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Abstract
We propose a general, yet simple patch that can
be applied to existing regularization-based contin-
ual learning methods called classifier-projection
regularization (CPR). Inspired by both recent re-
sults on neural networks with wide local minima
and information theory, CPR adds an additional
regularization term that maximizes the entropy of
a classifier’s output probability. We demonstrate
that this additional term can be interpreted as a
projection of the conditional probability given by
a classifier’s output to the uniform distribution.
By applying the Pythagorean theorem for KL di-
vergence, we then prove that this projection may
(in theory) improve the performance of continual
learning methods. In our extensive experimental
results, we apply CPR to several state-of-the-art
regularization-based continual learning methods
and benchmark performance on popular image
recognition datasets. Our results demonstrate that
CPR indeed promotes a wide local minima and
significantly improves both accuracy and plas-
ticity while simultaneously mitigating the catas-
trophic forgetting of baseline continual learning
methods.

1. Introduction
Catastrophic forgetting (McCloskey & Cohen, 1989) is a
central challenge in continual learning (CL): when train-
ing a model on a new task, there may be a loss of per-
formance (e.g., decrease in accuracy) when applying the
updated model to previous tasks. At the heart of catastrophic
forgetting is the stability-plasticity dilemma (Carpenter &
Grossberg, 1987; Mermillod et al., 2013), where a model ex-
hibits high stability on previously trained tasks, but suffers
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from low plasticity for the integration of new knowledge
(and vice-versa). Attempts to overcome this challenge in
neural network-based CL can be grouped into three main
strategies: regularization methods (Li & Hoiem, 2017; Kirk-
patrick et al., 2017; Zenke et al., 2017; Nguyen et al., 2018;
Ahn et al., 2019; Aljundi et al., 2018b), memory replay
(Lopez-Paz & Ranzato, 2017; Shin et al., 2017; Rebuffi
et al., 2017; Kemker & Kanan, 2017), and dynamic net-
work architecture (Rusu et al., 2016; Yoon et al., 2018;
Golkar et al., 2019). In particular, regularization methods
that control model weights bear the longest history due to
its simplicity and efficiency to control the trade-off for a
fixed model capacity.

In parallel, several recent methods seek to improve the gen-
eralization of neural network models trained on a single task
by promoting wide local minima (Keskar et al., 2016; Chaud-
hari et al., 2019; Pereyra et al., 2017; Zhang et al., 2018).
Broadly speaking, these efforts have experimentally shown
that models trained with wide local minima-promoting reg-
ularizers achieve better generalization and higher accuracy
(Keskar et al., 2016; Pereyra et al., 2017; Chaudhari et al.,
2019; Zhang et al., 2018), are better calibrated (Pereyra
et al., 2017), and can be more robust to weight perturbations
(Zhang et al., 2018) when compared to usual training meth-
ods. Despite the promising results, methods that promote
wide local minima have yet to be applied to CL.

In this paper, we make a novel connection between wide
local minima in neural networks and regularization-based
CL methods. The typical regularization-based CL aims to
preserve important weight parameters used in past tasks by
penalizing large deviations when learning new tasks. As
shown in the top of Fig. 1, a popular geometric intuition (as
first given in EWC (Kirkpatrick et al., 2017)) for such CL
methods is to consider the (uncertainty) ellipsoid of param-
eters around the local minima. When learning new tasks,
parameter updates are selected in order to not significantly
hinder model performance on past tasks. Our intuition is
that promoting a wide local minima—which conceptually
stands for local minima having a flat, rounded uncertainty
ellipsoid—can be particularly beneficial for regularization-
based CL methods by facilitating diverse update directions
for the new tasks (i.e., improves plasticity) while not hurting
the past tasks (i.e., retains stability). As shown in the bottom
of Fig. 1, when the ellipsoid containing the parameters with
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Figure 1: In typical regularization-based CL (top), when the low-error ellipsoid around local minima is sharp and narrow, the space for
candidate model parameters that perform well on all tasks (i.e., the intersection of the ellipsoid for each task) quickly becomes very small
as learning continues, thus, an inevitable trade-off between stability and plasiticty occurs. In contrast, when the wide local minima exists
for each task (bottom), it is more likely the ellipsoids will significantly overlap even when the learning continues, hence, finding a well
performing model for all tasks becomes more feasible.

low-error is wider, i.e., when the wide local minima exists,
there is more flexibility in finding a parameter that performs
well for all tasks after learning a sequence of new tasks. We
provide further details in Section 2.1.

Based on the above intuition, we propose a general, yet sim-
ple patch that can be applied to existing regularization-based
CL methods dubbed as Classifier-Projection Regularization
(CPR). Our method implements an additional regulariza-
tion term that promotes wide local minima by maximizing
the entropy of the classifier’s output distribution. Further-
more, from a theory standpoint, we make an observation
that our CPR term can be further interpreted in terms of
information projection (I-projection) formulations (Cover
& Thomas, 2012; Murphy, 2012; Csiszár & Matus, 2003;
Walsh & Regalia, 2010; Amari et al., 2001; Csiszár & Ma-
tus, 2003; Csiszár & Shields, 2004) found in information
theory. Namely, we argue that applying CPR corresponds
to projecting a classifier’s output onto a Kullback-Leibler
(KL) divergence ball of finite radius centered around the
uniform distribution. By applying the Pythagorean theorem
for KL divergence, we then prove that this projection may
(in theory) improve the performance of continual learning
methods.

