	.117/.275	.357/.357
Minesweeper	NNE	NNE	NNE	.502/.502	.502/.502	.502/.502	.502/.502	.502/.502	.502/.502
Average	.271/.307	.336/.366	.386/.398	.067/.079	.148/.155	.160/.161	.078/.124	.161/.196	.210/.227

243
244 As shown in Table 2, we comprehensively report the results of MOSR_{10} and MOSR_{25} along with
245 their average values across three of the most commonly used curvatures, three of the most widely
246 adopted graph neural networks, and 21 datasets, amounting to a total of 350 numerical results.
247

- **Observation 1:** At $q = 10$, discrete curvature was systematically ignored 6.7% ~ 38.6% of over-squashing edges. When q increased to 25, this range increased to 7.9% ~ 39.8%. This indicates that discrete curvature fails to identify over-squashing phenomena perfectly.
- **Observation 2:** Across different datasets, discrete curvature generally demonstrates superior performance on GAT compared to GraphSAGE, while GCN consistently achieves the optimal results. This indicates that model architecture significantly influences the accurate identification of over-squashing edges.
- **Observation 3:** The Ollivier Ricci curvature, with its computational complexity as high as $\mathcal{O}(|\mathcal{E}|d_{\max}^3)$, missed the most significant number of over-squashing edges, whereas the Augmented Forman-3 curvature — the one with the lowest complexity — achieved the best average performance. Therefore, we recommend prioritizing the latter in GNNs.

260
261 To answer the second question, we introduce edge betweenness (Freeman, 1977; Girvan & Newman,
262 2002). According to Girvan & Newman (2002), the edge betweenness of an edge e is defined as:
263

$$\text{Between}(e) = \sum_{u \neq v \in \mathcal{V}} \frac{\sigma_{uv}(e)}{\sigma_{uv}}. \quad (4)$$

264 Where σ_{uv} denotes the total number of shortest paths between nodes u and v ; $\sigma_{uv}(e)$ denotes the
265 number of those shortest paths that pass through edge e . Simply put, a **high** $\text{Between}(e)$ usually
266 means that edge e forms a bridge between two clusters, and a **low** $\text{Between}(e)$ indicates that e is
267 inside a cluster. We further introduce the following three statistics to characterize the average edge

270 Table 3: The model is fixed as GCN, q is set to 25, and we report Betwlden, BetwAll, and BetwIgno
 271 on three curvature definitions and 21 datasets, respectively. NIE (No Ignored Edge) means no edges
 272 are ignored by curvature, so BetwIgno cannot be calculated.

	Olivier Ricci			Augmented Forman-3			Balanced Forman		
	Betwlden	BetwAll	BetwIgno	Betwlden	BetwAll	BetwIgno	Betwlden	BetwAll	BetwIgno
Cora	1.04×10^4	3.69×10^3	7.58×10^2	8.41×10^3	3.69×10^3	4.75×10^2	9.91×10^3	3.69×10^3	2.36×10^3
Citeseer	1.75×10^4	4.60×10^3	1.02×10^3	9.44×10^3	4.60×10^3	5.06×10^2	1.16×10^4	4.60×10^3	1.09×10^3
Pubmed	6.75×10^4	2.78×10^4	1.55×10^4	4.74×10^4	2.78×10^4	2.62×10^3	5.93×10^4	2.78×10^4	NIE
Computers	4.32×10^3	1.23×10^3	2.98×10^2	2.44×10^3	1.23×10^3	1.79×10^2	2.19×10^3	1.23×10^3	2.70×10^2
Photo	4.02×10^3	9.53×10^2	2.81×10^2	1.50×10^3	9.53×10^2	2.36×10^2	1.91×10^3	9.53×10^2	3.31×10^2
CS	2.54×10^4	1.11×10^4	2.19×10^3	2.22×10^4	1.11×10^4	1.39×10^3	2.35×10^4	1.11×10^4	1.54×10^3
Physics	OOR	OOR	OOR	1.86×10^4	1.24×10^4	1.43×10^3	2.30×10^4	1.24×10^4	1.03×10^3
WikiCS	3.36×10^3	8.94×10^2	1.77×10^2	3.01×10^3	8.94×10^2	7.94×10^1	1.82×10^3	8.94×10^2	1.81×10^2
Cora_ML	7.10×10^3	2.55×10^3	7.96×10^2	5.24×10^3	2.55×10^3	2.54×10^2	5.64×10^3	2.55×10^3	1.24×10^3
Cora_Full	OOR								
DBLP	3.79×10^4	1.64×10^4	4.53×10^3	2.56×10^4	1.64×10^4	1.02×10^3	2.89×10^4	1.64×10^4	9.19×10^3
Cornell	5.37×10^2	1.92×10^2	NIE	3.30×10^2	1.92×10^2	NIE	4.71×10^2	1.92×10^2	1.82×10^2
Texas	4.08×10^2	1.81×10^2	8.45×10^1	3.10×10^2	1.81×10^2	NIE	3.44×10^2	1.81×10^2	1.82×10^2
Wisconsin	5.93×10^2	2.27×10^2	1.32×10^2	4.65×10^2	2.27×10^2	NIE	4.21×10^2	2.27×10^2	1.17×10^2
Chameleon	1.66×10^3	2.94×10^2	9.02×10^1	7.25×10^2	2.94×10^2	3.45×10^1	4.72×10^2	2.94×10^2	6.64×10^1
Squirrel	1.63×10^3	2.31×10^2	6.54×10^1	3.40×10^2	2.31×10^2	4.03×10^1	5.44×10^2	2.31×10^2	6.95×10^1
Roman-empire	5.28×10^7	1.82×10^7	7.48×10^5	3.54×10^7	1.82×10^7	1.90×10^6	4.18×10^7	1.82×10^7	NIE
Tolokers	1.64×10^3	3.71×10^2	1.39×10^2	7.76×10^2	3.71×10^2	3.15×10^1	4.71×10^2	3.71×10^2	2.31×10^3
Questions	OOR	OOR	OOR	5.37×10^4	3.34×10^4	5.24×10^4	4.83×10^4	3.34×10^4	4.89×10^4
Amazon-ratings	3.23×10^5	5.23×10^4	1.13×10^4	1.12×10^5	5.23×10^4	1.03×10^4	1.90×10^5	5.23×10^4	1.07×10^4
Minesweeper	NNE								

293 betweenness of different types of edges:

$$\begin{aligned}
 295 \quad \text{Betwlden}_q &:= \text{Mean}(\text{Between}(e), \forall e \in \mathcal{E}_q), \\
 296 \quad \text{BetwAll} &:= \text{Mean}(\text{Between}(e), \forall e \in \mathcal{E}), \\
 297 \quad \text{BetwIgno}_q &:= \text{Mean}(\text{Between}(e), \forall e \in \mathcal{E}, \text{Curv}(e) \geq 0, \text{JacoNorm}(e) \leq J_q).
 \end{aligned} \tag{5}$$

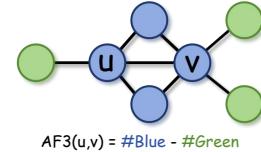
299 BetwAll indicates the average betweenness of all edges, while Betwlden and BetwIgno represent the
 300 average betweenness of identified or ignored edges by curvature, respectively. See Table 3 for results.

- 302 • **Observation 4:** In most cases, there is $\text{BetwAll} > \text{BetwIgno}$. This means that even
 303 within a cluster, there may be over-squashing edges, and discrete curvature ignores them
 304 systematically.
- 305 • **Observation 5:** In most cases, there is $\text{Betwlden} > \text{BetwAll}$, which indicates that discrete
 306 curvature can only identify over-squashing edges that appear as “bridges” between clusters.

308 Previous studies have often, perhaps unconsciously, conflated terms such as “over-squashing” and
 309 “bottleneck” with “bridge edges connecting clusters” (a classical example can be found in Figure 1
 310 of [Topping et al. \(2021\)](#)). However, our experimental results demonstrate that bottlenecks and over-
 311 squashing can also arise within clusters. The neglect of such edges by discrete curvature is precisely
 312 the key reason why curvature cannot serve as a necessary condition for detecting over-squashing.
 313 In this sense, curvature is not the gold standard for identifying over-squashing, but rather the gold
 314 standard for identifying bridge edges between clusters.

316 5 WEIGHTED AUGMENTED FORMAN-3 CURVATURE

318 In this section, we discuss how to leverage previous results
 319 to enhance existing discrete curvatures. According to the
 320 results in Table 2, we consider improving augmented Forman-3
 321 curvature, which has the lowest time complexity and the best
 322 actual performance. We first provide an equivalent form for
 323 AF3 (Equation 6), where u and v are any pair of adjacent nodes
 324 in a graph, $\mathcal{N}(v) = \{i | i \sim v, i \in \mathcal{V}\}$ represents all first-order



325 Figure 2: Calculation of AF3.

324 Table 4: The values of MOSR_{10} and MOSR_{25} across different GNNs and datasets when the discrete
 325 curvature si is set to WAF3 and $f(x) \equiv 1/(1+x)$.

	GCN	GAT	SAGE		GCN	GAT	SAGE
Cora	.000/.014	.157/.166	.183/.183	Citeseer	.020/.040	.210/.216	.279/.280
Pubmed	.001/.002	.013/.014	.015/.015	Computers	.002/.005	.011/.011	.011/.011
Photo	.021/.024	.027/.027	.027/.027	CS	.009/.034	.075/.075	.076/.076
Physics	.020/.040	.055/.058	OOR	WikiCS	.140/.141	.144/.144	.144/.144
Cora_ML	.025/.056	.098/.103	.103/.103	DBLP	.020/.022	.052/.055	.057/.059
Cornell	.000/.000	.116/.122	.138/.143	Texas	.000/.000	.134/.139	.143/.149
Wisconsin	.000/.000	.108/.117	.122/.134	Chameleon	.065/.066	.075/.076	.079/.079
Squirrel	.039/.039	.041/.041	.041/.041	Roman-empire	.000/.001	.351/.431	.453/.453
Tolokers	.002/.002	OOR	.003/.003	Questions	.003/.011	.023/.024	.025/.025
Amazon-ratings	.159/.218	.223/.231	.245/.246	Minesweeper	.191/.192	.192/.192	.192/.192
				Average	.036/.045	.111/.118	.123/.124

341 neighbors of v , and $\mathcal{B}(v) = \mathcal{N}(v) \cup \{v\}$ represents all nodes within a distance of 1 from v . The
 342 detailed derivation is provided in Appendix A.

$$\begin{aligned}
 \text{AF3}(u, v) &= 4 - d_u - d_v + 3\Delta(u, v) \\
 &= \underbrace{|\mathcal{B}(u) \cap \mathcal{B}(v)|}_{\text{Number of nodes in triangles}} - \underbrace{(|\mathcal{N}(u)/\mathcal{B}(v)| + |\mathcal{N}(v)/\mathcal{B}(u)|)}_{\text{Number of nodes not in triangles}}. \tag{6}
 \end{aligned}$$

347 According to Equation 6, AF3 actually calculates the difference between the number of nodes
 348 that make up the triangle and the number of remaining first-order neighbors (Figure 2). However,
 349 as discussed in Chapter 3, triangle counting ignores the degree of nodes; however, high-degree
 350 nodes actually do little to enhance the information flow from the source node to the target node.
 351 Therefore, we propose weighted augmented Forman-3 curvature (WAF3). WAF3 weights each node’s
 352 contribution to the curvature based on its degree by a function $f : \mathbb{R} \rightarrow \mathbb{R}$, which corrects for the
 353 influence of high-degree nodes. Obviously, AF3 is a special case of WAF3 when $f \equiv 1$.

$$\text{WAF3}_f(u, v) := \sum_{i \in \mathcal{B}(u) \cap \mathcal{B}(v)} f(d_i) - \left(\sum_{i \in \mathcal{N}(u)/\mathcal{B}(v)} f(d_i) + \sum_{i \in \mathcal{N}(v)/\mathcal{B}(u)} f(d_i) \right). \tag{7}$$

358 **Theorem 5** (WAF3 gets rid of counterexamples). *Consider an L -layer GCN as in equation (1).
 359 Suppose $f(+\infty) = 0^+$. For the family of graphs $\mathcal{G} = \{\mathcal{G}_{n,m}^c\}_{n,m \in \mathbb{R}^+}$ with source-target pairs
 360 (s, t) , There **does not** exist a $c > 0$ such that for every $\mathcal{G} \in \mathcal{G}$, $\text{WAF3}(s, t) > c$.*

362 The above theorem clearly shows the difference between WAF3 and all other discrete curvatures,
 363 namely correcting the inappropriate contribution of high-degree nodes — only requiring the weight
 364 function f to satisfy $f(+\infty) = 0^+$. Furthermore, we report the MOSR_{10} and MOSR_{25} values of
 365 AF3 in Table 4, where we set f to be a GCN-style weighting function, i.e., $f = 1/(1+x)$, which
 366 satisfies the condition required in Theorem 5.

