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ABSTRACT

We propose approaches for static and dynamic neural optimal transport with a
relaxed Monge formulation to create optimal transport maps from a source distri-
bution to an optimized distribution constrained to have an upper-bounded density
ratio to the target distribution. In machine learning applications, this allows to
learn the mappings between imbalanced datasets, such that one dataset can be
mapped to a reweighted subset of a target dataset, with the reweighting governed
by the density ratio constraint. The density ratio is constrained to lie in [0, ¢] by
the f-divergence associated with the indicator function for [0, ¢], where ¢ denotes
the maximum allowable upweighting factor. In the static case, neural networks
are employed to parameterize the Monge map between source and selected subset
of the target distribution and the dual function for the constraint. In the dynamic
case, two networks are also employed: first neural network parametrizes the time
dependent potential whose gradient defines the velocity field and terminal value
enforces the density ratio constraint, while the second parametrizes the interpola-
tion between the samples from source and optimized terminal distribution satisfy-
ing both the density ratio bound and the continuity equation. Since the terminal
distribution in subset alignment need not be equal to the target distribution, which
is distinct from prior work on dynamic neural optimal transport, we explore an ef-
ficient sampling scheme guided by the terminal potential. We apply both the static
and dynamic formulations on domain translations problems, and demonstrate that
the relaxed problem yields a more meaningful Monge map in cases where there
is natural alignment between source and target distributions, but the distributions
are imbalanced.

1 INTRODUCTION

Gaspard Monge proposed the original idea of optimal transport as mathematical model for the prob-
lem of minimum-cost transportation of dirt from source location to a destination |Monge| (1781). In
more modern parlance, given probability measures, u defined on compact set X C R, v defined
on compact set ) C R, and the bounded uniformly continuous cost c(-,-) : X x V — R, Monge
formulation of optimal transport is stated as

I(lf /X c(z,T(x)) p(x)de

i
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where the set 7 (X, )) denotes the set of measurable maps between X and ). Monge formulation of
the optimal transport problem requires that the transport map of 7" to be a deterministic function. In
order to satisfy the constraint in the Monge problem I} the transport map 7" must cover v upto some
v-null sets. Usually, the cost c is non-linearly dependent on the transportation map 7', making the
problemﬂ] very cumbersome and very difficult to solve (Santambrogio, |2015} |Villani et al., 2009).

Recently, neural networks have been widely employed to solve optimal transport problems. |Seguy
et al| (2018) employed stochastic gradient-based approaches to estimate the optimal transport
(Monge) map for large-scale data. In comparison, earlier work (Genevay et al., 2016) only min-
imized the optimal transport loss using stochastic gradient-based methods, or, as in well-known
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Wasserstein-GAN (Arjovsky et al. 2017 |Gulrajani et al., 2017)), employed the Kantorovich-
Rubinstein duality to minimize the Waserstein-1 loss function for generative modeling; however,
the resulting generator is not trained to minimize distance as in the Monge formulation. Conversely,
optimal transport maps can realize generative models (Daniels et al., 2021} Rout et al.| 2022} Ko-
rotin et al., [2023b; |Amos, [2023). For squared Euclidean transport cost, transport plans have been
either directly parameterized using non-convex neural networks, (Rout et al., 2022} Korotin et al.,
2023b) or obtained by amortizing the convex conjugate as gradients of convex functions parame-
terized by input convex neural networks (Amos et al., 2017; [Makkuva et al., 2020; Korotin et al.,
2021a; |Amos) 2023} |Vesseron & Cuturi, [2024). With recent developments in the development of
flow matching (Lipman et al.| 2023} [Liu et al.| 2023} |Albergo & Vanden-Eijnden| 2023)) as a state-
of-the-art method for image generation, considerable recent efforts have been made to develop an
efficient neural network-based framework for dynamic optimal transport for a variety of trajectory
inference and generative modeling problems (Pooladian et al.,[2024; |Neklyudov et al.| [2023}2024b).

While distinct from generative modeling, the Monge map is a meaningful concept for the alignment
of two real distributions (neither of which is noise) from slightly different domains, as in unsu-
pervised domain adaptation. In these cases, distributional imbalance creates challenges (Wu et al.,
2019). There has been substantial theoretical work on partial optimal transport (Figalli, [2010j |Caf-
farelli & McCannl |[2010; |Chizat et al., |2018bja)) where two measures are not required to be of equal
mass, and Wasserstein Fisher-Rao distance (Chizat et al., [2018a;b; Bauer et al.,[2016) which allows
for mass growth and destruction during the transfer process. Recent work on neural optimal trans-
port in these cases (Gazdieva et al., [2023}; |Choi et al., [2023; Yang & Uhler, |2019). In this work, we
formulate a relaxed version of optimal transport that creates a new distribution whose density ratio
to the target distribution is bounded.

We propose static and dynamic neural optimal transport formulations, under the constraint density
ratio constraint. To minimize the expected ground distance[]_-], the transported distribution can have a
support that is subset of the target support. This can be interpreted as a reweighted target distribu-
tion with mass concentrated entirely on the selected subset. Our key contributions are as follows:
we formulate both static and dynamic subset alignment problems by replacing the target marginal
constraint with a penalty based on an f-divergence corresponding to the convex indicator function
of the set [0, ¢], where ¢ = 1 recovers standard optimal transport; we leverage dual formulations of
our problems using neural networks, in particular, we employ Benamou-Brenier formulation (see
equation [22] in the appendix) along with the Lagrange multiplier method to obtain the dual form
of dynamic subset selection; we show that the dual formulations in both the static and dynamic
yield a potential function defined over the target support, whose sign effectively distinguishes points
within the selected subset from those outside it; and we apply our framework to unpaired domain
translation problems and use the potential function for PU-learning.

