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ABSTRACT
We introduce VOLGAN, a generative model for arbitrage-free implied
volatility surfaces. The model is trained on time series of implied
volatility surfaces and underlying prices and is capable of generating
realistic scenarios for joint dynamics of the implied volatility sur-
face and the underlying asset. We illustrate the performance of the
model by training it on SPX implied volatility time series and show
that it is able to learn the covariance structure of the co-movements
in implied volatilities and generate realistic dynamics for the (VIX)
volatility index. In particular, the generative model is capable of sim-
ulating scenarios with non-Gaussian distributions of increments for
state variables as well as time-varying correlations. Finally, we illus-
trate the use of VOLGAN to construct data-driven hedging strategies
for option portfolios, and show that these strategies can outperform
Black–Scholes delta and delta-vega hedging.
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1. Introduction

Option prices are quoted in terms of their implied volatilities, which are obtained by invert-
ing the Black–Scholes formula given the market prices of options. The implied volatility
surface, which summarizes the cross-section of option prices across strikes andmaturities,
gives a snapshot of the state of the options market. The dependence of implied volatil-
ity on moneyness and time-to-maturity, which is referred to as the smile, skew and term
structure have inspired the development of alternative option pricing models (Cont and
Tankov 2004; Gatheral 2011;Heston 1993). Any such option pricingmodel implies amodel
for the cross-sectional dependence of implied volatilities on strike and maturity, as well as
their dynamics across time. However, this dynamics is typically intractable and there has
been an interest from practitioners in directly modelling the dynamics of implied volatil-
ity as a state variable (Avellaneda et al. 2020; Babbar 2001; Cont and da Fonseca 2002;
Cont, Fonseca, and Durrleman 2002; Cont and Vuletic 2023; Durrleman 2010; Schön-
bucher 1999). Such ’market models’ of implied volatility should appropriately capture the
co-movements of implied volatilities across moneyness and time-to-maturity, reproduce
the empirically observed dynamics of implied volatilities (Cont and da Fonseca 2002), be
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able to capture the smile, skew, and term structure, and satisfy arbitrage constraints (Davis
and Hobson 2007; Gerhold and Gülüm 2020).

Given the high dimensionality of the volatility surface and the complexity of its dynam-
ics, it is challenging to capture all these properties in a parametric model. It is therefore
of interest to examine whether a data-driven approach can be used to overcome these
modelling challenges.

1.1. Contribution

In the present work we introduce VolGAN, a fully data-driven generative model for the
dynamic simulation of arbitrage-free implied volatility surfaces. Our model is trained on
a time series of market-quoted implied volatilities and is capable of generating realistic
dynamic scenarios for implied volatility surfaces. We illustrate the performance of the
model by training it on SPX implied volatility time series and show that it is able to learn
the covariance structure of co-movements in implied volatilities and generate realistic
dynamics for the (VIX) volatility index (CBOE 2022). In particular, the generative model
is capable of simulating scenarios with non-Gaussian distributions of increments for state
variables as well as time-varying correlations.

Last but not least, we show that VolGANmay be used to compute data-driven hedging
strategies for option porfolios. Using examples of SPX option portfolios, we show that Vol-
GAN can produce hedge ratios with better performance than Black–Scholes delta hedging
and delta-vega hedging, with automatic selection of the hedging instruments. In contrast
with model-based approaches such as Deep hedging (Buehler et al. 2019), our approach is
completely data-driven andmodel-free, in the spirit of the pioneering work of Hutchinson,
Lo, and Poggio (1994).

Our model builds on previous work on generative adversarial networks (GANs) for
scenario simulation in finance, starting with Takahashi, Chen, and Tanaka-Ishii (2019)
and Wiese et al. (2020) for price dynamics. More recently, GAN methods have been
deployed for scenario simulation in options markets. Wiese et al. (2019) uses a classical
GAN approach. Cuchiero, Khosrawi, and Teichmann (2020) and Cohen, Reisinger, and
Wang (2022) use a ‘neural SDE’ to parameterize volatility surface dynamics. Cao, Chen,
and Hull (2020) use a supervised learning approach to extract information from histori-
cal implied volatility dynamics, while Ning et al. (2023) combines SDEs with Variational
Autoencoders (Kingma and Welling 2019).

In contrast with the aforementioned approaches which deploy the classical GAN
methodology of Goodfellow et al. (2014) using binary cross-entropy (BCE) as a training
objective, we propose a bespoke training criterion adapted to the financial application at
hand, as advocated in Cont et al. (2022) and Vuletić, Prenzel, and Cucuringu (2024), com-
bined with a scenario weighting approach based on Cont and Vuletic (2023) to take care
of arbitrage constraints.

1.2. Outline

Section 2 summarizes properties of implied volatility surfaces and outlines some desirable
requirements for a dynamic model of implied volatility. Section 3 describes VolGAN, our
proposed generative model for implied volatility surfaces. Section 4 presents the results
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obtained by training VolGAN on SPX implied volatility data and discusses the model’s
ability to produce realistic scenarios for implied volatility co-movements and the VIX
index. Section 5 demonstrates applications of VolGAN for hedging and shows that hedg-
ing strategies computed using VolGAN can outperform commonly used delta hedging
and delta-vega hedging strategies.

2. Implied Volatility Surfaces: Shape Constraints and Dynamics

Denoting the price of the underlying asset by St , the implied volatility may be parameter-
ized in terms of moneyness m = K/St and time to maturity τ = T − t of the option. The
implied volatility associated with a call option with moneyness m and time-to-maturity τ

on a non-dividend paying asset S is the unique value σt(m, τ) such that the Black–Scholes
price CBS(St ,K, τ , σt(m, τ)) matches the market price Ct(m, τ) of the call:

Ct(m, τ) = CBS(St ,K, τ , σt(m, τ)) = StN(d1) − Ke−rτN(d2)

d1 = − lnm + τ(r + σ 2

2 )

σ
√

τ
d2 = − lnm + τ(r − σ 2

2 )

σ
√

τ
,

where N is the c.d.f of a standard GaussianN (0, 1) variable. The implied volatility surface
σt(m, τ) at date t provides a snapshot of options prices in themarket (Gatheral 2011): spec-
ifying the implied volatility surface is equivalent to specifying the prices of all European
calls and puts available in the market, given the current term structure of interest rates and
dividends.

2.1. Static Arbitrage and Shape Constraints

It has been empirically observed that implied volatilities of call and put options in listed
options markets exhibit a dependence on exercise price K and maturity date T (Cont
and da Fonseca 2002; Dumas, Fleming, and Whaley 1998; Dupire 1994; Gatheral 2011)
(or, alternatively, on the moneynessm = K/St and time-to-maturity τ = T − t). However
not every cross-sectional profile for the function (m, τ) �→ σt(m, τ) is admissible, as the
resulting call/put option prices should satisfy certain static arbitrage constraints (Davis and
Hobson 2007; Gerhold and Gülüm 2020). In particular call option prices should be:

• increasing in time to maturity: ∂τCBS(St ,K, τ , σt(m, τ)) ≥ 0,
• decreasing in moneyness: ∂mCBS(St ,K, τ , σt(m, τ)) ≤ 0,
• convex in moneyness: ∂2mCBS(St ,K, τ , σt(m, τ)) ≥ 0.