Through extensive experiments on several benchmark
datasets, we demonstrate that applying CPR can signif-
icantly improve the performance of the state-of-the-art
regularization-based CL: using our simple patch improves
both the stability and plasticity and, hence, achieves better
average accuracy almost uniformly across the tested algo-
rithms and datasets—confirming our intuition of wide local

minima in Fig. 1. Furthermore, we use a feature map visu-
alization that compares methods trained with and without
CPR to further corroborate the effectiveness of our method.

Related work Several methods have been recently proposed
to reduce catastrophic forgetting (see (Parisi et al., 2018) for
a survey). In this paper, we mainly focus on regularization-
based CL methods (Li & Hoiem, 2017; Kirkpatrick et al.,
2017; Aljundi et al., 2018a; Chaudhry et al., 2018; Zenke
et al., 2017; Nguyen et al., 2018; Ahn et al., 2019; Aljundi
et al., 2018b). Broadly speaking, the motivation behind
regularization-based CL is to measure the importance of
model parameters in previous tasks. This measure is then
used in a regularization term for overcoming catastrophic
forgetting when training for new tasks. Consequently, the
main research focus of regularization-based CL is creat-
ing metrics for quantifying weight importance on previous
tasks (e.g., (Kirkpatrick et al., 2017; Aljundi et al., 2018a;
Chaudhry et al., 2018; Zenke et al., 2017; Nguyen et al.,
2018; Ahn et al., 2019)). In contrast, here we focus on
developing a general method for augmenting regularization-
based CL instead of proposing (yet another) new metric for
weight importance. The method introduced here, namely
CPR, can be applied to any regularization-based CL method
to simultaneously improve both plasticity and stability.

The work closest to ours is (Aljundi et al., 2018b), which en-
courages sparsity of representations for each task by adding
an additional regularizer to regularization-based CL meth-
ods. Note that the motivation of (Aljundi et al., 2018b)—
imposing sparsity of neuron activations—is considerably
different from ours, which is to promote wide local minima.
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Moreover, whereas (Aljundi et al., 2018b) focuses on av-
erage accuracy, we carefully evaluate in our experiments
the advantage of the added CPR regularization in terms of
increasing both plasticity and stability of CL in addition to
accuracy.

Several papers have recently proposed methods that promote
wide local minima in neural networks in order to improve
single-task generalization, including using small mini-batch
size (Keskar et al., 2016), regularizing the output of the soft-
max layer in neural networks (Szegedy et al., 2016; Pereyra
et al., 2017), using a newly proposed optimizer which con-
structs a local-entropy-based objective function (Pereyra
et al., 2017) and distilling knowledge from other models
(Zhang et al., 2018). We expand upon this prior work and
investigate here the role of wide local minima in CL. Our
objective is to train neural networks that converge to wide
local minima for each task, and subsequently benchmark the
advantage of wide local minima in CL through numerous
experiments. To the best of our knowledge, this is the first
paper to study the role of wide local minima in CL.

2. CPR: Classifier-Projection Regularization
for Wide Local Minimum

In this section, we elaborate in detail the core motivation
outlined in Fig. 1, then formalize CPR as the combina-
tion of two regularization terms: one stemming from prior
regularization-based CL methods, and the other that pro-
motes a wide local minima. Moreover, we provide an
information-geometric interpretation (Csiszár, 1984; Cover
& Thomas, 2012; Murphy, 2012) for the observed gain in
performance when applying CPR to CL.

We consider continual learning of T classification tasks
(with known task boundaries), where each task contains N
training sample-label pairs {(xt

n, y
t
n)}Nn=1, t ∈ [1, · · · , T ]

with xt
n ∈ Rd, and the labels of each task has Mt classes,

i.e., ytn ∈ [1, · · · ,Mt]. We denote fθ : Rd → ∆M as
a neural network-based classification model with softmax
output layer parametrized by θ.

2.1. Motivation: Introducing wide local minima in
continual learning

Consider the setting of typical regularization-based CL (top
of Fig. 1). We denote θ∗i as a local minima of task i. From
the shape of the low-error ellipsoids, after learning task 2, an
appropriate regularization strength can make the parameter
update from θ∗1 to θ̂2 since it can achieve low-errors on
both tasks 1 and 2. However, while learning task 3, the
ellipsoids may not overlap enough, and it becomes infeasible
to obtain a parameter that performs well on all three tasks. In
this case, regularization-based CL determines the trade-off
between stability and plasticity in terms of its regularization
strength; namely, the larger strength (direction 1) results in

a parameter with more stability, θ̂1
3 , so that less forgetting

on tasks 1 and 2 is achieved, whereas the smaller strength
(direction 2) leads to more plasticity so that the updated
parameter θ̂2

3 performs well on more recent tasks (2 and 3)
at the cost of compromising the performance for task 1.

In contrast, when the wide local minima exists for each
task (bottom of Fig. 1), it is more likely that the ellipsoids
will have non-empty intersections. A regularization-based
CL may therefore more easily find a parameter, θ̂3, that is
simultaneously close to the the local minimas for each task,
i.e., {θ∗i }3i=1. This intuition suggests that once we promote
the wide local minima of neural networks during continual
learning, both the stability and plasticity will improve and
result in higher accuracy—which is precisely what we verify
in our experimental results for CPR (see Sec. 3).

2.2. Classifier projection regularization for continual
learning

Regularization-based continual learning Typical
regularization-based CL methods attach a regularization
term that penalizes the deviation of important parameters
learned from past tasks in order to mitigate catastrophic
forgetting. The general loss form for these methods when
learning task t is

Lt
CL(θ) = Lt

CE(θ) + λ
∑
i

Ωt−1
i (θi − θt−1i )2, (1)

where Lt
CE(θ) is the ordinary cross-entropy loss function

for task t, λ is the dimensionless regularization strength,
Ωt−1 = {Ωt−1

i } is the set of estimates of the weight impor-
tance, and {θt−1i } is the parameter learned until task t− 1.
A variety of previous work, e.g., EWC (Kirkpatrick et al.,
2017), SI (Zenke et al., 2017), MAS (Aljundi et al., 2018a),
and RWalk (Chaudhry et al., 2018), proposed different ways
of calculating Ωt−1 to measure weight importance.