2 METHODOLOGY

2.1 STATIC SUPPORT SUBSET-SELECTION

The Kantorovich formulation (Kantorovich, |1942) for the optimal transport problem is

W) = inf | el )rla y)dady. st /y drla.y) = n(w). [ dr@.y) = o)

T
(2)
where 7 is a density defined on X x ). Our formulation of static support subset-selection for
optimal transport is derived from a relaxed problem where the constraint on the first marginal of the
joint density 7 is maintained, while the second marginal [, 7(x,y)dx = v(y) is allowed to vary

from within a range [0, ¢] of the target density v, such that 0 < Z(y)

< c¢. The density 7 can be

interpreted as a reweighted target density 7(y) = w(y)v(y), 0 < w(y) < ¢, where portions of
the support can be up-weighted while others are down-weighted or removed. The relaxed constraint
is equivalent to a case of the partial optimal transport relaxations using f-divergences introduced by

"While we focus on the Euclidean distance, more general distances can be considered.
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(Séjourné et al., [2023)

inf /X el )@ y)ddy £ D, G) st /y (@, y)dy = p(e), 3

T

where D, , is the range divergence with ¢[, ;) being the convex indicator function

0, r € [a,b] .
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and z’["m ) denotes its Legendre-Fenchel conjugate. Since the function 1, p) is convex lower semi-
continuous, therefore 1[4 3 = zfj’b], we can apply the variational form of the f-divergence Nguyen
et al.| (2010), (Polyanskiy & Wu, 2025 Theorem 7.26), exploited by f-GAN (Nowozin et al.,[2016),
leading to a form requiring only expected values

Dy (7v) =/yZ[a,b](V(y))V(y)dy=sup/yn(y)ﬂ(y)dy—/yl[*a,b](n(y))V(y)dy- (5)

v n

Eges[n(9)] Eyen 1, ) (1(9)]

To match , we focus on @ = 0 and b = ¢ > 1, such that ZE‘O q (t) = ¢ - max(0,t) and for compact-

ness denote 74 (y) = max(0,7(y)). Introducing ¢ as a measurable function to act as a Lagrange
multiplier to enforce the constraint in[3]and combining with equation [5]yields the problem

inf sup / (c(@,9) + ny) — b(@))r(@,y)dedy + / b)) de — ¢ / e (W (w)dy.  ©)

T 4m

As described in App. since c is convex and lower semi-continuous, we interchange the inf
and sup, and apply what is known as the c-transform of —n(y) (Santambrogio, 2015; |Villani et al.,
2009) to obtain the dual problem with measurable map 7" : X — )

supigf [ (e, T(@) + n(T @)@z —c [ n. @)y, a)

Bonp (e, T (2))+n(T ()] By~ [c-max(0,n(y))]

For the computational implementation 7" and 7 are parameterized using neural networks with asso-
ciated parameters 07 and ¢,, and expectations are estimated using samples from p and v as described
in the Algorithm T]

Algorithm 1: (Static—-Neural-SS) Learning Algorithm for Static Subset Selection

Inputs : Source distribution 4 and target distributions v, cost function c(-, -),
reweighting bound ¢, neural networks T'(-, 67) and 7(-, 6,,), batch size N,
number of updates nr and n,,, and optimizers optimz and optim,,.

Outputs : Sample based neural estimate for transport map 7'

1 for all learning iterations do

2 for n update steps do

3 sample {z;}¥ | ~ pand {yj}j.vzl ~ v

4 compute grady, = Vo, - S0 [c(ai, T(xi, 07)) + n(T(x;,07),0,)]
5 use grad,,, to update 07 with optimy

6 end

7 for n,, update steps do

8 sample {a;};_; ~ pand {y;}JL, ~ v

9 compute grady = Vg, + Zfil [c-max (0,n(y;,0,)) — n(T(xi, 0r),0,)]
10 use graden to update 6, with optim,,

1 end

12 end
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Figure 1: Subset Alignmeﬁt between two uniform distributions in R2, (é) obtained by solving[7|and
(b) obtained by solving[J]at ¢ = 2 by using fully connected neural networks to parametrize 1, T', ¢;
and py.

2.2 DYNAMIC SUBSET-SELECTION

Our formulation of dynamic support subset-selection for optimal transport is directly related to the
Benamou-Brenier formulation of Wasserstein-2 distance. Similar to the static case, we replace the
second marginal by a penalty based on the range divergence. The modified Benamou-Breneir prob-
lem is

Pt,Vt

1 2
wt [ [ @z, (0
oo 2 ’
5 ®)

s.L. apt(ﬁﬂ) +div(py(x)ve(x)) =0, po(x) = p(x)

By introducing the Lagrange multiplier for ¢, for continuity equation constraint, one can write the
dual form of equation [§]as (see Appendix [A-2]for details)

9 Vi ()|
2

%‘Pt(mt) + dt. (9)

1
supinf E [po(x)] + E [c-max(0, —¢1(z))] + / E [

pr Pt T T~v 0 Tt
From equation [41] and equation [9] one can see that, in addition to samples from source and target
distributions, one additionally needs to have a mechanism to sample from an optimized distribution
that interpolates between the source distribution and the terminal distribution that satisfies the range
divergence to the target. This is essentially a generative modeling problem and the subject of many

recent studies (NekIyudov et al.| 20244, [Atanackovic et al.,[2025} [Du et al., 2024).

