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Abstract
Unsupervised data representation and visualiza-
tion using tools from topology is an active and
growing field of Topological Data Analysis (TDA)
and data science. Its most prominent line of work
is based on the so-called Mapper graph, which
is a combinatorial graph whose topological struc-
tures (connected components, branches, loops)
are in correspondence with those of the data it-
self. While highly generic and applicable, its use
has been hampered so far by the manual tuning
of its many parameters—among these, a crucial
one is the so-called filter: it is a continuous func-
tion whose variations on the data set are the main
ingredient for both building the Mapper repre-
sentation and assessing the presence and sizes of
its topological structures. However, while a few
parameter tuning methods have already been in-
vestigated for the other Mapper parameters (i.e.,
resolution, gain, clustering), there is currently no
method for tuning the filter itself. In this work, we
build on a recently proposed optimization frame-
work incorporating topology to provide the first
filter optimization scheme for Mapper graphs. In
order to achieve this, we propose a relaxed and
more general version of the Mapper graph, whose
convergence properties are investigated. Finally,
we demonstrate the usefulness of our approach by
optimizing Mapper graph representations on sev-
eral datasets, and showcasing the superiority of
the optimized representation over arbitrary ones.

1. Introduction
Mapper graphs and TDA. The Mapper graph introduced
in (Singh et al., 2007) is an essential tool of Topological
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Data Analysis (TDA), and has been used many times for
visualization purposes on different types of data, including,
but not limited to, single-cell sequencing (Wang et al., 2018;
Zechel et al., 2014), neural network architectures (Mitra &
Rao JV, 2021; Joseph et al., 2021), or 3D meshes (Wang,
2020; Rosen et al., 2018). Moreover, its ability to precisely
encode (within the graph) the presence and sizes of geomet-
ric and topological structures in the data in a mathematically
founded way (through the use of algebraic topology) has
also proved beneficial for highlighting subpopulations of
interest, which are usually detected as peculiar topological
structures of significant sizes, and identifying the key fea-
tures that best explain such subpopulations against the rest
of the Mapper graph. This general pipeline has become
a key component in, e.g., biological inference in single-
cell data sets, where differentiating stem cells can usually
be recovered from branching patterns in the corresponding
Mapper graphs (Rizvi et al., 2017a).

Parameter selection. However, it has quickly become
clear that the Mapper graph is quite sensitive to its parame-
ters, in the sense that the structure of the graph can vary a lot
under (even small) changes of its parameters. As such, sev-
eral pipelines based on Mapper graphs actually involve brute
force optimization: they first compute a grid of Mapper
graphs corresponding to many different sets of parameters,
and then they pick the best one, either by manual inspection
or with arbitrary criteria—leading to prohibitive running
times. In order to deal with this issue, several methods have
been proposed in the literature for either assessing the sta-
tistical robustness of a given Mapper graph with respect to
the distribution of the studied dataset (Belchı́ et al., 2020;
Brown et al., 2021), or for tuning the Mapper parameters
automatically (Carriere et al., 2018). Unfortunately, most
tuning methods involve simple heuristics that only work
for some, but not all Mapper parameters; in particular, the
so-called filter parameter has never been treated, to the best
of our knowledge. This is mostly because it is a general
continuous function, and can thus vary in a much wilder
parameter space than the other Mapper parameters.

In another line of work, ensemble methods have recently
been proposed to combine Mapper graphs over multiple
parameter sets, rather than trying to find the best one (Kang
& Lim, 2021; Fitzpatrick et al., 2023), so as to be able
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to produce outputs that are more robust. However, this
imposes to aggregate families of completely different filter
functions, with no guarantees on the resulting graph. In this
work, we follow a different approach, and rather attempt
at identifying an ”optimal” filter function by minimizing
specific loss functions.

Another approach related to our work is (Bui et al., 2020),
where an alternative way of constructing Mapper graphs is
proposed using a fuzzy clustering algorithm. Even though
we also adopt a probabilistic approach (that allows, e.g.,
a point to belong to disconnected intervals in the cover of
the filter range), the underlying probabilistic formalism that
we use is new, while there is none in (Bui et al., 2020).
In particular, we introduce stochastic assignment schemes
and we address the parameter selection problem within this
framework.

Contributions. Our contribution is three-fold:

• We introduce Soft Mapper: a generalization of the com-
binatorial Mapper graph in the form of a probability
distribution on Mapper graphs,

• We propose a filter optimization framework adapted
to a smooth Soft Mapper distribution with provable
convergence guarantees,

• We implement and showcase the efficiency of Mapper
filter optimization through Soft Mapper on various data
sets, with public, open-source code in TensorFlow.

The following of the article is organized as follows: in
Section 2 we recall the basics on the Mapper algorithm, then
in Section 3 we detail the Soft Mapper construction, which is
the main focus of this work. We provide several interesting
special cases of Soft Mapper in Section 4, before introducing
topological losses that are specific to Mapper graphs in
Section 5. We then present our optimization setting, in
which a parameterized family of Mapper filter functions is
optimized, in Section 6, and we apply it on 3-dimensional
shapes and single cell RNA-sequencing data in Section 7.
Finally, we discuss the results of this article and present
possible future work directions in Section 8.

2. Background on Reeb and Mapper graphs
Reeb graphs. Mapper graphs can be understood as nu-
merical approximations of Reeb graphs, that we now define.
Let X be a topological space and let f : X → R be a
continuous function called filter function. Let ∼f be the
equivalence relation between two elements x and y in X
defined by: x ∼f y if and only if x and y are in the same
connected component of f−1(z) for some z in f(X). The
Reeb graph Rf (X) of X is then simply defined as the quo-
tient space X/ ∼f .

Mapper graphs. The Mapper was introduced in (Singh
et al., 2007) as a discrete and computable version of the
Reeb graph Rf (X ). Assume that we are given a point
cloud Xn = {X1, . . . , Xn} ⊆ X with known pairwise
dissimilarities, as well as a filter function f computed on
each point of Xn. The Mapper graph can then be computed
with the following generic version of the Mapper algorithm:

1. Cover the range of values Yn = f(Xn) with a set of
consecutive intervals I1, . . . , Ir that overlap, i.e., one
has Ii ∩ Ii+1 ̸= ∅ for all 1 ≤ i ≤ r − 1.

2. Apply a clustering algorithm to each pre-image
f−1(Ij), j ∈ {1, ..., r}. This defines a pullback cover
C = {C1,1, . . . , C1,k1 , . . . , Cr,1, . . . , Cr,kr} of Xn.