These constraints translate to nonlinear inequalities involving σt , ∂mσt , ∂2mσt , ∂τσt
(Cont, Fonseca, and Durrleman 2002), which in turn impose constraints on the possible
shapes of the implied volatility surface σt(m, τ).

Given a fixed grid in moneyness and time to maturity

(m, τ ) = (mi, τj)i=1,...,Nm;j=1,...Nτ ,
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withmi < mi+1 and τj < τj+1, we define the relative call prices

c(m, τ) := 1
S
CBS(S,K, τ , σ) = N(d1) − me−rτN(d2). (1)

Following Cont and Vuletic (2023), we define the arbitrage penalty associated with the
(discretely sampled) volatility surface σ (m, τ ) as:

�(σ (m, τ )) = p1(σ (m, τ )) + p2(σ (m, τ )) + p3(σ (m, τ )). (2)

where the functions p1, p2, p3 measure violations of calendar, call and butterfly arbitrage
constraints, respectively:

p1(σ (m, τ )) =
Nm∑
i=1

Nτ∑
j=1

(
τj
c(mi, τj) − c(mi, τj+1)

τj+1 − τj

)+
, (3)

p2(σ (m, τ )) =
Nm∑
i=1

Nτ∑
j=1

(
c(mi+1, τj) − c(mi, τj)

mi+1 − mi

)+
, (4)

p3(σ (m, τ )) =
Nm∑
i=1

Nτ∑
j=1

(
c(mi, τj) − c(mi−1, τj)

mi − mi−1
− c(mi+1, τj) − c(mi, τj)

mi+1 − mi

)+
. (5)

Static arbitrage constraints (Davis and Hobson 2007) are then equivalent to

�(σ (m, τ )) = 0

and the magnitude of �(σ (m, τ )) can be considered as a ‘distance’ from the set of
arbitrage-free implied volatility surfaces.

2.2. Dynamics of Implied Volatility Co-movements

Static arbitrage constraints on the shape of the implied volatility surface are a necessary
but not sufficient requirement for a good model of implied volatility dynamics: one also
needs the model to capture the statistical properties of implied volatility co-movements,
a crucial point for any hedging and risk management task. Here we summarize some of
the empirically observed statistical properties of implied volatilities on various exchange-
traded indices (Avellaneda et al. 2020; Cont and da Fonseca 2002; Cont and Vuletic 2023):

• The implied volatility has a non-flat cross-section, with dependence in strike and
maturity.

• Implied volatilities display high positive autocorrelation andmean-reverting behaviour.
• Daily variations in the implied volatilities can be satisfactorily explained with a small

number of principal components.
• The first principal component corresponds to a level, whereas the second principal

component corresponds to a skew factor.
• The returns of the underlying are negatively correlated with the projections of log-

increments of implied volatility on the level and skew principal components, which is a
more precise formulation of the so-called ’leverage effect’.
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Wenow describe a data-driven approach for the simulation of implied volatility dynam-
ics designed to account for the above properties.

3. A Generative Model for Implied Volatility Surfaces

VolGAN is a customized conditional generative adversarial network with a smooth-
ness penalty incorporated into the generator’s loss function, combined with scenario
re-weighting applied to the output scenarios (Cont and Vuletic 2023).

VolGAN receives as input

• the implied volatility surface at the previous date,
• the two previous underlying returns,
• the realized volatility from the previous period,

and outputs (joint) scenarios for

• the return of the underlying asset and
• the implied volatility surface

for the next period, along with a set of weights (probabilities) associated with these
scenarios. We now discuss the methodology in more detail.

3.1. Architecture

We design a Conditional GAN (Mirza and Osindero 2014), composed of two neural net-
works, a generator and a discriminator. Suppose we have observations at times t ∈ T, in
increments of �t = 1/252 (1 day), with St the price of the underlying, and σt(m, τ ) the
implied volatility surface on the grid (m, τ ) at time t. Denote by gt(m, τ ) the log-implied
volatility surface at time t:

gt(m, τ ) = log σt(m, τ ), �gt(m, τ ) = gt+�t(m, τ ) − gt(m, τ ). (6)

Let Rt be the log-return of the underlying:

Rt = log
(
St+�t

St

)
, (7)

and denote by γt the one-month realized volatility:

γt =
√√√√252

21

20∑
i=0

R2t−i�t . (8)

We aggregate Rt−�t ,Rt−2�t , γt−�t , gt(m, τ ) into a condition/input vector at :

at = (Rt−�t ,Rt−2�t , γt−�t , gt(m, τ )). (9)

The generator G takes as input this condition at and i.i.d. noise zt ∼ N (0, Id) and outputs
simulated values R̂t(z),�ĝt(m, τ ) for the return and implied volatility (log-)increments:

G(at , zt) = (R̂t(zt),�ĝt(m, τ )(zt)). (10)
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Figure 1. VOLGAN generator architecture.

We denote by G(at , z)|2: = �ĝt(m, τ )(z) the second component of the generator’s output
which corresponds to the simulated log implied volatility increment.

The discriminator is a classifier, taking as input a value (r,�g) representing either the
output of the generator or the corresponding data realization, together with a condition
vector at as in (9). It outputs a value D(at , (R,�g)) between 0 and 1, interpreted as the
probability that the input is drawn from the conditional distribution of (Rt ,�gt) given at .

The generator G and the discriminator D are feed-forward neural networks, whose
respective parameters (weights) we denote by θg and θd. The architecture of the generator
is displayed in Figure 1, and the architecture of the discriminator is shown in Figure 2.

3.2. Training Objective

The core component of VolGAN is a customized loss function catering to the desired
properties of the output volatility surface, as advocated in Cont et al. (2022). A classical
GAN trained using binary cross-entropy (BCE) loss (Goodfellow et al. 2014) would result
in irregular surfaces. In order to generate smooth surfaces, we use a smoothness penalty
(Jackson, Suli, andHowison 1999; Sana and Cont 2005) defined as a discrete Sobolev semi-
norm inm and τ on the grid (m, τ ):

Lm(g) =
∑
i,j

(
g(mi+1, τj) − g(mi, τj)

)2
|mi+1 − mi|2

	 ‖∂mg‖2L2 , (11)
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Figure 2. VOLGAN discriminator architecture.

