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Abstract

As is widely acknowledged, Pre-trained Lan-
guage Models (PLMs) acquire the capability to
encode deep sentence semantics through pre-
training. Semantic Text Matching (STM) task
has greatly benefited from this capacity. How-
ever, the extent to which PLMs can fully exploit
semantic encoding, rather than merely relying
on some superficial pattern recognition in this
task, remains a matter for investigation. We
argue that a model’s ability to provide consis-
tent judgments despite variations in phrasing
indicates its reliance on semantic interpreta-
tion. Based on this perspective, we investigate
the extent to which the model captures seman-
tics and introduce a novel training architecture
aimed at enhancing the semantic modeling ca-
pacity of PLMs in STM tasks. Our approach is
validated through rigorous experimentation on
four benchmark datasets: LCQMC, BQ, QQP,
and MRPC, where we achieve state-of-the-art
performance on three of them.

1 Introduction

Natural Language Understanding (NLU) is a sub-
field of natural language processing that focuses on
machine reading comprehension. Natural language
is merely a vehicle for humans to convey thoughts.
At their core, they are nothing but symbols whose
meanings are defined by humans. In other words,
for humans, we create "language" for the purpose
of "semantics". When individuals employ language
to describe something or express an emotion, the
resulting expressions may vary significantly among
different people due to diverse habits, personal ex-
periences, and other factors. Even the same individ-
ual may produce expressions of entirely different
styles when in varying environments or states of
mind. Nonetheless, people are invariably able to ef-
fortlessly comprehend the fundamental semantics
underlying these diverse expressions. The ques-
tion then arises: can deep neural network models
achieve a similar level of understanding?

Recently, significant advancements have been
made in NLU due to the use of PLMs, such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). Benefiting from pre-training on large-
scale textual corpora, PLMs model the semantics
of these linguistic symbols and acquire a substan-
tial amount of prior knowledge. That is to say, for
the model, it is a matter of inferring "semantics"
from "language". STM, a sub-task within NLU
that aims to determine the semantic similarity of
two sentence-level texts, has also seen significant
advancement with PLMs. However, the extent to
which model performance on this task relies on
deep semantic modeling, as opposed to the exploita-
tion of shallow patterns, such as lexical similarity,
remains an open question. We contend that the abil-
ity of a model to achieve a level of understanding
comparable to humans, such that it renders consis-
tent judgments regardless of variations in phrasing,
is a critical manifestation of its true reliance on
semantic interpretation for decision-making.

This paper investigates the semantic modeling
ability of PLMs in the STM task and proposes a
training architecture to enhance this ability. We
experiment on four datasets, including LCQMC,
BQ, QQP, and MRPC, and achieve state-of-the-
art performance on three of them. Our code is
available at the supplementary material.

2 Related work

Previous research has indicated that BERT models
excessively rely on lexical overlap between text
pairs when determining semantic similarity (Zhang
et al., 2019; Yu and Ettinger, 2020; Wang et al.,
2021, 2022). We posit that this implicitly reveals
that models merely engage in superficial modeling
of textual symbols, where texts that appear similar
are presumed to have analogous meanings, with-
out sufficiently modeling the semantics underlying
these symbols.
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Figure 1: Examples of voting strategy.

Recently, there has been a rapid evolution in
Large Language Models (LLMs). LLMs demon-
strate remarkable capabilities in following instruc-
tions and generating smooth, natural-sounding lan-
guage. While the issue of hallucinations in LLMs
during complex tasks remains a significant unre-
solved challenge (Zhang et al., 2023), for relatively
straightforward tasks such as rewriting sentences
without altering their meaning, we can leverage
their instruction-following generative capabilities
to the fullest extent while maintaining hallucination
issues at an acceptable level.

3 Methodology

For STM tasks, a sample X consists of a pair of in-
put texts, (Sg, Sp), along with their corresponding
label [. Firstly, we use a LLM to generate para-
phrased sentences R, and 2 corresponding to the
text pair S, and S,. Subsequently, by combining
them, we obtain a set X that encompasses four
distinct representations of the sample X.