3. The Mapper graph is defined as the nerve of C. Each
node vj,k of the Mapper graph corresponds to an el-
ement Cj,k of C, and two nodes vj,k and vj′,k′ are
connected by an edge if and only if Cj,k ∩ Cj′,k′ ̸= ∅.

3. Soft Mapper construction
In this section, we introduce our new construction Soft Map-
per, which generalizes Mapper graphs and can be used for
non-convex optimization. In order to do so, we first provide
a general formalization of the Mapper construction that does
not require overlapping intervals and filter functions. Then,
we use this formalization to define Soft Mapper, which es-
sentially consists in a distribution on regular Mapper graphs.

3.1. Mapper graphs built on latent cover assignments

Let Xn = {x1, ..., xn} be a point cloud lying in a metric
space (X, d) and let r ∈ N⋆. For instance, Xn can be
obtained from sampling Xn according to some distribution
µ. Then, let Clus be a clustering algorithm on (X, d), that
is assumed to be fixed in the following of this work.

Latent cover assignments. Any binary matrix e ∈
{0, 1}n×r is then called an r-latent cover assignment of Xn,
where ei,j = 1 must be understood as point xi belonging to
the j-th element of a latent cover of the data. For instance,
in the standard version of Mapper presented in Section 2,
the latent cover is obtained from a family of pre-images of
intervals that cover the range of the filter function.

The procedure to compute a Mapper graph given an r-latent
cover assignment e ∈ {0, 1}n×r is straightforward: simply
replace f−1(Ij) by {xi : ei,j = 1} in the generic Mapper
algorithm in Section 2, then derive the pullback cover us-
ing the clustering algorithm Clus, and finally compute the
Mapper graph as the nerve of the pullback cover.

Mapper function. Let K be the set of simplicial com-
plexes of dimension less or equal to 1 (i.e., graphs) and such
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that their sets of vertices (i.e., their 0−skeletons) are subsets
of the power set P(Xn). We define the Mapper complex
generating function as:

MapComp : {0, 1}n×r −→ K,

where MapComp takes a latent cover assignment as input
and creates the corresponding Mapper graph.

3.2. Cover assignment scheme and Soft Mapper

Now, we define stochastic schemes for generating latent
cover assignments, that we call cover assignment schemes.

Definition 3.1. A cover assignment scheme is a double
indexed sequence of random variables

A = (Ai,j)1≤i≤n
1≤j≤r

such that each Ai,j is a Bernoulli random variable condition-
ally to Xn. Let pi,j(Xn) be the parameter of the Bernoulli
distribution of (Ai,j |Xn), which is thus a function of the
point cloud Xn.

Note that, in Definition 3.1, the Bernoulli variables Ai,j are
not assumed to be independent nor identically distributed.
Moreover, pi,j(Xn) can depend only on its associated point
xi, or on the whole point cloud Xn.

Definition 3.2. Let A be a cover assignment scheme. The
Soft Mapper of A is defined as the associated distribution of
Mapper complexes, which corresponds to the push forward
measure of the distribution of A by the map MapComp.

4. Examples of cover assignment schemes
We now give example strategies to define cover assignment
schemes, beginning with the one that corresponds to the
standard Mapper construction defined in Section 2.

4.1. Standard cover assignment scheme

Let f : Xn → R be a filter function and let (Ij)1≤j≤r be a
finite cover of the image f(Xn) of f . The standard Mapper
graph is then defined as MapComp(e∗), where for every
1 ≤ i ≤ n and 1 ≤ j ≤ r:

e∗i,j = 1 if and only iff(xi) ∈ Ij .

The cover assignment scheme A∗, in this case, is such
that every entry A∗

i,j follows a Dirac distribution on 1 if
f(xi) ∈ Ij , and a Dirac distribution on 0 otherwise. In
other words, the parameters of the Bernoulli distributions
satisfy pi,j(Xn) = pi,j(xi) = 1 if f(xi) ∈ Ij , and 0 other-
wise, that is

P(A∗ = e|Xn) =

{
1 if e = e∗,

0 otherwise.

In this degenerated situation, the random variables A∗
i,j are

all independent conditionally to Xn, and A∗
i,j conditionally

to Xn is equal to A∗
i,j conditionally to xi.

Remark 4.1. An alternative and relevant approach for the
standard Mapper graph is to define the intervals Ij via the
quantiles of the distribution of f(Xn). In this case, the
random variables A∗

i,j do not only depend on xi, but also
on the whole point cloud Xn.

4.2. Smooth relaxation of the standard cover assignment
scheme

Given some δ > 0, we can now define a cover assignment
scheme Aδ that approximates the cover assignment scheme
A∗ arising from the standard Mapper graph, but that also
enjoys useful smoothness properties in the optimization set-
ting that we will consider in the next section. Specifically,
using the same notations as before, and denoting each el-
ement of the cover with Ij = [aj , bj ], consider, for each
j ∈ {1, ..., r}, the function qj : X −→ [0, 1] defined with:

x 7→


1, if f(x) ∈ [aj , bj ]

exp(1− 1/(1− (
aj−f(x)

δ
)2)), if f(x) ∈ (aj − δ, aj ]

exp(1− 1/(1− (
f(x)−bj

δ
)2)), if f(x) ∈ [bj , bj + δ)

0, otherwise

Now, define Aδ = (Aδ,i,j)1≤i≤n
1≤j≤r

to be the random vari-

able in {0, 1}n×r such that for every (i, j) ∈ {1, ..., n} ×
{1, ..., r}:

Aδ,i,j | Xn ∼ B(qj(xi)),

with the Aδ,i,j’s being jointly independent conditionally
to Xn. As for the standard cover, the Bernoulli parameter
pi,j = qj(xi) depends on its associated point xi and also on
the chosen filter f .

Moreover, notice that for every xi ∈ Xn and j ∈ {1, ..., r}:

qj(xi) −−−→
δ→0

{
1, if f(xi) ∈ Ij

0, otherwise

and this shows that Aδ
L−−−→

δ→0
A∗. Note that even though we

can approximate the standard Mapper graph in this way, we
do not always want to do so. For example, there could be
cases where δ needs to be large enough so as to account for
some uncertainty on the bounds of the cover (Ij)1≤j≤r. An
illustration of how Aδ is built on top of a dataset, a filter
function and a cover of its range is shown in Figure 1.
Remark 4.2. Note that the same relaxed construction can
be made for a multi-dimensional Mapper, i.e., for filter
functions taking values in Rd (Carrière & Michel, 2022), by
making slight adjustments to the definition of qj using the
Euclidean norm.
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Figure 1. Illustration of the smooth assignment scheme. Intervals that constitute the cover of the range of filter values are represented in
different colors. The functions (qj)1≤j≤r are plotted above each interval. The probabilities that give the distribution of the assignment
scheme are represented in the middle. On the right, different Mapper graph samples associated to the assignment scheme are shown.