Lτ (g) =
∑
i,j

(
g(mi, τj+1) − g(mi, τj)

)2∣∣τj+1 − τj
∣∣2 	 ‖∂τ g‖2L2 . (12)

These terms are included in the training objective J(G)(θd, θg) for the generator:

J(G)(θd, θg) = −1
2
E

[
log

(
D

(
at ,G(at , zt ; θg); θd

))]
+ αmE

[
Lm

(
gt(m, τ ) + G(at , zt ; θg)|2:

)]
+ ατ E

[
Lτ

(
gt(m, τ ) + G(at , zt ; θg)|2:

)]
, (13)

where at = (Rt−�t ,Rt−2�t , γt−�t , gt(m, τ )), as defined in (9). The first term is a binary
cross-entropy for the output of the discriminator. αm > 0 and ατ > 0 are regulariza-
tion parameters, at is the input ‘condition’ (Equation (9)); θg and θd are respectively the
parameters (weights) of the generator and the discriminator networks. The expectation
is computed over the law of the i.i.d. (Gaussian) input zt ∼ N(0, Id). The smoothness
penalties Lm and Lτ are applied to the simulated log-implied volatility surfaces:

gt(m, τ ) + G(at , zt ; θg)|2: = gt(m, τ ) + �ĝt(m, τ )(zt) = ĝt(m, τ )(zt).

The discriminator is trained to minimize the binary cross-entropy loss:

J(D)(θd, θg) = −1
2
E

[
log

(
D(at , (Rt ,�gt(m, τ )); θd

)]
− 1

2
E

[
log

(
1 − D(at ,G(at , zt ; θg); θd

)]
, (14)

where at is the input condition (Equation (9)), Rt and �gt(m, τ ) are the corresponding
data.
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We assume the process (Rt , gt)t≥0 to be ergodic, so given a long enough sample t ∈ T

we can approximate the expected values above by sample averages:

E[f (Rt , gt)] 	 1
|T|

∑
t∈T

f (Rt , gt).

It is possible to incorporate the arbitrage penalty (2) into the loss function of the gen-
erator (13). However, we have not done so, and our numerical experiments indicate no
notable difference when including it, suggesting that the smoothness penalty is enforcing
shape constraints indirectly.

3.3. Scenario Re-weighting

The outputs of the generator described above are not guaranteed to satisfy the static arbi-
trage constraints described in Section 2.1. To correct for this, we apply the methodology
described in Cont and Vuletic (2023) to re-weight the one-day-ahead scenarios generated
by the GAN.

Let P0 be the law of the generator’s output i.e., the joint dynamics of the underlying
return and the implied volatility surface (Rt , σt(m, τ ); t ∈ T). To adjust for static arbitrage,
Cont and Vuletic (2023) apply the change of measure:

dPβ

dP0
(ω) = exp (−β�(σ(m, τ ;ω)))

Z(β)
(15)

where Z(β) is a normalization factor:

Z(β) = EP0
[
exp (−β� (σ(m, τ ;ω)))

]
. (16)

VolGAN samples from this target distribution (15) using a Weighted Monte Carlo
approach. GivenN samples from the generator (R̂i, σ̂ i), i = 1, . . . ,N, we compute the arbi-
trage penalty �(σ̂ i) corresponding to each output scenario (R̂i, σ̂ i) using (2) and sample
the scenario (R̂i, σ̂ i) with probability

wi = exp(−β�(σ̂ i))∑N
j=1 exp(−β�(σ̂ j))

. (17)

These weighted scenarios may then be used to compute expectations and quantiles of var-
ious quantities of interest under Pβ . Let X be a function of the state variables, and let xi be
its value in scenario i. Denote by FX,β the law of X under Pβ and by Eβ[X] its expectation.
We can estimate Eβ[X] by

Êβ [X] =
N∑
i=1

wixi, (18)

while the quantiles of X are estimated as

̂F−1
X,β(q) = x(k), where k = min

⎧⎨
⎩j ∈ {1, . . . ,N} :

j∑
i=1

w(i) ≥ q

⎫⎬
⎭ , (19)

where x(1) ≤ x(2) ≤ · · · ≤ x(N) are the order statistics of x1, . . . , xN .
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3.4. Numerical Implementation

The generator G is a three-layer feedforward dense neural network, with the first two acti-
vations softplus, and the final layer an affine layer. The random input is (standard) i.i.d
Gaussian noisewith dimension d = 32. The first layer consists ofH = 16neurons, whereas
the second layer contains 2H = 32 neurons. Similarly, the discriminator D is a two-layer
feedforward neural network, with softplus and sigmoidal activation functions and layer
sizes of H = 16 and 1, respectively. The discriminator has a simpler architecture than the
generator, as it is of the utmost importance to keep the two neural networks in balance. The
architecture of the discriminator is shown in Figure 2, and the architecture of the generator
is displayed in Figure 1.

The hyperparameters αm,ατ > 0 are chosen by gradient norm matching. We first train
VolGAN for ngrad = 25 epochs by performing optimization via the binary cross-entropy
loss only (classical GAN setting). At each update, we calculate the gradient norms of each
of the three loss function terms in (13): BCE, Lm, Lτwith respect to θg . We then set αm
and ατ , to be the means of observed ratios of the gradient norms of the BCE term to the
gradient norms of theLm and Lτ , respectively. The gradient norms of theBCE, Lm, Lτ terms
with respect to θg during this stage are shown in Figure 3. We note that all three gradients
behave similarly, that they stabilize over time, and that there is no gradient explosion or
vanishing gradient phenomena.

We then restart training VoLGAN (from the same initialization used for the start of
the gradient norm matching procedure) with the loss function defined by Equation (13)
for nepochs = 10, 000 epochs, using an alternating direction method i.e., one discriminator
update for each generator update. The optimizer used is RMSProp (Hinton, Srivastava,

Figure 3. Norm of gradient of the BCE term, Lm term, and Lτ term with respect to θg during the first
stage of VolGAN training: (a) BCE term. (b) Lm term and (c) Lτ term.
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and Swersky 2012), and the learning rates of both networks are set to 0.0001. We take
N = 10000 raw samples from the generator. The mini-batch size is nbatch = 100.

3.4.1. Calibration of β
The hyperparameter β might be chosen by considering the Kullblack–Leibler divergence
between the distribution of the weights and the uniform distribution on the scenarios
(Cont and Vuletic 2023). Based on the results in Cont and Vuletic (2023), we set

β(t) = 500
max{wi(t)} , (20)

where wi(t) are the weights associated with the generator outputs on day t.

4. Learning to Simulate SPX Implied Volatility Surfaces

To demonstrate VolGAN’s ability to generate realistic scenarios for SPX implied volatility
dynamics, we train VolGANon the daily time series ofmarket data and examine the prop-
erties of the generator thus trained. The same approach might be applied to other equity
options.