In flow-based models, instead of explicitly modeling p;, samples xy ~ p and x; ~ v are used
to generate x; using an analytically defined interpolant [Lipman et al.| (2023); [Liu et al.| (2023);
|Albergo & Vanden-Eijnden|(2023)). In this work, we adapt the computational framework for learning
Wasserstein-Lagrangian flows (WLF) (Neklyudov et all, 2024b) to parameterize p; in terms of
and v. For a given ¢t € [0,1], WLF creates an interpolant ©; ~ p; from ®y ~ p and ; ~ v
(independently sampled) as

xr = (1 —t)axg + tag + t(1 —t) Qi (xo, x1), (10)

where (); is time-dependent neural network, which internally uses an additional Heaviside step
function input ¢ > 0.5 (Neklyudov et all 2024b). In the case when ¢ = 1, subset align-
ment is equivalent to the optimal transport problem, therefore optimally p7 = v, also given
the optimal velocity field v; = Vyy, the optimal interpolant =} ~ p; is related to v; by

= T +f0z vi(x,)dr t<0.5

x4 [{ vi(x;)dr t>05
backward integration from «; otherwise. However, for ¢ > 1 p7 # v, therefore we can not directly
draw samples * ~ v and propagate them backward for ¢ > 0.5. Instead, an optimal interpolant
could simply use the forward integration from xy. This means that (7 would require the capacity
to be a one-step integrator, which is not different from the ¢ < 0.5 case for ¢ = 1. However, in
practice, the optimization of p, lags behind ¢,, and it may be advantageous to map samples from
v (or a distribution close to v) in order sample from p;. We propose to sample £; ~ ©, where U
is chosen judiciously, and replace @, with &; in equation [I0} In this case, the optimal interpolant
x} ~ py is still forward integration from x( for ¢ < 0.5, but for ¢ > 0.5, Q}(xo, 1) needs an
internal map S* such that the backward integration starts from a point sampled from the optimal

, resulting in forward integration from x for ¢ < 0.5, and
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terminal distribution &7 = S*(&1) ~ pi fort > 0.5, where S3, i = p7. If ¥ = v then S* maps the
original target to pJ.

Our insight is to create by leveraging the fact that the optimal potential 7 satisfies 7 < 0
almost surely on supp(7) and ¢} > 0 almost surely on supp(v) \ supp(?) (see Appendix [B).
Conditioning on the sign of 7 allows us to sample from the selected subset of supp(r). Given a
current estimate 1, we create v, , a distribution supported on the subset of the target where ¢; < 0,
as vy, () = v(x | p1(x) < 0). When 7 = v+ = pj then S*(Z1) = #;. During training, however,
(1 is suboptimal and may miss part of the support of the original target v, so we sample from the
mixture av,, + (1 —a)v, o € [0,1]. Assuming ¢; improves with training, we create a sequence
of distributions, where at the k-th learning iteration, we can sample from the mixture

7 =a®y_w +(1-a®), (11)
1

where o(*) follows a monotonically non-decreasing scheduler with a(®) = 0 and () = 1 The
complete procedure for solving the dynamic subset selection problem is outlined in Algorithm [2}
wherein optimized parameters are ¢, and ¢, (variables that are functions of parameters whose gra-
dients are needed are explicitly noted).

Algorithm 2: (Dynamic-Neural-SS) Learning Algorithm for Dynamic Subset Selection

Inputs : Source distribution y and target distributions v, time-dependent neural network
©¢(+,6,), network for the interpolant ¢(-, -, 8,) along with mixture schedule
a'®)_ batch size N, number of updates n, and n,, and optimizers optimw and
optim o

Outputs : Sample based neural estimate for (-, 6,,)

1 for learning iteration k = 0,1, ... do

2 for ©; update steps do
3 sample {2}V, ~ p, {2} N ~ v, {&1N, ~ o) and {t}Y, ~ Uniform([0, 1])
4 compute i = (1 — t")x) + '@} + /(1 — ') Qi (z}, 24,0,), Vie{l,...,N}.
5 compute N i 2

gmd% — vﬁw % Z_Zl [;‘pﬂ (li?;, (950) + ||v<)0751 (21&7 94’)”

+ gpo(m67 6,) + c- max (O, fcpl(a:i, Hw)) } .

6 use gmd% to update 6, with optim,,.
7 end
8 for p; update steps do
o | | sample e}, ~ g {@}}Y, ~ 7i {1, ~ Uniform([0, 1)),
10 compute Z{(0,) = (1 — t)z} + t'@d +t'(1 — ) Qui (zf, 2%,0,), Vie{l,...,N}.
11 compute N i 9

gmdep = Vgp% z_; {gt@ti (@4(6,),0,) + ||V@t(wt(26")’ = ] .
12 use gmd(,p to update 0, wit}zlioptim o
13 end
14 end

3 RELATED WORK

In addition to approaches mentioned in the introduction, we review advances in static neural optimal
transport in the Appendix [C.I] Our work on dynamic subset selection is most directly related to La-
grangian neural optimal transport (Pooladian et al.,2024), action-matching (Neklyudov et al.| [2023)
and Wasserstein Lagrangian flows (Neklyudov et al., [2024a)). [Pooladian et al.| (2024). The neu-
ral optimal transport with Lagrangian costs framework (Pooladian et al.| [2024) focuses on optimal

*Instead of trusting the sign directly, for small finite target datasets, we evaluate o, for all 2 and retain the
fraction % of points with smallest value of (1 to obtain the sample from .
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transport with different potentials in Euclidean space. Wasserstein-Lagrangian flows (Neklyudov
et al., 2023) is mainly developed for the applications in cellular trajectory inference and quantum
many body problems (Neklyudov et al.l 2024b), and extends to more general settings on Wasser-
stein Fisher-Rao (Chizat et al., 2018agbj; |S€journé et al., [2023)), with the ability to deal with mass
growth/destruction, and different types of dynamics.

All these approaches and all flow-based models are developed for the cases when the marginals are
to be preserved. (A more extensive review of recent work in dynamic neural optimal transport is
included in Appendix[C.2} additionally, since the optimal transport is intimately related to recent de-
velopments in generative modeling such as flow-matching and Schrodinger bridges, we also discuss
the development in relation to optimal transport.) In contrast, with our proposed dynamic support
subset-selection it is desirable to preserve one marginal and dynamically transfer that mass to the
subset of the support of the other while minimizing the transport cost. Therefore our approach is an
novel extension of prior work (Neklyudov et al.,2024al)), and although we focused on the E% cost, our
method is compatible with other Lagrangian costs (Pooladian et al., [2024), which could be useful
for side-information as in semi-supervised domain adaptation.

