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Abstract

Large Language Models (LLMs) have achieved001
remarkable success in various natural language002
processing tasks, yet their ability to generate003
long-form content remains poorly understood004
and evaluated. Our analysis reveals that cur-005
rent LLMs struggle with length requirements006
and information density in long-text generation,007
with performance deteriorating as text length008
increases. To quantitively locate such a perfor-009
mance degradation and provide further insights010
on model development, we present LongEval,011
a benchmark that evaluates long-text generation012
through both direct and plan-based generation013
paradigms, inspired by cognitive and linguistic014
writing models. The comprehensive experi-015
ments in this work reveals interesting findings016
such as that while model size correlates with017
generation ability, the small-scale model (e.g.,018
LongWriter), well trained on long texts, has019
comparable performance.020

1 Introduction021

Large Language Models (LLMs) have revolu-022

tionised Natural Language Processing (NLP),023

achieving remarkable performance across a wide024

range of generation tasks including dialogue gener-025

ation (Abdullin et al., 2024), story creation (Zhao026

et al., 2023), and open-ended text generation (Zhou027

et al., 2024). Although LLMs have been increas-028

ingly deployed in real-world applications, their abil-029

ity to handle long-document generation remains030

underexplored despite its significance.031

While there are studies seeking to improve the032

long-text generation ability (Bai et al., 2024; Que033

et al., 2024) and long context understanding ca-034

pability (Li et al., 2024a; Xu et al., 2023; Ding035

et al., 2024; Li et al., 2023a; Zhang et al., 2024d)036

recently, the evaluation of long-text generation has037

been largely overlooked. Most existing bench-038

marks focus solely on long-context retrieval and039

understanding tasks (Bai et al., 2024; Zhang et al.,040
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Figure 1: The information content of LLMs-generated
text and the golden human-authored text. We calculate
information entropy using the frequency of each word
in a document and determine the information content by
multiplying the total word count by information entropy.

2024b; Pham et al., 2024a; Quan et al., 2024; Tang 041

et al., 2024; An et al., 2024). A recent parallel work 042

HelloBench (Que et al., 2024) proposes to evalu- 043

ate the long-text generation by selecting samples 044

from existing tasks (e.g., open-ended QA), where 045

the tasks do not inherently require long generation 046

capability. 047

To set up a prilimary experiment of exploring 048

the long-generation capability of LLMs, we started 049

with collecting a set of long and informative doc- 050

uments and using selected prevalent LLMs to di- 051

rectly reproduce the full documents from given 052

summaries of those long documents. As shown in 053

Figure 1, the information content in the documents 054

is positively related to the length, which suggests 055

the necessity of long text generation ability. Fur- 056

thermore, it could be observed that the prevalent 057

LLMs (with parameters from 1B to 70B) still re- 058

main a large gap to the golden references regarding 059

both information content and length dimensions. 060

We then tried to explore whether the LLMs could 061

produce such long and informative documents by 062
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Figure 2: Th relation of the length requirement with the model-generated text length. Given the content plans we
require the LLMs to generate the text under various length requirements ranging from 100 to 32k. Specifically, we
use the ratio of the generated text length to the requested length in the input as a score to evaluate the model’s ability
to follow length instructions.

simply requiring to generate in specified lengths063

but failed. LLMs tend to exhibit declining length-064

following abilities as the required length increases,065

with significant deterioration observed for texts ex-066

ceeding 1k words, as revealed in Figure 2.067

Inspired by the cognitive writing theory, which068

posits that effective writing emerges from the pro-069

cess of "cooking knowledge stored in long-term070

memory" through planning, translating, and re-071

viewing (Flower and Hayes, 1981), we suspect072

that current generation paradigm of LLMs may073

be misaligned with human writing practices for074

long documents: LLMs often struggle to maintain075

consistency and provide deep insights in one-shot076

long-form writing, compared to plan-based writing.077

Specifically, the planning phase, serves as a cru-078

cial foundation for developing coherent arguments079

and structured thoughts (Scardamalia and Bereiter,080

1987), yet existing studies largely overlook this081

aspect of text generation.082

To address these limitations, we introduce083

LongEval, a comprehensive benchmark designed084

to evaluate LLMs’ long-text generation capabili-085

ties by supporting both direct and plan-based ap-086

proaches. Our framework incorporates two key087

innovations: i) a dual evaluation paradigm that088

assesses both one-shot style and plan-based struc-089

tured generation that more closely align with hu-090

man writing practices; ii) reliable automatic evalua-091

tion metrics that focus on content quality, structural092

coherence, and information density across various093

long text generation domains.094

Since scientific texts and popular science arti-095

cles often follow a prescribed writing structure,096

we select three long-text generation domains (i.e.,097

arXiv papers, blogs, and Wikipedia articles) that 098

necessitate that LLMs generate long-form texts (ex- 099

ceeding 2k words) to build the benchmark for sup- 100

porting a robust evaluation. Different from similar 101

work, HelloBench (Que et al., 2024) (166 samples 102

for evaluation) and LongWriter (Bai et al., 2024) 103

(120 synthetic samples for evaluation), we collect 104

166 high-quality human-authored samples. We de- 105

sign a data production pipeline that leverages an 106

advanced open-source LLM1 to process documents 107

from permissibly licensed sources across these dif- 108

ferent domains. In each documents, sections are 109

first summarized into comprehensive content as 110

plans, with each major point elaborated in 4-5 sen- 111

tences and verified by human annotators. 112

During the plan-based evaluation, the models are 113

required to generate the full-text section-by-section 114

using the summarized content plans as guidance, 115

whilst required to maintain semantic consistency 116

from previously generated sections. This approach 117

systematically evaluates LLMs’ long-text gener- 118

ation capabilities while aligning with the direct 119

generation paradigm for sections. Additionally, we 120

design eight metrics to evaluate the generalted long 121

texts on different dimensions of quality. i) To deter- 122

mine whether the LLM can follow instructions and 123

whether the generated content is reasonable, we 124

design the following domain-agnostic metrics at 125

the Document level: Content-following (Cont-fol), 126

Redundancy (Red), Length (Len), and Consistency 127

(Con). ii) We design domain-specific metrics for 128

the prescriptive domain of arXiv research papers 129

that evaluate the following sections: Introduction 130

1Qwen2.5-72B-Instruct
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(Intro), Related Work (RW), Method (ME), and131