4.1. Data

We use the Option Prices file from OptionMetrics. The time period in question is from
the 3rd January 2000 to the 28th February 2023, with 3rd Jan 2000-16th Jun 2018 corre-
sponding to the training, and 17th Jun 2019-28th Feb 2023 to the test set. The historical
VIX closing prices are available on the CBOE website. The implied risk-free interest
rate for each day is calculated as the median rate implied by the put-call parity from
the option mid-prices. We construct smooth implied volatility surfaces using the kernel
smoothing methodology of Cont and da Fonseca (2002); OptionMetrics (2021). Our grid
(m, τ ) consists ofm ∈ {0.6, 0.7, 0.8, 0.9, 0.95, 1, 1.05, 1.1, 1.2, 1.3, 1.4} and of times tomatu-
rity τ ∈ { 1

252 ,
1
52 ,

2
52 ,

1
12 ,

1
6 ,

1
4 ,

1
2 ,

3
4 , 1}, one day to one year. Suppose that on a fixed day we

have available implied volatility data σ(m, τ) for m ∈ M and τ ∈ T , with corresponding
values of Vega κ(m, τ). We consider a Vega-weighted Nadaraya-Watson kernel smoothing
estimator with a 2D Gaussian kernel:

σ̂ (m′, τ ′) =
∑

m∈M,τ∈T κ(m, τ)k(m − m′, τ − τ ′)σ (m, τ)∑
m∈M,τ∈T κ(m, τ)k(m − m′, τ − τ ′),

(21)

where:

k(x, y) = 1
2π

exp
[
− x2

2h1
− y2

2h2

]
.

In order to determine the values of the bandwidth hyperparameters h1 and h2, we sample
a day uniformly at random from the first 100 days available (which was 31st Jan 2000) and
find the pair of hyperparameters (h1, h2) minimizing the arbitrage penalty. We conduct
the search over values between 0.002 and 0.1 (inclusive) in 0.002 increments, for both h1
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Figure 4. Arbitrage penalty for SPX implied volatility surface after smoothing.

and h2. The minimizer of the arbitrage penalty was the pair (h1, h2) = (0.002, 0.046). The
resulting arbitrage penalty over the entire data set after smoothing is shown in Figure 4.
Note that compared to Cont and Vuletic (2023) we include shorter times to maturity and
use a different dataset.

To simplify the notation, we will use σt(m, τ ) for the implied volatility surface obtained
after smoothing, on the (m, τ ) grid. For general σt(m, τ) we interpolate σt(m, τ ) linearly
first in moneyness, and then in time to maturity. When extrapolation is necessary, it is
linear.

4.2. Out-of-Sample Performance

As discussed in Section 2, the main goal of an implied volatility model is to correctly cap-
ture the co-movements of implied volatilities, while satisfying static arbitrage constraints.
We can measure the latter by considering the ’distance to arbitrage’ using the arbitrage
penalty (2). In order to measure how well VolGAN learns the dynamics and captures the
co-movements of implied volatilities, we perform PCA on the generated increments, and
compare them with the principal components of the data increments. Furthermore, we
simulate the CBOE volatility index VIX (CBOE 2022), which is a non-linear combination
of tradable calls and puts. We compare the dynamics of the simulated and market data.

4.2.1. Detecting ExtremeMarket Events
Firstly, we note that the trained discriminator might be used for detecting extreme market
events. Figure 5 contains discriminator scores on the training and testing data. Since the
discriminator has already been trained, it is of no surprise that the outputs cluster around
0.5. There are two clusters of points with scores lower than others: those corresponding



214 M. VULETIĆ AND R. CONT

Figure 5. Discriminator output score on in-sample and out-of-sample SPX options data.

to the 2008 financial crisis (in-sample) and to the start of the Covid-19 pandemic (out-of-
sample). In particular, the discriminator assigns a score below 0.2 to the data from the start
of the Covid-19 pandemic, highlighting the difference in this data compared to the rest of
the training and test set.

4.2.2. Smoothness and Arbitrage Constraints
Incorporating the smoothness penalty (11)–(12) into the loss function (13) is crucial for
generating smooth surfaces. As shown in Figure 6, training via the classical Binary Cross-
Entropy (BCE) loss (Goodfellow et al. 2014), using the same architecture, hyperparameters,
and the same number of training epochs, results in irregular surfaces.

As the input surfaces might admit static arbitrage, it is not realistic to expect outputs to
be completely arbitrage-free.What is plausible, however, is for the outputs to have arbitrage
penalties of the same order (or lower) than the inputs. Table 1 compares out-of-sample
arbitrage penalties for SPX implied volatilities and the outputs of the BCE GAN and Vol-
GAN with/without scenario re-weighting. Arbitrage penalties in the BCE GAN samples
are observed to be high: this is linked to the previous observation that BCE GAN fails
to generate smooth surfaces, resulting in failure of static arbitrage conditions which are
linked to derivatives of the surfaces. In contrast, VolGAN outputs have arbitrage penalty
levels similar to the input data. Scenario re-weighting leads to a low probability of select-
ing scenarios with static arbitrage, as shown in Figure 7, where the reduction in arbitrage
is visualized. The mean, standard deviation, and median values from Table 1 correspond
to the statistics of the time series displayed in Figure 7. We note that during 2022 there
is more volatility in arbitrage penalty in VolGAN compared to the remainder of the test
period
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Figure 6. Implied volatility surfaces generated using (b) VOLGAN (c) classical GAN, compared with (a)
SPX implied volatility surface.

4.2.3. Next-Day Forecasting
We use VolGAN to generate next-day forecasts using the conditional expectation of the
variable given the history, together with a 95% confidence interval obtained by considering
the 2.5% and 97.5% quantiles for the following quantities of interest:

• index level St ;
• VIX level σVIX

t ;
• a range of implied volatilities σt(m, τ) with

τ ∈
{

1
252

,
1
52

, 0.25, 0.125
}
, m ∈ {0.75, 1, 1.25}
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Table 1. Arbitrage penalties in SPX implied volatility
market data (test set) vs generated data via GANs trained
using (i) BCE loss only (ii) VOLGAN loss (iii) VOLGAN re-
weighted scenarios (adaptiveβ). Standard deviation and
median for GAN outputs correspond to the standard
deviation and the median of (re-weighted) average out-
puts given 10,000 samples.

Mean Std Median

Market data 0.0096 0.0628 0.0005
BCE GAN 2.4635 0.9086 2.3164
Raw VolGAN (before weighting) 0.0199 0.088 0.003
VolGAN (after re-weighting) 0.0127 0.0620 0.0014

Figure 7. Distance to arbitrage as measured by the arbitrage penalty (2) in SPX implied volatility data
(red) vs. mean arbitrage penalty of surfaces generated via VOLGAN, before (blue) and after (green)
scenario re-weighting.

Figures 8, 9, 10, 11 compare respectively the 3-month, 1-month, 1-week, and 1-day
ATM implied volatility with the VolGANone-day ahead 95% confidence interval forecast,
displaying good agreement with observations. VolGAN appears to slightly overestimate
implied volatility levels form>1 but not form<1, as shown in Figures 12 and 13.

Figure 14 displays the simulated and real SPX returns, showing that VolGAN confi-
dence intervals appropriately capture the underlying. We visualize the impact of scenario
re-weighting on the confidence intervals in Figure 15. During periods of high arbitrage
penalty, a small number of simulations hold most of the weight, therefore inducing very
narrow confidence intervals. This behaviour is visible not just in the simulations for the
underlying, but for the ATM (m = 1), OTM (m = 0.75), and ITM (m = 1.25) implied
volatilities (Figures 8, 12, 13 respectively). From Figure 15, we note that if arbitrage is not
penalized (β = 0), the forecasts are more accurate, including for March and April 2020.
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Figure 8. 3-month ATM implied volatility (m = 1, τ = 0.25): market data (red), next-day forecast
(Eβ [σt(1, 0.25)|at−�t]) and 95% confidence interval (blue) based on the 2.5% and 97.5% VOLGAN
quantiles.

