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Egocentric Vehicle Dense Video Captioning
Anonymous Author(s)

ABSTRACT
Typical dense video captioningmostly concentrates on third-person
videos, which are generally characterized by relatively delineated
steps among events as seen in edited instructional videos. However,
such videos do not genuinely reflect the way we perceive our real
lives. Instead, we observe the world from an egocentric viewpoint
and witness only continuous unedited footage. To facilitate fur-
ther research, we introduce a new task, Egocentric Vehicle Dense
Video Captioning, in classic first-person driving scenario. This is a
multi-modal, multi-task project for a comprehensive understanding
of untrimmed, egocentric driving videos. It consists of three sub-
tasks that focus on event location, event captioning, and vehicle
state estimation separately. For the purpose of accomplishing these
tasks, it is necessary to deal with at least three challenges, those
are extracting relevant ego-motion information, describing driving
behavior and understanding the underlying rationale, as well as
resolving the boundary ambiguity problem. In response, we de-
vise corresponding solutions, encompassing a vehicle ego-motion
learning strategy and a novel adjacent contrastive learning strategy,
which effectively address the aforementioned issues to a certain ex-
tent. We validate our method by conducting extensive experiments
on the BDD-X dataset, all of which show promising results and
achieve new state-of-the-art performance on most metrics, which
proves the effectiveness of our approach.

CCS CONCEPTS
• Computing methodologies→ Video summarization.

KEYWORDS
Egocentric Vehicle Video, Video captioning, Contrastive Learning,
Ego-motion
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1 INTRODUCTION
Dense Video Caption (DVC) is a branch of video understanding
that aims to locate and describe all events within an untrimmed
video[30, 40, 56, 66, 70, 74]. Leveraging DVC allows for more effi-
cient video processing, like detailed content retrieval and intelligent
surveillance. Several related research has been conducted in some
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specific scenarios, such as procedural human activities[4] and in-
structional videos[58, 73], all these efforts have seen remarkable
capabilities.

However, the majority of DVC researchers focus on analyz-
ing exocentric, or third-person videos, yet investigations into an
egocentric, or first-person, viewpoint remain rare. Different from
the former, which commonly narrates details about other objects
within the camera lens as shown in Figure 1(b), this view primar-
ily concerns the movements of camera wearer [8, 17, 26, 34, 51]
itself. In fact, it is the egocentric perspective that precisely reflects
the authentic and natural manner in which human beings and au-
tonomous agents observe their surroundings[8, 17, 35, 60, 61]. Be-
sides, it fundamentally affects how we understand and engage with
our environment on a daily basis, by influencing our perception[39,
49], decisions[22, 46, 69] and interactions[36, 41, 59] in the com-
plexities of the world around us[54, 69]. Consequently, this gives
rise to Egocentric Dense Video Captioning (Ego-DVC). In contrast,
Ego-DVC is characterized by its unique competence to learn motion
changes of the view from untrimmed egocentric videos, which cor-
responds closely to real-life experiences and is thus more practical
and meaningful. There are plenty of potential applications for this
subject, among which, driving is a classic domain.

For the facilitation of investigation, we present a new task, Ego
Vehicle Dense Video Caption. It is devoted to driving scenarios,
where a camera is mounted at a specific location on the vehicle, to
capture multiple variable ego-motion information and the evolving
landscape as the vehicle moves. Ideally, the information recorded
should implicitly include the locations of various driving behaviors,
corresponding descriptions and rationales, as well as vehicle states,
hence we propose such a task. As shown in Figure 1(a), given a
sequence of first-person driving frames, we are tasked with three
sub-tasks. a) Event Location, aiming to identify all driving events
that take place in the video, while also simultaneously pinpointing
the precise start and end timestamps for each. b) Caption gener-
ation, intending to describe the actions of all detected events in
natural language and provide their contextually relevant rationale.
c) Vehicle State Estimation(VSE), attempting to estimate specific ve-
hicle states for the whole video, including velocity and steer, these
states describe the fundamental motion patterns of the vehicle, for
example, we might infer a vehicle is slowing down if we detect that
its velocity values are consistently decreasing during a period of
time.

Upon a profound analysis, we suppose our task is confronted
with at least three distinct challenges:

Ego-Motion Information: For egocentric videos, ego-motion
information is embedded in the dynamic changes of the camera lens.
However, in the complex road environment, irrelevant objects and
deterministic signals[62] for driving are always intricately inter-
twined and subtly changing, making it difficult to extract effective
motion representation.

Description and Rationale: Analyzing the cause is often more
difficult than describing the problem, this also applies to our task.
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Figure 1: A schematic illustration of Ego Vehicle DVC. Compared with typical DVC, Ego Vehicle DVC comprises four outputs:
location, description, as well as additional rationale and vehicle state.

As shown in 1(b), the reason the car slows down is that it encoun-
tered a red light, which is not easy to analyze because the accurate
rationale(traffic light) that truly corresponds to the description in
driving scenarios often appears trivial and is prone to be overlooked,
it requires a thoroughly probe into the videos.