Experimental Analysis (EA).132

2 Related Work133

Long Text Generation Recent research on long134

text generation has primarily focused on enhancing135

model performance (Bai et al., 2024; Zhang et al.,136

2024b; Pham et al., 2024a; Quan et al., 2024; Tang137

et al., 2024). A common approach involves con-138

structing large-scale instruction-following datasets139

tailored for long-text generation and employing var-140

ious optimization strategies to improve the capabil-141

ities of LLMs. Beyond direct model training, plan-142

based methods have gained traction for long-text143

generation. LongWriter (Bai et al., 2024) demon-144

strates that synthetic datasets, generated using a145

structured planning approach with GPT-4o, can146

effectively enhance LLMs’ ability to produce ex-147

tended text. Similarly, Wang et al. (2024) propose148

a framework for generating survey papers section149

by section, while Lu et al. (2024) employ a similar150

strategy to generate entire scientific articles. These151

studies suggest that structured generation methods152

can improve coherence and control over long-text153

outputs.154

Long Context Understanding A key challenge155

in long-text generation is ensuring that LLMs ef-156

fectively comprehend and utilize long contexts.157

Research in this area has focused on enhancing158

models’ long-context understanding while extend-159

ing their input length, leveraging their strong in-160

context learning capabilities (Jin et al., 2024; Zhang161

et al., 2024a; Ding et al., 2024; Li et al., 2023b;162

Jiang et al., 2023; Chen et al., 2023). These ef-163

forts primarily target tasks such as reading com-164

prehension, where models extract relevant infor-165

mation from lengthy inputs, as exemplified by166

benchmarks like LongICLBench (Li et al., 2024a),167

∞BENCH (Zhang et al., 2024d), and LonGLE (Li168

et al., 2023a). Despite these advancements, prior169

work has largely overlooked the challenge of gen-170

erating coherent and contextually consistent long-171

form text beyond mere retrieval or summarization.172

Long Text Evaluation Evaluating long-form text173

remains an open challenge. HelloBench (Que et al.,174

2024) attempts to address this by selecting long-175

text samples of general tasks and evaluating LLMs176

through using direct generation method. Most ex-177

isting evaluation frameworks rely on LLM-based178

scoring, but their robustness and reliability remain179

debated. As an alternative, Zhang et al. (2024c) 180

propose a reward model specifically designed for 181

long-text evaluation. 182

Additionally, several datasets have been devel- 183

oped to support long-text evaluation. Suri (Pham 184

et al., 2024b) employs a plan-based approach and 185

backtranslation (Li et al., 2024b; Köksal et al., 186

2024) to generate instructional texts, though its 187

focus is primarily on creative writing and blogs 188

rather than academic content. In contrast, Köksal 189

et al. (2024) construct a long-text dataset based on 190

Wikipedia and CommonCrawl, prioritizing direct 191

text generation over structured planning. These 192

studies highlight the need for high-quality datasets 193

and evaluation metrics that account for both plan- 194

based and direct-generation methods, particularly 195

in domains requiring structured and coherent long- 196

form outputs. 197

3 The LongEval Benchmark 198

To fill the gap of the evaluation of long document 199

generation, we propose LongEval, a benchmark 200

built upon a unified framework for long-text genera- 201

tion, and introduce a comprehensive evaluation sys- 202

tem. Compared with similar studies, LongEval pro- 203

vides a robust evaluation system distinct across the 204

dimension of data collection, generation paradigms, 205

domain-specific and hierarchical metrics, as shown 206

in Table 1. In this section, we first introduce a uni- 207

fied perspective of long text generation paradigms, 208

and then describe the accordingly designed evalua- 209

tion systems. 210

3.1 Long Text Generation Paradigms 211

The cognitive writing theory underscores the sig- 212

nificance of planning in human writing (Flower 213

and Hayes, 1981), and the plan-based paradigm 214

has been effectively used to generate synthetic 215

long-text data for training LLMs (Bai et al., 2024). 216

Therefore, generating ultra-long texts segment by 217

segment is the mainstream paradigm (Wang et al., 218

2024; Bai et al., 2024). In this regard, this paper 219

uses two methods (i.e., direct generation and plan- 220

based generation) for long-text generation. 221

Direct Generation Although the direct genera- 222

tion method is applied to most NLP tasks, as shown 223

in Figure 2, most LLMs cannot directly generate 224

text that exceeds 1k words. In this work, we also 225

evaluate the end-to-end long text generation ca- 226

pability of LLMs. Specifically, we additionally 227

perform direct generation by inputting the section 228
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(a) Plan-based Long Text Generation
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Figure 3: The Framework of our Long Text Generation method. Part (a) is the Plan-based method and part (b) is the
Long Text Evaluation method.