Figure 9. 1-month ATM implied volatility (m = 1, τ = 1/12): market data (red), next-day forecast
(Eβ [σt(1, 1/12)|at−�t]) and 95% confidence interval (blue: without re-weighting, purple: with re-
weighting) based on the 2.5% and 97.5% VOLGAN quantiles.
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Figure 10. 1-week ATM implied volatility (m = 1, τ = 1/52): market data (red), next-day forecast
(Eβ [σt(1, 1/52)|at−�t]) and 95% confidence interval (blue: without re-weighting, purple: with re-
weighting) based on the 2.5% and 97.5% VOLGAN quantiles.

Figure 11. 1-day ATM implied volatility (m = 1, τ = 1/252): market data (red), next-day forecast
(Eβ [σt(1, 1/252)|at−�t]) and 95% confidence interval (blue: without re-weighting, purple: with re-
weighting) based on the 2.5% and 97.5% VOLGAN quantiles.

However, choosing to use the raw generator might result in static arbitrage of the mid-
prices. As before, we note that the width of the confidence intervals varies with time, with
the confidence intervals appearing more consistent in 2022. The raw generator (β = 0)
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Figure 12. 3-month OTM call implied volatility (m = 1.25, τ = 0.25): market data (red), next-day fore-
cast (Eβ [σt(1.25, 0.25)|at−�t]) and the 95% confidence interval (blue: without re-weighting, purple:
with re-weighting). The confidence interval is calculatedbasedon the2.5%and97.5%VOLGANquantiles.

Figure 13. 3-month ITM call implied volatility (m = 0.75, τ = 0.25): market data (red), next-day fore-
cast (Eβ [σt(0.75, 0.25)|at−�t]) and 95% confidence interval (blue: without re-weighting, purple: with
re-weighting). The confidence interval is calculated based on the 2.5% and 97.5% VOLGAN quantiles.
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Figure 14. Realized and simulated SPX log-return on the test set. Market data (red), next-day forecast
(Eβ [St|at−�t]) and the 95% confidence interval (blue: without re-weighting). The confidence interval is
calculated based on the 2.5% and 97.5% VOLGAN quantiles.

Figure 15. Realized and simulated SPX log-return on the test set. Market data (red), next-day forecast
(Eβ [St|at−�t]) and the 95% confidence interval (blue: without re-weighting, purple: with re-weighting).
The confidence interval is calculated based on the 2.5% and 97.5% VOLGAN quantiles before and after
re-weighting.
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Figure 16. Historical vs one-day ahead simulation of VIX, on test data set.

produces stable confidence intervals for all state variables, highlighting VolGAN’s stability
and not requiring frequent re-calibration.

Figure 16 compares one-day ahead simulated values of VIX, computed from its
definition in terms of simulated call/put prices, with the VIX closing prices on target days
in the test set. VolGAN simulations are on the same scale as VIX. Some of the differences
might be coming from the discrete approximation of the log-contract used for computation
of simulated VIX values (CBOE 2022).

We further investigate the prediction score in Table 2 by considering the percentage of
data realizations falling below the simulated 1%, 2.5%, 97.5%, and 99% quantiles. We note
that the best overall forecasts are for the underlying. VolGAN underestimates extremely
high values of the implied volatility returns and VIX. Given that the volatility index is a
non-linear transformation of the state variables, it is not surprising that VolGAN does not
produce as stable confidence intervals as it does for the state variables. The findings from
Table 2 are in line with the previous observations: VolGAN captures the state variables for

Table 2. Exceedance ratio for VOLGAN quantiles on the
test set.

Variable/Quantile 0.01 0.025 0.975 0.99

SPX return 25.32% 29.19% 82.00% 83.55%
3-month ATM vol 13.95% 15.16% 49.61% 54.61%
3-month OTM vol 76.978% 78.81% 92.85% 93.80%
3-month ITM vol 29.46% 30.32% 65.46% 69.34%
1-month ATM vol 9.82% 11.28% 42.89% 48.41%
1-week ATM vol 20.41% 22.05% 59.17% 63.22%
1-day ATM vol 19.90% 21.79% 60.12% 64.34%
VIX 34.37% 35.23% 52.67% 55.04%
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Table 3. Exceedance ratio for VOLGAN quantiles on test
set with β = 0.

Variable/Quantile 0.01 0.025 0.975 0.99

SPX return 4.48% 9.39% 92.33% 93.37%
3-month ATM vol 8.52% 9.56% 64.51% 71.67%
3-month OTM vol 72.18% 73.64% 97.59% 98.02%
3-month ITM vol 20.33% 22.14% 75.62% 81.83%
1-month ATM vol 5.25% 6.55% 57.88% 66.58%
1-week ATM vol 11.80% 13.78% 72.95% 80.10%
1-day ATM vol 11.71% 13.52% 74.68% 81.65%
VIX 25.24% 25.84% 71.23% 71.18%

which more data is available better. It is important to note that the observed behaviour is
out-of-sample, four and a half years after training, including the 2020 data.

As already observed in Figure 15, there are instances (of market turbulence) where not
correcting for the presence of static arbitrage (i.e., setting β = 0) actually improves fore-
casting performance. We note that when the arbitrage penalty is very low or zero, the
penalization has negligible impact on the simulated confidence intervals.

Table 2 shows that chossing β = 0 can in fact improves forecasts, especially for SPX
returns, 1-week ATM volatility, and VIX (Table 3).

4.2.4. Distributions and Correlations Learned by the Generator
Denote by ρt the instantaneous correlation between the 1-month ATM volatility returns
and the returns of the underlying at time t. We would like to explore whether or not
VolGAN learns constant correlations. Therefore, we perform the following hypothesis test:

H0: ρt = ρ is constant, H1: ρt �= ρ is time-varying.

Under H0, the 95% confidence interval for ρt is given by [ρL, ρU], where (Bonett and
Wright 2000)

ρU = exp(2zU) − 1
exp(2zU) + 1

, ρL = exp(2zL) − 1
exp(2zL) + 1

;

zU = 1
2
log

[
1 + ρ

1 − ρ

]
+

√
1

n − 3
z0.975, zL = 1

2
log

[
1 + ρ

1 − ρ

]
−

√
1

n − 3
z0.975,

where n is sample size. Estimating ρ by the sample mean of ρt on the test set, in Figure 17
we plot ρt and the 95% confidence interval [ρL, ρU]. We note that ρt is away from the
confidence interval of H0, indicating strong evidence against H0. VolGAN learns time-
varying instantaneous correlations which would be difficult to capture with a parametric
model.