- **Observation 6:** The MOSR_{10} values of WAF3 range from 3.6% to 12.3%, while the
 369 MOSR_{25} values range from 4.5% to 13.4%. This is a further reduction of more than 3%
 370 compared to the best-performing AF3 in Table 2.

6 ACCELERATING WAF3 VIA MINHASH

375 In terms of complexity, AF3 has a time complexity of $\mathcal{O}(|\mathcal{E}|d_{\max})$, while WAF3 has $\mathcal{O}(|\mathcal{E}|d_{\max} \cdot
 376 \text{Complex}(f))$, in which the factor d_{\max} comes from the intersection of sets $(\mathcal{B}(u) \cap \mathcal{B}(v))$. When
 377 $\text{Complex}(f) = \mathcal{O}(1)$ (such as the function $f = 1/(1+x)$ we use), the complexity of WAF3 is
 equivalent to that of AF3, which is the curvature with the lowest complexity at present (Table 1).

Algorithm 1 Approximating WAF3

```

378
379
380 1: Input: Graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ , weighting function  $f$ , number of hashing  $H$ .
381 2: for  $u \in \mathcal{V}$  do
382 3:    $u' = f(d_u)$ ;  $\triangleright \Theta(|\mathcal{V}| \times \text{Complex}(f))$ 
383 4: end for
384 5: for  $u \in \mathcal{V}$  do
385 6:    $S_u = \{v' | v \in \mathcal{N}(u)\}$ ;
386 7:    $u'' = \text{Sum}(S_u)$ ;  $\triangleright \Theta(2|\mathcal{E}|)$ 
387 8: end for
388 9: for  $(u, v) \in \mathcal{E}$  do
389 10:    $\text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v)) \approx \text{Minhash}(S_u, S_v)$  (Ioffe, 2010);  $\triangleright \Theta(H|\mathcal{E}|)$ 
390 11:   Compute  $\text{WAF3}_f(u, v)$  via Theorem 6;  $\triangleright \Theta(|\mathcal{E}|)$ 
391 12: end for
392
393
394
395
  
```

However, this is still unacceptable in large graphs, since d_{\max} usually also grows with the number of nodes in graphs. This dilemma has largely hindered the promotion of curvature tools to graph learning. To solve this problem, we first prove that an equivalent form of WAF3 is as follows:

Theorem 6 (Equivalent form of WAF3 based on Jaccard similarity). *Let weighted Jaccard similarity $\text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v)) := \frac{\sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} f(d_i)}{\sum_{i \in \mathcal{N}(u) \cup \mathcal{N}(v)} f(d_i)}$, then the following equation holds:*

$$\text{WAF3}_f(u, v) = 2f(u) + 2f(v) + \left(2 - \frac{3}{1 + \text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v))}\right) \left(\sum_{i \in \mathcal{N}(u)} f(d_i) + \sum_{i \in \mathcal{N}(v)} f(d_i) \right).$$

Theorem 6 converts the time-consuming intersection operation into a weighted Jaccard similarity operation. Fortunately, the acceleration algorithm of the latter has been widely studied (Wu et al., 2020). In particular, a class of algorithms called weighted Minhash (Manasse, 2010; Ioffe, 2010; Wu et al., 2016; 2017; 2018) can reduce the complexity of computing Jaccard similarity to a constant ($\mathcal{O}(H)$) by sampling H hash functions, where the larger H is, the smaller the approximation error is. At this point, the overall complexity of WAF3 will be further advanced to $\mathcal{O}(H|\mathcal{E}|)$, reaching its theoretical lower bound (because it has constant complexity for each edge).

Two experiments are conducted to evaluate the practicality of Algorithm 1. First, in order to verify the computational efficiency, we randomly generated Erdős–Rényi random graphs (ERDdS & R&wi, 1959) with the number of nodes being $\{10^4, 2 \times 10^4, 3 \times 10^4, 4 \times 10^4, 5 \times 10^4, 10^5\}$, where the connection probability p between any two nodes was set to 0.0005, which is comparable to the sparsity level of most commonly used graph datasets. Under the constraint of a maximum GPU memory of 24GB, the running times of different curvature computations are reported in Figure 3.

Secondly, we evaluate whether the approximation error is within an acceptable range. It is worth noting that, for most curvature-based graph learning methods, the relative ordering of curvature values is often more critical than their absolute magnitudes (for example, in rewiring-based approaches (Nguyen et al., 2023; Giraldo et al., 2023; Fesser &

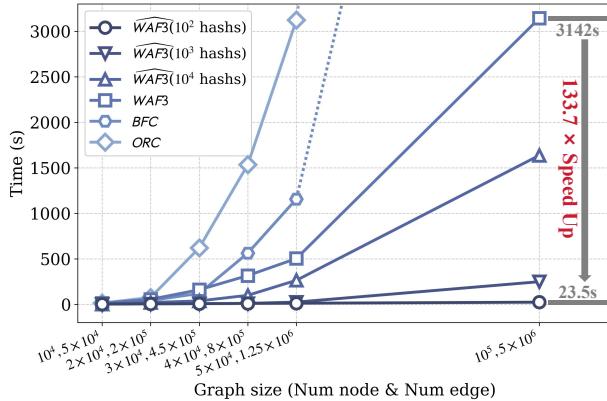


Figure 3: Computation time of different discrete curvatures with $p = 0.0005$, 10^4 – 10^5 nodes, and 24 GB GPU limit. Here, $\widehat{\text{WAF3}}$ denotes the WAF3 approximation with different number of hashing (Algorithm 1).

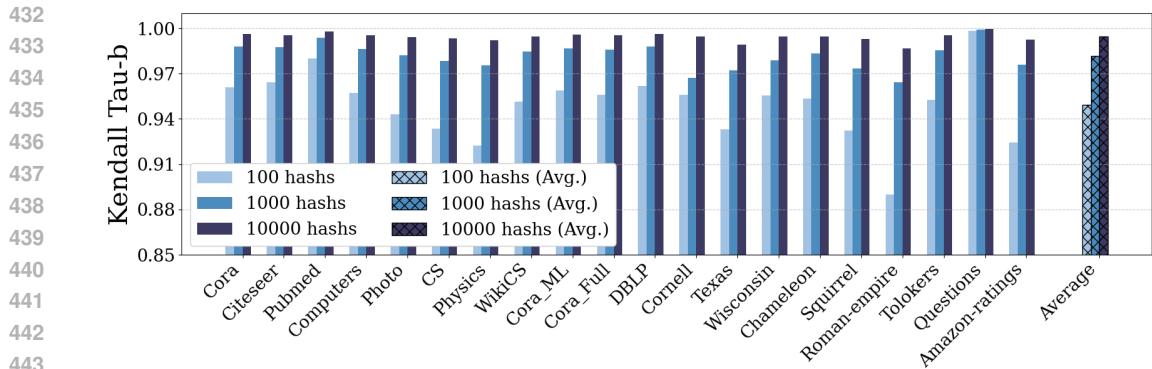


Figure 4: The Kendall Tau-b similarity between WAF3 and $\widehat{WAF3}$ values calculated for different datasets when H is 100, 1000, and 10000. The average value is also reported.

Weber, 2024a), typically only the edges with the smallest curvature are considered). Based on this observation, we report in Figure 4 the Kendall Tau-b similarity (Kendall, 1938) between WAF3 and its approximated values. This rank-based metric measures the consistency between two sequences, with higher values indicating greater agreement in their orderings.

- **Observation 7:** When the random graph scales to 10^5 nodes and 5×10^6 edges, ORC ($\mathcal{O}(|\mathcal{E}|d_{\max}^3)$) and BFC ($\mathcal{O}(|\mathcal{E}|d_{\max}^2)$) can no longer complete the computation within a tolerable time. WAF3 ($\mathcal{O}(|\mathcal{E}|d_{\max})$) also requires over 3,000 seconds. However, the Minhash-based approximation algorithm has a significant acceleration effect, especially when $H = 100$, with a speedup of 133.7 times.
- **Observation 8:** Even when $H = 100$, the average Kendall tau-b similarity across all datasets is approximately 95%. This means that only $(100\% - 95\%)/2 = 2.5\%$ of edge pairs are misordered. When $H = 1000$, the similarity rises to over 98%. On this basis, the similarity improvement for $H = 10,000$ is less than 1%, a significant marginal benefit.

According to Figure 3, for large-scale graphs, even the exact computation of the least complex curvature becomes prohibitively expensive. However, our proposed algorithm facilitates the emergence of a new paradigm for curvature-based learning: first, a small subset of candidate edges is identified through an approximation algorithm, and then the final set of highly negatively curved edges is determined via exact computation.

We provide more experiments and observations in Appendix, including the impact of model training and the value of q on MOSR (Appendix D.1); insights into designing the weighting function f (Appendix D.2); and the effect of WAF3 in actual curvature graph learning (Appendix D.3).

7 CONCLUSION

This work revisits the belief that discrete curvature reliably captures over-squashing in graph neural networks. We prove through constructive counterexamples that even highly positive-curvature edges can suffer from severe squashing, showing that curvature is not a necessary condition. To quantify this gap, we introduce MOSR, a metric that measures the proportion of over-squashed edges missed by curvature-based criteria, and we find that common curvatures such as Ollivier–Ricci may overlook more than 30%. We further present WAF3, a weighted refinement of Forman-3 curvature, which addresses the theoretical limitations of existing definitions. By reformulating it as a weighted Jaccard similarity and applying weighted MinHash, we achieve practical scalability with over two orders of magnitude speedup.

Overall, this work both challenges an implicit assumption in the community and provides a feasible alternative. It encourages more principled ways to characterize over-squashing and supports the design of graph learning methods that move beyond curvature as a universal surrogate.

486 8 REPRODUCIBILITY STATEMENT
487488 We provide detailed proofs and derivations of all theoretical results presented in the main text in
489 the appendix. We also provide an anonymous link to the code of this project and state all necessary
490 implementation details in the appendix. We provide a statement of use for the LLMs at the end of the
491 appendix.
492493 REFERENCES
494495 Singh Akansha. Over-squashing in graph neural networks: A comprehensive survey. *Neurocomputing*,
496 pp. 130389, 2025.
497498 Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
499 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM
500 SIGKDD international conference on knowledge discovery & data mining*, pp. 2623–2631, 2019.
501502 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
503 *arXiv preprint arXiv:2006.05205*, 2020.
504505 Adrian Arnaiz-Rodriguez and Federico Errica. Oversmoothing,” oversquashing”, heterophily, long-
506 range, and more: Demystifying common beliefs in graph machine learning. *arXiv preprint
507 arXiv:2505.15547*, 2025.
508509 Álvaro Arroyo, Alessio Gravina, Benjamin Gutteridge, Federico Barbero, Claudio Gallicchio,
510 Xiaowen Dong, Michael Bronstein, and Pierre Vandergheynst. On vanishing gradients, over-
511 smoothing, and over-squashing in gnns: Bridging recurrent and graph learning. *arXiv preprint
512 arXiv:2502.10818*, 2025.
513514 Kushal Bose and Swagatam Das. Asynchronous message passing for addressing oversquashing in
515 graph neural networks. *arXiv preprint arXiv:2509.06777*, 2025.
516517 Jialong Chen, Tianchi Liao, Chuan Chen, and Zibin Zheng. Improving message-passing gnns
518 by asynchronous aggregation. In *Proceedings of the 33rd ACM International Conference on
519 Information and Knowledge Management*, pp. 228–238, 2024.
520521 Jialong Chen, Bowen Deng, Chuan Chen, Zibin Zheng, et al. Graph neural ricci flow: Evolving
522 feature from a curvature perspective. In *The Thirteenth International Conference on Learning
523 Representations*, 2025.
524525 Karel Devriendt and Renaud Lambiotte. Discrete curvature on graphs from the effective resistance*.
526 *Journal of Physics: Complexity*, 3(2):025008, June 2022. ISSN 2632-072X. doi: 10.1088/
527 2632-072x/ac730d. URL <http://dx.doi.org/10.1088/2632-072x/ac730d>.
528529 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
530 Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
531 and topology. In *International conference on machine learning*, pp. 7865–7885. PMLR, 2023a.
532533 Francesco Di Giovanni, T Konstantin Rusch, Michael M Bronstein, Andreea Deac, Marc Lackenby,
534 Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power of gnns?
535 *arXiv preprint arXiv:2306.03589*, 2023b.
536537 P ERDdS and A R&wi. On random graphs i. *Publ. math. debrecen*, 6(290-297):18, 1959.
538539 Hamza Farooq, Yongxin Chen, Tryphon T Georgiou, Allen Tannenbaum, and Christophe Lenglet.
540 Network curvature as a hallmark of brain structural connectivity. *Nature communications*, 10(1):
541 4937, 2019.
542543 Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmentations
544 of forman-ricci curvature. In *Learning on Graphs Conference*, pp. 19–1. PMLR, 2024a.
545546 Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmentations
547 of forman-ricci curvature. In *Learning on Graphs Conference*, pp. 19–1. PMLR, 2024b.
548

540 Forman. Bochner's method for cell complexes and combinatorial ricci curvature. *Discrete &*
 541 *Computational Geometry*, 29(3):323–374, 2003.
 542

543 Linton C Freeman. A set of measures of centrality based on betweenness. *Sociometry*, pp. 35–41,
 544 1977.

545 Xingcheng Fu, Jian Wang, Yisen Gao, Qingyun Sun, Haonan Yuan, Jianxin Li, and Xianxian Li.
 546 Discrete curvature graph information bottleneck. In *Proceedings of the AAAI Conference on*
 547 *Artificial Intelligence*, volume 39, pp. 16666–16673, 2025.

