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Abstract

With the democratization of Large-Language-
Models through the release of products such as
ChatGPT, the public is being more and more
sensitive to flaws known for a long time in
the community. An example of that is the
overconfidence in the responses to Out-Of-
Distribution (OOD) queries. Those are likely
to be non-relevant and be detrimental to the
public sentiment. However, this could be
prevented by OOD detectors which are able
to determine whether the model will be able
to produce a satisfactory answer. We focus
our work on out-of-the-bag detectors that are
model-independent and do not leverage the
model structure, but only an input’s latent rep-
resentations. We first reproduce the results
of Colombo et al. and Guerreiro et al. on
a restricted benchmark, then we argue that a
better leverage of latent representations can
lead to improved performances. To this ex-
tent, we introduce an exponential-based and an
euclidean-distance-based methods to make our
point. The code leading to the experimental re-
sults is available on GitHub.1

1 Introduction

As the use of large models in real-world applica-
tions continues to grow, ensuring their robustness
and reliability becomes a critical concern. Two
key challenges that arise in deploying large mod-
els into production are Out-of-Distribution (OOD)
detection (Darrin et al., 2023a,b; Gomes et al.) and
adversarial attack detection (Picot et al., 2023a,b).
OOD detection refers to the ability to detect in-
puts that differ significantly from the data that the
model was trained on, which can lead to erroneous
predictions and other issues. Adversarial attack
detection, on the other hand, involves detecting
when an attacker deliberately manipulates the in-

1github.com/lilianmarey/nlp ood detection

puts to the model in order to cause it to make in-
correct predictions. Both OOD detection and ad-
versarial attack detection are crucial to ensuring
that large models are able to function correctly in
real-world scenarios, and are therefore important
areas of research and development in the field of
machine learning.

This study places its emphasis on OOD detec-
tion, an area that has been largely neglected in the
context of textual data. Text classification models
are built based on the assumption that the training
and testing data follow the same probability distri-
bution. After training a model, it can be evaluated
on any dataset with the correct format. However,
when the probability law of the test data is differ-
ent from that of the training data, it results in incor-
rect predictions. A dataset that violates the proba-
bility law of the training set is referred to as out of
distribution (OOD). We choose to based our work
on (Colombo et al., 2022) which mainly work on
the latent space of the multilayer neural networks

The paper aims to utilize the latent space repre-
sentation of a neural network to detect OOD data.
To achieve this, three databases are required: the
training database used to train the network, a test
database with the same probability distribution as
the training database, and an OOD database that
differs in distribution from the training database.

2 Related Work

At each output of a Transformer layer, a vector
encodes the data. The average vector of the la-
tent space representations is assigned to each data
point, resulting in the latent training, test, and
OOD distributions.

Several similarity metrics, such as Integrated
Rank-Weighted Depth and Mahalanobis (Ghor-
bani, 2019), are utilized to compute similarity
scores between the test and training distributions



and between the OOD and training distributions.
The computed threshold value is then used to con-
struct the OOD detector.

The Integrated Rank-Weighted Depth (DIRW )
is a metric which allows computing a distance
between a vector x and a collection of vectors
(xi)1≤i≤n of the same distribution. We used the
Monte-Carlo approximation2 of DIRW in order to
compute the distance :

D̃IRW = 1
nproj

∑nproj

k=1 min(f(uk), 1− f(uk))

where (ui)1≤i≤nproj are sampled vec-
tors on the n-dimensional sphere and
f(uk) =

1
n

∑n
i=1 1(⟨uk, x− xi⟩ ≤ 0)

The point of (Colombo et al., 2022) is that using
DIRW depth on the average latent representations
allows obtaining state-of-the-art results in OOD
detection. In this paper, we will build a benchmark
to evaluate the performance of these techniques
through several metrics. Moreover, we will chal-
lenge the choice of using the average of the data
representation in the latent space by proposing an
alternative aggregation method putting more im-
portance on the last layers of the neural network.
We will also introduce a new method based on the
Euclidean distance.

3 Experimental Protocol

As a base model, we consider a BERT model,
fine-tuned on the IMDB database, thus for a
binary classification task. We were able to
import directly this pre-trained model from
Hugging Face3. The network is composed of 12
”Bert Layer” of auto-encoders, with an output
size of 768. We thus based our data representa-
tion on the average of 12 latent vectors of size 768.

We consider four other datasets as OOD
datasets : sst2, flickr30K, WM16 (de-en) and
20newsgroup.