We compare the (simulated) distributions of the daily returns for the underlying and 1-
month ATM volatility with the corresponding empirical distributions and with Gaussian
distributions with the same mean and variance. Figures 18 and 19 shows that simu-
lated index returns and ATM volatility increments have asymmetric, non-Gaussian and
exponentially decaying tails. Such non-Gaussian, asymmetric distributions are difficult to
capture in a model with Brownian increments.
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Figure 17. Pearson correlationbetween simulated index returns and1-monthATMvolatility increments
(blue), with symmetric 95% confidence interval of constant correlation (red). VOLGAN with β = 0.

Figure 18. Simulated index returns (blue) exhibit asymmmetric, exponentially decaying tails. VOLGAN
with β = 0.

4.2.5. Principal Component Analysis
In order to investigate VolGAN’s ability to appropriately capture the implied volatility co-
movements, we perform out-of-sample principal component analysis on the simulated log
increments of implied volatility. We compare the first three simulated principal compo-
nents with the corresponding PCs of the data realizations. When performing PCA on four
and a half years of SPX implied volatility data, the eigenvectors change depending on the
period of observation, but nonetheless correspond to level, skew and curvature. In Table 4
we show variance explained by the first three eigenvectors in the testing data and in the
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Figure 19. Simulated 1-month ATM volatility increments (blue) exhibit asymmmetric, exponentially
decaying tails. VOLGAN with β = 0.

Table 4. Out-of-sample (two years after train-
ing) percentage of variance explained by the top
three principal components of the simulated and
the data log implied volatility increments. The
VOLGAN column contains the average ±1.96×
standard deviation of the observed values, across
1000 VOLGAN samples.

Rank Data VOLGAN

First 51.25% 45.31 ± 1.84%
Second 34.00% 25.69 ± 0.88%
Third 5.01% 12.76 ± 0.55%

VolGAN simulations. The significance of the first two principal components is very simi-
lar in the test data and in VolGAN. The third principal component is more significant in
the simulated data compared to the market data.

The first principal components of the sample VolGAN implied volatility log-returns
and of the corresponding SPX implied volatility market data are displayed in Figure 20.
Both surfaces are consistently positive, indicating that they might have a level interpre-
tation. The second eigenvectors of both SPX implied volatility market data and of the
simulated scenarios (Figure 21) can be interpreted as skew, while the third eigenvec-
tors (Figure 22) can be interpreted as curvature. Figures 20, 21, 22 reflect on the clear
resemblance between the principal components of the SPX implied volatility market data
and of the VolGAN simulations, showing that VolGAN is able to dynamically learn the
covariance structure of implied volatility co-movements.

In order to quantify the similarity between the PCs of the simulated and the market
data, we calculate the inner product between them (as vectors) over 1000 i.i.d. VolGAN
samples. A value of one would indicate perfect alignment of the eigenvectors. FromTable 5
we note that the first two inner products (PC1 with PC1, and PC2 with PC2) are very close



APPLIED MATHEMATICAL FINANCE 225

Figure 20. Out-of-sample (four years after training) first principal component of the daily log implied
volatility increments. (a) Computed using SPX implied volatility data. (b) Computed using a sample Vol-
GAN output and (c) Comparison of the first principal component in the data and in a sample simulation
as vectors.

to one, especially considering that the quantities are for the out-of-sample data. The inner
product between the third eigenvectors of simulations and data realizations is lower than
for the first two PCs, but it is nevertheless high. Furthermore, there is close resemblance in
the physical interpretations of the third eigenvectors. Therefore, VolGAN is able to learn
the most important eigenvectors both qualitatively and quantitatively, showing the ability
to learn the covariance structure of the SPX implied volatility co-movements.

4.2.6. Correlation Structure of Variables
We further investigate VolGAN’s ability to simulate realistic scenarios by examining
how well it reproduces correlations between variables of interest. First, we consider the
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Figure 21. Out-of-sample (four years after training) secondprincipal componentof thedaily log implied
volatility increments. (a) Computed using SPX implied volatility data and (b) Computed using a sample
VolGAN output.

Figure 22. Out-of-sample (four years after training) third principal component of the daily log implied
volatility increments. (a) Computed using SPX implied volatility data and (b) Computed using a sample
VolGAN output.

relationship between the projections of the log-implied volatility increments onto the first
three principal components and the log-returns of the underlying.

Table 6 considers the correlations between index returns and the projections of the log-
implied volatility increments onto the first three principal components, comparing their
values in SPX options data with those in VolGAN scenarios. The correlation between the
first projection process and the simulated log-returns of the underlying is close to that of
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Table 5. Out-of-sample inner products of eigen-
vectors of the covariance matrices of daily log-
returns of SPX implied volatility and the corre-
sponding eigenvectors of the covariancematrix of
VolGAN implied volatility increments.

Rank Mean Median Standard deviation

First 0.921 0.922 0.009
Second 0.921 0.922 0.011
Third 0.798 0.798 0.011

Table 6. Pearson correlation between (simu-
lated) SPX log-returns and the projections of the
(simulated) log-implied volatility increments on
the principal components. The VOLGAN column
contains the mean ±1.96× standard deviation
of the observed Pearson correlations across 1000
samples. Implied volatility increments in the Data
(train) column are projected onto the principal
components of the test data for consistency.

PC rank Data (test) VOLGAN (test) Data (train)

First −0.76 −0.84 ± 0.024 −0.34
Second −0.29 −0.38 ± 0.055 −0.32
Third 0.06 0.16 ± 0.020 0.28

market data, whereas the projections on the second and the third principal component have
slightly stronger correlations with the returns of the underlying in VolGAN than they do
in the SPX implied volatility market data. Nevertheless, both quantities are on the same
scale. The correlation between the projection on the third principal component and the
underlying is low both in VolGAN and in the options data. VolGAN is able to reproduce
the correct relationships between the projection processes and the returns of the underly-
ing: the correlations between the returns of the underlying and the projections of the log
implied volatility increments onto the level and skew principal component are negative,
whereas the correlation with the projection onto the curvature principal component is low
(and positive).

In order to correctly capture joint dynamics of implied volatilities and the underly-
ing index, we are interested in the relationship between the log increments of the index
(� log St), the projection of the log-implied volatility increments onto the first principal
component (�X1

t ), the log increments of the 1-month at-the-money implied volatility
(� log σATM

t ), and the log increments of VIX (� log vt). Table 7 contains average Pear-
son correlations for VolGAN simulations (blue) vs the market data (red) on the test set.
VolGAN simulations exhibit similar correlations between all variables of interest. The cor-
relations between the VIX increments and the increments of the other state variables are
slightly lower inVolGAN scenarios compared to the data observation on the test set. How-
ever, they are of the correct sign and magnitude. The correlation between � log St and
� log σATM

t became significantly higher in magnitude in the period used for testing com-
pared to the period used for training, as noted in Cont and Vuletic (2023), which could
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Table 7. Out-of-sample (4.5 years after training includingCovid) aver-
age Pearson correlation for simulated vs real values of log-returns
of SPX (� log St), implied volatility level factor (�X1t ), 1-month ATM
volatility (� log σ ATM

t ) and VIX (� log vt). Average VOLGAN outcome
(blue) and data (red).

