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Abstract

In-context learning (ICL) in Large Language
Models (LLMs) has emerged as a powerful
new learning paradigm. However, its under-
lying mechanism is still not well understood.
In particular, it is challenging to map it to the
“standard” machine learning framework, where
one uses a training set S to find a best-fitting
function f(x) in some hypothesis class. Here
we make progress on this problem by showing
that the functions learned by ICL often have
a very simple structure: they correspond to
the transformer LLM whose only inputs are
the query x and a single “task vector” calcu-
lated from the training set. Thus, ICL can be
seen as compressing S into a single task vector
θ(S) and then using this task vector to modu-
late the transformer to produce the output. We
support the above claim via comprehensive ex-
periments across a range of models and tasks.1

1 Introduction

Large language models have improved dramatically
over the last several years. One striking property of
these models is that they can learn new rules from
very few demonstrations. For instance, a model can
be prompted with the input “Apple → Red, Lime →
Green, Corn →” and produce the output “Yellow”.
The model has thus learned a mapping based on
just two examples, which it can apply correctly to
new examples. This capability, referred to as In-
Context Learning (ICL), has been used extensively,
yielding impressive empirical results (Brown et al.,
2020; Liu et al., 2023; Dong et al., 2022).

Given this success, it is natural to ask what is the
underlying mechanism behind ICL. Namely, how
does the model internally use the demonstrations
S and the query x to produce the required output?
Here we approach this question by utilizing the

1We release our code at https://github.com/
roeehendel/icl_task_vectors.
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Figure 1: ICL as learning in a Hypothesis Class. In
ICL, one provides an LLM with a prompt including
demonstrations S of some task, and a query x. The
model generates the output for x (here “Yellow”). We
show that the underlying process can be broken down
into two parts: A, a “learning algorithm” (marked in
blue), computes a query-agnostic vector θ(S), which
we view as a parameter of a function in a hypothesis
class. The second part, denoted by f and marked in
yellow, is the application of the rule defined by θ on the
query x, without direct dependence on S.

concept of a hypothesis class from statistical learn-
ing theory (Shalev-Shwartz and Ben-David, 2014).
In the learning-theoretic formulation, one typically
considers a hypothesis class H, where every ele-
ment of H is a function h(x;θ), operating on the
input x, and specified by a parameter vector θ. For
example, if x ∈ Rd then the class H could be the
set of linear classifiers, defined by a coefficient vec-
tor θ as h(x;θ) = θ · x. Learning algorithms seek
an element h ∈ H that fits the training set well.
This is known as Empirical Risk Minimization.

It is unclear whether ICL operates in such a way
because the prediction is performed via T ([S, x]),
where T is typically an auto-regressive transformer

https://github.com/roeehendel/icl_task_vectors
https://github.com/roeehendel/icl_task_vectors


and [S, x] is a concatenation of the tokens in S and
x. Thus, in the general case, it can be an arbitrary
function that operates on S and x to produce the
output. This can include “non-parametric” methods
such as nearest-neighbor. Recent work has begun
to explore this question. For example, it was shown
that when training a transformer from scratch to
perform linear regression in context, the emerging
learning algorithm is similar to Stochastic Gradient
Descent (Akyürek et al., 2022; von Oswald et al.,
2022). However, for LLMs performing more com-
plex natural language tasks, it is not at all clear
what the hypothesis space may be.

In this work, we show that on a wide range of
tasks, ICL in LLMs can be viewed as working on
a very natural hypothesis space. We argue that,
given a training set S, the transformer maps it into
a “task vector” θ(S) that essentially represents the
mapping/rule described in S.2 Namely, given the
transformer T and a vector θ, we can construct
a new function f(x;θ) that implements the task.
The function f is very similar to the original trans-
former applied to x without demonstrations but
instead modulated by θ (see Fig. 2).

Our view is also related to soft prompts (Lester
et al., 2021), since both approaches modulate the
function of the transformer towards a particular
task. However, in ICL, task vectors are calculated
in the forward pass rather than being fine-tuned.

Our contributions include proposing a
hypothesis-class based mechanistic view of ICL,
and conducting experiments to validate our view
on a range of publicly available LLMs and a
diverse set of tasks. Our results further the
understanding of ICL and may have practical
implications for the efficient adaptation of LLMs
to perform specific tasks.