Benchmarks Characteristics

Real Data Plan Based Domain Specific Section & Document Level

LongReward ✗ ✗ ✗ ✗
LongWriter ✗ ✓ ✗ ✗
HelloBench ✓ ✗ ✓ ✗
LongEval (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison of different long-text generation benchmarks.

content plan p, the article’s length l, and other pos-229

sible writing materials (e.g., experimental results230

exp, references ref ) into LLMs.231

Plan-Based Generation The plan-based meth-232

ods are applied to generate long-length text due233

to its better performance than direct method (Bai234

et al., 2024; Lu et al., 2024). Our experiments also235

analyze the length-following abilities of LLMs. To236

better understand the models’ limitations, we con-237

duct an in-depth investigation of LLM-generated238

content across different domains. Figure 1 illus-239

trates our quantitative analysis of the relationship240

between text length and information content, us-241

ing human-written texts as a baseline. Therefore,242

as suggested by Figure 2, we assume that current243

LLMs cannot meet the requirements of users who244

want to generate text with a large amount of infor-245

mation. We design a unified plan-based generation246

method that uses the LLM to generate long text247

by section which ensures LLMs can generate text248

aligned with the length requirement.249

As for each sample, we input the content plan p250

of a section and the length requirement l to make251

LLMs generate the whole article by section. We252

additionally consider domain-specific writing re-253

quirements (e.g., for the arXiv paper domain, we254

use the experimental results as extra input to gener-255

ate the results analysis section and for Wikipedia 256

articles, we input the references to ensure the au- 257

thenticity of the content). A detailed description of 258

our plan-based generation method can be found in 259

Appendix B. 260

3.2 Evaluation System and Prompts 261

Previous works have primarily focused on studying 262

the long-context understanding ability of LLMs (Li 263

et al., 2024a; Jin et al., 2024; Xu et al., 2023; 264

Zhang et al., 2024d). Most of these tasks resem- 265

ble reading comprehension tasks and have standard 266

answers (e.g., asking questions like ‘How old is 267

Jack?’ based on a long context). Although Hel- 268

loBench (Que et al., 2024) has also evaluated the 269

long-text generation ability of LLMs, their evalu- 270

ation metrics do not take into account the charac- 271

teristics of ultra-long text generation (such as the 272

instruction-following ability in ultra-long text gen- 273

eration). In this work, we evaluate the generation 274

of long articles both at the Section level and the 275

Document level. 276

3.2.1 Domain-Specific Section-Level Metrics 277

Due to some domains being more prescriptive in 278

their format than others, we design a range of eval- 279

uation criteria for the arXiv research paper and 280

Wikipedia article domains that consider expected 281
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structures of these more prescriptive formats.282

Introduction (Intro) & Related Work (RW)283

Scores. Since we provide a detailed writing out-284

line and relevant references, we design a prompt285

to evaluate the Introduction and Related Work sec-286

tions of arXiv papers, as shown in Figure 4 in Ap-287

pendix A. Using the original paper as the gold refer-288

ence, we employed an LLM to assess the similarity289

between the generated text and the gold answer.290

The blog writing format does not require the in-291

clusion of references. While only papers contain292

specific related work sections, Wikipedia articles293

require extensive references throughout to ensure294

the authenticity of their content. Therefore, we295

treat the entire content of a Wikipedia article as a296

single related work section for evaluation.297

Experiment Analysis (EA) Score. In the re-298

search paper domain, based on our observation,299

current LLMs struggle to determine which sections300

require the use of experimental results (e.g., they301

would use the results of the experiment in method).302

Furthermore, LLMs tend to merely reiterate the303

key points outlined without delving into the un-304

derlying reasons or connecting the causes behind305

different experimental results. Therefore, as shown306

in Figure 4 in Appendix A, we design an evalua-307

tion prompt to compare the experimental analysis308

sections of the original article with those generated309

by the model.310

Method (ME) Score. For method descriptions,311

the content generated by LLMs often consists of312

vague descriptions of methods without providing313

detailed design plans or formulaic explanations. To314

address this, as shown in Figure 4 in Appendix A,315

we specifically designed a prompt to compare the316

method section of the original article with that gen-317

erated by the model.318

3.2.2 Domain-Agnostic Document-level319

Metrics320

Content-following (Cont-fol) Score. The input321

for generating long texts includes the writing out-322

line (i.e., the content plan generated in §4.2) of the323

entire article. Whether the model-generated text324

adheres to the requirements of the outline is a key325

factor in evaluating the quality of the generated text.326

Therefore, as shown in Figure 4 in Appendix A, we327

designed specialized prompts and input each sec-328

tion of the model-generated text along with the cor-329

responding prompts to evaluate the model’s ability330

GT_len Input_len ICR Num

arXiv 4,754.28 1,038.46 21.84 50
Wikipedia 3,323.54 844.09 25.40 68
Blog 2,623.10 766.19 29.21 48

Table 2: Data comparison across arXiv, Wikipedia, and
blogs. IC presents Information Compression Ration.

to follow instructions for long-text generation. 331

Length-following (Len) Score For each section, 332

we use the following method to calculate the length 333

score: 334

s =

{
lgen
lreq

, if lgen < lreq,

1, otherwise.
335

where lgen represents length of generated text, and 336

lreq represents length requirement in the prompt. 337

For section-level metrics, the final score is obtained 338

by averaging the scores of all individual sections. 339

Redundancy (Red) Score. When generating 340

long texts, LLMs tend to treat each section as be- 341

ing independent, leading to potential redundancy 342

across sections by repeating content. To address 343

this, as shown in Figure 4, we specifically designed 344

a prompt to evaluate whether content generated by 345

the model contains redundant elements. 346

Consistency (Con) Score. For long-text writing, 347

ensuring the connection between sections and para- 348

graphs is crucial. Therefore, for model-generated 349

text, as shown in Figure 4 in Appendix A, we de- 350

signed a prompt to evaluate its consistency. 351

4 Dataset Curation 352

In previous studies (Que et al., 2024), one way to 353

build the dataset for long-text generation evaluation 354

is to filter long texts2 from existing tasks such as 355

dialogue continuation. Some of these tasks typi- 356

cally do not require long-text writing, making it 357

difficult to fully assess the model’s long-text gener- 358

ation capabilities in realistic scenarios. Long-form 359

content is prevalent across various domains, par- 360

ticularly in academic papers, blogs, and Wikipedia 361

articles. Therefore, we construct a benchmark for 362

long-text generation using data from these three 363

domains to evaluate generation capabilities on nat- 364

urally lengthy content. 365

2The HelloBench study uses texts that are at least 1000
words long.
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4.1 Data Collection Pipeline366