548

549 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 550 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 551 1263–1272. Pmlr, 2017.

552 Jhony H Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D Malliaros. On the trade-
 553 off between over-smoothing and over-squashing in deep graph neural networks. In *Proceedings of*
 554 *the 32nd ACM international conference on information and knowledge management*, pp. 566–576,
 555 2023.

556

557 Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
 558 *Proceedings of the national academy of sciences*, 99(12):7821–7826, 2002.

559

560 Karish Grover, Geoffrey J Gordon, and Christos Faloutsos. Curvgad: Leveraging curvature for
 561 enhanced graph anomaly detection. *arXiv preprint arXiv:2502.08605*, 2025.

562 Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
 563 Dynamically rewired message passing with delay. In *International Conference on Machine*
 564 *Learning*, pp. 12252–12267. PMLR, 2023.

565

566 Sergey Ioffe. Improved consistent sampling, weighted minhash and l1 sketching. In *2010 IEEE*
 567 *international conference on data mining*, pp. 246–255. IEEE, 2010.

568

569 Jürgen Jost and Shiping Liu. Ollivier's ricci curvature, local clustering and curvature-dimension
 570 inequalities on graphs. *Discrete & Computational Geometry*, 51(2):300–322, 2014.

571

572 Supanat Kamtue. Combinatorial, bakry-\'emery, ollivier's ricci curvature notions and their motivation
 573 from riemannian geometry. *arXiv preprint arXiv:1803.08898*, 2018.

574

575 Kenji Kawaguchi. Deep learning without poor local minima. *Advances in neural information*
 576 *processing systems*, 29, 2016.

577

578 Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.

579

580 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint*
 581 *arXiv:1609.02907*, 2016.

582

583 Haifeng Li, Jun Cao, Jiawei Zhu, Yu Liu, Qing Zhu, and Guohua Wu. Curvature graph neural
 584 network. *Information Sciences*, 592:50–66, 2022.

585

586 Yong Lin, Linyuan Lu, and Shing-Tung Yau. Ricci curvature of graphs. *Tohoku Mathematical*
 587 *Journal*, 63(4):605 – 627, 2011. doi: 10.2748/tmj/1325886283. URL <https://doi.org/10.2748/tmj/1325886283>.

588

589 Yang Liu, Chuan Zhou, Shirui Pan, Jia Wu, Zhao Li, Hongyang Chen, and Peng Zhang. Curvdrop:
 590 A ricci curvature based approach to prevent graph neural networks from over-smoothing and
 591 over-squashing. In *Proceedings of the ACM Web Conference 2023*, pp. 221–230, 2023.

592

593 Mark S Manasse. Consistent weighted sampling. 2010.

594

595 Madhumita Mondal, Areejit Samal, Florentin Münch, and Jürgen Jost. Bakry-\'emery-ricci curvature:
 596 an alternative network geometry measure in the expanding toolbox of graph ricci curvatures.
 597 *Journal of Complex Networks*, 12(3):cnae019, 2024.

594 Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh Nguyen.
 595 Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In *International*
 596 *Conference on Machine Learning*, pp. 25956–25979. PMLR, 2023.

597

598 Yann Ollivier. Ricci curvature of markov chains on metric spaces. *Journal of Functional Analysis*, 256
 599 (3):810–864, 2009. ISSN 0022-1236. doi: <https://doi.org/10.1016/j.jfa.2008.11.001>. URL <https://www.sciencedirect.com/science/article/pii/S002212360800493X>.

600

601 Yun Jin Park and Didong Li. Lower ricci curvature for efficient community detection. *arXiv preprint*
 602 *arXiv:2401.10124*, 2024.

603

604 Hongbin Pei, Yu Li, Huiqi Deng, Jingxin Hai, Pinghui Wang, Jie Ma, Jing Tao, Yuheng Xiong,
 605 and Xiaohong Guan. Multi-track message passing: Tackling oversmoothing and oversquashing
 606 in graph learning via preventing heterophily mixing. In *Forty-first International Conference on*
 607 *Machine Learning*, 2024.

608

609 Jayson Sia, Edmond Jonckheere, and Paul Bogdan. Ollivier-ricci curvature-based method to commu-
 610 nity detection in complex networks. *Scientific reports*, 9(1):9800, 2019.

611

612 Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, and Philip S Yu. A self-
 613 supervised mixed-curvature graph neural network. In *Proceedings of the AAAI Conference on*
 614 *Artificial Intelligence*, volume 36, pp. 4146–4155, 2022.

615

616 Li Sun, Feiyang Wang, Junda Ye, Hao Peng, and Philip S Yu. Contrastive graph clustering in
 617 curvature spaces. *arXiv preprint arXiv:2305.03555*, 2023.

618

619 Yu Tian, Zachary Lubberts, and Melanie Weber. Curvature-based clustering on graphs. *Journal of*
 620 *Machine Learning Research*, 26(52):1–67, 2025.

621

622 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
 623 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. *arXiv preprint*
 624 *arXiv:2111.14522*, 2021.

625

626 Floriano Tori, Vincent Holst, and Vincent Ginis. The effectiveness of curvature-based rewiring and
 627 the role of hyperparameters in gnns revisited. *arXiv preprint arXiv:2407.09381*, 2024a.

628

629 Floriano Tori, Vincent Holst, and Vincent Ginis. The effectiveness of curvature-based rewiring and
 630 the role of hyperparameters in gnns revisited. *arXiv preprint arXiv:2407.09381*, 2024b.

631

632 Wei Wu, Bin Li, Ling Chen, and Chengqi Zhang. Canonical consistent weighted sampling for
 633 real-value weighted min-hash. In *2016 IEEE 16th International Conference on Data Mining*
 634 (*ICDM*), pp. 1287–1292. IEEE, 2016.

635

636 Wei Wu, Bin Li, Ling Chen, and Chengqi Zhang. Consistent weighted sampling made more practical.
 637 In *Proceedings of the 26th international conference on world wide web*, pp. 1035–1043, 2017.

638

639 Wei Wu, Bin Li, Ling Chen, Chengqi Zhang, and Philip S Yu. Improved consistent weighted sampling
 640 revisited. *IEEE Transactions on Knowledge and Data Engineering*, 31(12):2332–2345, 2018.

641

642 Wei Wu, Bin Li, Ling Chen, Junbin Gao, and Chengqi Zhang. A review for weighted minhash
 643 algorithms. *IEEE Transactions on Knowledge and Data Engineering*, 34(6):2553–2573, 2020.

644

645 Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
 646 Jegelka. Representation learning on graphs with jumping knowledge networks. In *International*
 647 *conference on machine learning*, pp. 5453–5462. pmlr, 2018.

648

649 Xikun Zhang, Dongjin Song, and Dacheng Tao. Ricci curvature-based graph sparsification for
 650 continual graph representation learning. *IEEE Transactions on Neural Networks and Learning*
 651 *Systems*, 2023.

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

648 A PROOFS & DERIVATIONS
649650 A.1 PROOF OF LEMMA 2
651652 **Lemma 7.** Let \mathbf{A} be the adjacency matrix of an undirected, unweighted, simple graph, and \mathbf{D} the
653 degree matrix. For any two adjacent points i and j in the graph, for any $L \in \mathbb{Z}^+$ we have:

654
$$\left((\mathbf{D} + \mathbf{I})^{-1/2} (\mathbf{A} + \mathbf{I}) (\mathbf{D} + \mathbf{I})^{-1/2} \right)_{ij}^L \geq \left(\frac{1}{d_i + 1} + \frac{1}{d_j + 1} \right)^{L-1} \frac{1}{\sqrt{(d_i + 1)(d_j + 1)}}.$$

655

656 The equal sign is obtained iff $d_i = d_j = 1$.
657659 *Proof.* Define $\mathbf{M} = (\mathbf{D} + \mathbf{I})^{-1/2} (\mathbf{A} + \mathbf{I}) (\mathbf{D} + \mathbf{I})^{-1/2}$. The element of \mathbf{M} is given by:
660

661
$$\mathbf{M}_{ij} = \begin{cases} \frac{1}{d_i + 1} & \text{for the diagonal,} \\ \frac{1}{\sqrt{(d_i + 1)(d_j + 1)}} & \text{if } i \sim j, \\ 0 & \text{otherwise.} \end{cases}$$

662

663 The (i, j) -th entry of \mathbf{M}^L , denoted \mathbf{M}_{ij}^L , represents the sum of the weights of all walks of length L
664 from node i to node j . The weight of a walk is the product of the \mathbf{M} -weights of the edges traversed at
665 each step. To bound \mathbf{M}_{ij}^L , we consider the subgraph restricted to nodes i and j . Since i and j are
666 adjacent, this subgraph includes the edge (i, j) , along with self-loops at both nodes. The matrix \mathbf{M}
667 restricted to these two nodes is:
668

669
$$\mathbf{P} = \begin{bmatrix} \mathbf{M}_{ii} & \mathbf{M}_{ij} \\ \mathbf{M}_{ji} & \mathbf{M}_{jj} \end{bmatrix} = \begin{bmatrix} \frac{1}{d_i + 1} & \frac{1}{\sqrt{(d_i + 1)(d_j + 1)}} \\ \frac{1}{\sqrt{(d_j + 1)(d_i + 1)}} & \frac{1}{d_j + 1} \end{bmatrix}.$$

670

671 We now compute the $(1, 2)$ -th entry of \mathbf{P}^L , which corresponds to walks from i (index 1) to j (index
672 2) within this subgraph. Note that \mathbf{P} can be expressed as the outer product $\mathbf{P} = \mathbf{v}\mathbf{v}^T$, where:
673

674
$$\mathbf{v} = \begin{bmatrix} \frac{1}{\sqrt{d_i + 1}} & \frac{1}{\sqrt{d_j + 1}} \end{bmatrix}^T.$$

675

676 Thus for any integer $L \geq 1$:
677

678
$$\mathbf{P}^L = (\mathbf{v}\mathbf{v}^T)^L = (\mathbf{v}^T \mathbf{v})^{L-1} (\mathbf{v}\mathbf{v}^T) = \left(\frac{1}{d_i + 1} + \frac{1}{d_j + 1} \right)^{L-1} \mathbf{P}.$$

679

680 Specifically, we have:
681

682
$$\mathbf{P}_{12}^L = \left(\frac{1}{d_i + 1} + \frac{1}{d_j + 1} \right)^{L-1} \frac{1}{\sqrt{(d_i + 1)(d_j + 1)}}.$$

683

684 In the full graph, \mathbf{M}_{ij}^L includes all walks of length L from i to j , not only those confined to $\{i, j\}$.
685 The walks restricted to $\{i, j\}$ form a subset of these walks, and their total weight is exactly \mathbf{P}_{12}^L . Since
686 all entries of \mathbf{M} are non-negative ($\mathbf{M}_{uv} \geq 0$ for all u, v), the weight of every walk is non-negative.
687 Therefore, the sum over all walks is at least the sum over the subset of walks confined to $\{i, j\}$:
688

689
$$\mathbf{M}_{ij}^L \geq \mathbf{P}_{12}^L.$$

690

691 This establishes the desired inequality. The equal sign holds iff $\mathbf{P} \equiv \mathbf{M}$, which means $d_i = d_j = 1$. \square
692693 Before we prove Lemma 2, we first further explain Assumption 1. When we compute the $\partial \mathbf{h}_t^{(L)} / \partial \mathbf{h}_s^{(0)}$
694 , we obtain a sum of different terms over all possible paths from s to t of length L . In this case, the
695 derivative of ReLU acts as a Bernoulli variable evaluated along all these possible paths. So follow the
696 very same argument in Di Giovanni et al. (2023a); Kawaguchi (2016); Xu et al. (2018), we can get:
697

698
$$\mathbb{E} \left[\frac{\partial \mathbf{h}_t^{(L)}}{\partial \mathbf{h}_s^{(0)}} \right] = \rho \prod_{l=0}^{L-1} \mathbf{W}^{(l)} \left((\mathbf{D} + \mathbf{I})^{-1/2} (\mathbf{A} + \mathbf{I}) (\mathbf{D} + \mathbf{I})^{-1/2} \right)_{s,t}^L$$

699

702 Which the expectation means that we are taking the average over such Bernoulli variables. Then we
 703 can take the norm (in expectation) and leverage Lemma 5:

$$704 \quad \left\| \frac{\partial \mathbf{h}_t^{(L)}}{\partial \mathbf{h}_s^{(0)}} \right\| \geq \rho \left\| \prod_{l=0}^{L-1} \mathbf{W}^{(l)} \right\| \left(\frac{1}{a+1} + \frac{1}{b+1} \right)^{L-1} \frac{1}{\sqrt{(a+1)(b+1)}}$$

707 Which $a := d_s$ and $b := d_t$. Note that the right side of the inequality has nothing to do with the graph
 708 structure. And by Lemma 7, this bound is tight. So the proof is complete.