2 A Hypothesis Class View of ICL

Motivated by the hypothesis class view of learning
theory, our goal is to understand if ICL maps the set
of demonstrations S to a function on the query x
and how this mapping occurs. Specifically, we seek
to see if ICL converts S into θ - the “parameters”
of a function within a certain hypothesis space. Our
empirical findings suggest this view is applicable,
shedding light on the structure of the hypothesis
space on which ICL can be viewed to operate.

2The term “task vector” was coined by Ilharco et al. (2023)
for directions in weight space that correspond to a particular
task. Although our vectors are in “activations space” they
share a similar motivation and thus we overload the term.

2.1 Theoretical Framework

We use T to denote a decoder-only transformer
LLM, S to denote the set of demonstrations (i.e.
training examples) used as input to ICL, and x to
denote the query that ICL is asked to provide an
output for. We use T ([S, x]) to denote the output
of ICL on the concatenation of S and x.

To demonstrate that ICL operates within a hy-
pothesis space, we aim to show that its underlying
mechanism can be broken down into two parts:
• A “Learning Algorithm” (denoted by A) that

maps S into a “task vector” θ, independent of the
query x. Given that attention layers can access
both S and x, this independence is not trivial.

• A “Rule Application” (denoted by f ) which
maps the query x to the output, based on θ ≡
A(S), without direct dependence on S. Again,
this independence is not trivial.

Thus, we consider the following mapping from a
set of demonstrations and a query to the predicted
output: T ([S, x]) = f(x;A(S)).

If we can break down the forward pass of the
LLM into the above two components, we can view
ICL as operating on the following hypothesis class:
H = {f(·;θ) | θ}. In the next section we propose
an implementation of such a class.

2.2 A Proposed Hypothesis Class

There are many possible realizations of the above
framework, that correspond to different choices
of A and f . We next describe the realization we
focus on, which naturally follows from the trans-
former architecture. We consider an ICL setting as
in Fig. 1, where the input ends with a query x (i.e.,
Corn) followed by an “→” symbol. As mentioned
above, we view learning as composed of two steps:
calculating a parameter vector θ based on the train-
ing sample S, and applying the rule defined by this
parameter vector to the query x. A presumably
simple way for a transformer to do this is for the
first L layers of the → representations to calculate
θ and then for the remaining layers to take θ and x
as input and produce an output. See Fig. 1. Recall
that S and x are accessible to the transformer at
any layer, presenting a challenge with our view.

In the following sections, we address this chal-
lenge and present experiments validating our view.
Namely, we show that we can isolate our proposed
A and f in the forward pass of LLMs performing
ICL. We also show that the θ vectors are inter-
pretable and correspond to learned tasks.
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Figure 2: Separating A and f . To make θ independent
of the query x, we use a dummy query (x′ = Plum)
and use the representation of → at the Lth layer as θ.
The vector θ is then patched at the same layer during a
forward pass of a transformer that only takes x and →
as input, to prevent the direct dependence of f on S.

3 Validity of the Hypothesis Class View

We first show that separating the forward pass into
the two distinct components A and f , defined in
§2.2, maintains the high accuracy of ICL.

3.1 Separating A and f

We face some challenges in a regular forward pass:
first, the initial L layers that correspond to A, up-
dating the representations of → to create θ, can
attend to the query x. Thus, they may depend on x,
creating an unwanted dependence of θ on x. Sec-
ond, the remaining layers that correspond to f , may
directly access S, instead of using only x and θ.

We propose the following procedure to tackle
these challenges: to solve the first problem, we
introduce a “dummy query” x′ and calculate the
representations of → using that query. We use the
representation of → after the first L layers, calcu-
lated using x′, as the vector θ (as demonstrated
on the left side of Fig. 2). An alternative was to
block attention to x, but it led to poor performance.
To solve the second problem of calculating f(x,θ)
without allowing direct dependence on S, we per-
form a forward pass of the transformer only on x
and →,3 and “patch” the θ we previously extracted
at the Lth layer of the → (right side of Fig. 2).4

3Ignoring positional embeddings, this is equivalent to
blocking the attention to S in these layers.

4Note that the second token can actually be anything, be-
cause it is overridden by patching. We use → for simplicity.

Category Task Example

Algorithmic

Next letter a → b
List first a,b,c → a
List last a,b,c → c
To uppercase a → A

Translation French to English bonjour → hello
Spanish to English hola → hello

Linguistic
Present to gerund go → going
Singular to plural cat → cats
Antonyms happy → sad

Knowledge Country to Capital France → Paris
Person to Language Macron → French

Table 1: A representative subset of the tasks used in the
study with input → output examples.