Single-task wide local minima Several recent schemes
have been proposed (Pereyra et al., 2017; Szegedy et al.,
2016; Zhang et al., 2018) to promote wide local minima of a
neural network for solving a single task. These approaches
can be unified by the following common loss form

LWLM(θ) = LCE(θ) +
β

N

N∑
n=1

DKL(fθ(xn)‖g), (2)

in which g is some probability distribution in ∆M that reg-
ularizes the classifier output fθ, β is a trade-off parameter,
andDKL(·‖·) is the KL divergence (Cover & Thomas, 2012).
Notice, for example, when g is the uniform distribution PU

in ∆M , the regularization term corresponds to maximizing
the entropy as in (Pereyra et al., 2017), and when g is an-
other classifier’s output fθ′ , then (2) becomes equivalent to
the loss function proposed in (Zhang et al., 2018).
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CPR: Achieving wide local minima in continual learn-
ing Combining the above two regularization terms, we
propose the CPR as the following loss form for learning
task t:

Lt
CPR(θ) = Lt

CE(θ) +
β

N

N∑
n=1

DKL(fθ(xt
n)‖PU )

+λ
∑
i

Ωt−1
i (θti − θt−1i )2,

(3)

where λ and β are the regularization parameters. The
first regularization term promotes the wide local minima
while learning task t by using PU as the regularizing dis-
tribution g in (2), and the second term is from the typical
regularization-based CL. Note that this formulation is oblivi-
ous to Ωt−1 and, hence, it can be applied to any state-of-the-
art regularization-based CL methods. In our experiments,
we show that the simple addition of the KL-term can sig-
nificantly boost the performance of several representative
state-of-the-art methods, confirming our intuition on wide
local minima for CL given in Section 2.1 and Fig 1. Further-
more, we show in the next section that the KL-term can be
geometrically interpreted in terms of I-projections (Csiszár,
1984; Cover & Thomas, 2012; Murphy, 2012), providing an
additional argument (besides promoting wide local minima)
for the benefit of using CPR in continual learning.

2.3. Interpretation by information projection

Given a distribution P and a convex set of distributions Q
in the probability simplex ∆m , {p ∈ [0, 1]m|

∑m
i=1 pi =

1}, information projection (I-projection) aims to find P ∗

in Q such that the KL divergence between P ∗ and P is
minimized, i.e.,

P ∗ = arg min
Q∈Q

DKL(Q‖P ). (4)

The above quantity has several operational interpretations in
information theory (e.g., in universal source coding (Cover
& Thomas, 2012)). The I-projection enables a “geometric”
interpretation of KL divergence, where DKL(Q‖P ) behaves
as the squared Euclidean distance, (Q,P ∗, P ) form a “right
triangle,” and the following lemma resembles the KL diver-
gence equivalent of the Pythagorean theorem (not satisfied
in general by the KL divergence) (Cover & Thomas, 2012).

Lemma 1. Suppose ∃P ∗ ∈ Q such that DKL(P ∗‖P ) =
min
Q∈Q

DKL(Q‖P ), then

DKL(Q‖P ) ≥ DKL(Q‖P ∗) +DKL(P ∗‖P ), ∀Q ∈ Q. (5)

A natural extension of the I-projection is to seek the condi-
tional distribution QY |X in a set C that is closest (measured
by the KL divergence) to a given conditional distribution

Figure 2: CPR can be understood as a projection onto a finite
radius ball around PU .

PY |X . Viewing a classifier (e.g., a neural network with a
softmax output layer) as a conditional probability distribu-
tion PY |X , where Y is the class label and X is the input, we
call this extension as the classifier projection.

Formally, given a convex set C of conditional distributions,
the classifier projection is defined as

P ∗Y |X = arg min
QY |X∈C

EPX

[
DKL(QY |X(·|X)‖PY |X(·|X))

]
. (6)

We consider a simple CL setting with single head and fixed
number of classes. Then, we pick the set of possible classi-
fiers C to be a KL divergence ball centered at the uniform
distribution PU , i.e.,

C(PU , ε) , {QY |X ∈ ∆M | EX

[
DKL(QY |X‖PU )

]
≤ ε}.

We select PU since it is the centroid of ∆M and, hence,
the worst-case divergence between any distribution and PU

is at most logM . The following proposition is a direct
consequence of Lemma 1.
Proposition 1. For any classifier P t−1∗

Y |X ∈ C(PU , ε) for

task t− 1 with data distribution P t−1
X , and let any classifier

for task t be P t
Y |X /∈ C(PU , ε) and P t∗

Y |X be the projected
classifier by (6), then

EP t−1∗
Y |X P t−1

X

[
− logP t

Y |XP
t−1
X

]
≥ EP t−1∗

Y |X P t−1
X

[
− logP t∗

Y |XP
t−1
X

]
.

(7)

Proposition 1 indicates that when evaluated on the previous
task, the classifier of the current task is more similar (in
terms of cross-entropy) to each other after projection, thus
guaranteeing a smaller change in training loss and accuracy.
From the vantage point of classifier projection, the CPR
regularization term in (3) can be viewed as the Lagrange
dual of the constraint QY |X ∈ C(PU , ε)—the term that
projects the classifier of individual tasks towards the uniform
distribution in order to minimize changes when training
sequential tasks (See Fig. 2).
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Figure 3: Verifying the regularization for wide local minima

3. Experimental Results
We apply CPR to four regularization-based supervised CL
methods: EWC (Kirkpatrick et al., 2017), SI (Zenke et al.,
2017), MAS (Aljundi et al., 2018a), and RWalk (Chaudhry
et al., 2018), and further analyze CPR via ablation studies
and feature map visualizations.

