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Abstract
As is widely acknowledged, Pre-trained Lan-001
guage Models (PLMs) acquire the capability to002
encode deep sentence semantics through pre-003
training. Semantic Text Matching (STM) task004
has greatly benefited from this capacity. How-005
ever, the extent to which PLMs can fully exploit006
semantic encoding, rather than merely relying007
on some superficial pattern recognition in this008
task, remains a matter for investigation. We009
argue that a model’s ability to provide consis-010
tent judgments despite variations in phrasing011
indicates its reliance on semantic interpreta-012
tion. Based on this perspective, we investigate013
the extent to which the model captures seman-014
tics and introduce a novel training architecture015
aimed at enhancing the semantic modeling ca-016
pacity of PLMs in STM tasks. Our approach is017
validated through rigorous experimentation on018
four benchmark datasets: LCQMC, BQ, QQP,019
and MRPC, where we achieve state-of-the-art020
performance on three of them.021

1 Introduction022

Natural Language Understanding (NLU) is a sub-023

field of natural language processing that focuses on024

machine reading comprehension. Natural language025

is merely a vehicle for humans to convey thoughts.026

At their core, they are nothing but symbols whose027

meanings are defined by humans. In other words,028

for humans, we create "language" for the purpose029

of "semantics". When individuals employ language030

to describe something or express an emotion, the031

resulting expressions may vary significantly among032

different people due to diverse habits, personal ex-033

periences, and other factors. Even the same individ-034

ual may produce expressions of entirely different035

styles when in varying environments or states of036

mind. Nonetheless, people are invariably able to ef-037

fortlessly comprehend the fundamental semantics038

underlying these diverse expressions. The ques-039

tion then arises: can deep neural network models040

achieve a similar level of understanding?041

Recently, significant advancements have been 042

made in NLU due to the use of PLMs, such as 043

BERT (Devlin et al., 2019) and RoBERTa (Liu 044

et al., 2019). Benefiting from pre-training on large- 045

scale textual corpora, PLMs model the semantics 046

of these linguistic symbols and acquire a substan- 047

tial amount of prior knowledge. That is to say, for 048

the model, it is a matter of inferring "semantics" 049

from "language". STM, a sub-task within NLU 050

that aims to determine the semantic similarity of 051

two sentence-level texts, has also seen significant 052

advancement with PLMs. However, the extent to 053

which model performance on this task relies on 054

deep semantic modeling, as opposed to the exploita- 055

tion of shallow patterns, such as lexical similarity, 056

remains an open question. We contend that the abil- 057

ity of a model to achieve a level of understanding 058

comparable to humans, such that it renders consis- 059

tent judgments regardless of variations in phrasing, 060

is a critical manifestation of its true reliance on 061

semantic interpretation for decision-making. 062

This paper investigates the semantic modeling 063

ability of PLMs in the STM task and proposes a 064

training architecture to enhance this ability. We 065

experiment on four datasets, including LCQMC, 066

BQ, QQP, and MRPC, and achieve state-of-the- 067

art performance on three of them. Our code is 068

available at the supplementary material. 069

2 Related work 070

Previous research has indicated that BERT models 071

excessively rely on lexical overlap between text 072

pairs when determining semantic similarity (Zhang 073

et al., 2019; Yu and Ettinger, 2020; Wang et al., 074

2021, 2022). We posit that this implicitly reveals 075

that models merely engage in superficial modeling 076

of textual symbols, where texts that appear similar 077

are presumed to have analogous meanings, with- 078

out sufficiently modeling the semantics underlying 079

these symbols. 080
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Figure 1: Examples of voting strategy.

Recently, there has been a rapid evolution in081

Large Language Models (LLMs). LLMs demon-082

strate remarkable capabilities in following instruc-083

tions and generating smooth, natural-sounding lan-084

guage. While the issue of hallucinations in LLMs085

during complex tasks remains a significant unre-086

solved challenge (Zhang et al., 2023), for relatively087

straightforward tasks such as rewriting sentences088

without altering their meaning, we can leverage089

their instruction-following generative capabilities090

to the fullest extent while maintaining hallucination091

issues at an acceptable level.092

3 Methodology093

For STM tasks, a sample X consists of a pair of in-094

put texts, (Sa, Sb), along with their corresponding095

label l. Firstly, we use a LLM to generate para-096

phrased sentences Ra and Rb corresponding to the097

text pair Sa and Sb. Subsequently, by combining098

them, we obtain a set X̂ that encompasses four099

distinct representations of the sample X.100

Ra, Rb = LLM(T (Sa)),LLM(T (Sb))