Boundaries Ambiguity: Compared to typical DVC, the ego-
centric videos are always continuous, unedited real-life footage.
Additionally, those captured by vehicle-mounted cameras predom-
inantly feature the road, with the majority of the view occupied
by it and only several impalpable changes occurring, especially in
suburbs. As shown in Figure 1(b), frames near the event boundary
are very similar thus causing ambiguous, yet traditional DVC in
Figure 1(a) generally does not encounter this issue. This feature
obstructs the precise identification of the boundary between two
adjacent driving behavior events.

To address these challenges, we intentionally designed corre-
sponding strategies. Concerning the first two challenges, we in-
troduce a vehicle ego-motion learning strategy, it integrates a pre-
trained extractor andVSEmodule, the former function on extracting
ego-motion features incorporating driving-decision, and the VSE
module is applied to strengthening the representation with specific
motion values(vehicle state). Regarding the third one, we devise an
adjacent contrastive learning(ACL) strategy that enhances event
representation by performing contrastive learning among the three
modalities of adjacent events. This approach is capable of reducing
the ambiguity of event boundaries and thereby distinguishing them
more clearly.

To summarize, our main contributions are three-fold:
(1) We introduce the Ego Vehicle DVC task, allowing for a de-

tailed multimodal comprehension of untrimmed egocentric driving
videos.

(2)We pioneered incorporating an ego-motion information learn-
ing strategy in DVC. Besides, we design an adjacent contrastive
learning strategy for event representation learning.

(3) We conducted extensive experiments on the BDD-X dataset,
achieving state-of-the-art results in most metrics, thereby demon-
strating the effectiveness of our approach.

2 RELATEDWORK
2.1 Egocenertic Vision
Egocentric vision, providing a distinctive and intuitive perspective
on human interactions with the environment[8, 35, 36, 41, 59, 61],
is thriving increasingly. In contrast to traditional tasks, which typi-
cally process well-defined exocentric videos curated by photogra-
phers, egocentric videos possess their unique features that remain
underexplored, such as view changes[20], even the currently popu-
lar large languagemodel (LLM) still performs poorly on this issue[8].
To delve deeper, a wide range of related topics are gradually emerg-
ing and attracting the attention of researchers.

Egocentric human-object interaction(EGO-HOI) is a vital task in
this field, it primarily concentrates on the interactions between
hands and objects from an egocentric viewpoint[9, 17, 53, 64].
Some research attaches importance to hand pose estimation and
object-centric representations[1, 64], others strive to learn reason-
ing and indirect reference through question-answering on real-
world egocentric footage[25, 26], and further works on captioning
egocentric videos by cross-view transfer learning from exocentric
sources[21, 63]. EGO-HOI paves the way for nuanced communi-
cation between humans and external entities, while it primarily
focuses on specific targets, lacking a comprehensive understanding
of the overall scenario.

Egocentric Visual Perception, which generally serves as the eye
of the entire autonomous system, is a crucial part of this topic. It
is widely applied in applications such as Virtual Reality (VR) and
Augmented Reality (AR), where a fundamental task involves lo-
cating the 3D positions of multiviewed visual queries in complex
scenarios [17, 37]. Embodied AI, a prevalent topic at present, is
also inextricably linked to this technology. [13, 54, 72] endeavors
to master comprehensive 3D scene understanding skills, enabling
real-world embodied agents to execute commands effectively. Au-
tonomous driving is another typical application of egocentric visual
perception, studies such as[19, 38, 47]attempt to plan vehicle action
based on surroundings and achieve impressive outcomes, despite
the understanding of the underlying rationale remains elusive. Fur-
thermore, Several works consider detecting regions pertinent to
driving decisions[12, 28, 45], although these methods are useful for

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Egocentric Vehicle Dense Video Captioning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

those familiar with traffic laws, they may confuse ordinary users.
Therefore,[27, 29, 65, 68] strive to comprehend vehicle motion with
rational and straightforward natural language, while they limit to
a short-term video with one main behavior which is not consistent
with reality.

2.2 Dense Video Captioning
Dense video captioning (DVC) is a multi-task project that requires
identifying events and generating captions for them. Originally,
this task predominantly employed two-stage methodologies [23,
24, 30, 52, 57, 70], starting with the temporal localization of events,
followed by their captioning. This paradigm heavily depends on
the performance of the first stage, consequently, many have begun
to consider the end-to-end one-stage approach [6, 7, 10, 31, 40, 44,
48, 55, 56, 66], intending to reach mutual improvement by coordi-
nating the interaction of jointly training two sub-tasks. Learning
from Bert[11], [70, 74] design mask mechanisms for the interaction
between the two modules separately. The emergence of DETR[5]
brought fresh prospects to the task, based on which Deformable-
DETR[75], [56] employs a set prediction scheme to elegantly paral-
lelize the two sub-tasks. Building on this foundation, [55] introduces
contrastive learning to enhance event representation through the
contrast between events and captions. Given the information em-
bedded in the audio tracks of these videos,[23, 24, 66] take a unique
view by extracting the audio features from the videos, thereby
significantly improving performance.

However, the methods designed for edited and exocentric videos
fall short of meeting our task’s requirements, which focused exclu-
sively on analyzing unedited, audio-free, continuous, real-world
driving footage from a first-person perspective. In Driving scenar-
ios, the views are typically dominated by the road surface, and
present minimal variation in the surrounding environment, lead-
ing to ambiguous distinctions between events and complicating
event localization. What’s more, the inherent nature of egocentric
videos concerning dynamic view changes, adding another layer of
complexity to video analysis.