An additional example of a possible cover assignment
scheme, which does not imply the existence of a filter func-
tion, is given in Appendix A.

5. Topological risk of Soft Mappers
We now switch to the problem of designing filter functions
automatically for Mapper graphs using Soft Mapper. To
answer this ill-posed problem, we propose to look for filter
functions that are optimal with respect to some topological
criteria associated to their (Soft)Mapper graphs. In partic-
ular, we focus on topological losses based on persistent
homology.

5.1. Topological signature for Mapper graphs

Persistent homology. Persistent homology is a powerful
tool that allows to encode the topological information con-
tained in a nested family of simplicial complexes, also called
a filtered simplicial complex, see for instance (Edelsbrun-
ner & Harer, 2010) for a general introduction. It traces the
evolution of the homology groups of the nested complexes
across different scales, producing topological descriptors
that are, in particular, useful in machine learning pipelines
(Chazal & Michel, 2021). In the context of Mapper graphs,
a variation of persistent homology called extended persis-
tent homology has been proved useful, as applying it on
Mapper graphs produces descriptors called extended persis-
tence diagrams. These diagrams only require to define a
filtration function on the graph, and are made of points in
the Euclidean plane, each point encoding the presence and
size (w.r.t. the filtration function) of a particular topological
structure of the Mapper graph (such as a connected compo-
nent, a branch or a loop). See Section 2 of (Carrière et al.,
2020) for a brief introduction to extended persistence and
(Cohen-Steiner et al., 2009) for a detailed presentation.

We now define a filtration function on Mapper graphs

in order to compute extended persistence diagrams. Let
F(Xn,R) be the space of real valued functions defined on
the point cloud Xn. For a function F ∈ F(Xn,R), we first
associate a filtration ϕ to some K ∈ im(MapComp) with:

∀σ ∈ K : ϕ(σ) = max
c∈σ

∑
x∈c F (x)

card(c)
,

that is, node filtration values are defined as the average
filter values of the data points associated to the node, and
edge filtration values are computed as the maximum of their
node values. Then, we compute the extended persistence
diagram (which we consider as a subset of R2 ) of the
filtered simplicial complex (K,ϕ). We denote by MapPers
the function that takes a Mapper graph and a scalar function
on Xn, and then outputs the persistence diagram:

MapPers : K×F(Xn,R) −→ P(R2).

Persistence specific loss. Now, we introduce a generic
notation for a loss function—or, more simply, a statistic—
that associates a real value to any extended persistence
diagram. Denoting PD as the set of subsets of R2 con-
sisting of a finite number of points outside the diagonal
∆ = {(x, x) : x ∈ R}, such a function can be written as
ℓ : PD −→ R.

5.2. Statistical risk of the topological signature
associated to Soft Mapper

We finally compute the loss associated to a Mapper graph
with the function

L : {0, 1}n×r ×F(Xn,R) −→ R
(e, F ) 7−→ ℓ (MapPers (MapComp(e), F )) .

Then, we define the risk of a Soft Mapper MapComp(A) by
integrating the loss according to the distribution of the Soft
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Mapper, or equivalently according to the distribution of the
cover assignment scheme:

E (L(A,F )|Xn) =
∑

e∈{0,1}n×r

L(e, F ) · P(A = e|Xn).

Here, both the distribution of A and the risk are conditional
to Xn. Note that the risk could also be integrated with
respect to the distribution of Xn. However, in this article,
we only consider the non-integrated version of the risk.

6. Conditional risk optimization with respect
to parameters

Now that we have properly defined risks associated to Soft
Mapper distributions, we study in this section the conver-
gence properties of filter optimization schemes minimizing
such risks.

6.1. Problem setting

Let us introduce a parameterized family of functions {fθ :
Xn → R, θ ∈ Rs}. In order to simplify notations, we
assume in the following of the article that the function F
used to compute persistence diagrams and the filter function
fθ used to design cover assignments are the same, F = fθ.
Let A be a cover assignment scheme whose joint distribution
Pθ depends on the filter function fθ; that is the Bernoulli
parameters pi,j may depend on the filter function values and
the parameters θ. Note that this dependency is not only true
for marginals of the distribution of the cover assignment
scheme, but also eventually for its dependency structure.

Our goal is to find the optimal set of parameters θ̄ that
minimizes the topological risk associated to MapComp(A),
when fθ is used to define the filtration values on the Mapper
graphs. In other words, if we denote:

L : Rs −→ R
θ 7−→ Eθ(L(A, fθ)|Xn), (1)

our aim is to find a minimizer of L. Note that in the defini-
tion of L, the expectation depends on θ because the distribu-
tion of A also depends on it.

In order to prove guarantees about minimizing L, we fol-
low (Carriere et al., 2021), which uses the theoretical back-
ground introduced in (Davis et al., 2020), in which the
authors prove that stochastic gradient descent algorithms
converge under certain conditions. To use this framework,
it suffices to prove two points (see Corollary 5.9. in (Davis
et al., 2020) and Appendix B):

• L is definable in an o-minimal structure,

• L is locally Lipschitz.

Remark 6.1. When the cover assignment scheme is defined
as the standard cover assignment scheme corresponding to
the standard Mapper graph (see Section 4.1), this problem
amounts to finding an optimal fθ that can be used to com-
pute Mapper graphs. We will see however that convergence
of the optimization problem in this case is without guaran-
tees, which constitutes the main motivation for defining our
smooth relaxation Soft Mapper (see Section 4.2).

6.2. Theoretical guarantees on the convergence of a
gradient descent scheme

Under regularity assumptions on the parameterized family
of filter functions F = {fθ : Xn −→ R, θ ∈ Rs}, we now
show that the risk L in Equation (1) is definable and smooth.

Theorem 6.2. Suppose that there exists an o-minimal struc-
ture S such that:

• for every x ∈ Xn, the function θ 7→ fθ(x) is definable
in S and is locally Lipschitz,

• for every m ∈ N, the restriction of ℓ to the set of
(extended) persistence diagrams of size m is definable
in S and is locally Lipschitz,

• for every e ∈ {0, 1}n×r, the function θ 7→ Pθ(A =
e|Xn) is definable in S and is locally Lipschitz.

Then L is definable in S and is locally Lipschitz.

Remark 6.3. Our proof of Theorem 6.2 is given in Appendix
C in the case where regular persistent homology is used,
but it can be extended in a straightforward way to extended
persistence diagrams, as extended persistent homology on a
simplicial complex K can be equivalently seen as regular
persistent homology on the cone on K (see chapter VII.3
in (Edelsbrunner & Harer, 2010)). Moreover, defining the
filtration on the coned complex also extends naturally by
using affine transformations.