We design an automatic pipeline that collects doc-367

uments from web pages without copyright restric-368

tions and splits them into different sections ac-369

cording to predefined rules. We collect data from370

arxiv.org for papers, wikipedia.org for articles, and371

HuggingFace for blogs. These sources have pre-372

missible copyright licenses. To ensure the quality373

of our benchmark, we hired one Postgrad student,374

who is familiar with the NLP, to manually check375

the processed data. Specifically, we delete the sam-376

ples that do not follow a predefined format (e.g., a377

paper that does not have a abstract or a blog that378

misses an introduction).379

4.2 Content Plan Generation380

In order to support the plan-based long text-381

generation method introduced in §3.1, we use382

Qwen2.5-72B-Instruct to generate a content plan.383

Specifically, we pass each section of a document384

into the model and design a prompt to make the385

model summarize each section into 4-5 sentences.386

This forms the content plan for the section.387

4.2.1 Human Evaluation of Generated388

Content Plans389

arXiv Wikipedia Blog Average

Acc 86.2 88.6 91.4 88.7

Table 3: The human evaluation results of LLM-
summarized content plans.

To assess whether the content plans preserve the390

key points of a document, we hire a postgradu-391

ate student to manually evaluate 10% of the docu-392

ments from each domain. Specifically, if the con-393

tent plan for each section cannot capture sufficient394

relevant information, we regard it as an unquali-395

fied sample. As shown in Table 3, on Wikipedia,396

Blog, and arXiv, our manual evaluation accuracy is397

88.6%, 91.4%, and 86.2%, respectively. On aver-398

age, 88.7% of the manually reviewed content plans399

contain adequate information, indicating that the400

content plans retain enough information for LLMs401

to faithfully (re)generate the content in the original402

document.403

4.3 Dataset Characteristics404

As shown in Table 2, we analyze the average length405

of original samples (Ground Truth Length) and gen-406

erated content plans across three domains. Among407

these domains, academic papers have the longest 408

content plans, followed by Wikipedia articles and 409

blogs. This pattern aligns with the inherent writing 410

complexity of each domain: academic papers de- 411

mand rigorous presentation, Wikipedia articles fo- 412

cus on popular science exposition, and blogs adopt 413

a more informal style. This observation suggests a 414

strong correlation between writing complexity and 415

text length within each domain. 416

Our dataset maintains approximately 50 samples 417

per domain, with the original text (ground truth) 418

exceeding 2,000 words in each case. To evaluate 419

the efficiency of our content plans, we introduced 420

the Information Compression Ratio (ICR), defined 421

as ICR = LGT/LInput, where GT represents the 422

ground truth text and Input denotes the summa- 423

rized content plan used as input for LLMs. The ICR 424

consistently ranges between 20% and 30% across 425

all domains, indicating our content plans effectively 426

preserve essential information while maintaining a 427

concise representation suitable for model input. 428

5 Experiments and Result Analysis 429

5.1 Baseline 430

We use a range of open-source LLMs, in- 431

cluding Llama3 (Llama3.2-1B, Llama3.2-3B, 432

Llama3.3-70B)(AI@Meta, 2024), Qwen2.5 (3B, 433

7B, 72B)(Yang et al., 2024b,a), and InternLM2.5, 434

which excels in math reasoning (Cai et al., 2024). 435

We also include LongWriter, a fine-tuned GLM 436

model for long-form writing (Bai et al., 2024), and 437

GPT-4o, a proprietary model with balanced perfor- 438

mance across tasks. 439

5.2 Overall Analysis 440

Table 4 shows the experimental results of vari- 441

ous models across the arXiv, Blog, and Wikipedia 442

tasks. The Qwen2.5 series models exhibit superior 443

long-text generation capability, with Qwen2.5-72B- 444

Instruct achieving the highest overall score of 82 in 445

the arXiv domain and 83 in Blog domain. It is fol- 446

lowed by GPT-4o and LongWriter-8B. A consistent 447

trend is observed where larger models within the 448

same series outperform smaller ones, highlighting 449

the benefits of scale in long-text generation. 450

Among the evaluation metrics, Ins-fol (Instruc- 451

tion Following) and Red (Redundancy) show the 452

most significant performance differences. For in- 453

stance, Qwen2.5-72B-Instruct scores 88 on Ins- 454

fol in the arXiv domain, while smaller models 455

like InternLM2.5-7B-Chat achieve only 68. Sim- 456
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Domain Model Overall Intro RW EA ME Cont-fol Len Red Con