4 EXPERIMENTS AND RESULTS

In this section we discuss the experimental results for susbet selection on an easily interpretable
image-to-image case, where MNIST (Deng, |2012) is the source and EMNIST (Cohen et al., [2017)
is the target. In this case, images of digits are a subset of the characters in EMNIST. We then
apply our proposed approaches to domain translation on the FFHQ dataset (Karras et al., [2019)) in
512-dimensional latent space of ALAE (Pidhorskyi et al.| 2020).

4.1 MNIST — EMNIST DOMAIN TRANSLATION

MNIST data set contains 60,000 images of digits between 0-9 in training-subset and 10,000 images
in test-subset. MNIST dataset is roughly balanced in the sense that the proportions of each data
class in the dataset are roughly the same. EMNIST (byclass) dataset contains a set of English
alphabet and numbers. EMNIST contains 62 imbalanced classes, of which 10 classes (between 0-9)
represent numbers, and the rest of 52 classes represent upper and lower English case letters of the
English alphabet. Roughly, 16% of EMNIST represent numbers and remaining 84% are alphabet.

Since our goal is to transfer MNIST images to EMNIST images such a way that MNIST digits
are mapped to EMNIST digits while ignoring alphabet, we trained a neural network classifier to
distinguish between digits and alphabet to evaluate the learned mapping (see implementation details
in Appendix After training the classifier, we used both static and dynamic subset-selection
approaches for domain translation between MNIST and EMNIST. Implementation details of the
underlying models and there training are in Appendix [D.2]

In our experiments, we trained and evaluated both static and dynamic models using both the static
and dynamic subset-selection frameworks for ¢ € {1, 2,4, 8}. For the dynamic case, similar to any
flow based generative process, dynamic subset selection also requires a numerical integration (ODE
integration with Euler type numerical integrator with 100 integration steps), but one-step integration
can be used (Liu et al},[2023;[2024b). Figure[2]shows that perceptually, one-step integration performs
worse in comparison to both static and ODE-based generation. We evaluated the classification

£1/7/16/0/4¥|3|5/71(€ :1760%¥3571€:17604¥3577 ¢
171002357 T£131%060Y &5 7 E1700Y 2571 (
1471809357 T£1760% 257 11 7060Y 35711
11/714109/3/5|7 1€ 1176043571 ¢11/760Y¥ 3571 ¢
111760141315/ 71¢ 1176|0435/ 7]11¢ 1176|0143 \5/7]71¢

(a) static (b) dynamic (one step) (c) dynamic (ODE integration)
Figure 2: Image translation outputs for MNIST —EMNIST
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accuracy on translation of whole MNIST dataset, confusion matrices are given in Appendix [El A
summary of accuracies of translated outputs are given in Table[I]

Method c=1 c=2 c=4 c=8
static 4693 7533 8244 8732
dynamic (one step)  64.85  75.16  93.57 95.84
dynamic (ODE) 58.80 7047  92.68  95.00

Table 1: Classification accuracies of translated images MNIST—EMNIST evaluated with using
pretrained classifier.

4.2 POSITIVE-UNLABELED LEARNING

Positive Unlabeled (PU) learning is a binary classification problem in which only a subset of positive
data is labeled, which is then used to train a model classifying between positive and negative data
from an unlabeled (containing both positive and negative data) data set. PU Learning Bekker &
Davis| (2020); Kato et al.| (2019); [Chapel et al.| (2020); Riaz et al.| (2023). Since the sign of an
optimal potential function in our framework differs between selected and unselected subsets, one
can use it to distinguish between them positive and unlabeled datasets (see Appendix [B]for details).
We applied applied both the static and dynamic optimal transport for PU learning on the 20 UCI-
datasets (Kelly et al.) as in (Teisseyre et al., 2025)), using the same settings with 75/25 train-test split
on each dataset and the sampled completely randomly (SCAR) mechanism to selected and label
points.

Networks were 5-layer MLPs with swish activation functions of appropriate input and output di-
mensions for both static and dynamic subset alignment with fixed learning learning rates for both
static and dynamic models. Architecture and parameter details for each model are given in We
trained 20 different models for each dataset using different train test splits, so in total we trained
400 models for static and 400 models for dynamic subset alignment. We adopted alternative sign
and value based label assignment strategies for unlabeled dataset. Performance in terms of balanced
accuracy for our approaches along with the top-performing baselines PUSB (Kato et al.,[2019) and
NTC-MI (Teisseyre et al., [2025) are given in Table

static dynamic
sorted sign sorted sign
Abalone | 0.16 | 0.544 +0.060 | 0.575 +0.025 | 0.561 £0.029 0.503 £ 0.008 | 0.555 + 0.033 0.532 +0.030
Banknote | 0.44 | 0.829 +0.050 | 0.922 +0.019 | 0.883 £ 0.037 0.882 £ 0.039 | 0.892 +0.048 0.895 +0.044
Breast-w | 0.34 | 0.766 + 0.145 | 0.870 £ 0.028 | 0.930 £ 0.028 0.941 £0.027 | 0.839 £ 0.197 0.831 £0.132
Diabetes | 0.35 | 0.546 0.042 | 0.700 £ 0.039 | 0.635 £ 0.044 0.635 £ 0.044 | 0.587 £ 0.094 0.603 + 0.066
Haberman | 0.26 | 0.513 +£0.023 | 0.532 +0.066 | 0.539 +0.066 0.540 £ 0.067 | 0.528 £ 0.062 0.519 + 0.070