Ry, Ry = LLM(T(S,)), LLM(T(Sp))

X = { (Sav Sb)v (SCH Rb)v (Rm Sb)a (RCM Rb) } )

(D
where T'(x) is the template of instruction. Given
that our instruction requires the LLM to rewrite
texts while ensuring that the meaning remains un-
changed, the semantics of R, and 7y, are consistent
with S, and .53, albeit with differences in syntactic
structure or word choice.

To investigate whether models can make consis-
tent predictions for sentence pairs within the same
X, we initially train a BERT-based baseline model
on the LCQMC dataset, which is trained on the
original training set and subsequently performed
inference on the original test set. The results are
illustrated in the first row of Table 1.

Then, for each sample X in the test set, we apply
Formula 1 to obtain the corresponding expanded
X, and predict the four text pairs within X using
the baseline model. Consequently, for each sample,
we obtain four prediction outcomes. We catego-
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Figure 2: Framework of training.

rize these outcomes into three states as follows: (1)
If all prediction results are in agreement, we con-
sider that the model can understand the semantics
of the current sample well, and we refer to the pre-
dictions as being consistent. (2) If the predictions
are split evenly between two different outcomes,
the predictions are classified as controversial. (3)
In all other scenarios, we regard the prediction re-
sults of the model as confusing. States (2) and
(3) are collectively referred to as inconsistent. Re-
garding the final prediction, we employ a voting
strategy, that is, in states (1) and (3), we select the
majority prediction as the final result. For case (2),
the prediction made on the original input, namely
(Sa, Sp), is used as the final result. Examples of the
voting process can be seen in Figure 1. We call this
method Infer with Rephrasing on Baseline model
(Baseline-IWR) and the results are presented in the
second row of Table 1. It is evident that the model
exhibits poor consistency, with approximately 30%
of the samples yielding inconsistent predictions.
Furthermore, the accuracy rate on these samples
substantially diminishes compared to that on the
consistent samples (from 93.44% to 71.64%). This
indicates that the model’s semantic representation
of these samples is inadequate, leading to difficul-
ties in making accurate judgments.

Based on the aforementioned experimental re-
sults, we propose the training framework as shown
in Figure 2. Specifically, for a sample X in the
training set, we first expand it to the corresponding
X using Formula (1). Then, the four pairs of texts
in X are encoded simultaneously. It is worth not-
ing that all these encoders share parameters. After



Consistent Inconsistent
Model P(%) Acc(%) P(%) Acc(%) OalAcC
Baseline - - - - 86.70
Baseline-IWR 69.87 9344  30.13  71.64 86.87
TIWR 89.58 9097 1042  64.08 88.17
TIWR-H 89.27 9248 10.73  65.77 89.62
TIWR-P 89.58 9097 1042 7398 89.20

Table 1: Comparison results on LCQMC test set. We categorize the predictions into two classes, namely Consistent
and Inconsistent. P. and Acc. are used to denote the proportion of samples and the accuracy rate within the respective
categories. Total Acc. represents the accuracy across the entire test dataset.

passing through the classification layer, the final
loss is the sum of their respective losses:

logtis; = Classifier(Encoder(X;)),  (2)
4
loss = ZBCEloss(logitsi, 0), 3)
i=1

where X represents the ¢-th sample pair in X,
Classifier is a two-layer feed forward network and
BCEloss refers to binary cross-entropy loss. This
training method informs the model that different
text representations share the same label, thereby
encouraging the model to focus more on semantics
rather than the words themselves. During inference,
we adopt the same strategy as the Baseline-IWR.
We refer to this method as Train and Infer with
Rephrasing (TIWR). The experimental results are
displayed in the third row of Table 1. The pro-
portion of inconsistent predictions significantly de-
crease, moving from 30.13% to 10.42%, and the
overall accuracy improves. The model performs
worse on those samples with inconsistent predic-
tions than Baseline-IWR (accuracy rate decreased
from 71.64% to 64.08%). This can be primarily
attributed to the fact that TIWR is more reliant
on semantics for decision-making, thus enabling
it to more accurately identify samples for which it
cannot profoundly comprehend the semantics.
Evidently, there is considerable room for im-
provement on samples with inconsistent predic-
tions. To address this, we employ the Baseline-
IWR to make inferences on the training set, iden-
tifying the samples with inconsistent prediction,
which we term hard cases. The remaining samples
are classified as easy cases. Next, we combine a
portion of hard cases with some easy cases as a new
training set. Utilizing the TIWR as a warm start, we
train a new model named TIWR-H. Subsequently,
we propose two strategies: 1) Directly using TIWR-
H for inference. 2) We construct a pipeline com-