3.1. Data and evaluation metrics

We select CIFAR-100 (Krizhevsky et al., 2009), CIFAR-
10/100 (Krizhevsky et al., 2009), Omniglot (Lake et al.,
2015), and CUB200 (Welinder et al., 2010) as benchmark
datasets. Note that we ignore the permuted-MNIST dataset
(LeCun et al., 1998) since most state-of-the-art algorithms
can already achieve near perfect accuracy on it. CIFAR-
100 is divided into 10 tasks where each task has 10 classes.
CIFAR-10/100 additionally uses CIFAR-10 for pre-training
before learning tasks from CIFAR-100. Omniglot has 50
tasks, where each task is a binary image classification on a
given alphabet. For these datasets, we used a simple feed-
forward convolutional neural network (CNN) architecture.
For the more challenging CUB200 dataset, which has 10
tasks with 20 classes for each task, we used a pre-trained
ResNet-18 (He et al., 2016) as the initial model. Training
details, model architectures, hyperparameters tuning, and
source codes are available in the Supplementary Material
(SM).

For evaluation, we first let ak,j ∈ [0, 1] be the j-th task
accuracy after training the k-th task (j ≤ k). Then, we
used the following three metrics to measure the continual
learning performance:

• Average Accuracy (A) is the average accuracy Ak on
the first k tasks after training the k-th task, i.e., Ak =
1
k

∑k
j=1 ak,j . While being a natural metric, Average

Accuracy fails to explicitly measure the plasticity and
stability of a CL method.

• Forgetting Measure (F) evaluates stability. Namely,

we define the forgetting measure f jk of the j-th task
after training k-th task as f jk = max

l∈{j,...,k−1}
al,j −

ak,j ,∀j < k, and the average forgetting measure Fk

of a CL method as Fk = 1
k−1

∑k−1
j=1 f

j
k .

• Intransigence Measure (I) measures the plasticity.
Let a?j be accuracy of a model trained by fine-tuning
for the j-the task without applying any regulariza-
tion. The intransigence measure Is,k is then defined as
Is,k = 1

k−s+1

∑k
j=s ij , where ij = a?j − aj,j .

The F and I metrics were originally proposed in (Chaudhry
et al., 2018), and we slightly modified their definitions for
our usage. Note that a low Fk and I1,k implies high stability
(low forgetting) and high plasticity (good forward transfer)
of a CL method, respectively.

3.2. Quantifying the role of wide local minima
regularization

We first demonstrate the effect of applying CPR with varying
trade-off parameter β in (3) by taking EWC (Kirkpatrick
et al., 2017) trained on CIFAR-100 as a running example.
Fig. 3(a) shows how the aforementioned metrics varies
as β changes over [0.1, . . . , 1]. First, we observe that A10

certainly increases as β increases. Moreover, we can break
down the gain in terms of I1,10 and F10; we observe I1,10
monotonically decreases as β increases, but F10 does not
show the similar monotonicity although it also certainly
decreases with β. This suggests that enlarged wide local
minima is indeed helpful for improving both plasticity and
stability. In the subsequent experiments, we selected β using
validation sets by considering all three metrics; among the
β’s that achieve sufficiently high A10, we chose one that
can reduce F10 more than reducing I1,10, since it turns out
improving the stability seems more challenging. (In fact,
in some experiments, when we simply consider A10, the
chosen β will result in the lowest I1,10 but with even higher
F10 than the case without CPR.) For comparison purposes,
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Table 1: Experimental results on CL benchmark dataset with and without CPR. Blue color denotes the case which CL method is positively
affected by CPR and red color represents a negative impact of CPR.

Dataset Method
Average Accuracy (A10) Forgetting Measure (F10) Intransigence Measure (I1,10)

W/o
CPR

W/
CPR

diff
(W-W/o)

W/o
CPR

W/
CPR

diff
(W/-W/o)

W/o
CPR

W/
CPR

diff
(W-W/o)

CIFAR100
(T = 10)

EWC 0.6002 0.6328 +0.0326 (+5.2%) 0.0312 0.0285 -0.0027 (-8.7%) 0.1419 0.1117 -0.0302 (-21.3%)
SI 0.6141 0.6476 +0.0336 (+5.5%) 0.1106 0.0999 -0.0107 (-9.7%) 0.0566 0.0327 -0.0239 (-42.2%)

MAS 0.6172 0.6510 +0.0338 (+5.5%) 0.0416 0.0460 +0.0044 (+10.6%) 0.1155 0.0778 -0.0377 (-32.6%)
Rwalk 0.5784 0.6366 +0.0581 (+10.0%) 0.0937 0.0769 -0.0169 (-18.0%) 0.1074 0.0644 -0.0430 (-40.0%)

CIFAR10/100
(T = 11)

EWC 0.6950 0.7055 +0.0105 (+1.5%) 0.0228 0.0181 -0.0048 (-21.1%) 0.1121 0.1058 -0.0062 (-5.5%)
SI 0.7127 0.7186 +0.0059 (+0.8%) 0.0459 0.0408 -0.0051 (-11.1%) 0.0733 0.0721 -0.0012 (-1.6%)