3 METHODOLOGY
In this work, we focus on locating all driving behavioral events, cap-
tioning behavior descriptions and rationales, as well as estimating
vehicle state values throughout the entire ego-vehicle video. Figure
2 provides a graphical illustration of our comprehensive frame-
work. Initially, we pre-train a vehicle ego-motion extractor(Sec 3.1),
leveraging which frame features will be captured and fed into a
DETR-based architecture and be further amplified by VSE mod-
ule (Sec 3.1) at the end of the encoder, the decoder will generate
several event representations, we then introduce a novel adjacent
contrastive learning (Sec 3.2) strategy to enhance semantic repre-
sentation of these event and finally generate all descriptions and
rationales.

3.1 Vehicle Ego-motion Learning Strategy
In this section, our objective is to introduce the vehicle ego-motion
learning strategy. It comprises two parts, the first part involves pre-
training a vehicle ego-motion extractor by self-supervised learning,

while the second part enhances ego-motion representation through
supervised VSE.
Vehicle Ego-motion Extractor.
In this part, we try to achieve an extractor that allows us to map
the raw frame input to a compact representation containing basic
ego-motion information, which is essential for our three sub-tasks.
Considering that under normal circumstances, driving decisions
should be consistent with actual behavior, we attempt to incorpo-
rate driving-decision awareness, expecting to assist in extracting
appropriate motion representation while also taking into account
the crucial visual cues based on the current scenario. Following
the design of PPGeo[62], our pre-training progress consists of two
stages.

Self-supervised photometric reconstruction. Photometric
Reconstruction aims to reconstruct the scenario by learning photo-
metric differences, or more specifically, standard color constancy
between frames. There exists a prevalent method that enables the
model to translate input pixels into ego-motion and detailed scene
architecture as well as estimating camera intrinsics.

We follow [16, 71] to perform photometric reconstruction by
jointly training a PoseNet and DepthNet across two frames. PoseNet
is designed to estimate the 6-DoF ego-motion and camera intrinsics
between consecutive frames, and DepthNet predicts the depth map
in the meantime. We employ a ResNet and MPViT to serve them
separately. Assuming that we want to reconstruct the t-th frame 𝐼𝑡
from 𝐼𝑡−1. the pixel-wise color constancy can be reconstructed as
follows:

𝐼𝑡 ′ = 𝐼𝑡−1 ⟨proj (𝐷𝑡−1,𝑇𝑡−1→𝑡 , 𝐾)⟩ (1)
here 𝐼𝑡 ′ is the reconstruction of frame 𝑡 , proj() indicates the op-
eration with which we project original pixels space of 𝐼𝑡−1 into
predicted 2D coordinates making use of depth map 𝐷𝑡−1 from and
relative pose 𝑇𝑡−1→𝑡 between 𝐼𝑡−1 and 𝐼𝑡 . Afterward, utilizing bi-
linear interpolation, we sample values to create 𝐼𝑡 ′ through <>

operation. As for camera intrinsics 𝐾 , we consider it a constant
value and assess it by calculating the average of 𝐾𝑡−1 and 𝐾𝑡 pre-
dicted from relevant frames.

Align with [16, 71], We calculate the loss according to the fol-
lowing formula:

L = 𝜆𝑝𝑒L𝑝𝑒 + 𝜆𝑠L𝑠 (2)
here L𝑝𝑒 represents photometric loss comprised of structural simi-
larity index measure(SSIM) and 𝐿1 term:

L𝑝𝑒 =
𝛼

2
(1 − SSIM (𝐼𝑡 , 𝐼𝑡 ′ )) + (1 − 𝛼) |𝐼𝑡 − 𝐼𝑡 ′ | (3)

L𝑠 represent disparity smooth-ness loss:

L𝑠 =
��𝜕𝑥𝑑∗𝑡 �� 𝑒−|𝜕𝑥 𝐼𝑡 | + ��𝜕𝑦𝑑∗𝑡 �� 𝑒− |𝜕𝑦𝐼𝑡 | (4)

where 𝑑∗𝑡 is the mean-normalized inverse depth map.
Vehicle ego-motion extractor. After the preceding phase, we

will obtain a DepthNet and a PoseNet. This PoseNet can capture
relative motion differences between two adjacent frames. In fact,
what we really need is the "difference" on a certain frame, it essen-
tially means learning the driving policy, that is to say, performing
suitable driving behavior based on current observation. To bridge
this gap, we follow the methodology outlined in [62], wherein 𝐼𝑡 is
removed and retain only one 𝐼𝑡−1 as input. In addition, we freeze

3
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Figure 2: A overview of our framework. The vehicle ego-motion extractor is pre-trained in advance through photometric
reconstruction. Event Encoding is responsible for encoding frame sequences into vehicle motion representation for state
estimation as well as event representations for location and captioning. Ground truth captions(descriptions and rationales)
and motion values(vehicle states) are encoded in the Caption & Motion Encoding module by the corresponding encoder
independently. In Adjacent Contrastive Learning, these three modalities enhance each other within the same event(shown
in the same color), while simultaneously weakening their adjacent events(yellow and pink), but ignoring interaction with
temporally distant events(yellow and green).