Under the assumptions of Theorem 6.2, it is then possible
to give guarantees on the convergence of a stochastic gradi-
ent descent scheme to some critical points of L. This only
requires additional, but mild and not very restrictive tech-
nical conditions regarding the stochastic gradient descent
algorithm itself (see Appendix D).

6.3. Discussing the assumptions of Theorem 6.2

In this section, we discuss the assumptions of Theorem 6.2,
and provide usual cases in which they are satisfied.

Assumption 1. The first assumption concerns the smooth-
ness of the parameterized family of functions {fθ : Xn −→
R, θ ∈ Rs} and its regularity with respect to the set of
parameters θ. As mentioned in Appendix B, following the
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result of (Wilkie, 1996), semi-algebraic functions (for ex-
ample polynomial, rational, minimum and maximum func-
tions), the exponential function and functions defined as
compositions and usual operations between them are all de-
finable in a same o-minimal structure. Furthermore, choos-
ing continuously differentiable functions is sufficient to also
have the local Lipschitz property. As such, the family of
linear functions {fθ : x 7→ ⟨x, θ⟩, θ ∈ Rs} satisfies the
assumption, as well as the family of parameterized fully-
connected neural networks since they are defined by com-
position between matrix products (which are polynomial)
and activation functions involving exponential, maximum
and hyperbolic functions.

Assumption 2. The second assumption concerns the
persistence-based loss ℓ, that is used to compute the topo-
logical risk. In (Carriere et al., 2021), the authors list a
number of possible functions for ℓ that satisfy our second
assumption. For example, ℓ can be the opposite of the L1

total persistence, i.e., the sum of the non-essential bars in
the persistence diagram which quantifies the information
given by it. It is defined as:

{(ui, vi)}1≤i≤n 7−→ −
n∑

i=1

|ui − vi|.

In the numerical experiments below, we focus solely on
this loss. Our motivation is that a large total persistence
provides a topologically rich Mapper complex, with more
persistent topological structures. Alternatively, Lp total per-
sistence can also be used to reinforce the weight of the most
persistent structures. Moreover, persistent entropy (Chin-
takunta et al., 2015; Atienza et al., 2020), which is large
for barcodes with bars of equal length and small for bar-
codes with bars of varying lengths, constitutes an interesting
alternative. The loss can also be computed from persis-
tence landscapes (Bubenik, 2015) or from the bottleneck
distance (Carriere et al., 2021) to a target persistence dia-
gram, e.g. to a persistence diagram built on the dataset using
a Rips filtration. Future work includes running a thorough
investigation of the pros and cons of the different choices of
a topological loss in our framework.

Assumption 3. Finally, the third assumption concerns the
cover assignment scheme A. More specifically, it requires
the regularity and smoothness of the success probabilities
that give the distribution of A.
Interestingly, this assumption does not hold for the standard
cover assignment scheme. For example, consider the ele-
mentary example where Xn ⊆ R and A is the standard cover
assignment scheme, which is degenerate at eθ, and which
corresponds to the linear filter function fθ : x 7→ ⟨x, θ⟩ and
a cover (Ij) of its image. Fix a non-zero positive point
x ∈ Xn (a similar argument can be made if it is negative)

Algorithm 1 Soft Mapper Optimization Algorithm
Require: Initial parameter set θ0, Number of Monte Carlo

random samples M , Learning rate sequence (αi)i, Ran-
dom noise sequence (ξi)i, Number of epochs N .
for 0 ≤ i ≤ N − 1 do

for 1 ≤ m ≤M do
e← sample from Pθi

yi,m ← an element of the sub-differential in θi of
Le : θ 7→ L(e, fθ)

end for
yi ← 1

M

∑M
m=1 yi,m

θi+1 ← θi − αi(yi + ξi)
end for
return θN

and a left hand bound aj of one of the intervals. Denoting
θ0 =

aj

x , we have that θ 7→ Pθ(A = eθ0 |Xn) is discontinu-
ous at θ0, since ∀ϵ > 0 : ⟨x, θ0 − ϵ⟩ = x · (θ0 − ϵ) < aj ,
and therefore, Pθ0−ϵ(A = eθ0 |Xn) = 0.

This constitutes the main motivation for introducing our
smooth cover assignment scheme because the functions θ 7→
Pθ(A = e|Xn) are in this case products of the functions qj ,
which are smooth with respect to the parameters (if our first
assumption holds, for a detailed proof see Appendix E).

6.4. Computing the conditional risk in practice

Computing the conditional risk L(θ), for a fixed θ ∈ Rs,
can be costly in practice since it requires computing the loss
L(e, fθ) for every possible cover assignment e ∈ {0, 1}n×r.
As such, we estimate L(θ) with Monte Carlo methods. Note
that this is possible here because the distribution Pθ of the
cover assignment scheme is indeed explicitly defined and
known at each step of the gradient descent. If M is a non-
zero integer and (e(m))1≤m≤M is a sequence of indepen-
dent realizations of the cover assignment scheme A, then
the Monte Carlo approximation of the conditional risk is:

L̃(θ) =
1

M

M∑
m=1

L(e(m), fθ).

The law of large numbers gives:

L̃(θ) a.s−−−−→
M→∞

L(θ).

Moreover, the coordinates of A follow a Bernoulli con-
ditional distribution, making repeated random sampling
straightforward, at least when the marginal distributions
of Pθ are assumed to be independent.

For a fixed point cloud Xn, a chosen family of parameter-
ized conditional probabilities θ 7→ Pθ(·|Xn) and a family of
parameterized filters θ 7→ fθ, our corresponding optimiza-
tion algorithm is detailed in Algorithm 1. Its complexity
analysis is given in Appendix F.
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Figure 2. Meshes of 3-dimensional point clouds representing from
left to right: a human, an octopus and a table.

Figure 3. Learning curves for the 3-dimensional shapes corre-
sponding, from left to right, to: the human, the octopus and the
table.

7. Numerical Experiments
In this section, we illustrate the efficiency of optimizing
filter functions with Soft Mapper. In particular, we show
that Mapper graphs computed from an optimized filter func-
tion (computed with gradient descent on Soft Mapper) are
generally much better structured than Mapper graphs ob-
tained from arbitrary filters (as is usually done in the Mapper
applications). We present applications on 3D shape data
in Section 7.1 and on single-cell RNA sequencing data in
Section 7.2. Our code is available at (Oulhaj, 2024).