We use two metrics to evaluate the perfor-
mances of the different OOD-Detectors. Follow-
ing (Colombo et al., 2022), we use two threshold-
invariant metrics, the Area Under the Receiver Op-
erating Curve (AUROC) and the Area Under the
Precision-Recall curve (AUPR).

AUROC =

∫ 1

0
TPR(FPR−1(t)),dt (1)

2We used the Python implementation of Staerman et al.
3huggingface.co/fabriceyhc/bert-base-uncased-imdb

where TPR is the true positive rate and FPR is
the false positive rate.

AUPR =

∫ 1

0
P(r),dr (2)

where P is the precision and r is the recall.
We will now introduce the different detectors

and their philosophy we will be benchmarking.

3.1 OOD Detectors

The philosophy between the different detectors we
are going to present is to detect anomalies and, as
such, to build similarity measures between what
should be and what is. There are two approaches
: the first is based on the heuristic that OOD sam-
ples exhibit particularly non-uniforms logits or at-
tentions and the second one is data-driven, com-
paring the logits, attentions or embeddings with
the expected distribution of the train samples.

Let’s first introduce the different notations we
will use. logits refers to the logits returned by Bert
for classification.The notation embd is the mean
of different embeddings obtained after each Bert
Layer. softmax refers to the function :

x ∈ Rd → softmax(x) := (
ex1∑
i e

xi
, ...,

exd∑
i e

xi
) ∈ Rd

LogSumExp is a soft surrogate of the max :

x ∈ Rd → LogSumExp(x) := log(
∑
i

exi) ∈ R

attentions refers to the attention weights ob-
tained in the last layer of Bert (shape 768).

Finally, DM is the Mahalanobis distance and
DIRW is the Integrated-Rank-Weighted distance
introduced in (Colombo et al., 2022), whereas W1

corresponds to 1-Wassertein distance.

Non-uniformity Detectors
Maximum soft-probability (MSP)

sMSP (x) = 1−max
y∈Y

[softmax ◦ logits](x)

Energy (E)

sE(x) = T × [LogSumExp ◦ logits](
x

T
)

Wasserstein-to-uniform (W2U)Guerreiro et al.

sW2U (x) = W1(attentions(x),U|attentions|)



Data-driven Detectors
Mahalanobis (M)

sM (x) = −DM (embd(x), embd(Xtrain)y=ŷ)

TRUSTED (IRW)

sIRW (x) = −DIRW (embd(x), embd(Xtrain)y=ŷ)

Wasserstein-to-data (W2D) Guerreiro et al.

rj(x) = W1(attentions(x), attentions(Xtrain)
(j)
y=ŷ)

sW2D(x) =
1

k

∑
k smallest

rj(x)

Wasserstein-combo (WC) (Guerreiro et al.,
2022) This measure is a combination of
W2U and W2D in order to get the best of
both. Given a train set, we first estimate
the W2U scores, and define τu as the 98th

percentile. We define sWC as :

sWC(x) =1[sW2U (x) > τu] ∗ sW2U (x)

+ 1[sW2U (x) ≤ τu] ∗ sW2D(x)

For computationally expensive methods such as
Wass2Data, where we have to compute all the
distances between the train set and the test set,
we sampled uniformly a given percentage of the
dataset to represent it. In fact, for a train set of
ntrain, dimension d and a test set of ntest samples,
it represents ntrainntestd operations. It can be of
magnitude 1011 in certain cases. Hence, at each
call, a new batch of 10% of the entire dataset is
independently drawn. The method introduced in
section 4 also uses random sampling.

3.2 Challenging the aggregation method
For reasons of simplicity and computational effi-
ciency, (Colombo et al., 2022) makes the choice
to aggregate the layers by averaging. This choice
implicitly asserts that the data representation
would be as important in the latent space at the
beginning of the network as at the end. However,
it can be noted that baseline methods and the
literature in general tend to think that the last
layers of the network capture information better
than the beginning layers. We therefore propose to
aggregate by putting more weight on the vectors
at the end of the network.
Instead of averaging by FPM (x) =
1
L

∑L
l=1 ϕl(x), we propose the exponential

aggregation

Fα(x)i =
1
L

∑L
l=1 exp(αlϕl(x)i)

with an appropriate alpha.