X̂ = { (Sa, Sb), (Sa, Rb), (Ra, Sb), (Ra, Rb) } ,
(1)101

where T (∗) is the template of instruction. Given102

that our instruction requires the LLM to rewrite103

texts while ensuring that the meaning remains un-104

changed, the semantics of Ra and Rb are consistent105

with Sa and Sb, albeit with differences in syntactic106

structure or word choice.107

To investigate whether models can make consis-108

tent predictions for sentence pairs within the same109

X̂ , we initially train a BERT-based baseline model110

on the LCQMC dataset, which is trained on the111

original training set and subsequently performed112

inference on the original test set. The results are113

illustrated in the first row of Table 1.114

Then, for each sample X in the test set, we apply115

Formula 1 to obtain the corresponding expanded116

X̂ , and predict the four text pairs within X̂ using117

the baseline model. Consequently, for each sample,118

we obtain four prediction outcomes. We catego-119

Encoder Encoder Encoder Encoder

BCE

Training

LLM

Rewrite Sentences

Classifier

Figure 2: Framework of training.

rize these outcomes into three states as follows: (1) 120

If all prediction results are in agreement, we con- 121

sider that the model can understand the semantics 122

of the current sample well, and we refer to the pre- 123

dictions as being consistent. (2) If the predictions 124

are split evenly between two different outcomes, 125

the predictions are classified as controversial. (3) 126

In all other scenarios, we regard the prediction re- 127

sults of the model as confusing. States (2) and 128

(3) are collectively referred to as inconsistent. Re- 129

garding the final prediction, we employ a voting 130

strategy, that is, in states (1) and (3), we select the 131

majority prediction as the final result. For case (2), 132

the prediction made on the original input, namely 133

(Sa, Sb), is used as the final result. Examples of the 134

voting process can be seen in Figure 1. We call this 135

method Infer with Rephrasing on Baseline model 136

(Baseline-IWR) and the results are presented in the 137

second row of Table 1. It is evident that the model 138

exhibits poor consistency, with approximately 30% 139

of the samples yielding inconsistent predictions. 140

Furthermore, the accuracy rate on these samples 141

substantially diminishes compared to that on the 142

consistent samples (from 93.44% to 71.64%). This 143

indicates that the model’s semantic representation 144

of these samples is inadequate, leading to difficul- 145

ties in making accurate judgments. 146

Based on the aforementioned experimental re- 147

sults, we propose the training framework as shown 148

in Figure 2. Specifically, for a sample X in the 149

training set, we first expand it to the corresponding 150

X̂ using Formula (1). Then, the four pairs of texts 151

in X̂ are encoded simultaneously. It is worth not- 152

ing that all these encoders share parameters. After 153
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Model
Consistent Inconsistent

Total Acc.
P.(%) Acc.(%) P.(%) Acc.(%)

Baseline - - - - 86.70
Baseline-IWR 69.87 93.44 30.13 71.64 86.87
TIWR 89.58 90.97 10.42 64.08 88.17
TIWR-H 89.27 92.48 10.73 65.77 89.62
TIWR-P 89.58 90.97 10.42 73.98 89.20

Table 1: Comparison results on LCQMC test set. We categorize the predictions into two classes, namely Consistent
and Inconsistent. P. and Acc. are used to denote the proportion of samples and the accuracy rate within the respective
categories. Total Acc. represents the accuracy across the entire test dataset.