GPT4o 81 80 79 74 79 87 93 66 84
Qwen2.5-3B-Instruct 79 80 78 75 78 84 94 67 81
Qwen2.5-7B-Instruct 80 80 79 75 78 85 93 67 83
Qwen2.5-72B-Instruct 82 80 78 79 79 88 94 70 84
Internlm2.5-7B-Chat 71 78 78 61 65 81 75 60 75
Internlm2.5-20B-Chat 73 78 78 60 57 81 75 62 76
Llama3.2-1B 71 78 74 60 57 71 75 72 78
Llama3.2-3B 76 80 78 66 79 73 75 72 80
Llama3.3-70B 79 80 80 73 86 86 97 60 82

arXiv

LongWriter-8B 80 80 79 77 77 86 94 68 81

GPT4o 81 78 – – 81 83 97 68 81
Qwen2.5-3B-Instruct 80 74 – – 77 82 74 70 77
Qwen2.5-7B-Instruct 81 76 – – 82 84 76 68 80
Qwen2.5-72B-Instruct 83 75 – – 83 84 79 71 84
Internlm2.5-7B-Chat 71 76 – – 52 68 76 66 76
Internlm2.5-20B-Chat 73 77 – – 71 62 76 67 76
Llama3.2-1B 70 74 – – 55 67 75 68 74
Llama3.2-3B 79 76 – – 79 75 78 76 80
Llama3.3-70B 82 78 – – 79 86 78 66 81

Blog

LongWriter-8B 83 78 – – 82 85 79 67 84

GPT4o 81 74 80 – 85 70 95 – 82
Qwen2.5-3B-Instruct 82 75 80 – 82 71 94 – 80
Qwen2.5-7B-Instruct 80 75 80 – 83 67 94 – 80
Qwen2.5-72B-Instruct 81 74 80 – 84 70 94 – 82
Internlm2.5-7B-Chat 71 78 77 – 69 56 90 – 77
Internlm2.5-20B-Chat 73 78 77 – 71 65 90 – 76
Llama3.2-1B 71 72 71 – 68 76 67 – 72
Llama3.2-3B 79 80 79 – 79 76 75 – 80
Llama3.3-70B 82 78 80 – 84 66 99 – 81

Wikipedia

LongWriter-8B 82 76 81 – 85 68 98 – 82

Table 4: The plan-based results on our LongEval benchmark. We conduct experiments to evaluate current LLMs on
three domains (i.e., arXiv papers, blogs, and Wikipedia articles). The ‘–’ presents that the metric does not exist in
this domain. The Overall is the average score of all indicators. For easier comparison, we retained only the integer
part of all model scores.

ilarly, in the Wikipedia domain, LongWriter-8B457

reaches 85, whereas InternLM2.5-7B-Chat lags at458

69. These results suggest that instruction follow-459

ing and minimizing redundancy remain major chal-460

lenges for long-text generation. In contrast, RW,461

Intro, and Len have relatively smaller performance462

gaps. For example, across models in the arXiv463

domain, RW scores mostly cluster around 75-80,464

while, for most models, Len remains within 92-98.465

However, ME and EA exhibit greater variation. No-466

tably, in the arXiv domain, Qwen2.5-72B-Instruct467

scores 79 in ME, whereas InternLM2-5.7B-Chat468

only achieves 65. This suggests that while general469

writing ability remains relatively stable across mod-470

els, tasks involving data analysis and experimental471

methodology pose greater challenges. When given472

structured writing guidance (e.g., content plans),473

models still struggle with high-level reasoning, re-474

quiring more advanced analytical capabilities to475

perform well.476

5.3 Long Text Generation Under Different 477

Paradigm 478

As shown in Table 6, we compare the results of 479

LLMs’ long text generation ability under direct 480

and plan-based settings. Notably, the overall score 481

of the text generated by the plan-based method is 482

much higher than that of Direct generation. Addi- 483

tionally, we found that the text generated by the 484

direct generation method is not only relatively short 485

but also has a high level of redundancy. This fur- 486

ther proves the effectiveness of the plan-based gen- 487

eration method we designed and the plan-based 488

method is more suitable for long text generation 489

5.4 Effectiveness of LLM-As-A-Judge 490

To validate the capability of LLM-as-a-judge of 491

the LLMs on our metrics, we designed a random 492

replacement test on the arXiv task where we ran- 493

domly replace p% sections in the model-generated 494

content with sections sampled from other model- 495

7



Random_P Overall Con RW Intro Len EA ME Cont-fol Red

0.0 82 84 78 80 98 77 79 88 72
0.1 79 82 75 75 97 73 77 85 74
0.2 77 78 71 73 95 72 74 80 73
0.3 74 65 58 70 95 70 71 75 71
0.5 72 57 64 63 94 66 68 69 79
0.7 69 54 63 56 95 64 64 62 75
0.9 61 50 41 51 93 56 56 52 70

Table 5: The results of random replacement.

Setting Model Overall Cont-fol Red Len

GPT4o 61 82 82 21
Qwen-3B 59 82 81 13
Qwe-7B 60 81 85 15
Qwen-72B 60 84 40 58
Llama-1B 52 71 67 17
Llama-3B 58 78 69 28
Llama-70B 63 86 50 55
IntLM2.5-7B 55 75 73 17

Direct

IntLM2.5-20B 56 75 75 18

GPT4o 82 87 66 93
Qwen-3B 81 84 67 94
Qwen-7B 82 85 67 93
Qwen-72B 86 88 72 98
Llama-1B 73 71 72 75
Llama-3B 79 79 70 89
Llama-70B 81 86 60 97
IntLM2.5-7B 71 78 60 75

Plan

IntLM2.5-20B 72 81 62 75

Table 6: A comparison of direct and plan-based methods
on domain-agnostic criteria. We use the arXiv domain
subset only, owing to computational constraints.