MAS 0.7239 0.7257 +0.0017 (+0.2%) 0.0479 0.0476 -0.0003 (-0.6%) 0.0603 0.0588 -0.0015 (-2.5%)
Rwalk 0.6934 0.7046 +0.0112 (+1.6%) 0.0738 0.0707 -0.0031 (-4.2%) 0.0672 0.0589 -0.0084 (-12.5%)

Omniglot
(T = 50)

EWC 0.6632 0.8387 +0.1755 (+26.5%) 0.2096 0.0321 -0.1776 (-84.7%) -0.0227 -0.0239 -0.0012 (-5.3%)
SI 0.8478 0.8621 +0.0143 (+1.7%) 0.0247 0.0167 -0.0079 (-32.0%) -0.0258 -0.0282 -0.0065 (-25.3%)

MAS 0.8401 0.8679 +0.0278 (+3.3%) 0.0316 0.0101 -0.0215 (-68.0%) -0.0247 -0.0314 -0.0067 (-27.1%)
Rwalk 0.8056 0.8497 +0.0440 (+5.5%) 0.0644 0.0264 -0.0380 (-59.0%) -0.0226 -0.0294 -0.0068 (-30.1%)

CUB200
(T = 10)

EWC 0.5363 0.5864 +0.0501 (+9.3%) 0.0437 0.0494 +0.0058 (+13.3%) 0.1155 0.0580 -0.0575 (-49.8%)
SI 0.5457 0.5627 +0.0170 (+3.1%) 0.0531 0.0471 -0.0060 (-11.3%) 0.0954 0.0838 -0.0116 (-12.2%)

MAS 0.5857 0.5952 +0.0096 (+1.6%) 0.0690 0.0626 -0.0065 (-9.4%) 0.0411 0.0373 -0.0037 (-9.0%)
Rwalk 0.5261 0.5567 +0.0306 (+5.8%) 0.0544 0.0431 -0.0113 (-20.8%) 0.1158 0.0934 -0.0225 (-19.3%)
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Figure 4: Experimental results on CL benchmark dataset

we also provide experiments using Deep Mutual Learning
(Zhang et al., 2018) and Label Smoothing (Szegedy et al.,
2016) regularizer for achieving the wide local minima in the
SM; their performance was slightly worse than CPR.

With the best β in hand, Fig. 3(b) experimentally verifies
whether using CPR indeed makes the local minima wide.
Following the methodology in (Zhang et al., 2018), we
perturb the network parameters, after learning the final task,
of EWC and EWC+CPR by adding Gaussian noise with
increasing σ, then measure the increase in test loss for each
task. From the figure, we clearly observe that EWC+CPR
has a smoother increase in test loss compared with EWC
(without CPR) in each task. This result empirically confirms
that CPR indeed promotes wide local minima for each task
in CL settings and validates our initial intuition given in Sec.
2.1. In the SM, we repeat the same experiment with MAS
(Aljundi et al., 2018a).

3.3. Comparison with state-of-the-art

Next, we apply CPR to the state-of-the-art regularization-
based CL on the benchmark datasets and measure the per-
formance improvement with the three metrics in Section 3.1.

For the regularization strengths, we first select the best λ
without CPR, then choose β according to the procedure in
Section 3.2. The results in Table 1 are averaged over 10 re-
peated experiments with different random initialization and
task sequence using the chosen (λ, β). The hyperparameters
are reported in the SM.

CIFAR-100 and CIFAR-10/100 In Table 1 and
Fig. 4(a), we observe that CPR consistently improves all
regularization-based methods for all tested datasets in terms
of increasingA10 and decreasing I1,10, and also consistently
decreases F10 except for MAS in CIFAR-100. Additionally,
we find that for CIFAR-10/100, the orders of the 10 tasks
in CIFAR-100 and CIFAR-10 affect the performance of the
CPR; namely, in the SM, we show that when CIFAR-10
tasks are positioned in different positions rather than at the
beginning, the gain due to CPR got much bigger.

Omniglot This dataset is well-suited to evaluate CL with
long task sequences (50 tasks). In Table 1, it is clear that
the CPR considerably increases both plasticity and stability
in long task sequences. In particular, CPR significantly
decreases F10 for EWC and leads to a huge improvement
in A10. Interestingly, unlike the previous datasets, I1,10 is
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Figure 5: Ablation studies on CL with wide local minima

negative, implying that past tasks help in learning new tasks
for the Omniglot dataset; when applying CPR, the gains in
I1,10 are even better. Furthermore, Fig. 4(b) indicates that
applying CPR leads to less variation in At curves.

CUB200 The results in Table 1 and Fig. 4(c) show that CPR
is also effective when using a pre-trained ResNet model for
all methods and metrics, except for EWC. Here, CPR signif-
icantly increases A10 and reduces I1,10 when compared to
EWC, whereas F10 is slightly increased for EWC + CPR.

3.4. Ablation study

We study the ablation of the CPR on the regularization-
based methods using CIFAR-100 with the best (λ, β) found
previously, and report the averaged results over 5 random
initializations and task sequences in Fig. 5. The ablation
is performed in two cases: (i) using CPR only at task t,
denoted as EWC + CPR (only t-th task), and (ii) using
CPR except task t, denoted as EWC + CPR (w/o t-th task).
Fig. 5(a) shows f t10, the amount of forgetting for task t
after learning the task 10, and Fig. 5(b) shows It+1,10, the
amount of gap with fine-tuning after task t. In Fig. 5(a),
we observe that CPR helps to decrease f t10 for each task
whenever it is used (except for task 3), but f t10 of EWC +
CPR (w/o t-th task) shows a more random tendency. On
average, EWC + CPR does reduce forgetting in all tasks,
demonstrating the effectiveness of applying CPR to all tasks.
Notably in Fig. 5(b), It+1,10 of EWC + CPR (only t-th task)
is lower than that of EWC + CPR (w/o t-th task) only when
t = 1; this indicates that CPR is most beneficial in terms of
plasticity when CPR is applied as early as possible to the
learning sequence. EWC + CPR again achieves the lowest
(i.e., most favorable) It+1,10. Fig. 5(c), as a further evidence,
also suggests that applying CPR for t = 1 gives a better
accuracy. Moreover, the accuracy of EWC + CPR (w/o
t-th task) gets closer to the optimal EWC + CPR, which is
consistent with the decreasing difference of It+1,10 between
EWC + CPR (w/o t-th task) and EWC + CPR in Fig. 5(b).
The EWC + CPR still gives the bestA10 and individual at,10