Figure 3: Accuracy for each choice of the intermediate
layer L, averaged across all tasks. Solid lines show
average values, and shaded areas standard deviations.

3.2 Tasks and Models

Tasks We consider a diverse set of 18 tasks across
4 categories: algorithmic, translation, linguistic,
and factual knowledge. For simplicity, we limit
ourselves to single-token outputs. A representative
subset of the tasks is described in Tab. 1. A com-
plete detailed table, as well as more information
regarding the data, are provided in § A.1.

Models We use multiple open LLMs: LLaMA
7B, 13B, and 30B (Touvron et al., 2023), GPT-J 6B
(Wang and Komatsuzaki, 2021), and Pythia 2.8B,
6.9B, and 12B (Biderman et al., 2023).

3.3 Finding L

The mechanism we described in §2.2 has a free
parameter - the layer L where A ends and f begins.
We use the proposed (A, f) implementation for
different choices of L and evaluate the accuracy on
a development set to find the best layer.

Fig. 3 shows the accuracy on the development
set, for different choices of L. We focus here on the
LLaMA models and include the rest in § A.2. In-
terestingly, all models exhibit a performance peak
at a similar intermediate layer, irrespective of their
parameters and layer count differences.



Figure 4: Average accuracy across all tasks for each
model, using each of the three procedures: Baseline,
Regular and Hypothesis.

3.4 Accuracy of Hypothesis Based Prediction

We next compare the accuracy of the (A, f) mech-
anism to that of a regular forward pass performing
ICL. For each model and task, we evaluate the
following three procedures:
• Regular An application of the LLM to the

demonstrations S and query x. Namely
T ([S, x]), as in regular ICL.

• Hypothesis Our proposed procedure from § 3.1
where A generates θ using a dummy x′, and
f(·;θ) is applied to x by running the transformer
on [x,→] with θ patched at layer L of →.

• Baseline A forward pass of the LLM only on x,
without demonstrations S. That is, T ([x,→]).
This is the same as the application of f from our
separated procedure, but without patching θ.
Fig. 4 shows the average accuracy across all

tasks of these 3 procedures, for each model. Full
results are reported in Tab. 6 in § A.2. Across all
models, our procedure maintains around 80-90%
of the accuracy of regular ICL, while the baseline
reaches only 10-20%. This shows that our proposed
separation to A and f provides a good empirical
approximation of the process underlying ICL.

4 Robustness of Task Vectors

In our setting, θ is derived from S and a dummy
query x′. It is natural to examine the robustness
of θ to variations in these inputs. Intuitively, if it
represents the task, it should remain stable across
different S and x′ values.

Figure 5: A t-SNE plot of task vectors. A 2D t-SNE
plot visualizing 50 task vectors for each task, each gen-
erated from a different choice of S and x′ using LLaMA
7B. Points are color-coded according to the task. Each
task can be seen to form its own distinct cluster.

To test this, we use LLaMA 7B to generate 50
task vectors per task with varied S and x′ and con-
duct two analyses.

Geometry of θ A t-SNE dimensionality reduc-
tion (Fig. 5) reveals that the task vectors form dis-
tinct clusters, each containing task vectors of a sin-
gle task. Fig. 9 further shows proximity between
tasks of the same category, strengthening the idea
that they encapsulate task understanding.

Variability of θ Fig. 8 shows histograms of dis-
tances within and across tasks. It can be seen that
vectors within the same task are closer than those
between different tasks, indicating that θ is stable
within tasks and not highly influenced by x′ or S.

5 Dominance of θ Patching

In §3 we prevented f from directly accessing S.
However, in a regular forward pass during ICL,
the last token can attend to S. Here we verify that
even in this case, f mainly uses the task vector
θ, without directly accessing the demonstrations
S. To this end, we use a pair of tasks, A and B,
sharing the input space but differing on the output.
We first use a “Regular” forward pass, where we
provide the model with demonstrations S for task
A (denoted SA), to verify the model can perform
this task using ICL. Then, we do a “Conflicting”
forward pass, still providing SA, while injecting
θB . For more details, refer to Fig. 6 in §A.1.