generated text and check whether our model can496

identify the quality degradation and reflect it on the497

actual score. The test uses Qwen-2.5-72B’s result498

with the p from 0.1 to 0.9. As shown in Table 5,499

for Instruction-following (Cont-fol), as the propor-500

tion of random replacements increases, the model’s501

score drops sharply (from 88% to 52%). For other502

metrics evaluating the quality of a specific section503

(RW, Intro, EA, ME), their scores also decrease504

overall as the proportion of random replacements505

increases. This demonstrates that the scoring model506

can effectively identify changes in the content and507

quality, as well as reflect the content plan. As for508

the Length (Len) and Redundancy (Red) scores,509

they do not evaluate the content relevance between510

the generated text and the instruction but instead511

assess the quality of certain writing features within512

the text itself. As p increases, Len and Red do not513

change significantly, indicating the robustness of514

this metric.515

In addition, we also use GPT-4o as a judge model516

within our framework, as shown in Table 7. Al-517

though there are some differences in scores given 518

by GPT-4o and Qwen2.5-72B on certain metrics, 519

the distribution of scores between different models 520

remains consistent. It demonstrates that Qwen2.5- 521

72B also can effectively assess the long-text gener- 522

ation capabilities of LLMs under our framework. 523

5.5 The Length Following Ability of LLMs 524

To assess the ability of LLMs to generate texts of 525

specified lengths, we directly instruct the models to 526

produce texts of a specific length and compare the 527

difference between the target length and the actual 528

length (i.e., the Len metric). As shown in Figure 2, 529

our make LLMs generate text with various length 530

requirements ranging from 100 to 32,000 words. 531

Most models achieve a Len Score of 1 when the 532

required length (len_req) is below 400. However, 533

as len_req increases, the Len Scores of all mod- 534

els decline sharply. When len_req exceeds 4,000, 535

most models score below 0.4, indicating that cur- 536

rent LLMs struggle to generate long texts with pre- 537

cise length control. Notably, Qwen2.5 and Llama3 538

outperform other models, and larger models demon- 539

strate stronger length-following capability. 540

6 Conclusion 541

The current long-text evaluation method overlooks 542

long-text generation paradigms and lacks high- 543

quality samples (e.g., the human-written text for the 544

long-text generation task, such as paper writing). 545

In this work, we design a LongEval benchmark, 546

collecting 156 long-text samples covering three do- 547

mains that require the LLMs’ long-text writing abil- 548

ity. We conduct experiments on mainstream LLMs 549

and prove that the plan-based long-text generation 550

method is more excellent than the direct generation 551

method. Besides, although LLMs have a relatively 552

better content-following ability, they still struggle 553

with high-level reasoning writing (e.g., writing ex- 554

periments analysis and designing method). 555
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Limitations556

Although the experiment result is significant, we557

only tested these models’ performance in the arXiv558

domain under the direct setting to compare with the559

plan-based paradigm due to resource and time con-560

straints. In the future study, the benchmark should561

be considered to extend with the same data curation562

pipeline to achive a more robust evaluation.563

Ethics Statement564

The dataset used in our research is constructed us-565

ing publicly available data sources, ensuring that566

there are no privacy concerns or violations. We do567

not collect any personally identifiable information,568

and all data used in our research is obtained follow-569

ing legal and ethical standards. In the stage of data570

annotation, we employed three graduate students571

experienced in the Natural Language Processing572

field. We paid the graduate students approximately573

$13 per hour, well above the local average wage,574

and engaged in constructive discussions if they had575

concerns about the process.576
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A Evaluation Prompts765

We present the prompts that we designed for differ-766

ent long text generation dimensions in Tab 4.767

B Agent-based Generation Method768

First section. We directly use the content plan769

h and length l to let the LLMs to generate the770

introduction of the article:771

s = LLM(p, l, prompt),

where the s is generated section. Then we regard772

the s as the context c.773

Rest section. In the process of writing an article,774

it is often necessary to adjust the subsequent con-775

tent based on the previous content. Therefore, apart776

from the content plan p and length requirement l,777

we also need to generate subsequent sections based778

on the previously generated context c to ensure779

semantic consistency throughout the entire paper:780

s = LLM(p, l, c, prompt),

then we concatenate s and c together as the context781

for generating subsequent sections.782

Related work. As for the related work section
of a paper, the LLM needs to use the references
to write the background and development of the
research direction. Besides, wikepedia docment
also has to use numerous references to support the
facility of the article. Therefore, we input the extra
reference ref to generate the section:

s = LLM(h, l, c, ref, prompt)

Experiment analysis. As for the paper, there are783

many experiment analyses in different sections and784

there are no have obvious features in the subtitle785

of each section. According to human writing be-786

haviors, we input the content plan p of the section787

and all the experiment results exp of a paper into788

an LLM and let it judge whether they need to use789

the experiment results to write the content of the790

section:791

judge = LLM(p, exp, prompt)

If the judge is true, we will input the experiment792

results res to have LLMs generate the current sec-793

tion, conversely, our generation strategy remains794

unchanged:795

s =

{
LLM(p, l, c, exp, prompt), if judge==T,
LLM(p, l, c, prompt), else .

796

Final Result. We contcat all the s generated by 797

our plan-absed method as the final generated articl 798

S. 799

C The Evaluation Result by Using GPT4o 800

In order to demonstrate the reasonability of re- 801

sults evaluated by using Qwen2.5-72B, as shown in 802

Tab 7, we also use the GPT4o as the judge model 803

to score the result of different LLMs. 804

C.1 Case Study 805

In order to better demonstrate the differences in 806

long-text generation among different models under 807

our designed PLAD-based framework, we com- 808

pare the results generated by InternLM2.5-20B and 809

Qwen2.5-72B, which perform the best and worst, 810

respectively, in the arXiv domain. 811

As shown in Fig 5 and Fig 6, for the content 812

plan we summarized, the abstract generated by 813

Qwen2.5 concisely includes all key information 814

and smoothly integrates all content, demonstrating 815

stronger content-following ability. In contrast, the 816

content generated by InternLM2.5-20B is relatively 817

scattered and even includes some unnecessary con- 818

clusions at the end, which does not conform to 819

writing conventions for a highly summary-oriented 820

abstract. 821
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Domain Model Overall Con RW Intro Len EA ME Cont-fol Red