� log St �X1t � log σ ATM
t � log vt

� log St 1.00 −0.84−0.76 −0.86−0.77 −0.55−0.71
�X1t −0.84−0.76 1.00 0.95 0.89 0.66 0.84
� log σ ATM

t −0.86−0.77 0.95 0.89 1.00 0.72 0.96
� log vt −0.55−0.71 0.66 0.84 0.72 0.96 1.00

Table 8. First year out-of-sample average Pearson correlation for sim-
ulated vs real values of log-returns of SPX (� log St), implied volatil-
ity level factor (�X1t ), 1-month ATM volatility (� log σ ATM

t ) and VIX
(� log vt). Average VOLGAN outcome (blue) and data (red).

� log St �X1t � log σ ATM
t � log vt

� log St 1.00 −0.67−0.66 −0.73−0.82 −0.34−0.80
�X1t −0.67−0.66 1.00 0.89 0.75 0.64 0.74
� log σ ATM

t −0.73−0.82 0.89 0.75 1.00 0.77 0.96
� log vt −0.34−0.80 0.64 0.74 0.77 0.96 1.00

Table 9. Last year out-of-sample average Pearson correlation for sim-
ulated vs real values of log-returns of SPX (� log St), implied volatil-
ity level factor (�X1t ), 1-month ATM volatility (� log σ ATM

t ) and VIX
(� log vt). Average VOLGAN outcome (blue) and data (red).

� log St �X1t � log σ ATM
t � log vt

� log St 1.00 −0.94−0.80 −0.92−0.72 −0.63−0.76
�X1t −0.94−0.80 1.00 0.97 0.96 0.71 0.95
� log σ ATM

t −0.92−0.72 0.97 0.96 1.00 0.76 0.95
� log vt −0.63−0.76 0.71 0.95 0.76 0.95 1.00

explainwhyVolGANresults in slightly stronger correlations between the the index returns
and �X1

t , that is � log σATM
t .

We repeat the analysis for the first year in the test set in Table 8. We observe that the
magnitude of the correlation between the log-increments of VIX and the log SPX returns
is a bit lower in simulations compared to the data. In the last year of the test set (Feb 2022-
Feb 2023), the correlations between the simulated values of log SPX returns, increments
of the level factor, and the at-the-money vol returns increase in magnitude, as noted in
Table 9.We observe that the same is true for the actual values stemming from the data. The
correlation structure of the simulated variables is consistent with the market, regardless of
the testing period.

Our results demonstrate that VolGAN is able to simulate realistic co-movements for
implied volatilities across a range of moneyness and maturities, as well as the underlying
index and VIX: in particular we are able to reproduce time-varying correlations between
increments of these variables.
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5. Application to Hedging and Risk Management of Option Portfolios

The main motivation for generative models in finance is their use for risk management
and hedging. We will now examine how VolGANmay be used to design effective hedging
strategies for options portfolios. In contrast with model-based approaches such as Deep
hedging (Buehler et al. 2019), our approach is completely data-driven and model-free, in
the spirit of Hutchinson, Lo, and Poggio (1994).

Consider a portfolio whose value Vt = V(t, St , σt) is determined by the price of the
underlying asset St and the implied volatility surface σt(., .). This may be a portfolio of
call/put options, or any portfolio of derivatives whichmay be priced by calibrating a pricing
model to the market volatility surface σt .

As an example, we will focus below on the case where the target portfolio is composed
of (possibly illiquid) call or put options options, with the same expiry date T.

A typical problem is to hedge this portfolio with other, more liquid call/put options and
the underlying. LetH be the set of hedging instruments. A hedging strategy will be a self-
financing portfolio composed of instruments i ∈ H. If φi

t is the position (hedge ratio) in a
hedging instrument, the value of the hedging portfolio V̂ satisfies

�V̂t = V̂t+�t − V̂t =
∑
i∈H

φi
t�Hi

t + rt

(
V̂t −

∑
i∈H

φi
tH

i
t

)
�t, (22)

where �t is the hedging frequency and rt is the risk-free interest rate. Set

V̂0 = V0. (23)

and denote by Zt the tracking error, which is also the PnL of the hedged position:

Zt = Vt − V̂t . (24)

We will now compare several methods for choosing the hedging instruments and hedge
ratios.

5.1. Delta Hedging

Here the only hedging instrument is the underlying H0
t = St and the hedge ratio is set to

be the overall (Black–Scholes) delta of the portfolio:

φ0
t = �V

t = ∂V
∂S

(t, St , σt). (25)

5.2. Delta-Vega Hedging

This method achieves vega-neutrality by computing a sensitivity κV
t to a shift in implied

volatilities (e.g., a parallel shift) and hedging against this move by including an option in
the hedging set. As before, let H0

t be the underlying and let H1
t be the option used as a

hedging instrument. Typically this is a liquid call or put option. Denoting by κH
t the vega
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of the option used as hedging portfolio, we achieve vega-neutrality by choosing

φ1
t = κV

t
κH
t
, φ0

t = �V
t − φ1

t �
H
t . (26)

where �H
t is the delta of the option used for hedging.

5.3. Scenario-Based Regression Hedging

We now explain how to use VolGAN to design a completely data-driven hedging strategy.
Given a set of hedging instruments Hi, i ∈ H and a set of VolGAN next-day scenarios

{ωj, j = 1 . . .N}, we determine the hedge ratios φi
t by interpreting the one-step evolution

of the portfolio

Vt+�t − Vt =
∑
i∈H

φi
t
(
Hi
t+�t − Hi

t
) + (Zt − Zt+�t),

as a regression equation across VolGAN scenarios:

�Vt = Vt+�t(ωj) − Vt = At +
∑
i∈H

φi
t
(
Hi(ωj)t+�t − Hi

t
) + εj. (27)

Therefore, the hedge ratios φi
t can be obtained by regressing the simulated values of �Vt

on the corresponding simulated values of {�Hi
t}.

5.4. Choice of Hedging Instruments

Delta-vega hedging rules provide no insight on the choice of the hedging instrument and
can be achieved in principle using any option used as a hedging instrument. It is common
to use ATM calls, but vega is sensitive to moves in the underlying asset. Our regression
approach allows choosing the hedging instruments from a larger set of potential candidates
H0 using variable selectionmethods such as LASSO,which induces as sparsity and stability.

5.5. Example: Hedging a Straddle

In order to test howwell VolGAN captures the joint dynamics of the implied volatility sur-
face and the underlying index, we perform a hedging exercise where the portfolio consists
of a one-month call and put option with strikeK = 1.2S0. We will compare the following:

• BS delta-vega hedge: Black–Scholes delta-vega hedge using a call option initiated ATM
at t=0.

• BS delta hedge: Black–Scholes delta hedging.
• VolGAN + LASSO: VolGAN daily regression hedge with multiple options selected via

LASSO regression, without scenario re-weighting (β = 0).
• VolGAN + ATM: VolGAN daily regression hedge using a call option initiated ATM at

t= 0, without scenario re-weighting (β = 0).
• VolGAN + LASSO + Scenario Weighting: VolGAN daily regression hedge using call

initiated ATM at t= 0, with scenario re-weighting.
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Figure 23. Distribution of tracking error: data-driven hedging via VOLGAN and LASSO regression, with
and without scenario re-weighting.