Task A (S) Task B (θ) Regular Conflicting
Task A Task B

Next Letter To Upper 0.92 0.77
List Last List First 0.95 0.78
Present to Past to Gerund 0.96 0.95

Table 2: Conflicting tasks experiment results. The
model’s accuracy on the relevant task (A in “Regular”
and B in “Conflicting”) is displayed for both scenarios.

In Tab.2, the “Regular” forward pass shows high
accuracy on task A (90%+), as anticipated. How-
ever, the “Conflicting” forward pass yields high
accuracy on task B, corresponding to the injected
task vector θ. This implies that the model mainly
relies on θ, largely disregarding the demonstrations
S for task A. We note that the accuracy on task
B is slightly low, likely consistent with the perfor-
mance dip seen in Fig. 6, and potentially further
affected by the presence of S.

6 Interpreting θ

The learned vector θ intuitively captures informa-
tion about the task demonstrated by S. Here we pro-
vide evidence supporting this interpretation. Since
θ is an intermediate hidden state of the transformer,
we can employ a vocabulary projection method
(nostalgebraist, 2020; Dar et al., 2022). Namely,
we examine the top tokens in the distribution over
the vocabulary induced by the hidden state.

Tab. 3 shows the top tokens for three tasks for
LLaMA 13B (more models and tasks are provided
in Tab. 7 in §A). In multiple cases, we observe to-
kens that directly describe the task. Importantly,
these terms never explicitly appeared in the context.
For example in the task of translation from French
to English, we observe tokens such as “English”
and “translate”. This supports our view that θ car-
ries significant, non-trivial semantic information
about the task.

7 Related Work

Emergence of ICL A key question with ICL is
how it emerges as a capability from pre-training the
LLMs. Levine et al. (2022) provides results in this
direction that highlight the importance of training
data structure. Xie et al. use probabilistic analysis
and model pre-training data using Hidden Markov
Models to theoretically explain the emergence of
ICL, while Chan et al. (2022) empirically explore
the effect of several distributional properties of the
pre-training data.

Task Top tokens in the task vector projection

Previous e, y, unknown, alphabet, preceding, c
Letter Cad, zA, dit, bill

FR-EN Mason, gram, immer, Santi, latin,
utter, Span, Conc, English, equivalent

Present
Simple to
Gerund

cin, thats, gram, Lorenzo, cian,
Isabel, uld, berto, partici, Sah

Country
Capital

Paris, its, capital, central, Conc,
cities, administrative, Los, Madrid,
London

Table 3: The top 10 tokens in the distribution induced
by the task vector, for one task per category.

Meta-Learning in Transformers Studies by
Akyürek et al. (2022); von Oswald et al. (2022);
Garg et al. focus on the meta-learning capabilities
of transformers. They typically train models from
scratch on elementary tasks such as linear regres-
sion, drawing theoretical parallels with algorithms
like Gradient Descent and demonstrating how trans-
formers could implement them. A key assumption
of these works is a known parameter space within
which gradient descent operates. Our work focuses
on identifying such a parameter space for LLMs.

ICL in LLMs Olsson et al. (2022) identify “in-
duction heads” in transformers as a likely main
mechanism of ICL. Dai et al. (2022) provide empir-
ical evidence for the connection of ICL to Gradient
Descent in LLMs, focusing on classification tasks.
Concurrent work by Merullo et al. (2023) also ex-
plores a phenomenon similar to the task vectors
we study here, where a single vector can encode
learned functions. Our findings are complemen-
tary to theirs, and future work could explore the
relationship between the two more closely.

8 Conclusions

Through this exploration of ICL in LLMs, we have
shed light on a new perspective of ICL learning
mechanisms. We have revealed a simple and el-
egant structure: ICL functions by compressing a
given training set into a single task vector, which
then guides the transformer to generate appropri-
ate outputs given queries. Our work provides a
stepping stone towards understanding how LLMs
perform ICL. In light of our findings, future work
could focus on understanding how the task vector
is constructed as well as how it is used to calculate
the output.



Limitations

We study relatively simple tasks, whereas ICL can
learn to perform more complex tasks, such as solv-
ing arithmetic reasoning problems. It remains to be
seen if and how the mechanisms we observe here
will translate to these cases. E.g., our approach fo-
cuses on cases where a single task vector suffices,
while more complex ICL cases may require more
elaborate parameterization. We also focus on tasks
where the output is a single token, while some other
tasks require multi-token outputs.