Qwen-3B-Instruct 75 89 82 63 58 93 93 51 85
Qwen-7B-Instruct 77 88 81 73 64 98 95 40 85
Qwen-72B-Instruct 77 87 78 73 68 97 98 37 88
Internlm2.5-7B-Chat 63 86 81 43 46 76 81 27 76
Internlm2.5-20B-Chat 68 86 81 53 52 85 81 40 79
LLaMa3.3-70B 70 90 85 60 61 95 62 39 85

arXiv

LongWriter-8B 79 80 69 77 77 86 94 68 80

Qwen-3B-Instruct 75 84 – 63 90 45 – 95 80
Qwen-7B-Instruct 77 88 – 62 96 44 – 98 80
Qwen-72B-Instruct 80 84 – 73 97 47 – 99 82
Internlm2.5-7B-Chat 63 87 – 42 70 31 – 84 74
Internlm2.5-20B-Chat 69 89 – 58 82 32 – 84 80
LLaMa3.3-70B 72 87 – 60 87 26 – 100 84

Blog

LongWriter-8B 77 87 – 69 96 37 – 99 84

Qwen3B-Instruct 79 84 74 – – 94 95 49 84
Qwen7B-Instruct 80 85 85 – – 96 95 42 83
Qwen72B-Instruct 85 87 83 – – 96 97 65 83
Internlm2.5-7B-Chat 60 74 57 – – 63 83 27 69
Internlm2.5-20B-Chat 70 81 73 – – 74 83 39 73
LLaMa3.3-70B 68 81 54 – – 85 97 22 82

Wikipedia

LongWriter-8B 73 84 58 – – 97 98 32 85

Table 7: The results that GPT4o evaluates on our LongEval benchmark.
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Redundant

Instruction-Following

Experiment Analysis

Method Analysis

Introduction

Related Work

f"""Given the model-generated text: {Context_str} \n\n. Evaluate whether the model-generated text has 
repetitive content. The more repetitive the content, the lower the score. Grade the paper (1-10 points).            
If the paper contains many repetitive sections, it would score 2 points.            if the paper contains a small 
amount of repetitive sections, it would score 5 points.            if the paper does not contain repetitive 
sections, but some content is semantically redundant, and the writing does not effectively express the 
author's points, it would be score 7 points.            If the content of the paper is concise, with efficient and 
precise language, and no informational redundancy, it would score 10 points.           """

evaluate_prompt = f"""Given a section of the headlines: {h} \n\n Given the model-generate section: 
{c} \n\n. Evaluate whether the content of this model-generated section meets the key points 
required in the headline. Grade it based on the following criteria (0-10 points).                If the degree 
of relevance between the model-generated text and the headline is low, it would score 2 points.                
If the model-generated text includes all the points from the headline, but the content is somewhat 
redundant and does not effectively address each issue raised in the headline,  it would score 5 points.                
If the model-generated text covers all the points in the headline, and it can, to some extent, address 
or clearly express the content of the headline at an academic level, it would score 7 points.                If 
the model-generated text covers all the points in the headline, perfectly addressing and clearly 
expressing the content of the headline at an academic level, and also demonstrates a deep academic 
exploration with rigorous logic,  it would score 10 points.                """

f“”“Given a section of the raw paper: {s} \n\n Given the model-generated section: {c} \n\n And the 
headlines that we used to generate: {h} \n\n                 Compared with the section of raw paper, please 
help evaluate whether the experimental analysis for the model-generated content is sufficient based 
on the following criteria (1-10 points):                1-2 points: The experimental analysis section generated 
by the model merely reiterates the content of the headline in a simple manner.                2-4 points: 
The experimental analysis section generated by the model not only includes the content of the 
headline but also provides a simple analysis of data variations, supporting the analysis with relevant 
content.                4-6 points: The experimental analysis section generated by the model not only 
includes data analysis and the content of the headline but also further explores the possible reasons 
behind various experimental phenomena.                6-8 points: The experimental analysis section 
generated by the model not only includes data analysis, the content of the headline, and an 
exploration of the possible causes for the experimental results, but also additionally analyzes the 
relationships between various experimental results, providing stronger experimental evidence to 
demonstrate the effectiveness of the methods proposed in the paper.                9-10 points: The 
experimental analysis section generated by the model not only includes data analysis, the content of 
the headline, and an exploration of the possible causes for the experimental results, but also provides 
additional analysis of the relationships between various experimental results. It demonstrates strong 
coherence, effectively integrating all experimental analyses under a unified theme.""" 

f"""Given a section of the raw paper: {s} \n\n Given the model-generated section: {c} \n\n And the 
headlines that we used to generate: {h} \n\n                 Compared with the section of raw paper, evaluate 
whether the model-generated section describing the method is detailed and specific (1-10 points):                
1-2 points: The description of the method simply repeats the content of the headline.                3-4 points: 
The description of the method provides a brief introduction to each concept corresponding to the points 
in the headline but lacks detailed analysis or explanation of the specific content of each model. 
Alternatively, it may be missing specific formulas for the methods.                5-6 points: The description of 
the method uses some basic formulas to introduce the specific approach or provides a brief explanation 
of how certain method modules operate.                7-8 points: The description of the methodology section 
provides a good introduction to the details of the algorithm or experiment, with necessary explanations 
using formulas. However, the writing lacks coherence between sentences.                9-10 points: The 
description of the methodology section provides a thorough introduction to the details of the algorithm 
or experiment, with formulas used appropriately. The writing style is rigorous, and the context flows 
smoothly, enabling readers to clearly understand the purpose of each module and its specific details. """

f"Give you Generated text: {Introduction}, Raw Text: {Introduction_ref} \n\n {Evaluate 
whether the content in the Introduction corresponds to the rest content in the paper. Grade 
the paper (1-10 points).}"

f"Give you Generated text: {c}, Raw Text: {s} \n\n Evaluate whether the original paper and 
the paper written based on the model are similar. Grade the paper (1-10 points)."