posed of TIWR and TIWR-H, named as TIWR-P.
Specifically, we initially predict using the TIWR. If
the results are consistent, we directly take this result
as the final outcome. Otherwise, we further predict
using TIWR-H. The results are shown in the last
two rows of Table 1 respectively. By comparing
TIWR and TIWR-P, it is evident that there is a sig-
nificant improvement in accuracy on samples with
inconsistent prediction (from 64.08% t073.68%).
Moreover, both strategies achieve higher overall
performance than TIWR.

4 Experiment

4.1 Datasets

Dataset  Train Dev Test
LCQMC 238,766 8,802 12,500
BQ 100,000 10,000 10,000
QQP 363,846 40,430 -
MRPC 3,668 408 1,725

Table 2: Statistics of datasets.

We evaluate our approach on two Chi-
nese datasets, LCQMC (Liu et al., 2018) and
BQ (Chen et al., 2018), and two English datasets,
QQP (Shankar Iyer, 2012) and MRPC (Dolan and
Brockett, 2005). The detailed information is listed
in Table 2. LCQMC is a large-scale open-domain
corpus for matching Chinese questions, while BQ
is a domain-specific corpus for matching bank-
related questions. Both of the two English datasets
are corpora of sentence pairs automatically ex-
tracted from online websites.

4.2 Implementation Details

The LLM utilized in this paper is the chat version
of Qwen (Bai et al., 2023), an open-source model
with 14 billion parameters. We employ the base
versions of BERT and RoBERTa respectively as



encoders for the Chinese and English datasets. The
weights for LLM and encoders are sourced from
Hugging Face'. All results represent the average
of five experimental trials. More detailed training
information is in Appendix A.

4.3 Results and Analysis

Model LCQMC BQ
BERTY (Devlin et al., 2019)  86.75  85.17
GMN (Chen et al., 2020) 87.30  85.60
LET (Lyu et al., 2021) 88.38  85.30
DSSTM (Deng et al., 2022) 88.90 8540
OTE (Ma et al., 2022) 88.29 8526
CBM (Chen et al., 2022) 88.80  86.16
GBT(Peng et al., 2023) 89.20 -
TIWRY 87.83  86.01
TIWR-H7 89.50 85.75
TIWR-P{} 88.93  86.23

Table 3: Experimental results on two Chinese datasets.
We report the accuracy scores on their respective test
sets. Methods with t indicate our implementation.

Model QQP MRPC
Robertat (Liu et al., 2019) 91.6 872
-large version 92.0 87.6
DC-Match (Zou et al., 2022) 91.7  88.1
GBT(Peng et al., 2023) 91.8 -
TIWRF 91.6 883
TIWR-H7Y 91.6 88.4
TIWR-P{ 91.6  88.5

Table 4: Experimental results on two English datasets.
We report the accuracy scores on the QQP development
set and MRPC test set.

The main results of comparison models on the
Chinese and English datasets are presented sepa-
rately in Table 3 and Table 4. We enumerate some
of the state-of-the-art models from recent years. It
can be seen that our model outperforms all these
models on LCQMC, BQ, and MRPC. In QQP, our
approach do not yield better results than the Base-
line. We hypothesize that this is due to the lack of
sufficient data within the training set to support the
model in accomplishing certain semantic modeling.
The comparative results among TIWR, TIWR-H,
and TIWR-P further corroborate this point. This
is because even if we select inconsistent samples

"https://huggingface.co/

from the training set for further training, it does not
enhance the performance of the model.