the DepthNet, reinitialize the parameters of PoseNet, and conduct
retraining of the entire model as the preceding phase once again.
Ultimately, a new PoseNet will be obtained with the assistance of
the well-trained DepthNet, referred to as the vehicle ego-motion
extractor. It enables the acquisition of not only ego-motion repre-
sentations but also critical decision-making information, that is,
the rationale.
Vehicle State Estimation.
In this part, we intend to introduce VSE, a special module that plays
a dual role within our framework. The major function is to carry
out the task of vehicle state estimation. Simultaneously, since the
vehicle state is, in essence, a concrete form of ego-motion, VSE
and vehicle ego-motion representation can be mutually beneficial
throughout this supervised learning process.

Assuming that an ego-vehicle video 𝑉 , consisting of 𝑁 frames,
is labeled as {(𝑣1, 𝑠1), (𝑣2, 𝑠2), ..., (𝑣𝑀−1, 𝑠𝑀−1), (𝑣𝑀 , )}, here 𝑣𝑡 de-
notes the velocity at the 𝑡-th timestamp, 𝑠𝑡 denotes the steering
value between the 𝑡-th and (𝑡 + 1)-th records. It is important to
notice that the collected vehicle states do not always align with
frame sequences. In practice, they are recorded at fixed intervals,
rather than frame by frame, therefore𝑀 is usually less than 𝑁 . We
will feed into 𝑁 frames and extract features through the vehicle ego-
motion extractor, after transformer encoder, the features 𝑓1, 𝑓2 ...𝑓𝑁
will be applied to estimate velocity and steer of the ego-vehicle
throughout the duration as follows:

𝑓1, 𝑓2 ...𝑓𝑁 = BiLSTM(𝑓1, 𝑓2 ...𝑓𝑁 ) (5)
Given𝑀 records associated with𝑁 frames, we utilize linear interpo-
lation to downsample 𝑁 features to𝑀 . Note that we use multi-scale
features with CNN, to accumulate them we apply max pooling
results in 𝑓1, 𝑓2 ...𝑓𝑀 , then we map them into scalars as follows by
MLP:

𝑣 ′1, 𝑣
′
2 ...𝑣

′
𝑀 = MLPv (𝑓1, 𝑓2 ...𝑓𝑀 ) (6)

𝑠′1, 𝑠
′
2 ...𝑠

′
𝑀−1 = MLPs (𝑓1, 𝑓2 ...𝑓𝑀−1) (7)

Here 𝑣 ′
𝑖
represents estimated velocity, 𝑠′

𝑖
represents steer between

𝑓𝑖 and 𝑓𝑖+1.
Finally, We calculate the loss using Mean Square Error:

L𝑚𝑠𝑒 =
1
𝑀

𝑀∑︁
𝑖=1

(𝑣𝑖 − 𝑣 ′𝑖 )
2 + 1

𝑀 − 1

𝑀−1∑︁
𝑖=1

(𝑠𝑖 − 𝑠′𝑖 )
2 (8)

3.2 Adjacent Contrastive Learning Strategy
In this section, we will introduce our contrastive learning strategy
particularly devised for driving events location. The core concept
involves applying three types of modalities to adjacent driving
behavioral events. In this task, we regard an untrimmed ego vehicle
video 𝑉 as a set 𝐸 = {𝑒𝑛 |𝑒𝑛 = (𝑙𝑛, 𝑐𝑛), 𝑛 = 1, 2, ..., 𝑁 }, where 𝑙𝑛 =

(𝑙𝑠𝑛, 𝑙𝑒𝑛) defines the time location for event 𝑛, starting at time 𝑙𝑠𝑛
and ending at time 𝑙𝑒𝑛 , 𝑐𝑛 = (𝑑𝑛, 𝑟𝑛) provides the caption for event
𝑛, with 𝑑𝑛 offering description of driving behavior, 𝑟𝑛 offering its
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rationale. For convenience, We define a new set 𝐸𝑛 consisting of
event 𝑛 and its adjacent events as follows:

𝐸𝑛 = {𝑒𝑖 ∈ 𝐸 | (𝑙𝑒𝑖 ≥ 𝑙𝑠𝑛 ∧ 𝑙𝑠𝑖 ≤ 𝑙𝑒𝑛)∨
(|𝑙𝑒𝑖 − 𝑙𝑠𝑛 | ≤ 𝜀 ∨ |𝑙𝑠𝑖 − 𝑙𝑒𝑛 | ≤ 𝜀)}

(9)

where 𝜀 is a constant, defining the temporal distance threshold of
adjacent events.

As seen in Figure 2, the representations of frame sequences flow
into the Event Encoding module and are encoded into𝑀 (𝑀 ≤ 𝑁 )
predicted driving behavioral events. Sequencely, after a typical Hun-
garian Match, they will be matched with ground truth. To deepen
discriminability, we introduce an additional head for event repre-
sentation learning. This enables us to project the predicted events
into𝑀 semantically representations 𝐸𝑝 = {𝑒𝑝1, 𝑒𝑝2, . . . , 𝑒𝑝𝑀 }. Ide-
ally, we consider they should satisfy at least the following three
criteria:

• They should fully encapsulate the vehicle ego-motion in-
formation of the corresponding behavioral events.