710 A.2 PROOF OF THEOREM 4

712 **Lemma 8.** Consider a family of $n \times n$ matrices $\mathbf{A}^{(\alpha)} = \{a_{ij}^{(\alpha)}\}$ parameterized by $\alpha > 0$,
 713 satisfying:

- 714 • **Diagonal invariance:** For all $1 \leq i \leq n$, the diagonal elements $a_{ii}^{(\alpha)}$ are constant
 715 (independent of α).
- 716 • **Upper-left block invariance:** There exists a fixed integer m ($1 \leq m \leq n$) such that the
 717 submatrix $\mathbf{A}_{\text{sub}} = (a_{ij}^{(\alpha)})_{1 \leq i,j \leq m}$ is constant (independent of α).
- 718 • **Uniform decay outside block:** All other elements are bounded by α , i.e.,

$$720 \quad |a_{ij}^{(\alpha)}| \leq \alpha \quad \text{for all } (i > m \text{ or } j > m) \text{ and } i \neq j.$$

722 Let $\mathbf{A}^{k,(\alpha)}$ denote the k -th power of $\mathbf{A}^{(\alpha)}$, and $\mathbf{A}_{\text{sub}}^k$ the k -th power of the fixed submatrix \mathbf{A}_{sub} .
 723 Then for any fixed integer $k \geq 1$ and all $1 \leq i, j \leq m$:

$$725 \quad \lim_{\alpha \rightarrow 0} \left| (\mathbf{A}^{k,(\alpha)})_{ij} - (\mathbf{A}_{\text{sub}}^k)_{ij} \right| = 0$$

727 with convergence rate $\mathcal{O}(\alpha^2)$.

729 *Proof.* Fix $k \geq 1$ and $i, j \in \{1, \dots, m\}$. We interpret $\mathbf{A}^{(\alpha)}$ as the adjacency matrix of a weighted
 730 directed graph on n nodes, where $a_{ij}^{(\alpha)}$ is the edge weight from node i to j . The (i, j) -entry of
 731 $\mathbf{A}^{(\alpha),k}$ equals the sum of weights of all paths of length k from i to j , with path weight defined as
 732 the product of edge weights. Similarly, $(\mathbf{A}_{\text{sub}}^k)_{ij}$ sums weights of paths confined to the subgraph of
 733 nodes $\{1, \dots, m\}$.

735 Let \mathcal{P}_{sub} be the set of paths from i to j of length k within $\{1, \dots, m\}$, and $\mathcal{P}_{\text{else}}$ the set that visits at
 736 least one node in $\{m+1, \dots, n\}$. Then:

$$737 \quad (\mathbf{A}^{k,(\alpha)})_{ij} = \sum_{p \in \mathcal{P}_{\text{sub}}} w(p) + \sum_{p \in \mathcal{P}_{\text{else}}} w(p), \quad (\mathbf{A}_{\text{sub}}^k)_{ij} = \sum_{p \in \mathcal{P}_{\text{sub}}} w(p),$$

739 so:

$$740 \quad \left| (\mathbf{A}^{k,(\alpha)})_{ij} - (\mathbf{A}_{\text{sub}}^k)_{ij} \right| = \left| \sum_{p \in \mathcal{P}_{\text{else}}} w(p) \right| = \sum_{p \in \mathcal{P}_{\text{else}}} |w(p)|.$$

743 Where $w(p)$ denotes the weight of the path p , which is always nonnegative. for each path $p \in \mathcal{P}_{\text{else}}$, it
 744 contains at least one edge that move from node set $\{1, \dots, m\}$ to node set $\{m+1, \dots, n\}$, and also
 745 contains at least one edge that move from node set $\{m+1, \dots, n\}$ to node set $\{1, \dots, m\}$. Thus:

$$746 \quad w(p) \leq \alpha^2 \cdot \left(\max \left\{ \alpha, \max_i \{a_{ii}^{(\alpha)}\}, \max_{1 \leq i,j \leq m} \{a_{ik}^{(\alpha)}\} \right\} \right)^{k-2}.$$

749 When $\alpha \leq \max_i \{a_{ii}^{(\alpha)}\}$ and $\alpha \leq \max_{1 \leq i,j \leq m} \{a_{ik}^{(\alpha)}\}$, the above formula is simplified to:

$$750 \quad w(p) \leq \alpha^2 \cdot \left(\max \left\{ \max_i \{a_{ii}^{(\alpha)}\}, \max_{1 \leq i,j \leq m} \{a_{ik}^{(\alpha)}\} \right\} \right)^{k-2} = \alpha^2 C_1^{k-2}.$$

753 Because $|\mathcal{P}_{\text{path}}| + |\mathcal{P}_{\text{else}}| = n^{k-1}$ and $|\mathcal{P}_{\text{path}}| = m^{k-1}$, so

$$754 \quad \left| (\mathbf{A}^{k,(\alpha)})_{ij} - (\mathbf{A}_{\text{sub}}^k)_{ij} \right| \leq \alpha^2 C_1^{k-2} (n^{k-1} - m^{k-1}) = \alpha^2 C_2$$

755 which implies $\lim_{\alpha \rightarrow 0} \left| (\mathbf{A}^{k,(\alpha)})_{ij} - (\mathbf{A}_{\text{sub}}^k)_{ij} \right| = 0$ with convergence rate $\mathcal{O}(\alpha^2)$. \square

We first prove the second property in Theorem 3, namely the convergence of $\|\partial \mathbf{h}_t^{(L)} / \partial \mathbf{h}_s^{(0)}\|$. Let \mathbf{A}^c the adjcent matrix of $\mathcal{G}_{n,m}^c$, and \mathbf{D}^c the degree matrix. Similar to the proof of Lemma 2, we have:

$$\left\| \frac{\partial \mathbf{h}_t^{(L)}}{\partial \mathbf{h}_s^{(0)}} \right\| = \rho \left\| \prod_{l=0}^{L-1} \mathbf{W}^{(l)} \right\| \left((\mathbf{D}^c + \mathbf{I})^{-1/2} (\mathbf{A}^c + \mathbf{I}) (\mathbf{D}^c + \mathbf{I})^{-1/2} \right)_{s,t}^L$$

Let $\mathbf{M}^c := (\mathbf{D}^c + \mathbf{I})^{-1/2} (\mathbf{A}^c + \mathbf{I}) (\mathbf{D}^c + \mathbf{I})^{-1/2}$, we have:

$$\mathbf{M}_{ij}^c = \begin{cases} \frac{1}{n+2} & \text{if } i \in \{s, t\} \text{ and } j \in \{s, t\}, \\ \frac{1}{m+3} & \text{if } i = j \in \mathcal{N}_1, \\ \frac{1}{2} & \text{if } i = j \in \mathcal{N}_2, \\ \frac{1}{\sqrt{(n+2)(m+3)}} & \text{if } (i \in \{s, t\} \text{ and } j \in \mathcal{N}_1) \text{ or } (i \in \mathcal{N}_1 \text{ and } j \in \{s, t\}), \\ \frac{1}{\sqrt{2(m+3)}} & \text{if } (i \in \mathcal{N}_1 \text{ and } j \in \mathcal{N}_2) \text{ or } (i \in \mathcal{N}_2 \text{ and } j \in \mathcal{N}_1), \\ 0 & \text{otherwise.} \end{cases}$$

Since

$$\max \left(0, \frac{1}{\sqrt{(n+2)(m+3)}}, \frac{1}{\sqrt{2(m+3)}} \right) = \frac{1}{\sqrt{2(m+3)}},$$

According to Lemma 6, we have:

$$(\mathbf{M}^{c,L})_{s,t} \rightarrow \left(\begin{bmatrix} 1/(n+2) & 1/(n+2) \\ 1/(n+2) & 1/(n+2) \end{bmatrix}^L \right)_{1,2} = \frac{2^{L-1}}{(n+2)^L} = \phi_L(n+1, n+1).$$

with convergence rate $\mathcal{O}(1/(2(m+3))) = \mathcal{O}(m^{-1})$ when $m \rightarrow +\infty$.

Then we prove separately that for all $n, m \in \mathbb{R}^+$, the seven discrete curvatures (except link resistance curvature) between nodes s and t are always positive in graph $\mathcal{G}_{n,m}^c$.

Augmented Forman-3 curvature & Augmented Forman-4 curvature Note that edge (s, t) is not contained in any 4-cycle in $\mathcal{G}_{n,m}^c$, thus $\square(s, t) = 0$. Thus for all $n, m \in \mathbb{R}^+$, we have:

$$\text{AF3}(s, t) = \text{AF4}(s, t) = 4 - n - n + 3n = 4 + n \geq 5.$$

Jost-Liu forman curvature Note that $\triangle(s, t) = n$ and $d_s \wedge d_t = d_s \vee d_t = n + 1$. Thus for all $\mathcal{G}_{n,m}^c$:

$$\begin{aligned} \text{JLF}(s, t) &= -\left(1 - \frac{1}{d_s} - \frac{1}{d_t} - \frac{\triangle(s, t)}{d_s \vee d_t}\right)_+ - \left(1 - \frac{1}{d_s} - \frac{1}{d_t} - \frac{\triangle(s, t)}{d_s \wedge d_t}\right)_+ + \frac{\triangle(s, t)}{d_s \vee d_t} \\ &= -\left(1 - \frac{1}{n+1} - \frac{1}{n+1} - \frac{n}{n+1}\right)_+ - \left(1 - \frac{1}{n+1} - \frac{1}{n+1} - \frac{n}{n+1}\right)_+ + \frac{n}{n+1} \\ &= \frac{n}{n+1} \geq \frac{1}{2}. \end{aligned}$$

Balance forman curvature with/without 4-cycle For all $n, m \in \mathbb{R}^+$:

$$\begin{aligned} \text{BFw/o4}(s, t) &= \frac{2}{d_s} + \frac{2}{d_t} - 2 + 2 \frac{\triangle(s, t)}{d_s \vee d_t} + \frac{\triangle(s, t)}{d_s \wedge d_t} \\ &= \frac{2}{n+1} + \frac{2}{n+1} - 2 + 2 \frac{n}{n+1} + \frac{n}{n+1} \\ &= \frac{n+2}{n+1} > 1. \end{aligned}$$

Note that $\frac{\#_{\square}^s(s, t) + \#_{\square}^t(s, t)}{\gamma(s, t)(d_s \vee d_t)} \geq 0$, Thus:

$$\text{BF}(s, t) \geq \text{BFw/o4}(s, t) > 1.$$

810 **Ollivier Ricci curvature** Note that:

$$\mu_s^\alpha(v) = \begin{cases} \alpha & v = s, \\ \frac{1-\alpha}{n+1} & v \in \mathcal{N}_1 \cup \{t\}, \\ 0 & \text{else.} \end{cases}$$

811 and

$$\mu_t^\alpha(v) = \begin{cases} \alpha & v = t, \\ \frac{1-\alpha}{n+1} & v \in \mathcal{N}_1 \cup \{s\}, \\ 0 & \text{else.} \end{cases}$$

812 To calculate $W_1(\mu_s^\alpha, \mu_t^\alpha)$, when $\alpha > \frac{1-\alpha}{n+1}$, we need to move $\alpha - \frac{1-\alpha}{n+1}$ probability mass directly
 813 from s to t ; when $\alpha < \frac{1-\alpha}{n+1}$, we need to move $\frac{1-\alpha}{n+1} - \alpha$ probability mass directly from t to s . So
 814 $W_1(\mu_s^\alpha, \mu_t^\alpha) = |\alpha - \frac{1-\alpha}{n+1}|$ and $\alpha \text{OR}(s, t) = 1 - |\alpha - \frac{1-\alpha}{n+1}|$ and thus $\text{OR}(s, t) = 1 - \frac{1}{n+1} \geq \frac{1}{2}$ when
 815 we take $\alpha = 0$.