7.1. Mapper optimization on 3D shapes

A first application where we can use the Soft Mapper op-
timization setting is finding linear filters in order to skele-
tonize 3-dimensional shapes with Mapper graphs. Here, our
dataset Xn consists each time of a point cloud embedded
in R3. The different point clouds we study are displayed
(as meshes) in Figure 2. The parametric family of func-
tions is linear, i.e., equal to {fθ : x 7→ ⟨x, θ⟩, θ ∈ R3}, and
the cover assignment scheme Aδ is the smooth relaxation
of the standard case, with δ = 10−2 · (maxx∈Xn fθ(x) −
minx∈Xn fθ(x)). The cover of the image space is given by
r intervals of the same length, such that consecutive inter-
vals have a percentage g of their length in common. The
clustering algorithm for the three shapes is KMeans. The
values of r (also called resolution), g (also called gain) and
the number of clusters in the KMeans algorithm, for each
3-dimensional shape, are summarized in Appendix G.

Objective. Intuitively, the optimal directions to filter the
3-dimensional shapes (in a topological sense) are: the ver-

Figure 4. Regular Mapper graphs computed with the initial filter
function, corresponding, from left to right, to: the human, the
octopus and the table. Vertices are colored using the mean value
of the filter function in the corresponding clusters.

Figure 5. Regular Mapper graphs computed with the optimized
filter function, corresponding, from left to right, to: the human, the
octopus and the table. Vertices are colored using the mean value
of the filter function in the corresponding clusters.

tical direction for the human, the parallel direction to the
tentacles for the octopus and the perpendicular direction
to the upper surface for the table. This can be justified by
the fact that these directions induce Mapper graphs with
more topological structures. We will therefore measure the
quality of our results by comparing our optimized directions
θ̄ to the ones cited above. To find θ̄, we use the opposite
of the L1 total (regular) persistence as a persistence spe-
cific loss ℓ and we run Algorithm 1 with N = 200 and
M = 10, each time taking the diagonal as the initial di-
rection, i.e. θ0 = ( 1√

3
, 1√

3
, 1√

3
)T . The learning curves for

each 3-dimensional shape are displayed in Figure 3, and the
cosine distances between the optimized directions and those
we identified as intuitively optimal are summarized in the
following table, in which one can see that we are able to
recover these intuitive directions with gradient descent.

Human Octopus Table
0.9999 -0.9984 0.9993

Qualitative assessment. One can see, in Figures 4 and 5,
that the regular Mapper graphs built with the initial and final
(optimized) filter functions show clear improvement in the
ability of the graphs to act as skeletons of the original point
clouds. As such, we see that optimizing the Soft Mapper
corresponding to the smooth relaxation of the standard
cover assignment scheme succeeds in identifying optimal
filter functions. The third shape, representing a table,
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PCA t-SNE UMAP Mapper (initial) Mapper (optim)
human Rand -0.00151 0.19 ± 5.39e-05 -0.000387 ± 2.58e-08 0.238 0.379 ± 0.0082

MI 0.00205 0.429 ± 3.08e-06 0.000137 ± 8.57e-08 0.425 0.563 ± 0.00263

Comp 0.164 0.463 ± 4.56e-05 0.165 ± 0.000206 0.492 0.613 ± 0.00104

FM 0.39 0.341 ± 1.95e-05 0.392 ± 6.67e-08 0.412 0.518 ± 0.00283

octopus Rand -0.00421 0.173 ± 6.73e-05 0.0426 ± 0.00377 0.0777 0.568 ± 0.0112

MI -0.00216 0.5 ± 3.32e-06 0.0972 ± 0.0173 0.347 0.512 ± 0.000247

Comp 0.0701 0.641 ± 8.43e-05 0.334 ± 0.105 0.315 0.519 ± 0.00167

FM 0.545 0.492 ± 2.31e-05 0.555 ± 0.000134 0.298 0.708 ± 0.00856

table Rand -0.000351 0.0136 ± 1.84e-05 -0.0007 ± 4.85e-07 -0.0134 0.161 ± 2.99e-05

MI -0.000102 0.000309 ± 5.04e-05 2.23e-05 ± 6.17e-08 0.00905 0.135 ± 1.89e-05

Comp 0.0136 0.000484 ± 4.05e-05 0.0142 ± 1.6e-06 0.0194 0.41 ± 1.02e-05

FM 0.887 0.806 ± 9.63e-05 0.887 ± 1.99e-07 0.818 0.896 ± 1.15e-07

sctda Rand 0.0716 0.259 ± 8.06e-05 0.266 ± 1.59e-07 0.00979 0.381 ± 1.21e-06

MI 0.246 0.506 ± 2.51e-05 0.503 ± 5.38e-07 0.0539 0.487 ± 2.03e-06

Comp 0.919 0.672 ± 4.84e-05 0.657 ± 2.73e-07 0.124 0.567 ± 4.02e-06

FM 0.522 0.553 ± 6.93e-06 0.552 ± 3.59e-07 0.446 0.581 ± 3.41e-06

Table 1. Clustering scores (Rand, Mututal Information, Completeness and Fowlkes-Mallow) that compare ground truth clusterings to
hierarchical clusterings induced by different latent representations (PCA, t-SNE, UMAP and Mapper), for the 3D shapes dataset and the
human preimplantation dataset (sctda).

is particularly interesting. Indeed, the optimal direction
that we captured is different from the first and the second
principal components computed by PCA, since the principal
plane of the point cloud is given by the table surface. Hence,
there is a contrast between our total persistence criterion
and the maximum variance criterion of PCA.

Quantitative assessment. We design a quantitative score
(in order to compare to baselines) by using ground-truth in-
formation: we compute four clustering scores (Rand (Rand,
1971), Mutual Information, Completeness and Fowlkes-
Mallow (Fowlkes & Mallows, 1983)) between: the cluster-
ings induced by the 3D shape segmentations (which assign
labels to the 3D shape vertices, such as arm, leg, torso, etc.)
and the clusterings obtained by running hierarchical cluster-
ings on the latent representations (using either the Euclidean
distances in the latent PCA/t-SNE/UMAP spaces, or the
geodesic distances induced by the Mapper complexes).

Table 1 summarizes the results of this analysis. We see that
the clusterings induced by Mapper complexes are particu-
larly efficient, as Mapper is known to be good for extracting
non-linear, complex structures: for example, the arms of the
human shape, and the legs of the octopus and of the table
can all be detected as branches (0-dimensional topological
features) of Mapper complexes, while they can be squeezed
in the other methods’ latent spaces.