Dataset T PUSB NTC-MI

Heart 0.44 | 0.527 £0.033 | 0.757 £ 0.053 | 0.637 £ 0.093 0.623 + 0.089 | 0.508 +0.210 0.573 £0.139
Tonosphere | 0.64 | 0.440 +0.085 | 0.755 +£0.059 | 0.773 £ 0.091 0.762 + 0.088 | 0.562 +0.215 0.602 £ 0.149
Isolet 0.04 | 0.793 £ 0.072 | 0.725 £ 0.006 | 0.881 £ 0.028 0.923 +0.030 | 0.673 £0.173 0.693 + 0.202
Jml 0.19 [ 0.628 £0.016 | 0.628 + 0.013 | 0.576 £ 0.015 0.575 £ 0.010 | 0.573 £0.038 0.565 + 0.026
Kcl 0.15 ] 0.645 £ 0.075 | 0.679 £ 0.030 | 0.604 + 0.036 0.607 +0.035 | 0.611 £0.063 0.606 + 0.054
Madelon | 0.5 |0.496+0.030 | 0.519 £0.028 | 0.533 £ 0.025 0.523 +0.015|0.511 £0.027 0.505 £ 0.017
Musk 0.15]0.712 £0.036 | 0.767 £ 0.012 | 0.841 £ 0.018 0.847 +0.018 | 0.823 £0.020 0.840 £ 0.019

Segment | 0.14 | 0.848 £ 0.074 | 0.803 £ 0.014 | 0.898 +£0.038 0.927 +0.031 | 0.900 £ 0.042 0.935 +0.026
Semeion 0.1 ]0.569 £0.055 | 0.755 £ 0.022 | 0.824 + 0.044 0.850 +0.067 | 0.699 +0.143 0.653 £ 0.144
Sonar 0.53 ] 0.497 £0.041 | 0.573 £ 0.057 | 0.561 £ 0.091 0.524 £0.074 | 0.515 £0.107 0.511 £ 0.089
Spambase | 0.39 [ 0.821 £0.031 [ 0.887 +0.014 | 0.786 £ 0.011 0.775 £0.010 | 0.703 £ 0.057 0.664 + 0.067
Vehicle 0.26 | 0.549 £ 0.067 | 0.804 £ 0.042 | 0.806 + 0.037 0.823 +£0.032 | 0.639 £0.169 0.661 £ 0.152
Waveform | 0.34 [ 0.860 £ 0.012 [ 0.829 £ 0.012 | 0.795 £ 0.015 0.743 £0.013 | 0.676 £ 0.071 0.551 £0.019
Wdbc 0.37 [ 0.798 £ 0.155 | 0.801 £ 0.043 | 0.861 £0.068 0.845+0.063 | 0.691 £ 0.211 0.641 £0.149
Yeast 0.310.517 £0.051 | 0.657 £ 0.024 | 0.630 £ 0.040 0.612 £ 0.049 | 0.590 £ 0.076 0.567 +0.063

Table 2: Comparison of average balanced accuracies of 20 models trained using static and dynamic
subset alignment methods with PUSB and NTC-MI reported Teisseyre et al.| (2025). Balanced ac-
curacies for best performing methods are colored red and second best are colored blue.

4.3 FFHQ IMAGE TRANSLATION

We also apply our proposed approaches to the unpaired image translation problem. We followed the
experimental setup of (Gazdieva et al.| (2024), where the FFHQ dataset embedded in the latent space
of Adversarial Latent Autoencoder (ALAE) (Pidhorskyi et al., 2020), is divided either by gender



Under review as a conference paper at ICLR 2026

(man or woman) or age, as two orthogonal labels. Table E] adapted from |Gazdieva et al.| (2024),
shows the number of images for each class, where images with age < 16 are ignored, ages between
16 and 43 are labeled young, and the remainder are labeled old. Given these classes, the task is
to learn to map a source distribution to a target distribution. There are four cases, young to old,
old to young, man to woman, and woman to man. In order to evaluate the translation process, two
classifiers pretrained in the ALAE latent space are used, one classifier is trained to classify young
vs old and another to distinguish man vs woman. The target accuracy quantifies what proportion of
translated images lie within the target-class boundary. The source accuracy quantifies whether the
translated images retain the orthogonal label. For example, with young—old the source accuracy is
whether the ‘aged’ image of a young source image retains the same gender.

Implementation details for both static and dynamic subset selection to the FFHQ dataset are given
in Appendix Between young—old, old—young, man—woman and woman—man, it was ob-
served that larger values of c tend to preserve the source accuracy, but often have lower target accu-
racy. This can be related to the fact that for larger values of c, it takes more training steps to achieve
the optimal subset selection.
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Figure 3: Accuracy curves for ¢ € {1,2,4,8}, in comparison to results from LOT (Gazdieva et al.,
2024), UOT-GAN (Yang & Uhler, [2019), and UOT-SD (Choi et al.,[2024b).

We compared our methodology with Light Unbalanced optimal trans-

port|Gazdieva et al.|(2024)(LOT), Yang & Uhler|(2019)(UOT-GAN) and Class | Man | Woman

Choi et al.[(2024b)(UOT-SD) and observed that methods which achieve Young | 15K 23K

better results in terms of target accuracy perform worse in terms of oid 7 33K
g y p

source class accuracy. This can be seem from Table[]and Figure[3] using Table 3:

accuracy values reported by |Gazdieva et al.| (2024). Example translated

images for static and dynamic are shown for old—young in Figure

with other cases provided in Appendix [F]

Division of
FFHQ train images.

c=1 c=2 c=4 c=8 UOT-SD|UOT-GAN|U-LOT
Task Accuracy|static dynamic|static dynamic|static dynamic|static dynamic
Young—Old Target [84.09 83.45 |70.47 79.23 [47.63 74.51 |27.07 73.93 | 87.33 84.25 81.78
Class 70.43 71.55 [91.41 84.31 |95.47 90.03 [96.06 90.30 | 45.71 73.85 84.49
Old—Young Target [96.06 93.36 (92.55 86.65 [85.04 85.03 |72.93 83.33

97.39 95.88 87.79
Class 7177 7192 |89.46 87.69 [94.43 89.84 9545 90.88 | 49.30

74.74 89.48

Man— Woman Target [96.11 94.53 [92.18 91.74 [85.66 90.96 |77.55 90.29 | 98.16 97.38 90.23
Class 83.68 83.64 |87.45 87.43 (90.05 88.52 [91.27 89.11 | 75.50 84.04 90.30
Woman—Man Target |93.34 92.26 [87.32 88.09 |78.32 84.28 |64.86 81.89 | 94.96 9291 88.59
Class 82.39 82.68 (92.33 91.51 [93.89 92.59 [94.35 93.22 | 72.03 84.56 89.66

Table 4: Target and source accuracy (%) for different domain translations on the FFHQ dataset.
Dynamic subset selection is evaluated using Euler integration with 100 steps.