816 **Lin-Lu-Yau curvature** By using the definition:

$$\text{LLY}(s, t) = \lim_{\alpha \rightarrow 1^-} \frac{\alpha \text{OR}(s, t)}{1 - \alpha} = \lim_{\alpha \rightarrow 1^-} \frac{1 - |\alpha - \frac{1-\alpha}{n+1}|}{1 - \alpha}$$

817 Define $g(\alpha) = \alpha - \frac{1-\alpha}{n+1}$. For α sufficiently close to 1, specifically when $\alpha > \frac{1}{n+2}$ (which holds for
 818 α in a left neighborhood of 1 since $\frac{1}{n+2} < 1$ for all positive integers n), we have $g(\alpha) \geq 0$. Thus,
 819 $|g(\alpha)| = g(\alpha)$ in this region. The numerator simplifies as follows:

$$1 - |g(\alpha)| = 1 - g(\alpha) = 1 - \left(\alpha - \frac{1-\alpha}{n+1} \right) = (1 - \alpha) \frac{n+2}{n+1}.$$

820 Therefore:

$$\lim_{\alpha \rightarrow 1^-} \frac{1 - |g(\alpha)|}{1 - \alpha} = \lim_{\alpha \rightarrow 1^-} \frac{(1 - \alpha) \frac{n+2}{n+1}}{1 - \alpha} = \lim_{\alpha \rightarrow 1^-} \frac{n+2}{n+1} = \frac{n+2}{n+1} > 1.$$

821 Which means $\text{LLY}(s, t) > 1$.

822 **Link resistance curvature** Finally, we prove that in link resistance curvature, for any fixed n^* , there
 823 exists an m^* such that for all $m > m^*$, and node-pair (s, t) in $\mathcal{G}_{n^*, m}^c$, $\text{LR}(s, t) > 0$.

824 To calculate the link resistance curvature, we first need to calculate the equivalent resistance of each
 825 edge in $\mathcal{G}_{n, m}^c$. Looking back at the definition of $\mathcal{G}_{n, m}^c$, there are three equivalent types of edges.
 826 Let's assume that the edges in $\{(s, t)\}$, $\{(s, u_i), (t, u_i)\}_{1 \leq i \leq n}$, and $\{(u_i, v_{ij})\}_{1 \leq i \leq n, 1 \leq j \leq m}$ have
 827 resistance values of r_1 , r_2 , and r_3 respectively. And their equivalent resistances are recorded as w_1 ,
 828 w_2 , and w_3 respectively.

829 Calculate w_1 : Note that there are $n + 1$ resistors in parallel between s and t , n of which have a
 830 resistance of $2r_2$ and one has a resistance of r_1 , so:

$$w_1 = \left(\frac{1}{r_1} + \frac{n}{2r_2} \right)^{-1}.$$

831 Calculate w_2 : Since the equivalent resistance of all edges in $\{(s, u_i), (t, u_i)\}_{1 \leq i \leq n}$ is equal, let's
 832 take the calculation of the equivalent resistance between s and u_1 as an example. According to the
 833 topology of the graph, the calculation is divided into three steps. First, we connect n resistors in
 834 parallel: $s - t, s - u_2 - t, s - u_3 - t, \dots, s - u_n - t$, where the resistance of $s - t$ is r_1 and the
 835 resistance of the remaining $n - 1$ resistors is $2r_2$. Then, we connect the resulting resistor in series
 836 with $t - u_1$ (with a resistance of r_2). Finally, we connect the resulting resistor in parallel with $s - u_1$
 837 (with a resistance of r_2). Therefore, w_2 is calculated as:

$$w_2 = \left[\frac{1}{r_2 + \left(\frac{1}{r_1} + \frac{n-1}{2r_2} \right)^{-1}} + \frac{1}{r_2} \right]^{-1}.$$

864 Calculate w_3 : Since any v_{ij} is only connected to u_i , the equivalent resistance between v_{ij} and u_i is
 865 not affected by any other resistance, so:

$$866 \quad w_3 = r_3.$$

867 From the definition,

$$868 \quad 869 \quad \text{LR}(s, t) = \frac{2(1 - nw_2)}{w_1}.$$

870 since $w_1 > 0$, making $\text{LR}(s, t) > 0$ is equivalent to making $1 - nw_2 > 0$ true, which is further
 871 equivalent to ensure:

$$872 \quad 873 \quad 874 \quad \left[r_2 + \left(\frac{1}{r_1} + \frac{n-1}{2r_2} \right)^{-1} \right]^{-1} + \frac{1}{r_2} > n.$$

875 Simplify the left side of the above inequality:

$$876 \quad \text{left} = \left[r_2 + \left(\frac{2r_2 + (n-1)r_1}{2r_1 r_2} \right)^{-1} \right]^{-1} + \frac{1}{r_2} = \left[r_2 + \frac{2r_1 r_2}{2r_2 + (n-1)r_1} \right]^{-1} + \frac{1}{r_2} \\ 877 \quad = \left[\frac{2r_2^2 + (n+1)r_1 r_2}{2r_2 + (n-1)r_1} \right]^{-1} + \frac{1}{r_2} = \frac{2r_2 + (n-1)r_1}{2r_2^2 + (n+1)r_1 r_2} + \frac{1}{r_2} = \frac{2r_2 + 2nr_1}{2r_2^2 + (n+1)r_1 r_2}.$$

882 Considering that in the symmetric normalized Laplacian, the value of any edge (u, v) is
 883 $\frac{1}{\sqrt{(d_u+1)(d_v+1)}}$, so $r_1 = \frac{1}{n+1}$ and $r_2 = \frac{1}{\sqrt{(n+1)(m+2)}}$. Thus $(n+1)r_1 = 1$. We can further
 884 deduce the equivalent conditions as follows:

$$885 \quad \frac{2r_2 + 2nr_1}{2r_2^2 + (n+1)r_1 r_2} > n \Rightarrow \frac{2r_2 + 2nr_1}{2r_2^2 + r_2} > n \Rightarrow (2-n)r_2 + 2nr_1 - 2nr_2^2 > 0.$$

886 We further narrow the left side of the above inequality to make its validity condition more stringent:

$$887 \quad (2-n)r_2 + 2nr_1 - 2nr_2^2 > -nr_2 + 2nr_1 - 2nr_2^2 = n(2r_1 - r_2 - 2r_2^2) \\ 888 \quad = n \left(\frac{2}{n+1} - \frac{1}{\sqrt{(n+1)(m+2)}} - \frac{2}{(n+1)(m+2)} \right) := n \times f(n, m).$$

889 Obviously, $\partial f(n, m) / \partial m > 0$, and $f(n, +\infty) = \frac{2}{n+1} > 0$, so for any fixed n^* , there must exist a
 890 m^* such that for any $m > m^*$, $f(n^*, m)$ approaches $\frac{2}{n+1}$ arbitrarily, thus the original proposition is
 891 proved.

892 A.3 DERIVATION OF EQUATION 6

$$893 \quad 4 - d_i - d_j + 3\Delta_{ij} \\ 894 \quad = 4 - |\mathcal{N}(u)| - |\mathcal{N}(v)| + 3(|\mathcal{N}(u) \cap \mathcal{N}(v)|) \\ 895 \quad = 4 - (|\mathcal{N}(u)| - |\mathcal{N}(u) \cap \mathcal{N}(v)|) - (|\mathcal{N}(v)| - |\mathcal{N}(u) \cap \mathcal{N}(v)|) + |\mathcal{N}(u) \cap \mathcal{N}(v)| \\ 896 \quad = 4 - |\mathcal{N}(u)/\mathcal{N}(v)| - |\mathcal{N}(v)/\mathcal{N}(u)| + |\mathcal{N}(u) \cap \mathcal{N}(v)| \\ 897 \quad = (2 + |\mathcal{N}(u) \cap \mathcal{N}(v)|) - (|\mathcal{N}(u)/\mathcal{N}(v)| - 1) - (|\mathcal{N}(v)/\mathcal{N}(u)| - 1) \\ 898 \quad = |\mathcal{B}(u) \cap \mathcal{B}(v)| - |\mathcal{N}(u)/\mathcal{B}(v)| - |\mathcal{N}(v)/\mathcal{B}(u)|$$

899 A.4 PROOF OF THEOREM 5

900 By definition, we know that for any $\mathcal{G}_{n,m}^c$, we have:

$$901 \quad \text{WAF3}(s, t) = 2f(n+1) + nf(m+2)$$

902 The original proposition is equivalent to proving that for any $\epsilon > 0$, there exists a set of positive
 903 integers n^* and m^* such that $2f(n+1) + nf(m+2) < \epsilon$. Since $f(+\infty) = 0^+$, for any $\epsilon > 0$, there
 904 exists $N_1 > 0$ such that when $x > N_1$, we have $f(x) < \frac{\epsilon}{4}$. Choose a positive integer n^* such that
 905 $n^* + 1 > N_1$. Then, $f(n^* + 1) < \frac{\epsilon}{4}$, and thus

$$906 \quad 2f(n^* + 1) < \frac{\epsilon}{2}.$$

918 For a fixed n^* , since $f(x) \rightarrow 0$ as $x \rightarrow \infty$, there exists $N_2 > 0$ such that when $x > N_2$, we have
 919 $f(x) < \frac{\epsilon}{2n^*}$. Choose a positive integer m^* such that $m^* + 2 > N_2$. Then, $f(m^* + 2) < \frac{\epsilon}{2n^*}$, and
 920 thus

$$921 \quad 922 \quad n^* f(m^* + 2) < \frac{\epsilon}{2}.$$

923 Therefore,

$$924 \quad 925 \quad 2f(n^* + 1) + n^* f(m^* + 2) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

926 A.5 PROOF OF THEOREM 6

928 Notice that:

$$929 \quad \text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v)) = \frac{\sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} f(d_i)}{\sum_{i \in \mathcal{N}(u) \cup \mathcal{N}(v)} f(d_i)} \\ 930 \\ 931 \quad \iff \text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v)) = \frac{\sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} f(d_i)}{\sum_{i \in \mathcal{N}(u)} f(d_i) + \sum_{i \in \mathcal{N}(v)} f(d_i) - \sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} f(d_i)} \\ 932 \\ 933 \quad \iff \frac{1}{\text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v))} = \frac{\sum_{i \in \mathcal{N}(u)} f(d_i) + \sum_{i \in \mathcal{N}(v)} f(d_i)}{\sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} f(d_i)} - 1 \\ 934 \\ 935 \quad \iff \sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} f(d_i) = \frac{\sum_{i \in \mathcal{N}(u)} f(d_i) + \sum_{i \in \mathcal{N}(v)} f(d_i)}{\text{Jaccard}_f^{-1}(\mathcal{N}(u), \mathcal{N}(v)) + 1}$$

940 So:

$$941 \quad \text{WAF3}_f(u, v) \\ 942 \\ 943 \quad = \sum_{i \in \mathcal{B}(u) \cap \mathcal{B}(v)} f(d_i) - \sum_{i \in \mathcal{N}(u) / \mathcal{B}(v)} f(d_i) - \sum_{i \in \mathcal{N}(v) / \mathcal{B}(u)} f(d_i) \\ 944 \\ 945 \quad = \left(f(d_u) + f(d_v) + \sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} f(d_i) \right) - \left(\sum_{i \in \mathcal{N}(u) / \mathcal{N}(v)} f(d_i) - f(d_v) \right) - \left(\sum_{i \in \mathcal{N}(v) / \mathcal{N}(u)} f(d_i) - f(d_u) \right) \\ 946 \\ 947 \quad = 2f(d_u) + 2f(d_v) + \sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} f(d_i) - \sum_{i \in \mathcal{N}(u) / \mathcal{N}(v)} f(d_i) - \sum_{i \in \mathcal{N}(v) / \mathcal{N}(u)} f(d_i) \\ 948 \\ 949 \quad = 2f(d_u) + 2f(d_v) + \sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)} 3f(d_i) - \sum_{i \in \mathcal{N}(u)} f(d_i) - \sum_{i \in \mathcal{N}(v)} f(d_i) \\ 950 \\ 951 \quad = 2f(d_u) + 2f(d_v) + \left(\frac{3}{\text{Jaccard}_f^{-1}(\mathcal{N}(u), \mathcal{N}(v)) + 1} - 1 \right) \left(\sum_{i \in \mathcal{N}(u)} f(d_i) + \sum_{i \in \mathcal{N}(v)} f(d_i) \right) \\ 952 \\ 953 \quad = 2f(d_u) + 2f(d_v) + \left(\frac{3\text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v))}{1 + \text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v))} - 1 \right) \left(\sum_{i \in \mathcal{N}(u)} f(d_i) + \sum_{i \in \mathcal{N}(v)} f(d_i) \right) \\ 954 \\ 955 \quad = 2f(d_u) + 2f(d_v) + \left(2 - \frac{3}{1 + \text{Jaccard}_f(\mathcal{N}(u), \mathcal{N}(v))} \right) \left(\sum_{i \in \mathcal{N}(u)} f(d_i) + \sum_{i \in \mathcal{N}(v)} f(d_i) \right)$$

964 B RELATED WORK

966 [Alon & Yahav \(2020\)](#) first proposed that information flowing through a graph can be over-squashed
 967 due to bottleneck structures. This idea was quickly recognized by the graph learning community, and
 968 over-squashing has become one of the core challenges faced by subsequent researchers designing new
 969 deep graph models. The next notable breakthrough in over-squashing research came from [Topping
 970 et al. \(2021\)](#), who demonstrated the use of the discrete decrement as an upper bound on the Jacobian
 971 matrix norm, thus transforming the ambiguous problem of determining over-squashed edges into a
 972 precisely defined curvature calculation.