• Any two adjacent behavioral events should be clearly dis-
tinguished.

• Any two behavioral events that are distant in time should
not affect each other.

Taking these three considerations into account, we devise a novel
contrastive learning method. Previous methods usually calculate
the loss in a global range, even extending to a training batch[18, 43]
attribute to the variety of their data pairs. On the contrary, we
merely confine ourselves to an adjacent range. This is because the
scope of behaviors observed in ego-vehicle videos is generally lim-
ited and prone to repetition. A vehicle described as "The car turns
right at an intersection" during a certain period may likely be de-
scribed by the same sentence again before long, this phenomenon
is so common in vehicle scenarios that previously prevalent con-
trast learning would result in a significant decline in effectiveness.
However, we can make sure that the driving behaviors of the neigh-
boring events certainly contain obvious differences, otherwise they
would not be divided into two events. Our strategy consists of the
following three parts.
Event-Caption Contrastive Learning

The information in egocentric driving videos is not confined to
the frame sequences alone, it exists in the associated caption as
well. We posit that the essential motion insights from both mediums
ought to be consistent. With the prior knowledge of relevant tex-
tual features, we can enhance the semantics of events and achieve
cross-modal alignment between video and caption content. Clip[43]
is a standard work related to this idea. Unfortunately, as a genera-
tion task, it is impossible to access caption representation before
generating it, which leads to a deadlock situation.

To break this deadlock, we introduced a pre-trained text encoder
to encode all captions(𝑑𝑛 or 𝑟𝑛) into𝐶 . After aligning, we project 𝐸𝑝
and𝐶 into a shared space and calculate the cross-modal cosine sim-
ilarity matrix between the projected embeddings as 𝜔𝑒𝑐 ∈ R𝑀×𝑁 ,
we will calculate our adjacent event-caption contrastive loss as
follows:

L𝑒𝑐 = −
𝑁∑︁
𝑛=1

log
exp(𝜔𝑒𝑐 (match(𝑛), 𝑛)/𝜏)

𝑍𝑒𝑐𝑛
(10)

here 𝑍𝑒𝑛 is a modified normalization factor:

𝑍𝑒𝑐𝑛 =

𝑀∑︁
𝑖=1

{
exp(𝜔𝑒𝑐 (match(𝑖), 𝑛)/𝜏) if 𝑒𝑖 ∈ 𝐸𝑛
0 else

(11)

where match() devotes the matching operate from 𝐸 to 𝐸𝑝 , 𝜏
signifies a temperature ratio.
Event-Motion Contrastive Learning

Fundamentally, the generation of driving videos is attributed to
the driver issuing signals for steering and velocity based on a certain
observation, therefore, the information entailed in the vehicle states
should also maintain consistency with the behavioral events. As
a result, we further implemented cross-modal semantic alignment
between vehicle motion and event. This approach enhances the
semantic representation of events by incorporating readily captured
motion information.

Just as in Event-Caption Contrastive Learning, we adopt amotion
encoder to encode the ground truth vehicle motion state values of
current events into a representation resulting 𝑆 , After aligning and
projecting into a joint space, we calculate the cross-modal cosine
similarity between 𝐸𝑝 as 𝑆 as matrix 𝜔𝑒𝑠 ∈ R𝑀×𝑁 . Same as before,
contrastive loss L𝑒𝑠 will be derived in the same manner.
Motion-Caption Contrastive Learning

We present the last contrastive Learning between motion and
caption, aiming for a mutual complementarity of information be-
tween the two modalities, and further indirectly enhancing event
representation.

Differing slightly from the former two components, the score
matrix will result in a square matrix 𝜔𝑚𝑐 ∈ R𝑁×𝑁 , the motion-
caption contrastive loss is determined using the following formula:

L𝑚𝑐1 = −
𝑁∑︁
𝑛=1

log
exp(𝜔𝑚𝑐 (𝑛, 𝑛)/𝜏)

𝑍𝑚𝑐1
𝑛

(12)

where𝑍𝑚𝑐1
𝑛 calculate the normalization factor vertically of𝜔𝑚𝑐 , we

can also acquire L𝑚𝑐2 with another 𝑍𝑚𝑐2
𝑛 normalized horizontally,

then the loss is expressed as follows:

L𝑚𝑐 =
1
2
(L𝑚𝑐1 + L𝑚𝑐2) (13)

Finally, our complete adjacent contrastive learning loss L𝑐𝑙 is
signified as following expression:

L𝑐𝑙 = 𝛼L𝑒𝑐 + 𝛽L𝑒𝑚 + 𝛾L𝑚𝑐 (14)

Where 𝛼 + 𝛽 + 𝛾 = 1, and 𝛼 , 𝛽 , 𝛾 are three trainable paramaters.
Principally, as the Trimodal Adjacent Contrastive Learning mod-

ule depicted in Figure 2, we utilize the three modalities within a
certain event to achieve cyclical contrastive learning, thereby en-
ablingmutual enhancement among them andmeeting the first point
of the criteria we mentioned earlier. Furthermore, our method, by
limiting the scope of contrast, not only weakens the semantic rele-
vance of adjacent events but also concurrently avoids the influence
of temporally distant events, satisfying the second and third points
of the criteria, thus ultimately achieving the purpose of distinctly
distinguishing the representation of adjacent events.