passing through the classification layer, the final154

loss is the sum of their respective losses:155

logtisi = Classifier(Encoder(X̂i)), (2)156

loss =
4∑

i=1

BCEloss(logitsi, l), (3)157

where X̂i represents the i-th sample pair in X̂ ,158

Classifier is a two-layer feed forward network and159

BCEloss refers to binary cross-entropy loss. This160

training method informs the model that different161

text representations share the same label, thereby162

encouraging the model to focus more on semantics163

rather than the words themselves. During inference,164

we adopt the same strategy as the Baseline-IWR.165

We refer to this method as Train and Infer with166

Rephrasing (TIWR). The experimental results are167

displayed in the third row of Table 1. The pro-168

portion of inconsistent predictions significantly de-169

crease, moving from 30.13% to 10.42%, and the170

overall accuracy improves. The model performs171

worse on those samples with inconsistent predic-172

tions than Baseline-IWR (accuracy rate decreased173

from 71.64% to 64.08%). This can be primarily174

attributed to the fact that TIWR is more reliant175

on semantics for decision-making, thus enabling176

it to more accurately identify samples for which it177

cannot profoundly comprehend the semantics.178

Evidently, there is considerable room for im-179

provement on samples with inconsistent predic-180

tions. To address this, we employ the Baseline-181

IWR to make inferences on the training set, iden-182

tifying the samples with inconsistent prediction,183

which we term hard cases. The remaining samples184

are classified as easy cases. Next, we combine a185

portion of hard cases with some easy cases as a new186

training set. Utilizing the TIWR as a warm start, we187

train a new model named TIWR-H. Subsequently,188

we propose two strategies: 1) Directly using TIWR-189

H for inference. 2) We construct a pipeline com-190

posed of TIWR and TIWR-H, named as TIWR-P. 191

Specifically, we initially predict using the TIWR. If 192

the results are consistent, we directly take this result 193

as the final outcome. Otherwise, we further predict 194

using TIWR-H. The results are shown in the last 195

two rows of Table 1 respectively. By comparing 196

TIWR and TIWR-P, it is evident that there is a sig- 197

nificant improvement in accuracy on samples with 198

inconsistent prediction (from 64.08% to73.68%). 199

Moreover, both strategies achieve higher overall 200

performance than TIWR. 201

4 Experiment 202

4.1 Datasets 203

Dataset Train Dev Test
LCQMC 238,766 8,802 12,500
BQ 100,000 10,000 10,000
QQP 363,846 40,430 -
MRPC 3,668 408 1,725

Table 2: Statistics of datasets.

We evaluate our approach on two Chi- 204

nese datasets, LCQMC (Liu et al., 2018) and 205

BQ (Chen et al., 2018), and two English datasets, 206

QQP (Shankar Iyer, 2012) and MRPC (Dolan and 207

Brockett, 2005). The detailed information is listed 208

in Table 2. LCQMC is a large-scale open-domain 209

corpus for matching Chinese questions, while BQ 210

is a domain-specific corpus for matching bank- 211

related questions. Both of the two English datasets 212

are corpora of sentence pairs automatically ex- 213

tracted from online websites. 214

4.2 Implementation Details 215

The LLM utilized in this paper is the chat version 216

of Qwen (Bai et al., 2023), an open-source model 217

with 14 billion parameters. We employ the base 218

versions of BERT and RoBERTa respectively as 219
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encoders for the Chinese and English datasets. The220

weights for LLM and encoders are sourced from221

Hugging Face1. All results represent the average222

of five experimental trials. More detailed training223

information is in Appendix A.224

4.3 Results and Analysis225

Model LCQMC BQ
BERT† (Devlin et al., 2019) 86.75 85.17
GMN (Chen et al., 2020) 87.30 85.60
LET (Lyu et al., 2021) 88.38 85.30
DSSTM (Deng et al., 2022) 88.90 85.40
OTE (Ma et al., 2022) 88.29 85.26
CBM (Chen et al., 2022) 88.80 86.16
GBT(Peng et al., 2023) 89.20 -
TIWR† 87.83 86.01
TIWR-H† 89.50 85.75
TIWR-P† 88.93 86.23

Table 3: Experimental results on two Chinese datasets.
We report the accuracy scores on their respective test
sets. Methods with † indicate our implementation.

Model QQP MRPC
Roberta† (Liu et al., 2019) 91.6 87.2

-large version 92.0 87.6
DC-Match (Zou et al., 2022) 91.7 88.1
GBT(Peng et al., 2023) 91.8 -
TIWR† 91.6 88.3
TIWR-H† 91.6 88.4
TIWR-P† 91.6 88.5

Table 4: Experimental results on two English datasets.
We report the accuracy scores on the QQP development
set and MRPC test set.

The main results of comparison models on the226

Chinese and English datasets are presented sepa-227

rately in Table 3 and Table 4. We enumerate some228

of the state-of-the-art models from recent years. It229

can be seen that our model outperforms all these230

models on LCQMC, BQ, and MRPC. In QQP, our231

approach do not yield better results than the Base-232

line. We hypothesize that this is due to the lack of233

sufficient data within the training set to support the234

model in accomplishing certain semantic modeling.235

The comparative results among TIWR, TIWR-H,236

and TIWR-P further corroborate this point. This237

is because even if we select inconsistent samples238

1https://huggingface.co/

from the training set for further training, it does not 239

enhance the performance of the model. 240

4.4 Ablation Experiments 241

Model LCQMC BQ QQP MRPC
Baseline 86.8 85.2 91.6 87.2
DA 86.1 85.1 91.0 87.0
DA-IWR 86.1 85.3 91.1 87.0
TIWR-H/P 89.5 86.2 91.6 88.5

Table 5: Comparison of accuracy score between differ-
ent models on various datasets.