Finally, as noted above, we do not provide a
mechanistic explanation for how the task vector
is formed or how it is used. Namely, we do not
explain how the transformer performs these calcu-
lations using its parameters.
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A Appendix

Here we provide additional details and results.

A.1 Additional Details
Full Task Descriptions Our study covers 18
tasks in 4 categories: Algorithmic, Translation, Lin-
guistic and Knowledge. A detailed description of
all tasks is provided in Tab. 5.

Model Details More details on the models used
in the study are provided in Tab. 4.

Task Data Here we detail the sources of the data
for each task. The accompanying GitHub reposi-
tory contains the data itself as well as the code used
to create it.

• Algorithmic: Generated programatically.

• Translation: For each language pair,
the most frequent words in the source
language are first retrieved from
https://github.com/frekwencja/
most-common-words-multilingual
and are then translated to the destination
language using the open-source package
nltk.

• Linguistic: The data for the tenses tasks is
parsed from https://github.com/Drulac/
English-Verbs-Conjugates. The data
for the plural-singular task is taken from
https://github.com/sindresorhus/
irregular-plurals. Finally, the data
for the antonyms task is taken from
https://github.com/SuzanaK/english_
synonyms_antonyms_list.

• Knowledge Data for the knowledge tasks is
taken from the counterfactual dataset intro-
duced in (Meng et al., 2022).

Conflicting Tasks Experiment In Fig. 6, we pro-
vide more details and a visualization of the experi-
ment described in §5.

A.2 Additional Results
Finding A and f Fig. 7 shows results similar to
Fig. 3, but for different models. It is interesting to
observe that the curves are similar across different-
sized models.

Detailed results for Fig. 4. Fig. 4 presented re-
sults for our (A, f) hypothesis-based approach, av-
eraged across tasks. Table. 6 provides these results
for all the specific tasks considered.

Dependence of A on x Fig. 9 and Fig. 8 provide
more results on the geometry of the θ vectors (see
main text for discussion).

Inspecting Task Vectors Tab. 7 is an expanded
version of Tab. 3, providing more vocabulary pro-
jections of θ for additional tasks and on multiple
LLMs.

Model Parameters Dimension Layers Heads

LLaMA
7B 4096 32 32
13B 5120 40 40
30B 6656 60 52

GPT-J 6B 4096 28 16

Pythia
2.8B 2560 32 32
6.9B 4096 32 32
12B 5120 36 40

Table 4: The models used in the study, with architectural
information.
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Category Task Description Example

Algorithmic

List first Given a list of letters, output the first letter a,b,c → a
List last Given a list of letters, output the last letter a,b,c → c
Next letter Given a letter in the English alphabet, output the

next letter
a → b

Previous letter Given a letter in the English alphabet, output the
previous letter

b → a

To lowercase Given an uppercase letter, output the correspond-
ing lowercase letter

A → a

To uppercase Given a lowercase letter, output the correspond-
ing uppercase letter

a → A

Translation French to English Given a word in French, translate to English bonjour → hello
Spanish to English Given a word in Spanish, translate to English hola → hello
English to Spanish Given a word in English, translate to Spanish hola → hello
English to Spanish Given a word in English, translate to French hola → hello

Linguistic
Present to gerund given an English verb in present simple tense,

output the corresponding gerund form
go → going

Present to past given an English verb in present simple tense,
output the corresponding verb in past simple

go → went

Singular to plural Given an English noun in singular form, output
the plural form

cat → cats

Antonyms Given an English adjective, output an antonym happy → sad

Knowledge Country to Capital Given a name of a country, output the name of
the capital city

France → Paris

Person to Language Given a name of a person, output their native
language

Macron → French

Location to Continent Given a name of a person, output their native
language

Paris → Europe

Religion Given a name of a location or a person, output
the associated religion

Muhammad → Islam

Table 5: The tasks used in the study with input → output examples.
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Figure 6: Conflicting tasks experiment. In the “Regular” scenario (top), the model is simply provided with
demonstrations SA for Task A (e.g. outputting the previous letter in the alphabet). In the “Conflicting” scenario
(bottom), the model is still provided with demonstrations for Task A, but we inject a task vector θ(SB) from a
conflicting Task B (e.g. outputting the next letter in the alphabet).



Figure 7: Accuracy for each choice of L (the intermediate layer where the task vector is injected), averaged across
all tasks. The solid line represents the average value, and the shaded area depicts the standard deviation.