4 EXPERIMENTS
Dataset. To the best of our knowledge, there are no datasets per-
fectly aligned with the requirements of our task, we attempt to
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Table 1: Comparison to the state of the art for event location, w/o vs indicates discarding vehicle states

Method Feature Recall Precision F10.3 0.5 0.7 0.9 agv 0.3 0.5 0.7 0.9 agv

MT[74] R34 84.78 70.01 58.18 28.64 60.42 86.69 57.14 27.26 4.96 44.01 50.93
ESGN[40] R34 75.16 50.78 26.26 11.34 40.89 91.58 58.97 29.31 11.37 47.81 44.08
UEDVC[70] R34 84.52 59.22 39.27 18.17 50.30 88.17 62.07 38.51 14.40 50.78 50.54
GVL[55] R34 77.06 58.30 41.27 17.81 48.61 91.02 64.84 38.86 16.90 52.90 50.67
PDVC [56] R34 72.91 57.61 45.08 23.57 49.79 90.73 67.62 44.18 19.63 55.54 52.84
Ours (w/o VS) VEM𝑟34 73.37 59.26 45.32 22.89 50.21 91.47 74.15 52.86 21.31 59.95 54.65

Ours VEM𝑟34 72.99 59.02 45.61 25.52 50.79 94.97 77.02 54.29 25.92 63.05 56.26

Table 2: Comparison to the state of the art for captioning, w/o vs indicates discarding vehicle states

Method Feature Description Rationale
B4 M R C S B4 M R C S

MT[74] R34 8.58 12.51 24.92 49.20 4.06 2.89 6.42 13.70 29.09 2.56
UEDVC[70] R34 18.77 19.22 33.16 131.68 22.64 3.08 10.51 15.10 36.05 10.79
GVL [55] R34 18.01 21.39 36.76 140.89 25.63 3.80 11.04 17.35 36.32 11.45
PDVC[56] R34 18.68 22.23 37.70 141.90 24.21 4.37 10.12 18.64 49.61 10.55

Ours (w/o vs) VEM𝑟34 20.42 25.43 41.06 153.94 23.95 5.11 10.92 19.69 54.80 12.13

Ours VEM𝑟34 21.82 25.42 42.47 162.12 26.37 5.62 11.25 21.60 59.79 12.47

evaluate our proposed approach on the BDD-X[29], a widely used
ego-vehicle video dataset derived from BDD100K[67] for short-term
captioning which encompasses over 77 hours of driving within 6984
videos. Every video lasts about 40 seconds on average and comprises
approximately 1 to 5 driving behavior events and their location,
each annotated with a description and rationale. However, This
dataset initially doesn’t consider vehicle state, we have to acquire
it by mapping video id to the original BDD100K. Due to version
changes, there exist only 4641 corresponding videos, with 3578 for
training, 524 for validation, and 539 for testing. In BDD-X, the GPS
information is collected at 1Hz using the same equipment, suggest-
ing the camera intrinsics are identical, that’s the reason we can
estimate a single group of this parameter during the self-supervised
photometric reconstruction stage at Sec 3.1. Velocities are recorded
directly by the GPS, while for steering, we apply the course message
(angle relative to geographic true north) as pseudo-values between
two consecutive GPS records.
Implementation Details. To pre-train the vehicle ego-motion
extractor, we use ResNet34 andMPViT as the PoseNet andDepthNet
respectively. For each stage, it takes about 5 days on 8 Tesla V100
GPUs to train for 20 epochs with batch sizes of 32 and 64.

During training, we employ a frozen Roberta model as the text
encoder and a BiLSTMmodel for the vehicle states encoder; Follow-
ing PDVC[56], our method is based on a deformable-DETR with
two encoder-decoder layers of 512 dimensions and uses LSTM-DSA
[56] serve as event caption head to generate captions; Contrastive
learning is used only in training and ignored at the inference stage,
we set the temperature 𝜏 to 0.1, temporal threshold 𝜀 to 3; All
events will be sorted by their confidence scores, and the number of
predictedk events will be decide according to a CounterHead. We

set the batch size to 2 and trained for 30 epochs in a Tesla V100
using Adam with a learning rate of 0.0001 and a weight decay of
0.0001.
Evaluation metrics. As a multi-task model, We evaluate our
method in three aspects: 1) For VSE, we employ root mean squared
error (RMSE) and threshold accuracies 𝐴𝜏 . It calculates the ratio of
test samples that have prediction errors smaller than a predefined
threshold 𝜏 , which we set at multiple levels: {0.1, 0.5, 1.0, 5.0}. 2)
For events location, We calculate the average precision and average
recall for IoU thresholds set at {0.3, 0.5, 0.7, 0.9} and their harmonic
mean, the F1 score. 3) For captioning, we follow the widely uti-
lized evaluation tool provided by ActivityNet Challenge 2018[15]
adopting BLEU4(B4)[42], METEOR(M)[2], ROUGE_L(R)[33] and
CIDEr(C)[50] to measure matched pairs between generated cap-
tion and ground truth across IOU thresholds of {0.3, 0.5, 0.7, 0.9}.
Taking into the quality of the story of the whole drive video, we
additionally use SODA_c(S)[14] for an overall evaluation.