accuracy. We emphasize that model converging to a wide
local minima from the first task onwards considerably helps
the training of future tasks as well, i.e., a significant increase
in the plasticity can be achieved. By using this finding, we
conducted an experiment on the case where CPR have to
learn unscheduled additional tasks and got the impressive
experimental result which is reported in SM.

3.5. Feature map visualization using UMAP

We present next two-dimensional UMAP (McInnes et al.,
2018) embeddings to visualize the impact of CPR on learnt
representations. We compare representations produced by
models trained on CIFAR-100 in two cases: (i) an oracle
model which learns from the first and the t-th task at training
time t, and (ii) sequential CL using EWC and EWC + CPR.
We sample 30% of the test data for producing the visualiza-
tion. Details and parameters for UMAP are provided in the
SM.

We first visualize Ot,1, defined as the output feature map
of the first output layer given the first task’s test data after
training the t-th task. The first row of Fig. 6 displays the
respective embeddings, where ct corresponds to the center
point of the cluster for the t-th task. In the ideal case (in
terms of stability), there would be little to no change in
Ot,1 during CL. This is evident in the embeddings for the
joint model, which show that each cluster Ot,1 is almost per-
fectly centered. In contrast, the resulting embedding from
EWC has a slightly scattered ct when compared to the joint
(oracle) model. This indicates that, whenever the model
is trained on a new task, feature maps of the output layer
may drift despite EWC’s regularization for previous task
parameters. EWC + CPR, in turn, display more centered ct
than EWC, indicating that by applying CPR to EWC model
parameters become more robust to change after training
future tasks.

In order to provide further evidence that CPR provides bet-
ter plasticity on new tasks, we visualized ht, defined as
the embedding for the feature map of the last hidden lay-
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Figure 6: Feature map visualization using UMAP

ers given t-th test data after training the t-th task. In the
second row of Fig. 6, Joint and EWC + CPR show closer
feature embeddings. EWC, in turn, has a first and second
task feature maps divided from other tasks. Strikingly, the
feature embeddings for the first task are completely sepa-
rated. Therefore, we believe that CPR helps the model share
feature representations from the start of training, potentially
explaining the improvement of the intransigence measure
observed in Sec 3.4. e are unaware of prior work that makes
use of feature embedding to identify reasons for catastrophic
forgetting and limited plasticity of CL methods, and hope
that such feature map visualizations become a useful tool
for the field. Additional visualizations on different random
initializations, different task sequences and MAS (Aljundi
et al., 2018a) are reported in the SM.

4. Conclusion
We proposed a simple classifier-projection regularization
(CPR) which can be combined with any regularization-
based continual learning (CL) method. Through extensive
experiments, we demonstrated that, by converging to a wide
local minima at each task, CPR can significantly increase the
plasticity and stability of CL. These encouraging results in-
dicate that wide local minima-promoting regularizers have
a critical role in successful CL. Moreover, we observed
the impact of CPR through feature map visualizations—a
practice that we hope will become more common in future
analysis of CL methods. As a theoretical interpretation, we
argue that the additional term found in CPR can be under-
stood as a projection of the conditional probability given by
a classifier’s output onto a ball centered around the uniform
distribution.
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CPR: Classifier-Projection Regularization for Continual Learning

Sungmin Cha 1 Hsiang Hsu 2 Flavio P. Calmon 2 Taesup Moon 1

In this supplementary material, we give proofs of the lemma and proposition omitted from Sections 2 , and also provide
further details about experiment setups in Section 3.1 , additional experiments on wide local minimum as well as Deep
Mutual Learning (Zhang et al., 2018) and MAS (Aljundi et al., 2018) in Section 3.2 . We also report the best regularization
strength λ and β in the proposed CPR, and additional experiments to compare with the state of the art on different task
arrangements in CL in Section 3.3 . Finally, we provide the hyperparameter settings and additional visualization results for
UMAP in Section 3.5 .

1. Mathematical Proofs
1.1. Lemma 1 [Cover & Thomas, 2012, Theorem 11.6.1]

IfDKL(Q‖P ) is unbounded, then the inequality holds. Assume thatDKL(Q‖P ) is bounded, then it impliesDKL(Q
∗‖P ) =

min
Q∈Q

DKL(Q‖P ) is also bounded. Since Q is a convex set, we consider a convex combination Qθ of Q∗ and Q, i.e.,

Qθ = (1− θ)Q∗ + θQ ∈ Q, where θ ∈ [0, 1]. Since Q∗ is the minimizer of DKL(Q‖P ), we have
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=
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Q log
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−Q∗ log Q

∗

P
(S.8)

= DKL(Q‖P )−D(Q‖Q∗)−D(Q∗‖P ), (S.9)

where the facts that the exchange of derivatives and integrals is guaranteed by the dominated convergence theorem and that
the integrals

∫
Q∗ =

∫
Q = 1. Therefore, we have DKL(Q‖P ) ≥ D(Q‖Q∗) +D(Q∗‖P ), the desired result.
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1.2. Proposition 1

Note that C(PU , ε) is a convex set by definition since the KL divergence is convex, and hence Lemma 1 applies. By Lemma 1
and the information inequality (i.e., the KL divergence is always non-negative),

DKL(P
t−1∗
Y |X ‖P

t
Y |X |P

t−1
X ) ≥ DKL(P

t−1∗
Y |X ‖P

t∗
Y |X |P

t−1
X ), ∀x1

n. (S.10)

Therefore, we have
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where the inequality comes from (S.10).