To evaluate this new aggregation, we take the
paper pipeline and directly evaluate the perfor-
mance of the OOD-detector. Still on the BERT
network, we evaluate the detector by the Err met-
ric defined in (Colombo et al., 2022), using his-
tograms based on Mahalanobis and IRW similar-
ities of IMDB (test) vs SST2 (OOD). One could
argue that putting the embedding in the exponen-
tial could stack the negative values and so de-
crease representation space expressiveness. We
tried putting it outside the exponential term and
results were just not convincing, this is why we
decided of keeping this aggregation method.

4 A new method : LiLO

Given a train in-distribution dataset X in and a
train OOD-dataset X out, we define the matrix
E(X) = (E1(X), ..., EL(X))T ∈ RL×d where
El(X) ∈ Rd is the lth d-dimensional embedding.
Alongside, we define E2(·) := E(·)E(·)T ∈ RL2

and U(X) = 1
|X|

∑
x∈X U(x), with X ⊂ Rd and

U : Rd → Rm,m ∈ {L,L2}
Also given a distance measure D, our goal is

to find some α parameterizing a class of func-
tions such that intra-dataset distances are mini-
mized while the distances in/ood are maximized.
A formulation of this problem can be :

min
α,f

1

|X in|2
∑

uin,vin

D(fα(uin), fα(vin))

+
1

|X out|2
∑

uout,vout

D(fα(uout), fα(vout)

− 1

|X in||X out|
∑

uin,vout

D(fα(uin), fα(vout)

We studied the case where fα is linear (fα =
ETα) and D = || · ||22. We will refer to this
setup as linear-ℓ2-opt (LiLO). We can reformulate
the problem as (demonstration is available in Ap-
pendix B) :

min
α∈RL

αTGα

where :

G =E2(Xin) + E2(Xout)

− (E(Xin)− E(Xout))
(
E(Xin)− E(Xout)

)T
We can recognize an eigenvalue’s problem as we
can prove that G ≻ 0 using convexity arguments.



The solution is α∗ an eigenvector associated with
λ∗ = minSp(G)

A benchmark varying the OOD-Train set is
available in Appendix D.

For example, in using imdb as in-ds, sst2 as
ood-train and wmt16 as ood-test, we obtain the
scores distribution displayed in Figure 1 and Fig-
ure 2 if we are aggregating using the mean or α∗

As displayed in Figure 3, we can see that the
weights can be negative, and of different scales.
The scale comparison is possible as we deal with
normalized embeddings.

5 Results

5.1 Benchmark

The different score’s distribution can be found in
Appendix C.

Methods AUROC AUPR

Mahalanobis 0.964 0.943
IRW 0.964 0.942
LiLO 0.850 0.443

Wass2data 0.821 0.369
Wasscombo 0.817 0.363

Energy 0.700 0.198
MSP 0.696 0.950

Wass2unif 0.593 0.904

Table 1: Results for BERT (Averaged over OOD
Datasets)

5.2 Exponential aggregation

The Err curves over α are presented in Ap-
pendix E.

Methods FPM F.001 F.236 F.239

Mahalanobis 8.99 9.07 7.61 7.64
IRW 9.02 9.33 7.70 7.42

Table 2: Err scores for exponential aggregation

6 Discussion/Conclusion

The Optimal-Transport inspired distances, de-
scribed in (Guerreiro et al., 2022), seem to under-
perform in our benchmark. This is probably due
to the fact that in the original paper, the hidden
dimension is smaller. The task being Neural Ma-
chine Translation, the attention map is computed
between tokens and therefore is of dimension of

the order of 10. In our setup, the attention is com-
puted on the embeddings, and therefore on dimen-
sion 768. The attention-focus used to distinguish
OOD samples may not be discriminating enough
to obtain more relevant results.

Indeed, we obtained the same result with mod-
els for NMT Task as can be seen in Figure 4. How-
ever, it is worth noticing that even with this draw-
back, the method outperforms some methods of
the benchmark.

Figure 4: Wass2Unif with NMT backbone

Moreover, the performances obtained with a
simple norm such as ℓ2 suggest that optimizing the
aggregation function of the embeddings might im-
prove results as much as using more evolved dis-
tance measures. A pursuit of this paper could be
to combine the linear aggregation obtained with
LiLO with metrics such as IRW and the Maha-
lanobis distance, or to try to use kernels to explore
non-linear embedding layers combinations.
About the exponential aggregation: even if the
choice of the best α is expensive in time and space
because it is necessary to store the latent vectors of
all the layers for all the data, and to build a detector
for each α to be tested, using this aggregation al-
lows improving the results consequently. The next
step could be to calculate the optimal α for sev-
eral databases, in order to give a heuristic for the
choice of its value.