4.1 Comparison with State-of-the-art Methods
Since there is currently no task that aligns completely with ours, we
primarily compare event location and dense caption with current
DVC tasks. We compare five approaches on the BDD-X dataset
using their official codebases. MT[74] is the first one to utilize a
transformer in this field, we pick up the top 30 events for indicator
calculation; ESGN[40] offers a reinforcement learning approach,
however, a proposal method is needed to extract candidates in ad-
vance, we adopt ActionDetection-DBG[32] instead of its original
SST[3] and select top 100, noting that the official codebase solely
contains the event sequence generation stage, we only compare in
this subtask. UEDVC[70] transforms event-location into a sequence
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generation problem and proposes three pre-training tasks to ef-
fectively reinforce the correlation between sub-tasks. GVL[55] is
slightly similar to our method, utilizing global contrastive learning
to strengthen event representation, besides, it utilizes a semantic-
aware label assignment mechanism to improve recall. PDVC[56]
initially introduces detr into this task, presenting an elegant end-to-
end approach. There are also several remarkable works [23, 24, 66]
focus principally on audio features, which are not included in BDD-
X, so we do not consider comparing with them. For the sake of a
fair comparison, we all use the ResNet34(R34) structure as the basic
feature extractor, we should keep inmind the vehicle ego-motion ex-
tractor(VEM) is also from R34. In addition, we omit vehicle states(vs)
and keep only captions, which means discarding the vehicle state
estimation task and motion-related contrastive learning module.
Event location performance. Table 1 exhibits the effectiveness
of our approach and other several state-of-the-art methods. It in-
dicates that we achieve the best results in terms of precision and
F1 score, with respect to recall, MT receives the highest score, the
reason lying in its inherent emphasis on recall over precision. We
witness that although both are from PDVC and applying contrastive
learning, the precision of GVL is lower than PDVC in the BDD-X
dataset, while the situation is reversed in common datasets such
as ActivityNet[4] and [73]. The reason lies in that the modules de-
signed in GVL are better suited for one-to-one style datasets, where
events in the video directly match the caption. For datasets like
BDD-X, where there is a one-to-many relationship and multiple
driving events correspond to the same caption, this approach is not
applicable, whereas our method overcomes this defect.
Dense caption performance.Table 2 shows the impact on caption
generation, namely, description and rationale generation in our
task, compared with several previous works. we can observe that
our method sets new state of the art on all metrics. From an over-
all perspective, the effectiveness of rationale generation is much
lower than that of description generation, which aligns with our
speculation that analyzing the reasons for a phenomenon is much
more challenging than describing it.

4.2 Ablation Studies
Adjacet Contrastive Learning. We conducted extensive exper-
iments to assess the impact of our ACL approach. As illustrated
in Table 3, which shows its influence on driving behavior event
location. Ground truth vehicle state and caption(description and
rationale) are two optional types of potential impact factors of
this approach, in addition to the essential event features modality.
We also contrast two ways of integrating losses across different
modality pairs, direct addition and learnable weighted combination.
Although it does not significantly impact the recall rate compared to
the approach without ACL, it does substantially improve precision
by around 10.33%, resulting in an increase of around 5.01% in F1.
This is because our method, designed among adjacent events, can
enhance the boundary awareness capability of the model, making
it more distinguishable from neighboring events.

To verify the necessity of contrastive learning within the vicinity,
we conducted additional experiments to confirm the impact of a
temporal distance 𝜀. As depicted in Figure 3, we adjusted 𝜀 from 1s
to 40s, with 40s representing engagement in comparative learning

over the entire range of the video. The precision observed in the line
graph shows an initial rise followed by a subsequent decline. This
pattern emerges because, in driving scenarios, we can only ascertain
differences between adjacent driving events; However, it remains
uncertain whether two temporally distant driving behaviors are
distinct. Therefore, a large 𝜀 may impair results by contrastive
learning method.

Figure 3: The event location performance on different tem-
poral distance(𝜀).

Theoretically, although ACL does not affect caption generation,
it can indirectly influence it by affecting event location. Given this
possibility, we continue to carry out experiments on the change of
text generation capability. Table 4 demonstrates our deduction, we
can see our method achieves the best scores in most indicators.
Vehicle Ego-motion Learning. We conducted experiments to
investigate the impact of different feature extractors on the VSE
task. In Table 5, we compared ResNet34 (pre-trained on ImageNet
1k), CLIP (pre-trained on 400 million image-text pairs), and I3D (pre-
trained on Kinetics 400) with our VEM extractor trained from on an
initialized ResNet34 (VEMr34). Among these, ResNet34, CLIP, and
VEMr34 were applied to image frames, while I3D is a video feature
extractor. As shown in Table 5, our VEMr34 features performed
significantly better than the other two image encoders. The RMSE
of steer and velocity decreased by 6.90% and 28.57% respectively
compared with the original Resnet34. Moreover, we achieve results
comparable to those of the video encoder I3D, even though I3D
outperforms ours when the threshold is relatively low. This overall
result demonstrates the effectiveness of our method in capturing
vehicle ego-motion representation.