Table 6: Complete results for Figure 4, reported for all tasks and models.

method Baseline Hypothesis Regular
Model Task type Task name

GPT-J 6B Algorithmic List first 0.30 0.74 0.98
List last 0.24 0.64 1.00
Next letter 0.16 1.00 0.86
Prev letter 0.10 0.36 0.42
To lower 0.00 0.46 1.00
To upper 0.00 0.94 1.00

Knowledge Country capital 0.19 0.72 0.80
Location continent 0.03 0.58 0.70
Location religion 0.09 0.68 0.78
Person language 0.02 0.82 0.82

Linguistic Antonyms 0.43 0.68 0.78
Plural singular 0.08 0.90 0.98
Present simple gerund 0.00 0.88 0.98
Present simple past simple 0.02 0.76 0.96

Translation En es 0.14 0.34 0.56
En fr 0.16 0.36 0.54
Es en 0.06 0.70 0.74
Fr en 0.13 0.66 0.76

LLaMA 13B Algorithmic List first 0.77 1.00 1.00
List last 0.07 0.70 0.92
Next letter 0.31 1.00 0.94
Prev letter 0.05 0.34 0.50
To lower 0.00 0.94 1.00
To upper 0.00 0.94 1.00

Knowledge Country capital 0.17 0.84 0.86
Location continent 0.01 0.70 0.80
Location religion 0.10 0.74 0.84
Person language 0.02 0.76 0.88

Linguistic Antonyms 0.19 0.74 0.80
Plural singular 0.24 0.84 0.88
Present simple gerund 0.00 0.96 0.96
Present simple past simple 0.01 1.00 0.98

Translation En es 0.05 0.78 0.82
En fr 0.15 0.70 0.84
Es en 0.29 0.76 0.88
Fr en 0.25 0.54 0.72

LLaMA 30B Algorithmic List first 0.96 0.98 1.00
List last 0.02 0.64 0.96
Next letter 0.30 0.98 0.96
Prev letter 0.02 0.56 0.80
To lower 0.00 1.00 1.00
To upper 0.00 0.90 1.00

Knowledge Country capital 0.27 0.72 0.88
Location continent 0.01 0.70 0.86
Location religion 0.05 0.70 0.88
Person language 0.01 0.72 0.90

Linguistic Antonyms 0.37 0.76 0.82
Plural singular 0.21 0.84 0.90
Present simple gerund 0.00 0.76 0.98
Present simple past simple 0.02 0.98 1.00

Translation En es 0.07 0.74 0.78
En fr 0.10 0.80 0.86
Es en 0.24 0.70 0.88
Fr en 0.20 0.62 0.78

LLaMA 7B Algorithmic List first 0.87 0.98 1.00
List last 0.03 1.00 1.00
Next letter 0.03 0.94 0.88
Prev letter 0.04 0.52 0.58
To lower 0.00 0.74 1.00
To upper 0.00 0.60 1.00

Knowledge Country capital 0.28 0.82 0.86
Location continent 0.02 0.68 0.72
Location religion 0.12 0.84 0.94
Person language 0.02 0.68 0.78

Linguistic Antonyms 0.33 0.74 0.76
Plural singular 0.15 0.84 0.88



Table 6 – continued from previous page
method Baseline Hypothesis Regular

Model Task type Task name

Present simple gerund 0.00 0.74 0.90
Present simple past simple 0.02 0.94 0.92

Translation En es 0.07 0.78 0.76
En fr 0.04 0.78 0.88
Es en 0.21 0.68 0.92
Fr en 0.15 0.66 0.70

Pythia 12B Algorithmic List first 0.53 0.98 0.96
List last 0.09 0.98 1.00
Next letter 0.15 0.96 0.76
Prev letter 0.00 0.24 0.42
To lower 0.02 1.00 1.00
To upper 0.00 0.98 1.00

Knowledge Country capital 0.19 0.58 0.82
Location continent 0.01 0.68 0.80
Location religion 0.07 0.64 0.78
Person language 0.01 0.72 0.86

Linguistic Antonyms 0.34 0.72 0.74
Plural singular 0.18 0.80 0.84
Present simple gerund 0.00 0.86 0.96
Present simple past simple 0.01 0.76 0.94