972 Table 5: The values of MOSR_{10} and MOSR_{25} across different GNNs and datasets when the discrete
 973 curvature si set to WAF3 and $f(x) \equiv 1/(1+x)$.
 974

	GCN	GAT	SAGE		GCN	GAT	SAGE
Cora	.000/.014	.157/.166	.183/.183	Citeseer	.020/.040	.210/.216	.279/.280
Pubmed	.001/.002	.013/.014	.015/.015	Computers	.002/.005	.011/.011	.011/.011
Photo	.021/.024	.027/.027	.027/.027	CS	.009/.034	.075/.075	.076/.076
Physics	.020/.040	.055/.058	OOR	WikiCS	.140/.141	.144/.144	.144/.144
Cora_ML	.025/.056	.098/.103	.103/.103	DBLP	.020/.022	.052/.055	.057/.059
Cornell	.000/.000	.116/.122	.138/.143	Texas	.000/.000	.134/.139	.143/.149
Wisconsin	.000/.000	.108/.117	.122/.134	Chameleon	.065/.066	.075/.076	.079/.079
Squirrel	.039/.039	.041/.041	.041/.041	Roman-empire	.000/.001	.351/.431	.453/.453
Tolokers	.002/.002	OOR	.003/.003	Questions	.003/.011	.023/.024	.025/.025
Amazon-ratings	.159/.218	.223/.231	.245/.246	Minesweeper	.191/.192	.192/.192	.192/.192
				Average	.036/.045	.111/.118	.123/.124

987
 988
 989 Since then, discrete curvature has garnered significant interest within the graph learning community.
 990 One of the most typical approaches is curvature-based graph rewiring, whose core idea involves
 991 performing curvature-based preprocessing on graph data before executing graph deep learning to
 992 eliminate edges with extremely high or low curvature. Representative methods include those by SDRF
 993 (Topping et al., 2021), BORF (Nguyen et al., 2023), SJLR (Giraldo et al., 2023), AFR-3 (Fesser &
 994 Weber, 2024a), among others. Another approach involves directly integrating curvature into end-to-
 995 end GNN models. For instance, Li et al. (2022) utilized discrete curvature to improve aggregation
 996 weights in message passing; Sun et al. (2022) employed a hierarchical attention mechanism based
 997 on mixed-curvature spaces to capture complex graph structures and enhance performance; Fu et al.
 998 (2025) et al. proposed a curvature-optimized variational information bottleneck principle to optimize
 999 information transmission on graphs; while Chen et al. (2025) designed a continuous-depth GNN with
 1000 effects similar to rewiring methods via curvature Ricci flow. In addition, there is another type of
 1001 method that proposes the asynchronous message passing mechanism (Gutteridge et al., 2023; Chen
 1002 et al., 2024; Bose & Das, 2025). Their core innovation lies in combining the above two categories:
 1003 graph reconnection and end-to-end graph network.

1004 In terms of theoretical progress, Di Giovanni et al. (2023a) discussed how factors such as network
 1005 width, depth, and graph topology affect over-squeezing with the help of arrival time; Di Giovanni
 1006 et al. (2023b) studied the relationship between over-squeezing and expressiveness; Nguyen et al.
 1007 (2023) et al. established a unified understanding of over-smoothing and over-squeezing through ORC;
 1008 Chen et al. (2024) gave the conditions for GNN to exhibit local priority through curvature. Tori et al.
 1009 (2024b) proposed that the effectiveness of curvature-based graph rewiring methods may be due to the
 1010 correction of outliers.

1011 C COMPUTE MOSR

1012 In this paper, we introduce the metric MOSR_q , which measures the proportion of over-squashed
 1013 edges that are ignored by the discrete curvature. MOSR is calculated using the Jacobian matrix norm,
 1014 making it a tightly coupled metric with the model. This section details the calculation of MOSR.

1015 To ensure fairness, we want the network model to be optimal when calculating the Jacobian matrix
 1016 norm. To achieve this, we used Optuna Akiba et al. (2019) to perform 200 times hyperparameter
 1017 search for each model on each dataset, with the hyperparameter search range fixed uniformly (as
 1018 shown in Table 6. The hyperparameter search results are shown in Table 7, Table 8 and Table 9.

1019 We then randomly initialize the GNN with the optimal hyperparameter combination and calculate
 1020 the Jacobian matrix norm $\left\| \frac{\partial \mathbf{h}_j^{(L)}}{\partial \mathbf{h}_i^{(0)}} \right\|$ for each edge (i, j) in the dataset via the autograd module in
 1021 pytorch. We directly use randomly initialized GNNs without any training (See Appendix D.1 for
 1022 more discussion on this).

1026
 1027 Following the definition of discrete curvature, we compute a curvature value for each edge and
 1028 then compute MOSR as defined in Section 4. We repeat each experiment 10 times with different
 1029 initialization and report the average value. Our experimental platform is Intel(R) Xeon(R) Gold 6240C
 1030 CPU @ 2.60GHz and NVIDIA GeForce RTX 4090 \times 4. We set the resource consumption limit
 1031 for a single experiment to 12 hours of runtime and 24GB of GPU memory. Experiments exceeding
 1032 this limit will be marked as Out of Resources (OOR). The anonymized code is provided here:
 1033 https://anonymous.4open.science/r/rethinking_discrete_curvature

1034
 1035 Table 6: Scope of hyperparameter search

Hyperparameter	Range
n_layer	[2,3,4,5]
n_hidden	[64, 128, 256]
dropout	[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
lr	[0.01, 0.005, 0.002, 0.001, 0.0005]
weight_decay	[0.005, 0.001, 0.0005, 0.0001, 0]
norm	[“batch_norm”, “layer_norm”, none]

D SUPPLEMENTARY EXPERIMENTS

D.1 EFFECTS OF TRAINING AND q ON MOSR.

We explore the impact of the number of training rounds of the GNN model and the choice of p value on the value of MOSR. Our experimental settings cover different models, datasets, and curvature definitions.

- **Observation 9:** As the number of training epochs increases, the value of MOSR will slowly increase and gradually stabilize as the training converges (because the difference in MOSR between epoch=200 and epoch=500 is significantly smaller than the difference in MOSR between epoch=0 and epoch=50).
- **Observation 10:** When p is smaller, the criteria for being considered an over-squashing edge will be stricter, and the value of MOSR_p will also become smaller.
- **Observation 11:** Observation 9 and observation 10 hold for all discrete curvatures (compare Figure 5 with Figures 6 and 7), all models (compare Figure 5 with Figures 8 and 9), and all dataset (compare Figure 5 with Figures 10 and 11).

The MOSR values reported in the main paper are all based on an untrained model (epoch=0) and small p -values (10 and 25). Based on the above observations, this means that we are reporting a **lower bound** on the probability that the discrete curvature ignores over-squashing edges. Under any other settings (e.g., more epochs and higher p), the discrete curvature will ignore even more over-squashing edges than we report.

D.2 WEIGHTING FUNCTION

Assuming that node u and node v have a common node i , for an MPNN as shown in Equation (1), the norm of the Jacobian matrix of u ’s information flowing through i to v is:

1080
1081

Table 7: The optimal hyperparameter combination of GCN on different datasets

	n_layer	n_hidden	dropout	lr	weight_decay	norm
Cora	2	64	0.7	0.001	0.005	none
Citeseer	2	256	0.5	0.001	0.005	none
Pubmed	2	64	0.6	0.005	0.0001	none
Computers	2	256	0.3	0.002	0.0001	none
Photo	2	256	0.5	0.0005	0	ln
CS	2	128	0.7	0.0005	0.001	none
Physics	2	64	0.1	0.005	0.001	none
WikiCS	2	256	0.5	0.0005	0	ln
Cora_ML	5	64	0.6	0.001	0.0001	none
Cora_Full	2	128	0.5	0.01	0.001	none
DBLP	3	256	0.3	0.005	0.005	none
Cornell	2	64	0.4	0.0005	0.005	none
Texas	2	256	0.2	0.002	0.0005	none
Wisconsin	3	128	0.2	0.01	0.001	bn
Chameleon	2	64	0.6	0.001	0.0005	none
Squirrel	4	128	0.2	0.01	0.0001	bn
Roman-empire	2	256	0.1	0.002	0.0001	none
Tolokers	2	256	0.7	0.01	0	ln
Questions	2	256	0.6	0.01	0.001	ln
Amazon-ratings	2	256	0.2	0.01	0	ln
Minesweeper	3	256	0.5	0.005	0	ln

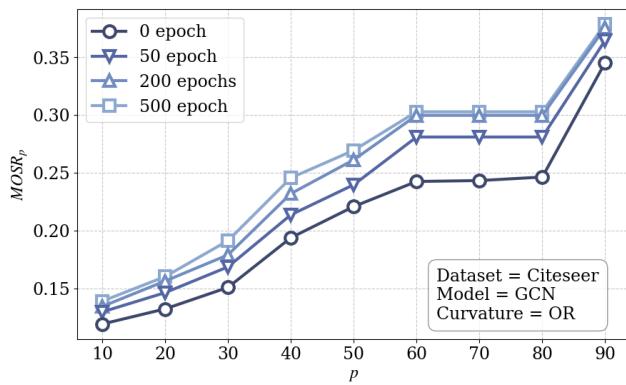
1107
1108

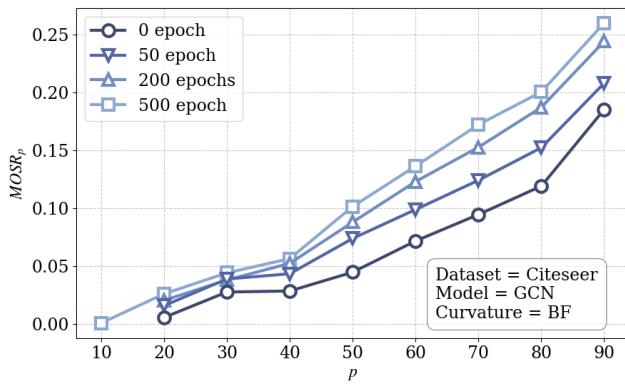
Table 8: The optimal hyperparameter combination of GAT on different datasets

	n_layer	n_hidden	dropout	lr	weight_decay	norm
Cora	3	128	0.6	0.0005	0.005	none
Citeseer	2	64	0.4	0.005	0.005	none
Pubmed	2	64	0.5	0.0005	0	bn
Computers	4	128	0.5	0.001	0.001	ln
Photo	3	128	0.5	0.005	0.0001	none
CS	2	256	0.6	0.01	0.0001	none
Physics	2	256	0.7	0.002	0.001	ln
WikiCS	2	256	0.6	0.0005	0.0001	bn
Cora_ML	5	64	0.7	0.0005	0	ln
Cora_Full	2	256	0.7	0.01	0.005	bn
DBLP	3	64	0.5	0.01	0.005	none
Cornell	4	64	0.4	0.005	0.005	bn
Texas	5	256	0.7	0.002	0	ln
Wisconsin	4	128	0.7	0.01	0.005	none
Chameleon	5	128	0.3	0.0005	0.005	ln
Squirrel	2	256	0.6	0.002	0.001	bn
Roman-empire	2	128	0.3	0.005	0	none
Tolokers	3	256	0.6	0.005	0.0001	none
Questions	4	256	0.3	0.001	0.0001	none
Amazon-ratings	2	128	0.1	0.0005	0.0001	bn
Minesweeper	3	128	0.4	0.01	0.0001	none