Table 6 illustrates the effect of vehicle ego-motion learning strat-
egy, namely extractors and VSE module, on event location and
caption. A driving event should contain a trend-oriented behavior,
which is closely related to ego motion. Our vehicle ego-motion fea-
ture is not only informative regarding ego-motion but also contains
driving decision-making, in other words, vehicle behavior rationale
information, which exactly meets the requirement. In addition, as
a component of our vehicle ego-motion learning strategy, the VSE
task is also beneficial to event location and text generation. In table
6, the average of event location with VEMr34 almost surpasses all
others, especially its counterpart, Resnet34, achieving 3.91%,6.96%,
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Table 3: Ablation of adjacent contrastive learning’s effect on event location.

Vehicle State Caption Method Recall Precision F10.3 0.5 0.7 0.9 avg 0.3 0.5 0.7 0.9 avg

× × 72.34 61.05 44.75 23.60 50.44 90.82 67.56 50.32 19.88 57.15 53.58√ × 73.00 61.21 44.55 23.02 50.45 92.73 72.26 50.62 23.09 59.68 54.67
× √

72.58 61.03 44.24 21.08 49.73 94.19 73.65 51.18 22.11 60.28 54.50√ √
Add 73.88 60.21 45.12 23.64 50.96 95.22 76.99 53.11 25.15 62.61 56.19√ √

Weighted 72.99 59.02 45.61 25.52 50.79 94.97 77.02 54.29 25.92 63.05 56.26

Table 4: Ablation of adjacent contrastive learning’s effect on caption generation

Vehicle State Caption Method Description Rationale
B4 M R C S B4 M R C S

× × 21.08 23.84 40.22 156.13 24.98 4.99 10.35 19.97 56.54 11.63√ × 19.96 23.92 40.13 159.25 24.12 4.81 10.56 19.44 57.38 11.02
× √

20.05 25.84 40.10 156.91 24.55 5.02 11.25 19.89 55.13 11.36√ √
Add 21.02 25.84 41.05 160.25 26.38 5.64 10.82 21.51 59.70 12.39√ √

weighted 21.82 25.42 42.47 162.12 26.37 5.62 11.25 21.60 59.79 12.47

Table 5: Ablation of vehicle ego-motion feature’s effect on vehicle state estimation

Feature Steer Velocity
RMSE𝑑𝑒𝑔𝑟𝑒𝑒 A0.1 A0.5 A1.0 A5.0 A10.0 RMES𝑚/𝑠 A0.1 A0.5 A1.0 A5.0 A10.0

R34 4.06 14.81 36.54 57.45 91.15 96.87 2.59 2.44 19.55 36.97 88.64 98.56
Clip 3.92 19.20 40.50 64.16 91.08 96.86 2.47 1.94 19.50 37.97 89.26 98.81
I3D 3.81 24.65 58.84 72.29 92.98 97.24 1.85 3.71 27.28 46.66 93.48 99.24

VEM𝑟34 3.78 23.13 57.20 73.00 93.09 97.54 1.85 3.67 30.46 44.52 94.94 99.26

Table 6: Ablation of vehicle ego-motion learning strategy’s effect on event location and caption generation

Strategy Event Location(avg) Caption
Description Rationale

Recall Precision F1 B4 M R C S B4 M R C S

R34+VSE 50.08 58.95 53.76 19.01 23.30 39.16 146.68 24.35 4.68 9.94 18.96 50.36 11.04
Clip+VSE 50.66 60.27 55.64 19.53 23.74 41.10 157.49 25.01 5.21 11.00 19.65 55.65 12.20
I3D+VSE 51.38 61.84 56.13 21.08 25.82 42.20 160.61 25.63 5.28 11.58 19.95 58.08 12.88

VEM𝑟34 + VSE 50.79 63.05 56.26 21.82 25.42 42.47 162.12 26.37 5.62 11.25 21.60 59.79 12.47

5.28% for Recall/Precision/F1 respectively. Simultaneously, the cap-
tion task also achieves substantial enhancement. Despite the fact
that rationale generation is still inferior to description, the improve-
ments in rationale are much larger than Description. For instance,
compared with Resnet34, the description sees an increase of about
14.78% with a rationale of 20.01%, demonstrating that our method
indeed facilitates the model in mining explanatory information.

5 CONCLUSION
This paper presents the Ego Vehicle DVC, involving a multi-modal
task with three sub-tasks targeting the investigation of dense video
captioning in real-life first-person driving scenarios. Due to its
distinctive observational viewpoint, this task comes with its unique

challenges. We develop a strategy for learning vehicle ego-motion
and a novel adjacent contrastive learning for boundary ambiguity.
Extensive comparisons and ablation experiments demonstrate the
effectiveness of our proposed method.

We suppose this topic is of great significance, whereas there are
still some barriers hindering further research, a prominent problem
is related to the dataset. The duration of the BDD-X dataset is
relatively short, the descriptions and rationales lack diversity, and
The recording frequency for vehicle states is too low. We may
consider contributing a higher-quality dataset to this topic in the
near future.
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