Translation En es 0.10 0.44 0.72
En fr 0.16 0.48 0.54
Es en 0.05 0.68 0.80
Fr en 0.14 0.68 0.80

Pythia 2.8B Algorithmic List first 0.69 0.96 1.00
List last 0.06 0.98 1.00
Next letter 0.42 0.86 0.90
Prev letter 0.01 0.22 0.48
To lower 0.00 1.00 1.00
To upper 0.00 1.00 1.00

Knowledge Country capital 0.18 0.70 0.76
Location continent 0.01 0.62 0.72
Location religion 0.08 0.76 0.82
Person language 0.00 0.82 0.82

Linguistic Antonyms 0.37 0.68 0.76
Plural singular 0.13 0.70 0.78
Present simple gerund 0.00 0.86 0.96
Present simple past simple 0.03 0.80 0.92

Translation En es 0.10 0.26 0.76
En fr 0.16 0.28 0.60
Es en 0.08 0.76 0.82
Fr en 0.10 0.64 0.82

Pythia 6.9B Algorithmic List first 0.43 1.00 0.98
List last 0.08 0.60 0.98
Next letter 0.01 0.66 0.86
Prev letter 0.04 0.28 0.32
To lower 0.00 1.00 1.00
To upper 0.00 0.94 1.00

Knowledge Country capital 0.21 0.76 0.82
Location continent 0.01 0.62 0.78
Location religion 0.10 0.80 0.80
Person language 0.01 0.76 0.80

Linguistic Antonyms 0.33 0.72 0.74
Plural singular 0.14 0.78 0.88
Present simple gerund 0.00 0.82 0.94
Present simple past simple 0.02 0.88 0.96

Translation En es 0.11 0.46 0.70
En fr 0.21 0.36 0.60
Es en 0.06 0.72 0.82
Fr en 0.14 0.66 0.74



Figure 8: Task Vector Variability. For each task, two histograms are shown: (blue) the distribution of distances
between different task vectors of this task, created from different S and x′; (orange) the distribution of distances
between task vectors of the task and of other tasks.



Figure 9: A 2D t-SNE plot, visualizing 50 task vectors for each task, each generated from a different choice of S
and x using LLaMA 7B. Points are color-coded according to task category, such as algorithmic or translation. Each
task can be seen to form its own distinct cluster. The labels provide the full name of the task in the cluster.



Model Task Tokens

LLaMA 13B

Prev Letter e, y, unknown, alphabet, preceding, c, Cad, zA, dit, bill, closer, etc,
Stuart, aa, null, cin, ads, g, ulo, Ku

FR-EN Mason, gram, immer, Santi, latin, utter, Span, Conc, English,
equivalent, engl, Usage, none, pron, ulo, translate, adu, Wiel, grammar,
ML

Present Simple
to Gerund

cin, thats, gram, Lorenzo, cian, Isabel, uld, berto, partici, Sah,
reporting, eing, tc, Roberto, habit, Writing, etc, ientos, ores, Dutch

Country Capital Paris, its, capital, central, Conc, cities, administrative, Los, Madrid,
London, San, Isabel, exec, Ar, Bel, Wars, name, capit, Battle, History

Pythia 12B

Prev Letter r, b, a, d, m, e, p, n, t, u, h, f, c, in, g, s, the, ar, l, x

FR-EN in, and, m, d, a, or, out, the, t, o, so, c, con, have, act, e, s, is,
all, to

Present Simple
to Gerund

in, t, m, r, a, and, the, ing, action, d, o, e, current, simple, te, w,
not, have, out, what

Country Capital the, in, a, C, N, B, L, M, T, P, S, R, G, and, F, I, K, U, D, H

GPT-J 6B

Prev Letter b, c, v, g, s, name, i, ro, n, j, d, t, A, ai, com, m, ust, test,
active, k

FR-EN other, name, the, true, is, social, s, active, time, car, type, money,
F, force, a, public, heart, one, ms, life

Present Simple
to Gerund

getting, storing, working, moving, playing, doing, making, driving,
shooting, picking, being, sending, putting, selling, watching,
changing, taking, collecting, feeding, reading

Country Capital London, Paris, New, West, Berlin, South, Tokyo, San, Chicago, City,
Moscow, Jerusalem, Amsterdam, Philadelphia, East, Madrid, Vienna,
Beijing, Mexico, Germany

Table 7: The top 20 tokens in the distribution induced by the task vector, for one task per category.