To conclude, we add support to (Colombo
et al., 2022) in the senses that out-of-the-bag
OOD detector can be built using similarity mea-
sures. In our restricted benchmark (less OOD
test sets than in the original paper), we did not
find any significant performance gap between the
Mahalanobis-based distance and the TRUSTED
method. However, we were able to show that
the aggregation method of embedding layers could
be of great influence in improving discrimina-



Figure 1: Using α∗ as projection
for ℓ2 distance

Figure 2: Using the mean as ag-
gregation function for ℓ2 distance
leads to bad results

Figure 3: α obtained using LiLO
on sst2

tive performances, even when trained against a
particular OOD dataset (LiLO). We introduced
an exponential-based aggregation function and
a new method based on the Euclidean distance
that demonstrated in relatively simple setups how
could a well-designed aggregation function lead
to competitive results. We hope that this would
convince researchers to try to gain a deeper under-
standing of how information flows across layers,
and thus paving the way for elegant OOD detec-
tors that are able to leverage this structure.
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A Procedure explanation of (Hendrycks
and Gimpel, 2018)

We explain here how we build OOD detectors
using a soft classifier approach as introduced in
(Hendrycks and Gimpel, 2018).

Let Dn = (Xi, Yi)i∈[|1,n|] ∈ (X × [|1, d|])n and
F a set of functions. The functions of is set are
such that, for any f ∈ F , f : X → ∆d where ∆d

is the d-dimensional simplex.
The function fDn is a soft-classifier trained on a

Dn whose natural hard-classifier is

FDn(·) = arg max
i∈[|1,n|]

[fDn(·)]i

From this, and given a threshold, t ∈ (0, 1) we
define a correctly-classified classifier Ccorr and
misclassified classifier Cmis such that :

Ccorr(Xk)=1(maxi[fDn (Xk)]i≥t)1(FDn (Xk)=Yk)

and

Cmis(Xk)=1(maxi[fDn (Xk)]i≥t)1(FDn (Xk )̸=Yk)

Similarly, by changing the second indicator to
1 ((Xk, Yk) ∈ D) or 1 ((Xk, Yk) /∈ D), we can
define Cin and Cout as defined in the original pa-
per.

Finally, by using the AUPR and AUROC met-
rics, which are threshold-independent, we have
valid classifiers independently of the threshold t
chosen.

B LiLO closed-form

If we consider the ℓ2-norm and if fα is such that

fα(·) = ET (·)α

The quantity we are minimizing is A+B−C :

A :=
1

|X in|2
∑

uin,vin

||ET (uin)α− ET (vin)α||22

B :=
1

|X out|2
∑

uout,vout

||ET (uout)α− ET (vout)α||22

C :=
1

|X in||X out|
∑

uin,vout

||ET (uin)α− ET (vout)α||22

We can compute separately each terms :

A =
1

|X in|2
∑

uin,vin

αT (E(uin)− E(vin))(E(uin)− E(vin))Tα

=αT
( 1

|X in|2
∑

uin,vin

(E(uin)E(uin)T + E(vin))E(vin))T

− E(uin)E(vin)T − E(vin)E(uin)T
)
α

=2αT
(
E2(Xin)− E(Xin)E(Xin)T

)
α

Similarly, we have :

B =2αT
(
E2(Xout)− E(Xout)E(Xout)T

)
α

C =αT
(
E2(Xin) + E2(Xout)− E(Xin)E(Xout)T

− E(Xout)E(Xin)T
)
α

Hence,

A+B − C = αTGα

where :

G =E2(Xin) + E2(Xout)

− (E(Xin)− E(Xout))
(
E(Xin)− E(Xout)

)T
One could see that G seems to look like a co-

variance matrix between the embeddings of each
dataset. It would be interesting to study the dif-
ferent properties of this matrix, and the forms it
takes for other norms, such as the ℓ1 for example,
provided they exist.



C Benchmark

Method \TestSet multi30k sst2 wmt16 newsgroup

TRUSTED

Mahalanobis

LiLO

Wass2Unif

Wass2Data

WassCombo

MSP

E

Table 3: Benchmark of methods



D LiLO BenchMark

Testset \Trainset multi30k sst2 wmt16 newsgroup

multi30k

sst2

wmt16

newsgroup

Table 4: Benchmark of LiLO,
IN-DS = imdb, random sampling = 10%

E Exponential aggregation Err values on BERT for IMDB vs SST-2

Figure 5: Err value for α ∈ [0.001, 0.32] (left) and α ∈ [0.001, 0.01] (right)