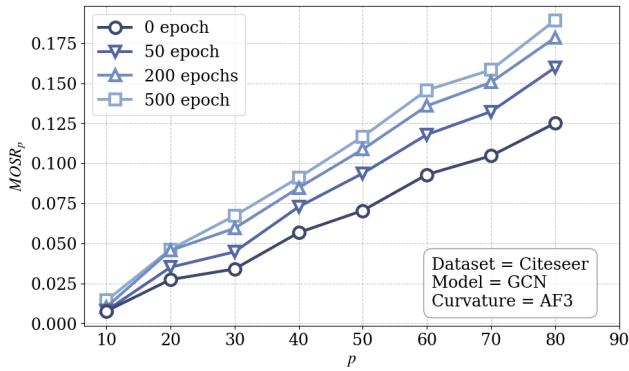
Table 9: The optimal hyperparameter combination of GraphSAGE on different datasets

	n_layer	n_hidden	dropout	lr	weight_decay	norm
Cora	2	64	0.5	0.0005	0.005	none
Citeseer	2	128	0.2	0.005	0.005	none
Pubmed	2	256	0.5	0.005	0.001	none
Computers	4	256	0.7	0.0005	0.0001	none
Photo	2	64	0.6	0.002	0	none
CS	2	256	0.6	0.001	0.0001	none
Physics	3	256	0.7	0.005	0.0001	ln
WikiCS	3	256	0.7	0.005	0	ln
Cora_ML	3	256	0.1	0.001	0.0005	none
Cora_Full	2	256	0.2	0.0005	0.005	ln
DBLP	5	64	0.7	0.01	0.0005	bn
Cornell	3	64	0.1	0.0005	0.001	none
Texas	2	64	0.2	0.001	0.005	none
Wisconsin	3	64	0.3	0.01	0.001	none
Chameleon	2	128	0.7	0.01	0	none
Squirrel	3	256	0.7	0.005	0	ln
Roman-empire	4	256	0.5	0.01	0	bn
Tolokers	4	64	0.5	0.005	0	bn
Questions	5	128	0.7	0.0005	0.0005	none
Amazon-ratings	3	256	0.5	0.002	0	bn
Minesweeper	5	256	0.4	0.001	0.0005	none

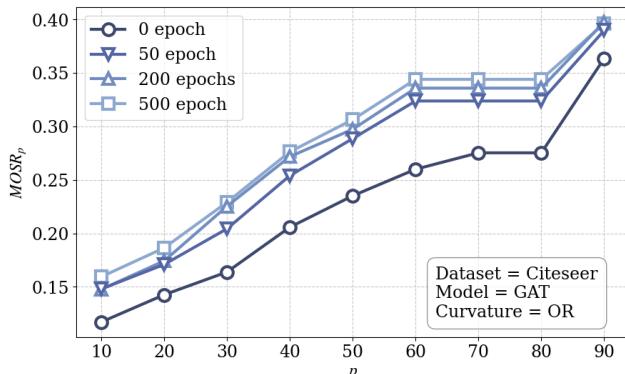
Figure 5: When the dataset is Citeseer, the model is GCN, and the discrete curvature is Ollivier Ricci Curvature, the impact of different training epochs and p -values on MOSR.



1202
1203
1204
Figure 6: When the dataset is Citeseer, the model is GCN, and the discrete curvature is balanced
Forman Curvature, the impact of different training epochs and p -values on MOSR.



1221
1222
Figure 7: When the dataset is Citeseer, the model is GCN, and the discrete curvature is augmented
Forman-3 Curvature, the impact of different training epochs and p -values on MOSR.



1239
1240
Figure 8: When the dataset is Citeseer, the model is GAT, and the discrete curvature is Ollivier Ricci
Curvature, the impact of different training epochs and p -values on MOSR.

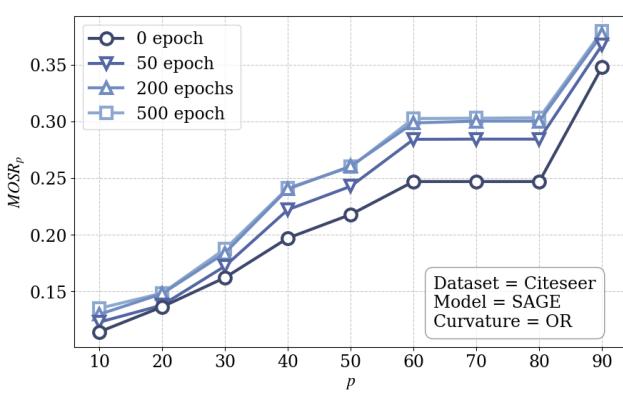


Figure 9: When the dataset is Citeseer, the model is GraphSAGE, and the discrete curvature is Ollivier Ricci Curvature, the impact of different training epochs and p -values on MOSR.

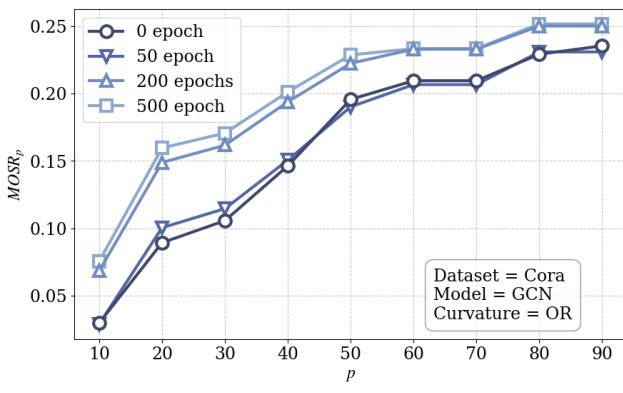


Figure 10: When the dataset is Cora, the model is GCN, and the discrete curvature is Ollivier Ricci Curvature, the impact of different training epochs and p -values on MOSR.

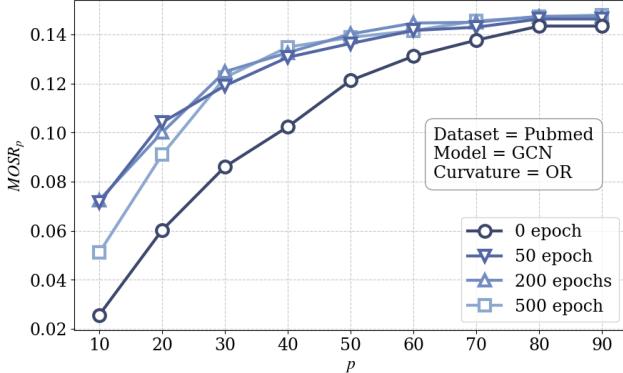


Figure 11: When the dataset is Pubmed, the model is GCN, and the discrete curvature is Ollivier Ricci Curvature, the impact of different training epochs and p -values on MOSR..

$$\begin{aligned}
& \left\| \frac{\partial \mathbf{h}_v^{(l+2)}}{\partial \mathbf{h}_i^{(l+1)}} \cdot \frac{\partial \mathbf{h}_i^{(l+1)}}{\partial \mathbf{h}_u^{(l)}} \right\|_F \\
&= \rho \left\| \mathbf{W}^{(l+1)} \mathbf{W}^{(l)} \left((\mathbf{D} + \mathbf{I})^{-1/2} (\mathbf{A} + \mathbf{I}) (\mathbf{D} + \mathbf{I})^{-1/2} \right)_{i,v} \left((\mathbf{D} + \mathbf{I})^{-1/2} (\mathbf{A} + \mathbf{I}) (\mathbf{D} + \mathbf{I})^{-1/2} \right)_{u,i} \right\|_F \\
&= \rho \left\| \mathbf{W}^{(l+1)} \mathbf{W}^{(l)} \right\|_F \cdot \underbrace{\frac{1}{1 + d_i}}_{\text{The influence of intermediate node } i} \cdot \underbrace{\frac{1}{\sqrt{(1 + d_u)(1 + d_v)}}}_{\text{The influence of intermediate node } i}.
\end{aligned}$$

Table 10: The impact of different attenuation functions on the calculation of WAF3. The values in the table represent MOSR₁₀ and MOSR₂₅.

	$f(d) = (1 + d)^{-2}$			$f(d) = (1 + d)^{-1/2}$			$f(d) = (1 + d)^{-1}$		
	GCN	GAT	SAGE	GCN	GAT	SAGE	GCN	GAT	SAGE
Cora	.009/.056	.169/.178	.196/.196	.000/.016	.147/.154	.172/.172	.000/.014	.157/.166	.183/.183
Citeseer	.044/.092	.223/.235	.286/.286	.007/.026	.205/.205	.255/.273	.020/.040	.210/.216	.279/.280
Pubmed	.008/.013	.023/.023	.025/.025	.000/.001	.009/.010	.011/.011	.001/.002	.013/.014	.015/.015
Computers	.014/.017	.018/.018	.018/.018	.001/.004	.009/.009	.010/.010	.002/.005	.011/.011	.011/.011
Photo	.020/.025	.026/.026	.026/.026	.029/.030	.033/.033	.033/.033	.021/.024	.027/.027	.027/.027
CS	.070/.079	.092/.093	.094/.094	.011/.021	.068/.068	.069/.069	.009/.034	.075/.075	.076/.076
Physics	.060/.069	.071/.072	OOR	.019/.023	.049/.053	OOR	.020/.040	.055/.058	OOR
WikiCS	.065/.069	.070/.071	.071/.071	.203/.203	.205/.205	.205/.205	.140/.141	.144/.144	.144/.144
Cora_ML	.074/.085	.115/.119	.119/.119	.020/.048	.088/.090	.091/.093	.025/.056	.098/.103	.103/.103
Cora_Full	OOR	OOR	OOR	OOR	OOR	OOR	OOR	OOR	OOR
DBLP	.056/.069	.084/.086	.088/.092	.002/.010	.034/.037	.039/.043	.020/.022	.052/.055	.057/.059
Cornell	.000/.000	.127/.138	.141/.156	.000/.000	.120/.124	.143/.143	.000/.000	.116/.122	.138/.143
Texas	.000/.000	.132/.132	.140/.143	.000/.000	.118/.123	.128/.137	.000/.000	.134/.139	.143/.149
Wisconsin	.000/.000	.122/.132	.130/.130	.000/.000	.102/.109	.116/.126	.000/.000	.108/.117	.122/.134
Chameleon	.037/.043	.040/.044	.044/.044	.090/.091	.100/.101	.104/.104	.065/.066	.075/.076	.079/.079
Squirrel	.015/.015	.015/.015	.015/.015	.103/.103	.100/.100	.100/.101	.039/.039	.041/.041	.041/.041
Roman-empire	.000/.002	.293/.432	.452/.454	.000/.004	.352/.431	.452/.453	.000/.001	.351/.431	.453/.453
Tolokers	.007/.007	OOR	.007/.007	.001/.001	OOR	.002/.002	.002/.002	OOR	.003/.003
Questions	.011/.018	.031/.031	.032/.032	.001/.006	.016/.016	.018/.018	.003/.011	.023/.024	.025/.025
Amazon-ratings	.194/.219	.201/.209	.223/.224	.178/.235	.240/.248	.261/.263	.159/.218	.223/.231	.245/.246
Minesweeper	.270/.270	.271/.271	.271/.271	.233/.233	.234/.234	.233/.233	.191/.192	.192/.192	.192/.192
Average	.048/.057	.118/.122	.125/.126	.045/.053	.117/.124	.128/.129	.036/.045	.111/.118	.123/.124

Therefore, we set $f(d_i)$ to $1/(1 + d_i)$ to balance the contribution of any first-order neighbor node in computing the discrete curvature. We also explore the effects of weight functions that decay faster or slower than $1/(1 + d_i)$ (i.e., $(1 + d_i)^{-2}$ and $(1 + d_i)^{-1/2}$) in Table 10.

- Observation 12:** On average, when $f(d) = (1 + d)^{-1}$, the value of MOSR is generally slightly smaller (better) than when $f(d) = (1 + d)^{-2}$ or $f(d) = (1 + d)^{-1/2}$.