2. Experimental details of Section 3.1
For training models on CIFAR100, CIFAR10/100 and Omniglot, we used the Adam (Kingma & Ba, 2015) optimizer with
initial learning rate 0.001 for 100 epochs. For training CUB200, we set the initial learning rate as 0.0005 and trained the
model for 50 epochs. Here we also used the learning rate scheduler which drops the learning rate by half when validation
error is not decreased. All experiments was implemented in PyTorch 1.2.0 with CUDA 9.2 on NVIDIA 1080Ti GPU.

Following (Ahn et al., 2019), we use a simple CNN model for training CL benchmark dataset except for CUB200 and details
of an architecture is in Table 1 and 2.

Table 1: Network architecture for Split CIFAR-10/100 and Split CIFAR-100

Layer Channel Kernel Stride Padding Dropout
32×32 input 3

Conv 1 32 3×3 1 1
Conv 2 32 3×3 1 1

MaxPool 2 0 0.25
Conv 3 64 3×3 1 1
Conv 4 64 3×3 1 1

MaxPool 2 0 0.25
Conv 5 128 3×3 1 1
Conv 6 128 3×3 1 1

MaxPool 2 1 0.25
Dense 1 256

Task 1 : Dense 10
· · ·

Task i : Dense 10
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Table 2: Network architecture for Omniglot

Layer Channel Kernel Stride Padding Dropout
28×28 input 1

Conv 1 64 3×3 1 0
Conv 2 64 3×3 1 0

MaxPool 2 0 0
Conv 3 64 3×3 1 0
Conv 4 64 3×3 1 0

MaxPool 2 0 0
Task 1 : Dense C1

· · ·
Task i : Dense Ci

3. Additional Experimental Results of Section 3.2
3.1. Experimental Results of Wide Local Minima using Training Data
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Figure 1: Experimental result of adding Gaussian noise to training data

Figure 1 shows the experimental result of Section 3.2 using training data. We clearly see that training loss of EWC + CPR
slowly increases than EWC in all tasks.

3.2. Experimental Results on MAS (Aljundi et al., 2018) and Deep Mutual Learning (Zhang et al., 2018)

We did the same experiments of Section 3.2 using MAS (Aljundi et al., 2018), and Figure 2 shows the results. In Figure
2(a), we observe that MAS shows a clear trade-off between F10 and I1,10 as β increases, unlike the result of EWC in the
manuscript. (We note SI (Zenke et al., 2017) and RWalk (Chaudhry et al., 2018) showed similar trend as EWC (Kirkpatrick
et al., 2017) in the manuscript). MAS + CPR achieves the highest accuracy in the range of 0.5 ≤ β ≤ 0.9 but we can see
that β = {0.7, 0.9} shows a worse F10 compared with MAS. Therefore, we can select β = 0.5 as the best hyperparameter
using the criteria for selecting β proposed in Section 3.2 of the manuscript.

We also experimented Deep Mutual Learning (DML) (Zhang et al., 2018) as the regularization for converging wide local
minima. We used β = 1 only because DML reports the best result (with β = 1) which is converging to a better wide local
minima compared to Entropy Maximization (Pereyra et al., 2017). In our experiment, DML shows an increased A10 and
decreased F10, I1,10 but it is not as effective as our CPR. Most decisively, DML requires training at least more than two
models so we excluded DML from our consideration.

Figure 2(b) shows the experimental result on adding Gaussian noise to the parameters which is trained on CIFAR-100.
We clearly observe that test loss of each task more slowly increases by applying CPR to MAS. We believe this is another
evidence that CPR can be generally applied to regularization-based CL methods, promoting the wide-local minima.
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Figure 2: Experiments for selecting the regularization on CIFAR100

4. Selected Best Hyperparameters

Table 3: Best hyperparameters for each regularization-based CL method and CPR

Best λ / Best β CIFAR100 CIFAR10/100 CIFAR50/10/50 CIFAR100/10 Omniglot CUB200
EWC 12,000 / 0.5 25,000 / 0.4 12,000 / 0.8 20,000 / 0.6 100,000 / 1.0 300,000 / 0.4

SI 1 / 0.8 0.9 / 0.2 2 / 0.9 2 / 0.5 8 / 0.7 50 / 0.6
MAS 3 / 0.5 1 / 0.2 2 / 0.1 2 / 0.4 10 / 0.6 50 / 0.6

RWalk 8 / 0.9 4 / 0.4 10 / 0.6 10 / 0.8 3,000 / 0.6 300 / 0.9

For each dataset, we firstly searched best λ for each regularization-based CL method and then we selected best β for CPR.
All best hyperparameters are proposed in Figure 3.

5. Experimental Results on CIFAR100/10, CIFAR50/10/50
As an additional experiments of Section 3.3 in the manuscript, we experimented on CIFAR100/10 and CIFAR50/10/50,
which are the different versions of CIFAR10/100. Namely, we changed the order of the tasks and varied the location for
which CIFAR-10 task is inserted. Table 4 and Figure 5 show the results. We can achieve better relative improvements on all
metrics compared to CIFAR-10/100.