5 DISCUSSION AND CONCLUSION

Practically, one important matter of concern for the utility of Wasserstein distances is the fact that
sample estimators of Wasserstein distances are cursed by dimensionality (Weed & Bachl 2019;
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(@) (b)
Figure 4: FFHQ old—young translation using (a) static and (b) dynamic subset selection. Dynamic
subset selection is evaluated using Euler integration with 100 steps.

|[Fournier & Guillinl [2015), which can be alleviated to certain extent by employing the entropic
regularization (Genevay et al., 2019} [Feydy et al, 2019), which in the dynamic case is intimately
connected with Schrodinger bridges.

Recently, unbalanced entropically-regularized optimal transport has been studied to model birth and
death processes for population dynamics (Pariset et al. 2023} NekIyudov et al.,[2023). Our approach
can also be applied to model death processes, in cases where there is some canonical relationship
between temporally ordered events, by treating p as the final population of survivors and v as the
initial population.

Note the choice of c is often critical in applications. While c is interpretable, an automatic selection
of ¢ based on the resulting transport cost, which was previously conducted for partial optimal trans-
port in the discrete case (Phatak et al., [2023)), may be possible. One consolidated approach would
be to sample ¢ from a range and use multi-task learning for optimizing networks for varying c. In
terms of implementation, this is possible using a scalar embedding of ¢ as used for embeddings of
the time variables in dynamic networks. We would further like to point out that one can replace
range divergence with more common divergences like KL divergence but we cannot use the sign of
potential in that to distinguish between selected and rejected subsets.

Finally, we note that although we focused on relaxing the target distribution; the range-divergence
framework could potentially be adapted to also relax the source distribution. A fully relaxed version
may be applicable to other classes of problems.

In conclusion, our approaches for neural optimal transport with subset selection are motivated by
problems that require translation between two distribution with reweighting and selection of the
target. The results here, limited to image translation tasks on two datasets and 20 tabular PU-learning
tasks, show that both a meaningful subset can be learned simultaneously with a Monge map. Unlike
previous work, our dynamic formulation of allows for variation in the terminal distribution from the
original target marginal, creating flows to the nearest subset.

REFERENCES

Michael Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
In The Eleventh International Conference on Learning Representations, 2023.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Fabian Altekriiger, Johannes Hertrich, and Gabriele Steidl. Neural wasserstein gradient flows for
discrepancies with riesz kernels. In International Conference on Machine Learning, pp. 664—690.
PMLR, 2023.

David Alvarez-Melis, Yair Schiff, and Youssef Mroueh. Optimizing functionals on the space of
probabilities with input convex neural networks. Transactions on Machine Learning Research,
2022. ISSN 2835-8856. URL https://openreview.net/forum?id=dpOYN708Jm.



https://openreview.net/forum?id=dpOYN7o8Jm

Under review as a conference paper at ICLR 2026

Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Confer-
ence on Machine Learning, pp. 146-155. PMLR, 2017.

Brandon Amos, Giulia Luise, Samuel Cohen, and Ievgen Redko. Meta optimal transport. In Inter-
national Conference on Machine Learning, pp. 791-813. PMLR, 2023.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial Net-
works. In International Conference on Machine Learning, pp. 214-223. PMLR, 2017.

Arip Asadulaev, Alexander Korotin, Vage Egiazarian, Petr Mokrov, and Evgeny Burnaev. Neural op-
timal transport with general cost functionals. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=gliz7tBtYZ.

Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J Lee, Yoshua Bengio,
Alexander Tong, and Kirill Neklyudov. Meta flow matching: Integrating vector fields on the
wasserstein manifold. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=9SYczU3Qgm.

Julio Backhoff-Veraguas, Mathias Beiglbock, and Gudmun Pammer. Existence, duality, and cyclical
monotonicity for weak transport costs. Calculus of Variations and Partial Differential Equations,
58(6):203, 2019.

Martin Bauer, Martins Bruveris, and Peter W Michor. Uniqueness of the fisher—rao metric on the
space of smooth densities. Bulletin of the London Mathematical Society, 48(3):499-506, 2016.

Jessa Bekker and Jesse Davis. Learning from Positive and Unlabeled Data: A Survey. Machine
Learning, 109:719-760, 2020.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-
kantorovich mass transfer problem. Numerische Mathematik, 84(3):375-393, 2000.

Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Commu-
nications on pure and applied mathematics, 44(4):375-417, 1991.

Charlotte Bunne, Andreas Krause, and marco cuturi. Supervised training of conditional monge
maps. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022a. URL |https://openreview.
net/forum?id=sPNtVVUq/wi.

Charlotte Bunne, Laetitia Papaxanthos, Andreas Krause, and Marco Cuturi. Proximal optimal trans-
port modeling of population dynamics. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research,
pp. 6511-6528. PMLR, 28-30 Mar 2022b. URL https://proceedings.mlr.press/
v151/bunne22a.htmll

Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch Levesque,
Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar Ritsch. Learning single-
cell perturbation responses using neural optimal transport. Nature methods, 20(11):1759-1768,
2023.

Luis A Caffarelli and Robert ] McCann. Free Boundaries in Optimal Transport and Monge-Ampere
Obstacle Problems. Annals of Mathematics, pp. 673730, 2010.

Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. Partial Optimal Tranport with Applications
on Positive-Unlabeled Learning. Advances in Neural Information Processing Systems, 33:2903—
2913, 2020.

Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

10


https://openreview.net/forum?id=gIiz7tBtYZ
https://openreview.net/forum?id=9SYczU3Qgm
https://openreview.net/forum?id=sPNtVVUq7wi
https://openreview.net/forum?id=sPNtVVUq7wi
https://proceedings.mlr.press/v151/bunne22a.html
https://proceedings.mlr.press/v151/bunne22a.html

Under review as a conference paper at ICLR 2026

Xiuyuan Cheng, Jianfeng Lu, Yixin Tan, and Yao Xie. Convergence of flow-based generative models
via proximal gradient descent in wasserstein space. IEEE Transactions on Information Theory,
2024.

Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and Frangois-Xavier Vialard. An interpolating
distance between optimal transport and fisher—rao metrics. Foundations of Computational Math-
ematics, 18:1-44, 2018a.

Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and Frangois-Xavier Vialard. Unbalanced opti-
mal transport: Dynamic and kantorovich formulations. Journal of Functional Analysis, 274(11):
3090-3123, 2018b.

Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Generative modeling through the semi-dual
formulation of unbalanced optimal transport. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=7WQt1J13ex.

Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Analyzing and improving optimal-transport-
based adversarial networks. In The Twelfth International Conference on Learning Representa-
tions, 2024a. URL https://openreview.net/forum?id=jODehvtTDx.

Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Generative modeling through the semi-dual
formulation of unbalanced optimal transport. Advances in Neural Information Processing Sys-
tems, 36, 2024b.

Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Scalable wasserstein gradient flow for gener-
ative modeling through unbalanced optimal transport. In Forty-first International Conference on
Machine Learning, 2024c.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921-2926. IEEE, 2017.

Max Daniels, Tyler Maunu, and PAul HAnd. Score-based generative neural networks for large-
scale optimal transport. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=PPzV1H4atM4.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE Signal Processing Magazine, 29(6):141-142, 2012. doi: 10.1109/MSP.2012.
2211477.

Yuangi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noe, Carla P Gomes, Alan
Aspuru-Guzik, and Kirill Neklyudov. Doob’s lagrangian: A sample-efficient variational approach
to transition path sampling. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.net/forum?id=ShJWTOn7kX.

Luca Eyring, Dominik Klein, Théo Uscidda, Giovanni Palla, Niki Kilbertus, Zeynep Akata, and
Fabian J Theis. Unbalancedness in neural monge maps improves unpaired domain translation.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=2UnC-j3jeao.

Jiaojiao Fan, Shu Liu, Shaojun Ma, Yongxin Chen, and Hao-Min Zhou. Scalable computation
of monge maps with general costs. In ICLR Workshop on Deep Generative Models for Highly
Structured Data, 2022a. URL https://openreview.net/forum?id=rEnGR3VdDW5.

Jiaojiao Fan, Qinsheng Zhang, Amirhossein Taghvaei, and Yongxin Chen. Variational wasserstein
gradient flow. In proceedings of international conference on machine learning, 2022b.

Jiaojiao Fan, Shu Liu, Shaojun Ma, Hao-Min Zhou, and Yongxin Chen. Neural monge map estima-
tion and its applications. Transactions on Machine Learning Research, 2023.

11


https://openreview.net/forum?id=7WQt1J13ex
https://openreview.net/forum?id=jODehvtTDx
https://openreview.net/forum?id=PPzV1H4atM4
https://openreview.net/forum?id=PPzV1H4atM4
https://openreview.net/forum?id=ShJWT0n7kX
https://openreview.net/forum?id=2UnCj3jeao
https://openreview.net/forum?id=2UnCj3jeao
https://openreview.net/forum?id=rEnGR3VdDW5

Under review as a conference paper at ICLR 2026

Jean Feydy, Thibault Séjourné, Francois-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and
Gabriel Peyré. Interpolating Between Optimal Transport and MMD using Sinkhorn Divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2681-2690.
PMLR, 2019.

Alessio Figalli. The Optimal Partial Transport Problem. Archive for Rational Mechanics and Anal-
ysis, 195(2):533-560, 2010.

Alessio Figalli and Federico Glaudo. An invitation to optimal transport, Wasserstein distances, and
gradient flows: Second Edition. European Mathematical Society, 2023.

Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the
empirical measure. Probability theory and related fields, 162(3):707-738, 2015.

Wilfrid Gangbo and Robert ] McCann. The geometry of optimal transportation. Acta Mathematica,
177:113-161, 1996.

Milena Gazdieva, Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Extremal domain
translation with neural optimal transport. Advances in Neural Information Processing Systems,
36:40381-40413, 2023.

Milena Gazdieva, Arip Asadulaev, Evgeny Burnaev, and Alexander Korotin. Light unbalanced
optimal transport. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=co8KZws1YK.

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-
scale optimal transport. In Advances in Neural Information Processing Systems, volume 29. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/2a27b8144ac02£67687£76782a3b5d8f-Paper.pdf.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning Generative Models with Sinkhorn Di-
vergences. In International Conference on Artificial Intelligence and Statistics, pp. 1608-1617.
PMLR, 2018.

Aude Genevay, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré. Sample complex-
ity of sinkhorn divergences. In The 22nd international conference on artificial intelligence and
statistics, pp. 1574-1583. PMLR, 2019.

Jonathan Geuter, Gregor Kornhardt, Ingimar Tomasson, and Vaios Laschos. Universal neural op-
timal transport. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=t10fde8tQ7.

Nathael Gozlan, Cyril Roberto, Paul-Marie Samson, and Prasad Tetali. Kantorovich duality for
general transport costs and applications. Journal of Functional Analysis, 273(11):3327-3405,
2017.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved Training of Wasserstein GANs. Advances in Neural Information Processing Systems, 30,
2017.

Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P. Vetrov, and Evgeny Burnaev.
Entropic neural optimal transport via diffusion processes. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023a. URL https://openreview.net/forum?id=
fHyLsfMDIs.

Nikita Gushchin, Alexander Kolesov, Petr Mokrov, Polina Karpikova, Andrei Spiridonov, Evgeny
Burnaev, and Alexander Korotin. Building the bridge of schrodinger: A continuous entropic op-
timal transport benchmark. In Thirty-seventh Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2023b. URL https://openreview.net/forum?
1id=0OHimIaixXKk.