Consistency

f'''Give you a doc:{context_str}\n\n Evaluate the overall coherence of the given text on a scale 
of 0 to 10. Consider whether ideas flow logically, transitions are smooth, and the argument 
remains consistent. Use the following scale as a guideline: 0-2: Very Poor Coherence – lacks 
structure, no logical connections. 3-4: Poor Coherence – weak transitions, some logical gaps. 5-
6: Moderate Coherence – generally logical but with occasional inconsistencies. 7-8: Good 
Coherence – clear structure, smooth transitions, minor flaws. 9-10: Excellent Coherence –
seamless flow, strong transitions, no disruptions.Provide a score and a brief justification.'''

Figure 4: The table presents the prompts for the metrics that use LLMs to evaluate long text under different
dimensions.
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Content Plan:
- iConFormer is a novel parameter-efficient fine-tuning (PEFT) approach that uses a dynamic adapter conditioned on input 
instances.
- This method introduces an Input-Conditioned Network (iCoN) to enable instance-level feature transformation and capture 
task-specific details.
- Experiments show iConFormer performs comparably to full fine-tuning (FFT) in monocular depth estimation and semantic 
segmentation but outperforms FFT in image classification and instance segmentation.
- The proposed method consistently outperforms other recent PEFT methods across all tasks tested.

Generated Text:
**Abstract**

In the realm of deep learning, fine-tuning large pre-trained models for specific tasks is a common practice, but it often 
requires substantial computational resources and can lead to overfitting on smaller datasets. To address these challenges, we
introduce iConFormer, a novel parameter-efficient fine-tuning (PEFT) approach that leverages dynamic adapters conditioned 
on input instances. Unlike traditional static adapters, iConFormer employs an Input-Conditioned Network (iCoN) to perform 
instance-level feature transformations, thereby capturing task-specific details more effectively. This dynamic conditioning 
allows the model to adapt its parameters in real-time based on the input, leading to more flexible and context-aware 
representations.

We evaluate iConFormer across a range of computer vision tasks, including monocular depth estimation, semantic 
segmentation, image classification, and instance segmentation. Our experiments demonstrate that iConFormer not only 
performs comparably to full fine-tuning (FFT) in monocular depth estimation and semantic segmentation but also 
outperforms FFT in image classification and instance segmentation. Moreover, iConFormer consistently surpasses other recent 
PEFT methods across all tasks tested, highlighting its robustness and versatility. By reducing the number of trainable 
parameters while maintaining or improving performance, iConFormer offers a compelling solution for efficient and effective 
fine-tuning of large models, making it a valuable tool for both resource-constrained environments and high-performance 
applications.

Figure 5: A section generated by Qwen2.5-72B.
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Content Plan:
- iConFormer is a novel parameter-efficient fine-tuning (PEFT) approach that uses a dynamic adapter conditioned on input 
instances.
- This method introduces an Input-Conditioned Network (iCoN) to enable instance-level feature transformation and capture 
task-specific details.
- Experiments show iConFormer performs comparably to full fine-tuning (FFT) in monocular depth estimation and semantic 
segmentation but outperforms FFT in image classification and instance segmentation.
- The proposed method consistently outperforms other recent PEFT methods across all tasks tested.

Generated Text:
In the realm of deep learning, the fine-tuning (FT) of pre-trained models has emerged as a powerful technique for adapting 
models to specific tasks. However, traditional FT methods often require substantial computational resources and can lead to 
overfitting, particularly when dealing with limited data. To address these challenges, parameter-efficient fine-tuning (PEFT) 
approaches have been developed, which aim to minimize the number of parameters that need to be updated during the 
adaptation process. One such innovative PEFT method is iConFormer, a novel approach that introduces a dynamic adapter 
conditioned on input instances, thereby enabling instance-level feature transformation and capturing task-specific details.

The core idea behind iConFormer is the introduction of an Input-Conditioned Network (iCoN), which acts as a bridge between 
the pre-trained model and the task-specific data. This network is designed to adaptively modify the features extracted by the 
pre-trained model based on the characteristics of the input instances. By doing so, iConFormer ensures that the model can 
effectively capture the nuances of the task at hand, even when the amount of task-specific data is limited.

The effectiveness of iConFormer has been demonstrated through a series of experiments across various computer vision tasks, 
including monocular depth estimation, semantic segmentation, image classification, and instance segmentation. The results 
show that iConFormer performs comparably to full fine-tuning (FFT) in tasks such as monocular depth estimation and 
semantic segmentation, where the model needs to understand complex spatial relationships and semantic information. 
However, iConFormer outperforms FFT in tasks like image classification and instance segmentation, where the model's ability 
to recognize and localize objects is crucial.

Moreover, the proposed method consistently outperforms other recent PEFT methods across all tasks tested, showcasing its 
superiority in terms of both accuracy and efficiency. This is particularly noteworthy given the growing demand for efficient 
and effective model adaptation techniques, especially in resource-constrained environments.

In summary, iConFormer represents a significant advancement in the field of parameter-efficient fine-tuning, offering a 
dynamic and input-conditioned approach that can effectively adapt pre-trained models to a wide range of computer vision 
tasks. Its ability to perform comparably to full fine-tuning while requiring fewer parameters makes it a promising tool for 
researchers and practitioners alike, particularly in scenarios where computational resources are limited or where the need for 
rapid model adaptation is critical.

Figure 6: A section generated by InternLM2.5-20B.
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