The extended hedging setH0 used for LASSO selection in data-driven hedging via Vol-
GAN consists of calls and puts with the same expiry as the straddle position (one month
from the start) and strikes of:

• 0.9S0, 0.95S0, 0.975S0 for puts
• S0, 1.025S0, 1.05S0, 1.1S0 for calls.

The hedging exercise is performed over the entire test set, with no overlapping peri-
ods. That is, each long straddle position is hedged until expiry, after which a new straddle
position is entered.

We use LASSO for the selection of hedging instrumentsH. To calibrate the L1 regular-
ization parameter by examining the in-sampleR2 and theMean SquaredError as a function
of the penalization parameter for the day on which a new position is entered. We repeat
the same procedure every time we enter a new straddle. The values of α under considera-
tion are from 0 to 1 in 0.1 increments. LASSO regression is used for instrument selection
at time t = 0 only. After the hedging instruments have been selected, the hedge ratios are
computed via ordinary least squares.

We first explore whether scenario re-weighting improves the hedging performance or
not. That is, we compare the two LASSO-based methods, using the same values of α

(chosen using raw outputs). Both methods perform regression using 1000 samples from
VolGAN. The tracking error histogram in Figure 23 shows that it is better to use raw
VolGAN outputs, since they mimic the market, rather than applying arbitrage-scenario
re-weighting. In the remainder of this section, we will focus on raw VolGAN outputs.
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Figure 24. Black–Scholes vega (κV
t ) and delta (�

V
t ) of the straddle portfolio on the test set. We note a

jump in both values at the start of the Covid-19 pandemic. (a) Straddle vega and (b) Straddle delta.

Figure 25. Number of hedging instruments selected using LASSO across VolGAN scenarios. During peri-
odsof calmnooptions areused forhedging.Duringperiodsofmarket turbulence, usually 2–3options are
selected for hedging, indicating that portfolio dynamics is well represented by a 2- or 3-factor (implied)
volatility process.

Figure 25 shows that the algorithm typically picks 2 or 3 options as hedging instruments
during periods of market turbulence, which shows that the portfolio dynamics is well rep-
resented by a 2- or 3-factor (implied) volatility process. This result is consistent with the
principal component analysis results for VolGAN outputs (Table 4), which show 3 signifi-
cant factors driving the implied volatility co-movements (Cont and da Fonseca 2002; Cont
and Vuletic 2023).

There are periods during which no options are selected for hedging, in line with the
straddle vega being zero (Figure 24(a)). Up until the start of the Covid-19 pandemic the
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Table 10. Frequency of options selected by
LASSO in Methods 3 (no re-weighting) and 5
(with re-weighting).

Option Type Initial moneyness Frequency

Put 0.9 6
Put 0.95 7
Put 0.975 16
Call 1 16
Call 1.025 5
Call 1.05 5
Call 1.1 5

straddle delta is equal to minus one (Figure 24(b)), and the straddle vega is zero. The
instances with no regularization correspond to 7 options used for hedging.

Figure 25 shows that, during the Covid-19 pandemic and the start of Ukraine war, 2–3
options are used for hedging.

Table 10 offers a summary of howmany times each option is used for hedging. In all but
one instance in which options are used, the call initiated at-the-money was included. The
remaining call options were only used in the 5 periods during which no regularization was
applied (when α = 0 due to our search grid). When a single option was used, it was the
at-the-money call.

These examples illustrate that VolGAN is more flexible than a factor model with a fixed
number of factors: the number of effective factors, which corresponds to the number of
hedging instruments used, changes dynamically with market conditions.

Before comparing VolGAN-driven methods with delta hedging and delta-vega hedg-
ing, we discuss the differences between using the automatic instrument selection via

Figure 26. Tracking error distribution: VOLGAN + LASSO vs VOLGAN at-the-money call hedge.
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Figure 27. StraddleVt andhedgingportfolios V̂t corresponding todifferentmethods. Eachnewstraddle
position is entered the day after expiry of the previous one.

Figure 28. Tracking error Zt corresponding to different methods. Each new straddle position is entered
the day after expiry of the previous one.

LASSO regression and the call initiated at-the-money. Figure 26 shows the tracking error
histograms produced by the two methods. Automatic selection of hedging instruments
appears to result in a more concentrated tracking error distribution around zero.
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We compare the two data-driven approaches using raw VolGAN outputs with delta
hedging and delta-vega hedging. Figure 27 indicates that away from the initial Covid-
19 shock all methods replicate the straddle well. However, during this period, delta-vega
hedging shows instability and results in a significant decrease in the hedging portfolio
value V̂t . This does not happen with the other methods, including the VolGAN at-the-
money hedge, despite the fact that the two use exactly the same hedging instruments. Such
behaviour highlights the fact that the delta-vega hedge ratio corresponding to the option
might become unstable, especially if the vega of the option used for hedging becomes small.
The corresponding tracking errors Zt as functions of time are displayed in Figure 28.

Table 11 contains the tracking error statistics such as mean, standard deviation, and
Value-at-Risk (5%, 2.5%, 1%) for the Black–Scholes and VolGAN hedging methods.
Value-at-Risk (VaR) at level a is calculated as the negative a quantile of the tracking error.
VolGAN + LASSO result in the mean closest to zero, the second lowest standard devia-
tion, and in the lowest Value-at-Risk metrics. The lowest standard deviation is achieved
by the ATM hedging via VolGAN. However, comparing the histograms in Figure 26 and

Table 11. Tracking error Zt statistics (mean, standard deviation, 5%
Value-at-Risk, 2.5% Value-at-Risk, and 1% Value-at-Risk) as obtained by
different models (in USD).

Statistics VolGAN + LASSO VolGAN + ATM BS delta BS delta-vega

Mean −0.051 0.056 −0.614 1.541
St.dev 5.766 4.940 6.755 28.307
5% VaR 5.815 7.314 8.310 7.258
2.5% VaR 8.095 10.692 13.300 10.701
1% VaR 13.172 13.730 34.023 14.181

Figure 29. Histogram of the tracking error Zt corresponding to different methods. Each new straddle
position is entered the day after expiry of the previous one.
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the tracking errors in Figure 28, we note that the increase in standard deviation when opt-
ing for automatic hedging instrument selection is due to the performance during April
2020. The bulk of the tracking error distribution is slightly tighter for VolGAN + LASSO
than for VolGAN + ATM. Delta-vega hedging has lower VaR than delta-hedging, but
higher standard deviation, due to the instability evidenced in April 2020. All tracking error
distributions are compared in Figure 29. In this instance, data-driven hedging via Vol-
GAN outperforms the Black–Scholes benchmarks. This is particularly impressive given
the volatility and the length of the testing period. This test shows that VolGAN is indeed
able to capture the co-movements of the implied volatility surface and the underlying.
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