D.3 CURVATURE-BASED GRAPH LEARNING

We explore the impact of different discrete curvature definitions on graph learning. We select Stochastic Discrete Ricci Flow (SDRF, (Topping et al., 2021)) as a representative graph rewiring method and Graph Neural Ricci Flow (GNRF, (Chen et al., 2025)) as a representative end-to-end method. The results are shown in Tables 11 and 12, respectively.

1350
1351 Table 11: Accuracy on downstream classification tasks after graph rewiring using SDRF (Topping
1352 et al., 2021) with different curvature definitions. The experimental setup for this experiment remains
1353 identical to the original paper. *Indicates data referenced from Topping et al. (2021).

	Cornell	Texas	Wisconsin
Balanced Forman	$57.54 \pm 0.34^*$	$70.35 \pm 0.60^*$	$61.55 \pm 0.84^*$
Ollivier Ricci	55.56 ± 1.05	64.51 ± 0.26	58.51 ± 0.60
Augmented Forman 3	58.29 ± 0.92	73.29 ± 0.64	63.19 ± 0.96
Weighted AF3	57.91 ± 0.54	73.62 ± 0.62	65.64 ± 0.24
Approximately Weighted AF3 (100 hash)	58.21 ± 0.64	71.96 ± 0.68	63.74 ± 0.34
Approximately Weighted AF3 (1000 hash)	57.88 ± 0.78	70.55 ± 0.61	65.10 ± 0.63
Approximately Weighted AF3 (10000 hash)	57.67 ± 0.62	72.11 ± 0.51	65.99 ± 0.67

1363
1364 Table 12: The accuracy of end-to-end model GNRF (Chen et al., 2025) on downstream classification
1365 tasks using different curvature definitions. The experimental setup for this experiment remains exactly
1366 the same as the original GNRF paper.

	Cornell	Texas	Wisconsin
Balanced Forman	84.37 ± 3.11	83.15 ± 6.25	83.15 ± 3.25
Ollivier Ricci	81.26 ± 5.45	79.95 ± 5.14	81.26 ± 2.36
Augmented Forman 3	84.21 ± 5.26	85.66 ± 3.25	79.26 ± 1.59
Weighted AF3	84.62 ± 3.26	87.11 ± 1.03	84.66 ± 0.34
Approximately Weighted AF3 (100 hash)	84.16 ± 4.10	84.26 ± 2.34	82.56 ± 1.26
Approximately Weighted AF3 (1000 hash)	83.12 ± 2.16	85.79 ± 1.26	85.11 ± 1.26
Approximately Weighted AF3 (10000 hash)	84.99 ± 2.13	86.35 ± 2.11	84.25 ± 0.67

1377
1378

- **Observation 13:** In the graph rewiring method SDRF, WAF3 (and its approximations) outperform other curvatures on two datasets; and in the end-to-end GNRF, they outperform other curvatures on all three datasets.
- **Observation 14:** When hash=100, approximately WAF3 performs as well as or better than balanced Forman curvature and Ollivier Ricci curvature on both SDRF and GNRF.

1385 The above observations show that WAF3 can achieve better performance in curvature-based graph
1386 learning than previous curvature methods, and can do well enough even with rough approximations.
1387

1388 E MORE DISCUSSIONS

1390 E.1 STATISTICS OF THE DATASETS

1392 We provide statistics for all the datasets used in this paper in Table 13.

1394 E.2 THE MOSR VALUE OF $\widehat{WAF3}$

1396 Another intuitive way to test the effectiveness of WAF3 based on the MinHash approximation is to
1397 directly observe their MOSR values. We report these results in Table 14. We found that the MOSR
1398 values are quite stable for different orders of magnitude of H , and even when $H = 100$, the MOSR
1399 value is very close to that of the non-approximate WAF3, and significantly lower than that of AF3.

1401 E.3 MOSR VALUES FOR MORE DISCRETE CURVATURE

1403 Given that the Balance Forman curvature with 4-cycle and the Jost-Liu Forman curvature have the
1404 same time complexity as Augmented Forman-3, we also report the MOSR values for these two

Table 13: statistics of the datasets

	#Node	#Edge	#Feature	#Class
Cora	2708	10556	1433	7
Citeseer	3327	9104	3703	6
Pubmed	19717	88648	500	3
Computers	13752	491722	767	10
Photo	7650	238162	745	8
CS	18333	163788	6805	15
Physics	34493	495924	8415	5
WikiCS	11701	216123	300	10
Cora_ML	2995	16316	2879	7
Cora_Full	19793	126842	8710	70
DBLP	17716	105734	1639	4
Cornell	183	298	1703	5
Texas	183	325	1703	5
Wisconsin	251	515	1703	5
Chameleon	2277	36101	2325	5
Squirrel	5201	217073	2325	5
Roman-empire	22662	32927	300	18
Tolokers	11758	519000	10	2
Questions	48921	153540	301	2
Amazon-ratings	24492	93030	300	5
Minesweeper	10000	39402	7	2

Table 14: The MOSR value of WAF3 based on MinHash approximation when H takes different values.

	H = 100			H = 1000			H = 10000		
	GCN	GAT	SAGE	GCN	GAT	SAGE	GCN	GAT	SAGE
Cora	.000/.014	.155/.164	.181/.181	.000/.015	.156/.165	.182/.182	.000/.015	.158/.166	.184/.184
Citeseer	.019/.041	.209/.215	.278/.279	.020/.039	.210/.216	.279/.279	.019/.039	.210/.216	.279/.279
Pubmed	.001/.002	.013/.014	.015/.015	.001/.002	.013/.014	.015/.015	.001/.002	.013/.014	.015/.015
Computers	.002/.006	.011/.012	.012/.012	.002/.005	.011/.011	.011/.011	.002/.005	.011/.011	.011/.011
Photo	.022/.025	.027/.028	.028/.028	.021/.024	.027/.027	.027/.027	.021/.024	.027/.027	.027/.027
CS	.010/.036	.076/.076	.077/.077	.009/.034	.075/.075	.076/.076	.009/.034	.075/.075	.076/.076
Physics	.022/.047	.057/.060	OOR	.020/.040	.055/.059	OOR	.020/.040	.055/.058	OOR
WikiCS	.145/.145	.149/.149	.149/.149	.140/.140	.144/.144	.144/.144	.139/.140	.143/.143	.143/.143
Cora_ML	.025/.055	.098/.102	.103/.103	.025/.056	.098/.103	.104/.104	.025/.055	.098/.103	.103/.103
Cora_Full	OOR								
DBLP	.021/.023	.052/.056	.058/.060	.021/.023	.052/.055	.058/.060	.020/.022	.052/.055	.057/.059
Cornell	.000/.000	.113/.120	.134/.139	.000/.000	.118/.126	.141/.147	.000/.000	.116/.122	.138/.143
Texas	.000/.000	.134/.139	.139/.149	.000/.000	.130/.135	.139/.145	.000/.000	.134/.139	.143/.149
Wisconsin	.000/.000	.114/.119	.124/.136	.000/.000	.108/.117	.122/.134	.000/.000	.108/.117	.122/.134
Chameleon	.064/.065	.074/.075	.078/.078	.065/.066	.075/.077	.079/.079	.065/.065	.075/.076	.079/.079
Squirrel	.046/.047	.048/.048	.048/.049	.039/.039	.041/.041	.041/.041	.039/.039	.041/.041	.041/.041
Roman-empire	.001/.011	.351/.426	.448/.448	.000/.002	.350/.429	.451/.451	.000/.001	.349/.429	.451/.451
Tolokers	.002/.002	OOR	.003/.003	.002/.002	OOR	.003/.003	.002/.002	OOR	.003/.003
Questions	.003/.011	.023/.024	.025/.025	.003/.011	.023/.024	.025/.025	.003/.011	.023/.024	.025/.025
Amazon-ratings	.203/.233	.223/.228	.244/.246	.217/.218	.224/.231	.245/.246	.159/.218	.223/.231	.245/.246
Minesweeper	.243/.243	.243/.243	.243/.243	.248/.248	.249/.249	.248/.248	.250/.250	.251/.251	.250/.250
Average	.041/.050	.114/.120	.125/.127	.041/.048	.113/.120	.125/.127	.038/.048	.113/.120	.125/.127

curvatures in Table 15. The results show that, on average, their MOSR values are similar to those of Augmented Forman-3, but still significantly lower than the MOSR value of WAF3.

Table 15: The MOSR value of $\widehat{\text{WAF3}}$

	Balance Forman w/o 4-cycle			Jost-Liu Forman		
	GCN	GAT	SAGE	GCN	GAT	SAGE
Cora	.003/.011	.105/.144	.150/.175	.004/.011	.099/.137	.143/.168
Citeseer	.000/.020	.039/.088	.163/.225	.000/.020	.039/.087	.159/.221
Pubmed	.000/.001	.064/.107	.142/.139	.000/.001	.064/.107	.141/.137
Computers	.000/.004	.008/.010	.008/.009	.000/.004	.008/.009	.008/.009
Photo	.036/.039	.040/.041	.040/.041	.036/.039	.039/.040	.040/.040
CS	.001/.009	.027/.050	.052/.066	.001/.009	.026/.047	.049/.063
Physics	.002/.010	.040/.053	OOR	.002/.010	.039/.051	OOR
WikiCS	.239/.238	.241/.239	.244/.240	.239/.238	.240/.239	.244/.239
Cora_ML	.042/.081	.090/.117	.078/.107	.040/.077	.085/.113	.075/.104
Cora_Full	OOR	OOR	OOR	OOR	OOR	OOR
DBLP	.006/.025	.030/.040	.040/.045	.006/.024	.029/.038	.038/.043
Cornell	.385/.286	.282/.282	.325/.325	.385/.286	.261/.261	.310/.310
Texas	.039/.216	.298/.291	.268/.290	.286/.216	.264/.260	.245/.257
Wisconsin	.142/.143	.181/.183	.170/.190	.132/.135	.172/.175	.165/.181
Chameleon	.007/.114	.125/.129	.132/.130	.005/.113	.124/.127	.131/.128
Squirrel	.127/.128	.129/.127	.128/.129	.127/.127	.129/.127	.128/.129
Roman-empire	.000/.000	.155/.252	.471/.478	.000/.000	.059/.245	.465/.472
Tolokers	.003/.003	OOR	.003/.003	.003/.003	OOR	.002/.003
Questions	.048/.070	.083/.085	.103/.100	.048/.070	.083/.085	.103/.100
Amazon-ratings	.302/.302	.048/.194	.280/.287	.291/.291	.038/.184	.270/.276
Minesweeper	NNE	NNE	NNE	NNE	NNE	NNE
Average	.073/.089	.110/.135	.155/.165	.085/.088	.100/.130	.151/.160

E.4 OVER-SMOOTHING AND OVER-SQUASHING

Over-smoothing and over-squashing are both significant challenges in designing GNNs, and they are distinct but also deeply connected. On the one hand, [Arnaiz-Rodríguez & Errica \(2025\)](#) clearly points out the obvious difference between the two concepts: oversmoothing refers to the problem of node features becoming too smooth when the number of layers in a GNN is too large; over-squashing refers to the problem of long-range information not being effectively utilized due to bottleneck structures in the graph. On the other hand, papers [Giraldo et al. \(2023\)](#); [Nguyen et al. \(2023\)](#) provide a unified perspective on over-smoothing and over-squashing from the perspectives of spectral theory and curvature, respectively. Specifically, [Giraldo et al. \(2023\)](#) argues that excessively large/small spectral gaps lead to over-smoothing/over-squashing; while [Nguyen et al. \(2023\)](#) argues that highly positive/negative Ollivier-Ricci curvatures lead to over-smoothing/over-squashing. Furthermore, [Arroyo et al. \(2025\)](#) points out the consistency between over-smoothing and over-squashing in causing gradient vanishing.

As for the methodological level, many works have attempted to alleviate both challenges simultaneously. Among them, [Liu et al. \(2023\)](#) proposed a dropout and sampling method based on Ollivier-Ricci curvature; [Pei et al. \(2024\)](#) proposed a track propagation mechanism to avoid information “hybridization” from different sources; and [Fesser & Weber \(2024b\)](#) designed a graph rewiring method based on Augmented Forman-Ricci Curvature.

Although our paper focuses on the relationship between curvature and over-squashing, given the central role of curvature in understanding and solving over-squashing problems, we have reason to believe that our work will also briefly inspire researchers dedicated to studying over-smoothing problems. In particular, we can similarly consider whether the statement in [Nguyen et al. \(2023\)](#) that “highly positive curvature leads to over-smoothing” is sufficient or necessary. We will leave the discussion here to future work.

1512 F USE OF LLMs
1513

1514 In this project, we only used LLMs to find and correct grammatical errors and polish the text.
1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565