7.2. Mapper optimization on RNA sequencing data

We now apply Mapper optimization on the human preim-
plantation dataset of (Petropoulos et al., 2016), which can

also be found in the tutorial of the scTDA Python library.
The dataset consists of n = 1, 529 cells form 88 human
preimplantation embryos, sampled at 5 different timepoints.
The dataset can be accessed in the following link (sct), and
it contains the expression levels for p = 26, 270 genes
for each individual cell. The information of the sampling
timepoint for each cell is also given, but we do not in-
clude it during optimization. The dataset is first prepro-
cessed using the Seurat package in R (gene counts for
each cell are divided by the total counts for that cell and
multiplied by 104, and then they are natural-log trans-
formed using log(1 + ·)), which produces a normalized
dataset Xn ⊆ Rp. The parametric family of filter func-
tions we wish to optimize is also linear here, i.e. equal
to {fθ : x 7→ ⟨x, θ⟩, θ ∈ Rp}, and the cover assignment
scheme Aδ is the smooth relaxation of the standard case
with δ = 10−5 · (maxx∈Xn

fθ(x) −minx∈Xn
fθ(x)). The

cover of the image space is given by 25 intervals of the same
length, such that consecutive intervals have a percentage of
30% of their length in common. The clustering algorithm
used is agglomerative clustering and its threshold is fixed
using a Hausdorff distance heuristic: we first compute the
Hausdorff distance between Xn and a randomly sampled
subset of Xn of size n/3 ≈ 500, then we manually tune the
threshold using factors of this distance until we get Mapper
graphs of reasonable size.

For this dataset, additional experiments with filter functions
of the form f(x) =

∑n
i=1 αiK(xi, x), where K is a Gaus-

sian kernel; and neural network filter functions with two
dense layers (of 32 and 16 units respectively) and ReLU
activations are given in Appendix G, as well as an ablation
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Figure 6. Regular Mapper graphs for the human preimplantation
dataset computed using: in the left the initial filter function and in
the right the optimized filter function. Vertices are colored using
the mean value of the sampling timepoint in the clusters.

Figure 7. Estimated density of each subset of cells having the same
sampling timepoint, with respect to: in the left the initial filter
function values and in the right the optimized filter function values.
Colors indicate the sampling timepoint in days.

study w.r.t. the δ parameter in Appendix H. An additional
RNA sequencing dataset experiment is in Appendix I.

Objective. To find θ̄, we use the opposite of the L1 total
extended persistence as a persistence specific loss ℓ and we
run Algorithm 1 with N = 200 and M = 10, taking the
diagonal as the initial direction, i.e. θ0 = ( 1√

p , ...,
1√
p )

T .
The learning curve in displayed in Figure 10 of Appendix G.
The regular Mapper graphs computed using the initial and
the final filter functions are displayed in Figure 6, and are
colored with respect to the time component (which was not
included in the training dataset).

Qualitative assessment. One can see that the data repre-
sentation in the Mapper graph produced by the optimized
filter function fits the time structure better than with the
initial function. In order to confirm this, we isolate each
subset of cells having the same sampling timepoint and we
plot their respective estimated densities with respect to the
initial and the optimized filter function values, in Figure
7. One can see that the optimized filter that we captured is
capable of sorting the cells with respect to time, especially
at the early timepoints. The reduced performance in this as-
pect for the later timepoints is, in our guess, due to slowing
down of the cell differentiation process. Furthermore, the
comparison, in Table 3 of Appendix G, between Pearson’s
correlation coefficients also show that the optimized filter
is more correlated to time. We also verify that the branches

Figure 8. Regular Mapper graph computed using the optimized
filter function, colored using the mean normalized expression of:
in the left gene HTR3E and in the right gene CDX1.

in our optimized Mapper graph correspond to the same two
genes, HTR3E for the early timepoints and CDX1 for the
later ones, that were identified by (Rizvi et al., 2017b), see
Figure 8. We also identified a few nodes in the branch con-
taining the cells which were sampled in the early stages, that
do not contain a high expression level for the HTR3E gene,
potentially pointing out another subpopulation of cells with
distinct genomic profiles.

Quantitative assessment We compute the same scores
as for the previous experiment, with the clustering induced
by time as ground truth. Table 1 shows a less striking
difference, compared to the 3D shapes experiment, between
the clusterings induced by the Mapper and those induced by
the other methods. However, the scores (after optimization)
are still comparable to the baselines. In all cases nonetheless,
optimizing the Mapper filter with the total persistence loss
is beneficial and results in an increase in the scores.

8. Discussion and future work
In this article, we have introduced Soft Mapper, a distribu-
tional and smoother version of the standard Mapper graph,
with provable convergence guarantees using persistence-
based losses and risks. Our case study in this article was
finding an optimal filter function, among a parameterized
family of functions, in order to construct regular Mapper
graphs incorporating an optimized and maximal amount of
topological information. We then produced examples of
such optimization processes on real 3D shape and single-
cell RNA sequencing data, for which we were able to obtain
structured Mapper representations in an unsupervised way.
These representations, especially for the single cell RNA
sequencing data, are not meant to represent novel or state
of the art data representations in their respective research
domains, but as a proof of concept of the practical benefit of
our method. Moreover, our construction is not limited to the
filter optimization setting as a whole. Possible future work
includes inspecting different choices of filter function fami-
lies and topological losses, and studying Soft Mappers based
on different cover assignment schemes, like the Gaussian
cover assignment scheme defined in Appendix A.
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A. Gaussian cover assignment scheme
In this section, it is assumed that Xn is a point cloud in Rp. Additionally, we consider r centers {c1, ..., cr} ⊆ Rp and r
symmetric, semi-definite and positive matrices {Σ1, ...,Σr} ⊆ Rp×p. For each j ∈ {1, ..., r}, consider the function:

qj : Rp −→ [0, 1]

x 7−→ exp
(
−(x− cj)

TΣ−1
j (x− cj)

)
.

Define A = (Ai,j)1≤i≤n
1≤j≤r

to be a random variable in {0, 1}n×r such that for every (i, j) ∈ {1, ..., n} × {1, ..., r} :

Ai,j | Xn ∼ B(qj(xi)),

and as before we take the Ai,j’s to be jointly conditionally independent.

This cover assignment scheme is similar to Gaussian mixture models, in that its realizations can be seen as a ”one-hot
encoding” of the latent variables in a mixture model. However, we can see that a realization of A can have more than one
non-zero entry per line as opposed to a mixture model. Furthermore, mean and variance parameters can be inferred with an
EM algorithm, and estimated proportions can be also involved in the definition of the qj’s.

Note that this strategy of defining a cover assignment scheme does not use a filter function or an overlapping cover entirely.