4.4 Ablation Experiments

Model LCQMC BQ QQP MRPC
Baseline 86.8 852 916 872
DA 86.1 851 91.0 87.0
DA-TWR 86.1 853 91.1 870
TIWR-HP 895 862 916 885

Table 5: Comparison of accuracy score between differ-
ent models on various datasets.

While our original intention is not simply data
augmentation, we indeed introduce additional data
during the training of the TIWR series models. To
measure the extent to which our experimental re-
sults are affected by data augmentation, we train
the DA and DA-IWR models using a pure data
augmentation paradigm. Besides incorporating ad-
ditional data obtained via Formula 1 into the train-
ing set, their other configurations are respectively
analogous to the Baseline and Baseline-IWR. The
experimental results are shown in Table 5. It can
be observed that the sole usage of data augmenta-
tion paradigms almost does not enhance the per-
formance of the model, indicating that the model
still fails to improve semantic modeling under such
circumstances. Even more, the performance on
certain datasets experience a slight decline. We
postulate that this is due to the additional data not
only failing to assist the models in better seman-
tic modelling but also increasing the difficulty of
learning superficial patterns.

5 Conclusion

This paper initially proposes a method to explore
the degree to which PLMs model semantics and
verifies that their ability to model semantics is rela-
tively weak in STM tasks. Subsequently, we pro-
pose a training framework to enhance this ability
of the model. We conduct experiments on two
Chinese and two English datasets, validating the
effectiveness of our method. Furthermore, it can be
observed from the "Inconsistent’ column in Table 1
that there is still room for further improvement on
these samples. Although the experiments in this
paper are solely focused on STM tasks in NLU,
theoretically, our method can easily be extended to
various NLU tasks. This might be a direction that
warrants further exploration.
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Limitations

Training: When generating data for training, For-
mula 1 cannot handle the noise caused by incorrect
labels in the dataset. If a sample X has an incor-
rect label, then the labels of the four text pairs
in X will also be incorrect. Inference: For the
LCQMC dataset, the optimal model is TIWR-H.
Therefore, during inference, we can entirely dis-
regard the LLM for generating the corresponding
X and only use X. We have verified through ex-
periments that in this case, the accuracy can still
reach 89.51%, which is almost identical to the stan-
dard TIWR-H. However, for the BQ and MRPC
datasets, achieving the best results requires the use
of the TIWR-P pipeline strategy, thus necessitating
the use of LLM to generate the corresponding X.
This significantly increases the cost of inference.
Additionally, for some samples, LLLMs may refuse
to rewrite sentences due to security policy reasons.
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A Implementation Details

The BERT and RoBERTa models used in this pa-
per have 103 million and 125 million parameters,
respectively. We apply AdamW (81 = 0.9, B2 =
0.999) with a weight decay rate of 0.01 for BERT
and 0.1 for RoBERTa and use a warm-up of 0.1 for
learning rate decay. For the baseline and TIWR
model, we use an epoch of 3 and a batch size of
16. The learning rate is set to be 2e-5 for MRPC
and 3e-5 for other datasets. As for the TIWR-H
model, the epoch is set to be 3 for QQP and 1 for

other datasets. The learning rate is selected in {2e-
6, 3e-5}. We attempt various mix ratios of hard
cases and easy cases to construct the training set
required for TIWR-H. Specifically, we define « as
the proportion of hard cases in the training set, and
experiment with several distinct values, namely
{0.2,0.4,0.6,0.8,1 }. Ultimately, for LQCMQ,
QQP, and MRPC, the values of « are set at 0.8,
0.2, and 0.6 respectively. For BQ, none of these
mixtures yield satisfactory results, thus we adopt
an alternate approach in which only the positive
samples from the easy cases are used for mixing.
All experiments are performed utilizing an A100
40G GPU.

B Proportion of Inconsistent Predictions

Figure 3 presents a comparison of the proportion
of inconsistent predictions between Baseline-IWR
and TIWR on different datasets. It can be seen
that the number of samples with inconsistent pre-
dictions decreases significantly across all datasets.
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Figure 3: Changes in the proportion of inconsistent
predictions.
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