While our original intention is not simply data 242

augmentation, we indeed introduce additional data 243

during the training of the TIWR series models. To 244

measure the extent to which our experimental re- 245

sults are affected by data augmentation, we train 246

the DA and DA-IWR models using a pure data 247

augmentation paradigm. Besides incorporating ad- 248

ditional data obtained via Formula 1 into the train- 249

ing set, their other configurations are respectively 250

analogous to the Baseline and Baseline-IWR. The 251

experimental results are shown in Table 5. It can 252

be observed that the sole usage of data augmenta- 253

tion paradigms almost does not enhance the per- 254

formance of the model, indicating that the model 255

still fails to improve semantic modeling under such 256

circumstances. Even more, the performance on 257

certain datasets experience a slight decline. We 258

postulate that this is due to the additional data not 259

only failing to assist the models in better seman- 260

tic modelling but also increasing the difficulty of 261

learning superficial patterns. 262

5 Conclusion 263

This paper initially proposes a method to explore 264

the degree to which PLMs model semantics and 265

verifies that their ability to model semantics is rela- 266

tively weak in STM tasks. Subsequently, we pro- 267

pose a training framework to enhance this ability 268

of the model. We conduct experiments on two 269

Chinese and two English datasets, validating the 270

effectiveness of our method. Furthermore, it can be 271

observed from the ’Inconsistent’ column in Table 1 272

that there is still room for further improvement on 273

these samples. Although the experiments in this 274

paper are solely focused on STM tasks in NLU, 275

theoretically, our method can easily be extended to 276

various NLU tasks. This might be a direction that 277

warrants further exploration. 278
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Limitations279

Training: When generating data for training, For-280

mula 1 cannot handle the noise caused by incorrect281

labels in the dataset. If a sample X has an incor-282

rect label, then the labels of the four text pairs283

in X̂ will also be incorrect. Inference: For the284

LCQMC dataset, the optimal model is TIWR-H.285

Therefore, during inference, we can entirely dis-286

regard the LLM for generating the corresponding287

X̂ and only use X . We have verified through ex-288

periments that in this case, the accuracy can still289

reach 89.51%, which is almost identical to the stan-290

dard TIWR-H. However, for the BQ and MRPC291

datasets, achieving the best results requires the use292

of the TIWR-P pipeline strategy, thus necessitating293

the use of LLM to generate the corresponding X̂ .294

This significantly increases the cost of inference.295

Additionally, for some samples, LLMs may refuse296

to rewrite sentences due to security policy reasons.297
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A Implementation Details433

The BERT and RoBERTa models used in this pa-434

per have 103 million and 125 million parameters,435

respectively. We apply AdamW (β1 = 0.9, β2 =436

0.999) with a weight decay rate of 0.01 for BERT437

and 0.1 for RoBERTa and use a warm-up of 0.1 for438

learning rate decay. For the baseline and TIWR439

model, we use an epoch of 3 and a batch size of440

16. The learning rate is set to be 2e-5 for MRPC441

and 3e-5 for other datasets. As for the TIWR-H442

model, the epoch is set to be 3 for QQP and 1 for443

other datasets. The learning rate is selected in {2e- 444

6, 3e-5}. We attempt various mix ratios of hard 445

cases and easy cases to construct the training set 446

required for TIWR-H. Specifically, we define α as 447

the proportion of hard cases in the training set, and 448

experiment with several distinct values, namely 449

{ 0.2, 0.4, 0.6, 0.8, 1 }. Ultimately, for LQCMQ, 450

QQP, and MRPC, the values of α are set at 0.8, 451

0.2, and 0.6 respectively. For BQ, none of these 452

mixtures yield satisfactory results, thus we adopt 453

an alternate approach in which only the positive 454

samples from the easy cases are used for mixing. 455

All experiments are performed utilizing an A100 456

40G GPU. 457

B Proportion of Inconsistent Predictions 458

Figure 3 presents a comparison of the proportion 459

of inconsistent predictions between Baseline-IWR 460

and TIWR on different datasets. It can be seen 461

that the number of samples with inconsistent pre- 462

dictions decreases significantly across all datasets. 463
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Figure 3: Changes in the proportion of inconsistent
predictions.
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