Table 4: Experimental results on continual learning senarios with and without CPR. Blue color denotes the case which CL method is
positively affected by CPR and red color represents a negative impact of CPR.

Dataset Method
Average Accuracy (A10) Forgetting Measure (F10) Intransigence Measure (I1,10)

W/o
CPR

W/
CPR

diff
(W-W/o)

W/o
CPR

W/
CPR

diff
(W/-W/o)

W/o
CPR

W/
CPR

diff
(W-W/o)

CIFAR50/10/50
(T = 11)

EWC 0.5978 0.6346 +0.0368 (+6.2%) 0.0288 0.0292 +0.0004 (+1.4%) 0.1682 0.1311 -0.0371 (-22.1%)
SI 0.6184 0.6468 +0.0284 (+4.6%) 0.0598 0.0532 -0.0066 (-11.0%) 0.1194 0.0970 -0.0224 (-18.8%)

MAS 0.6172 0.6238 +0.0066 (+1.1%) 0.0484 0.0448 -0.0036 (-7.4%) 0.1310 0.1277 -0.0033 (-2.5%)
Rwalk 0.5697 0.6315 +0.0619 (+10.9%) 0.0781 0.0548 -0.0233 (-29.8%) 0.1515 0.1109 -0.0406 (-26.8%)

CIFAR100/10
(T = 11)

EWC 0.5808 0.6158 +0.0376 (+6.5%) 0.0304 0.0238 -0.0066 (-21.7%) 0.1694 0.1378 -0.0317 (-18.7%)
SI 0.6116 0.6332 +0.0216 (+3.5%) 0.0681 0.0692 -0.0011 (-1.6%) 0.1044 0.0832 -0.0212 (-20.3%)

MAS 0.6138 0.6363 +0.0214 (+3.5%) 0.0536 0.0532 -0.0004 (-0.7%) 0.1153 0.0942 -0.0211 (-18.3%)
Walk 0.5618 0.6113 +0.0495 (+8.8%) 0.0924 0.0852 -.0072 (-7.8%) 0.1322 0.0892 -0.0430 (-32.5%)
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Figure 3: Average accuracy for CIFAR10/100 and CIFAR50/10/50

6. Hyperapameter Settings and Visualization Details of UMAP
From several visualizations, we found out that best hyperparameters for UMAP(McInnes et al., 2018) as {n_neighbors =
200, min_dist = 0.1, n_components = 2} and we got all visualization results with these hyperparameters. We used raw
features of Ot,1 as a input of UMAP, however, for visualizing ht, we reduced the dimension of ht to 50 by using PCA.

7. Additional Feature Map Visualizations
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Figure 4: Visualization Result on EWC (seed = 9)

We visualize Ot,1 and ht of Joint, EWC (Kirkpatrick et al., 2017), EWC (Kirkpatrick et al., 2017) + CPR with a different
seed and visualizations are shown in Figure 7. We hold the experimental settings and we can see the similar pattern of Ot,1
and ht, which is already shown in Section 3.5 of the manuscript. Especially, Ot,1 of EWC showed clearly divided clusters
compared with the visualization result in the manuscript, nevertheless, we confirm that the feature maps become to be more
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shared and centered by applying CPR to EWC.

We also did same visualization using MAS (Aljundi et al., 2018) and the results are shown in Figure 7. We checked the
similar results of Ot,1 and ht, and we could see that, by applying CPR to MAS, Ot,1 and ht are more centered than before.
From these additional visualizations, we want to emphasize that the pattern of Ot,1 and ht is a general phenomenon of
regularization-based CL methods, and these can show why the typical regularization-based CL methods still suffer from
the stability-plasticity dilemma at the feature map level. Also, we could check again that CPR increases the stability and
plasticity of the regularizaion-based CL methods by alleviating this phenomenon.
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(a) Visualization result on MAS (seed = 0)
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(b) Visualization result on MAS (seed = 9)

Figure 5: Feature map visualization of MAS
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Table 5: Experimental results on training additional tasks with EWC and EWC + CPR

A20 F20 I1,20 I10,20

EWC + CPR
(all tasks) 0.6612 0.1229 0.1027 0.0855

EWC
(all tasks) 0.6195 0.1362 0.1319 0.1156

EWC + CPR
(CIFAR-100) 0.6502 0.1486 0.0882 0.0677

EWC
(CIFAR-100) 0.6143 0.1604 0.1128 0.0870

8. Experiments on additional tasks
From Section 3.4 in the manuscript, we demonstrated the critical role of CPR in terms of increasing the plasticity. From this
result, we thought that CPR might helps to learn additional future tasks well without the hyperparameter search for new
whole tasks. To verify our hypothesis, we designed a new task sequence made up of 20 tasks, CIFAR100(10 tasks) + SVHN
(Netzer et al., 2011)(5 tasks) + Synthetic MNIST (Roy et al., 2018)(5 tasks) and each task of SVHN and Synthetic MNIST
is a binary image classification. Table 5 shows experimental results of EWC (Kirkpatrick et al., 2017) on additional tasks.

We divide the experimental setting as two different cases. The first case is that we newly search the best hyperparameter for
all 20 tasks (denoted as all tasks), and in the second case, we just use the best hyperparameter got from CIFAR-100 (denoted
as CIFAR-100). EWC + CPR (CIFAR-100) shows a low I10,20 compared with EWC (all tasks), as a result, EWC + CPR
(CIFAR-100) achieve the higher A20 than EWC (all tasks). Also, we observe that, if we find the best hyperparameters (λ, β)
for all 20 tasks again, EWC + CPR (all tasks) still achieves the best result in all metrics. In conclusion, we believe that this
is a remarkable result, and it shows the effect of wide local minimum in CL continues in additional tasks.
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