B. Elements of o-minimal geometry
Definition B.1. An o-minimal structure on the field of real numbers R is a collection (Sn)n∈N where each Sn is a set of
subsets of Rn that satisfies:

1. All algebraic subsets of Rn are in Sn;

2. Sn is a Boolean subalgebra of the powerset of Rn (i.e. stable by finite union, finite intersection and complementary);

3. if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m;

4. if π : Rn+1 → Rn is the linear projection onto the first n coordinates and A ∈ Sn+1 then π(A) ∈ Sn;

5. S1 is exactly the family of finite unions of points and intervals.

The elementary example of an o-minimal structure is the collection of semi-algebraic sets. An element A ∈ Sn for
some n ∈ N is called a definable set. Furthermore, a map f : A → Rm is called a definable map if its graph (i.e.
{(x, f(x)) : x ∈ A}) is in Sn+m.

Definable maps are stable under addition, product and composition. A function that is coordinate-wise definable is also
definable. Moreover, the result of (Wilkie, 1996) shows that there exists an o-minimal structure that contains the graph of
the exponential function.

An important property of definable maps is that they admit a finite Whitney stratification. This means that if f : A→ Rm is
definable with A ∈ Sn, then A can be decomposed into a finite union of smooth manifolds such that the restriction of f to
each of these manifolds is a smooth function.

For more details on o-minimal geometry, see (Coste, 2000).

C. Proof of Theorem 6.2
Lemma C.1. Let S be an o-minimal structure on R. Assume that the two following conditions are satisfied.

• For every x ∈ Xn, the function θ ∈ Rs 7→ fθ(x) is definable in S and is locally Lipschitz.

• For every m ∈ N, the restriction of the persistence specific loss ℓ to the set of persistent diagrams of size m is definable
in S and is locally Lipschitz.
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Then for every e ∈ {0, 1}n×r, the function

Le : θ ∈ Rs 7→ L(e, fθ)

is definable in S and is locally Lipschitz.

Proof. Let e ∈ {0, 1}n×r. Let K = MapComp(e) with vertex set V . Remember that each vertex c ∈ V is actually a subset
of Xn. We now define three maps to decompose the function Le. First, let us introduce the function

VertexFilt : Rs −→ R|V |

θ 7−→
(∑

x∈c fθ(x)

card(c)

)
c∈V

.

For each coordinate of the function VertexFilt, that is for each c ∈ V , the function θ 7−→ [VertexFilt(θ)]c is a linear
combination of the functions θ 7→ fθ(x). We can therefore see that it is definable in S and locally Lipschitz, by our first
assumption.

Then we introduce

SubFilt : R|V | −→ R|K|

Φ 7−→ (max
c∈σ

Φc)σ∈K ,

and finally Persistence : R|K| −→ R|K| that computes persistence for a filtration that acts on a fixed simplicial complex.
The two functions SubFilt and Persistence are taken from (Carriere et al., 2021), where they are both proven to be definable
in every o-minimal structure and Lipschitz.

Notice that:

Le = ℓ ◦ Persistence ◦ SubFilt ◦ VertexFilt.

Since e, and thus K, are fixed, ℓ can be replaced by its restriction to persistence diagrams of size |K|. Hence, following our
second assumption, Le is definable in S and locally Lipschitz.

Recall the assumptions in Theorem 6.2 :

Suppose that there exists an o-minimal structure S and we have that:

• for every x ∈ Xn, the function θ 7→ fθ(x) is definable in S and is locally Lipschitz.

• for every m ∈ N, the restriction of ℓ to the set of persistent diagrams of size m is definable in S and is locally Lipschitz.

• for every e ∈ {0, 1}n×r, the function θ 7→ Pθ(A = e|Xn) is definable in S and is locally Lipschitz.

By Lemma C.1 and following the first two assumptions, we know that for every e ∈ {0, 1}n×r, the function Le : θ 7→
L(e, fθ) is definable in S and is locally Lipschitz. Now, for every θ ∈ Rs:

L(θ) =
∑

e∈{0,1}e×r

L(e, fθ) · Pθ(A = e|Xn).

As such, L is a sum of products between functions that are definable in S and locally Lipschitz. We conclude that L is itself
definable in S and locally Lipschitz.

Note that the local Lipschitz property is stable by product (as opposed to the global Lipschitz property). This is due to
the fact that the product of two Lipschitz and bounded functions is Lipschitz, and the fact that we can always limit the
neighborhoods of points in Rs to bounded ones.
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D. Technical conditions for Stochastic Gradient Descent
We are in the setting where we use stochastic gradient descent to minimize a function L. If we write the iterates of the
algorithm as:

xk+1 = xk − αk(yk + ξk),

where

yk ∈ Conv
{

lim
z→xk

∇L(z) : L is differentiable at z
}
,

consider the following three conditions:

1. for any k, αk ≥ 0,
∑∞

k=1 αk = +∞ and
∑∞

k=1 α
2
k < +∞;

2. supk ∥xk∥ < +∞, almost surely;

3. Conditionally on the past, ξk must have zero mean and have a second moment that is bounded by a function p : Rs −→ R
which is bounded on bounded sets.

Note that the last condition is satisfied by taking a sequence of independent and centered variables with bounded variance,
which are also independent of the past iterates (xk)k and (yk)k.

According to (Davis et al., 2020), under these three conditions together with the condition that L is definable in an o-minimal
structure and locally Lipschitz, then (L(xk))k converges almost surely to a critical values and the limit points of (xk)k are
critical points of L.

E. Additional proof
Let S be the o-minimal structure presented in (Wilkie, 1996) containing the graph of the exponential function. Let δ > 0,
and Aδ be the smooth cover assignment scheme associated to the filter function fθ and the cover ([aj , bj ])1≤j≤r. We prove
that if the first assumption of Theorem 6.2 holds (S is the o-minimal structure in question), then the third assumption holds
for Aδ . Consider, for each j ∈ {1, ..., r}, the function uj : R −→ [0, 1] defined with:

x 7→


1, if x ∈ [aj , bj ]

exp(1− 1/(1− (
aj−x

δ )2)), if x ∈ (aj − δ, aj ]

exp(1− 1/(1− (
x−bj

δ )2)), if x ∈ [bj , bj + δ)

0, otherwise

uj is definable in S , this is because uj is defined in a piecewise fashion from constant functions, and functions that are the
composition of the exponential and rational functions.
Furthermore, uj is infinitely differentiable and therefore locally Lipschitz. This is an example of a smooth bump function,
see (Fry & McManus, 2002).
Now, notice that :

Pθ(A = e|Xn) = Π1≤i≤n
1≤j≤r

[qj(xi) · ei,j + (1− qj(xi)) · (1− ei,j)],

and
qj(xi) = uj ◦ fθ(xi).

Definability and the local Lipshitz property are stable by composition and product. As such, the functions θ 7→ Pθ(A = e|Xn)
are definable in S and locally Lipshitz.

F. Complexity analysis of Algorithm 1
The running time of each epoch in Algorithm 1 has three steps in practice:

1. computing the distribution of the assignment scheme Pθ,
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2. computing several Mappers by sampling from Pθ,

3. evaluating the corresponding total persistence-based loss.

Let n be the number of points in the dataset, and r be the number of patches (i.e. elements in the latent cover of the dataset)
in the Mapper cover (it is fixed and user-defined). Step 1 can be achieved for example in O(n × r) with Section 4.2’s
equations. Step 2 involves computing N sampled Mapper complexes. Every sampling can be done in O(n × r) time.
Moreover, a single computation of a Mapper complex depends on the clustering method, and involves running it on every
patch (for getting the Mapper nodes) and scanning through the points to detect clusters with non-empty intersection (for
getting the Mapper simplices). Thus the complexity of this step is O(N × ((n× r)+(Clus(n)× r+n))) (where Clus(n) is
the complexity of the clustering method). Note that in practice, computing both the N Mappers and applying the clustering
method to every patch (within a single Mapper computation) can be run in parallel. Step 3 involves computing N total
persistence losses from the N Mapper complexes, which requires O(N ×m3) running time, where m is an upper bound on
the number of simplices. This number of simplices depends linearly on the number of Mapper nodes (as we use persistence
in degrees 0 and 1), which itself depends on the clustering method. If nclus is an upper bound on the number of clusters,
then m is typically of the order of r × nclus.

In practice, the main bottleneck is running the clustering method on all patches, which has to be done N times. Note that
when the clustering method depends on the pairwise distances, such as hierarchical clustering, these n2 distances only need
to be evaluated once. Our implementation can run these computations in parallel, which makes our code highly scalable.
Boxplots of timings per epochs for our experiments can be found in Figure 9.

human octopus table single-cell

Running time per epoch (s)

Figure 9. Boxplots of timings per epoch for the 3D shapes experiment and the human preimplantation (single cell) experiment.

G. Additional Figures and Tables for the experiments

Parameter Human Octopus Table
Resolution 25 10 10

Gain 0.3 0.3 0.35
Number of clusters 3 8 8

Table 2. Resolution, gain and number of clusters parameters that are used to compute the Mapper for each 3-dimensional shape.
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Figure 10. Learning curve for the human preimplantation dataset.

Filter Correlation with time P-value
Initial 0.1330 1.7596e-07

Optimized -0.7549 4.0503e-282

Table 3. Pearson’s correlation between the initial filter and time, and the optimized filter and time for the human preimplantation dataset.
The associated p-values, obtained from testing the null hypothesis that the true correlation coefficient is zero, are also presented.

Figure 11. Regular Mapper graphs for the human preimplantation dataset, computed using optimized filter functions from different
parameterized families: the linear family, the Gaussian RKHS linear family and the family of fully-connected neural networks with an
architecture of two dense layers and ReLU activations, from left to right respectively.

H. Ablation study w.r.t the δ parameter
We re-run the single-cell experiment in Subsection 7.2 several times with different δ parameters and for each one we record
the same clustering scores we used before. The study is summarized in Table 4. As expected, the smaller δ, the better the
cosine distance with time of the filter is, as well as the clustering scores (even though the increase is not strictly monotonic).
Indeed, when using larger δ values, points are more likely to belong to intervals that are far from their corresponding filter
values, leading to Mapper complexes that tend to make less sense (while still being fit for gradient descent, i.e., definable
and locally Lipschitz).

δ 10−1 10−2 10−2 10−4 10−5

Corr. 0.428 -0.539 -0.724 -0.744 -0.751
Rand 0.0706 0.125 0.352 0.278 0.229
MI 0.141 0.178 0.422 0.368 0.391

Comp 0.309 0.228 0.469 0.407 0.57
FM 0.496 0.421 0.556 0.49 0.544

Table 4. Cosine distance w.r.t. time and clustering scores (Rand, Mututal Information, Completeness and Fowlkes-Mallow), comparing
the ground truth clustering to the clusterings induced by the optimized Mapper graphs, for different values of δ.
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I. Mouse embryonic fibroblasts reprogramming dataset
We consider the mouse embryonic fibroblasts (MEF) reprogramming dataset of (Schiebinger et al., 2019). It consists of
p = 19, 089 gene expressions for 251, 203 MEF cells, densely sampled across 18 days, with 39 individual timepoints. The
experiment involves adding Doxorubicine (Dox) to the cells on day 0, withdrawing it at day 8, and then transferring them to
either a serum-free N2B27 2i medium or maintaining them in serum.

Objective. We would, therefore, want to produce a representation, using our Soft Mapper optimization, that accounts
for the time component (like in Section 7.2) and for the divergence in the treatment that the cells received at day 8. In
order to achieve this, we first take a uniformly sampled subsample of the dataset of size n = 1, 500 and we use the same
preprocessing procedure as with the human preimplantation dataset. Similarly, we consider the same settings (linear family
of filter functions, smooth cover assignment scheme, agglomerative clustering, diagonal initial parameter set and extended
total persistence), and we run Algorithm 1 with N = 300 and M = 10. The learning curve is displayed in Figure 12.

Figure 12. Learning curve for the MEF reprogramming dataset.

Qualitative assessment. By looking at the standard Mapper graphs corresponding to the initial and the optimized filter
functions in Figure 13, one can see that the optimized Mapper graph represents the time component better and that it shows
two major branches, which point to the two phases that appear in day 8 of the experiment. These observations are confirmed
by the improvement in the Pearson’s correlation coefficients with respect to time between the initial and the optimized filter
function values in Table 5. We also color the optimized Mapper graph in Figure 14 using the three phases in the experiment
(Dox, 2i and Serum), each mapped to a different color channel.

Figure 13. Classical Mapper graphs for the MEF reprogramming dataset computed using: in the left the initial filter function and in the
right the optimized filter function. Vertices are colored using the mean value of the sampling timepoint in the corresponding clusters.
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Filter Correlation with time P-value
Initial -0.0560 2.9882e-02

Optimized -0.4015 3.2090e-59

Table 5. Pearson’s correlation between the initial filter and time, and the optimized filter and time. The associated p-values, obtained from
testing the null hypothesis that the true correlation coefficient is zero, are also presented.

Figure 14. Standard Mapper graph computed using the optimized filter function, colored by mapping each phase to a color channel: Dox
in green, Serum in blue and 2i in red.
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