12


https://openreview.net/forum?id=co8KZws1YK
https://proceedings.neurips.cc/paper_files/paper/2016/file/2a27b8144ac02f67687f76782a3b5d8f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/2a27b8144ac02f67687f76782a3b5d8f-Paper.pdf
https://openreview.net/forum?id=t10fde8tQ7
https://openreview.net/forum?id=fHyLsfMDIs
https://openreview.net/forum?id=fHyLsfMDIs
https://openreview.net/forum?id=OHimIaixXk
https://openreview.net/forum?id=OHimIaixXk

Under review as a conference paper at ICLR 2026

Doron Haviv, Aram-Alexandre Pooladian, Dana Pe’er, and Brandon Amos. Wasserstein flow
matching: Generative modeling over families of distributions. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
MRmI68k3gdl

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 770-778, 2016.

Bamdad Hosseini, Alexander W Hsu, and Amirhossein Taghvaei. Conditional optimal transport on
function spaces. arXiv preprint arXiv:2311.05672, 2023.

Samuel Howard, George Deligiannidis, Patrick Rebeschini, and James Thornton. Differentiable
cost-parameterized monge map estimators. In ICML 2024 Workshop on Differentiable Almost
Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators, 2024. URL
https://openreview.net/forum?id=UZ71nFrwBtl

Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, and Aaron Courville. Convex potential
flows: Universal probability distributions with optimal transport and convex optimization. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=te7PVH1sPxJ.

Guillaume Huguet, Daniel Sumner Magruder, Alexander Tong, Oluwadamilola Fasina, Manik
Kuchroo, Guy Wolf, and Smita Krishnaswamy. Manifold interpolating optimal-transport flows
for trajectory inference. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=ahAEhOtVif.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker—
planck equation. SIAM Journal on Mathematical Analysis, 29(1):1-17, 1998. doi: 10.1137/
S0036141096303359. URL |https://doi.org/10.1137/500361410963033509.

Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS), volume 37,
pp- 199-201, 1942.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401-4410, 2019.

Masahiro Kato, Takeshi Teshima, and Junya Honda. Learning from positive and unlabeled data
with a selection bias. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJzLciCgKm.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI Machine Learning Repository.
URLhttps://archive.ics.uci.edu.

Gavin Kerrigan, Giosue Migliorini, and Padhraic Smyth. Dynamic conditional optimal transport
through simulation-free flows. arXiv preprint arXiv:2404.04240, 2024.

Valentin Khrulkov, Gleb Ryzhakov, Andrei Chertkov, and Ivan Oseledets. Understanding DDPM
latent codes through optimal transport. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=6PIrhAx1j41i.

Boah Kim, Yan Zhuang, Tejas Sudharshan Mathai, and Ronald M Summers. Otmorph: Unsuper-
vised multi-domain abdominal medical image registration using neural optimal transport. /[EEE
Transactions on Medical Imaging, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikita Kornilov, Alexander Gasnikov, and Alexander Korotin. Optimal flow matching: Learning
straight trajectories in just one step. arXiv preprint arXiv:2403.13117, 2024.

13


https://openreview.net/forum?id=MRmI68k3gd
https://openreview.net/forum?id=MRmI68k3gd
https://openreview.net/forum?id=UZ71nFrwBt
https://openreview.net/forum?id=te7PVH1sPxJ
https://openreview.net/forum?id=te7PVH1sPxJ
https://openreview.net/forum?id=ahAEhOtVif
https://openreview.net/forum?id=ahAEhOtVif
https://doi.org/10.1137/S0036141096303359
https://openreview.net/forum?id=rJzLciCqKm
https://archive.ics.uci.edu
https://openreview.net/forum?id=6PIrhAx1j4i

Under review as a conference paper at ICLR 2026

Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny Burnaev.
Wasserstein-2 generative networks. In International Conference on Learning Representations,
2021a. URL https://openreview.net/forum?id=bEoxzW_EXsal

Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and Evgeny
Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark.
Advances in Neural Information Processing Systems, 34:14593-14605, 2021b.

Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Kernel neural optimal transport.
In The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=Zuc_MHtUma4.

Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural Optimal Transport. In The
Eleventh International Conference on Learning Representations, 2023b.

Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling se-
cretly minimizes the wasserstein distance. In Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 20205-20217. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
7£52f60b8f107931127eefelb429%9ee278-Paper—-Conference.pdf.

Marc Lambert, Sinho Chewi, Francis Bach, Silvere Bonnabel, and Philippe Rigollet. Variational
inference via wasserstein gradient flows. In Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=K2PTuvVTF1L.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos Theodorou. Deep generalized
schrodinger bridge. Advances in Neural Information Processing Systems, 35:9374-9388, 2022.

Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos Theodorou, and
Ricky T. Q. Chen. Generalized schrodinger bridge matching. In The Twelfth International Con-
ference on Learning Representations, 2024a. URL https://openreview.net/forum?
id=SoismgeX7z.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=XViTT1lnw5z.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and giang liu. Instaflow: One step is enough
for high-quality diffusion-based text-to-image generation. In The Twelfth International Confer-
ence on Learning Representations, 2024b. URL |https://openreview.net/forum?id=
1k4yZbbDgX.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations, 2017. URL https://openreview.
net/forum?1d=Skg89Scxx.

Frederike Liibeck, Charlotte Bunne, Gabriele Gut, Jacobo Sarabia del Castillo, Lucas Pelkmans, and
David Alvarez-Melis. Neural unbalanced optimal transport via cycle-consistent semi-couplings.
In NeurlPS 2022 Al for Science: Progress and Promises, 2022. URL https://openreview.
net/forum?id=51fl1xpNymzr.

Shaojun Ma, Shu Liu, Hongyuan Zha, and Haomin Zhou. Learning stochastic behaviour from
aggregate data. In International Conference on Machine Learning, pp. 7258-7267. PMLR, 2021.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping
via input convex neural networks. In International Conference on Machine Learning, pp. 6672—
6681. PMLR, 2020.

Robert J McCann. A convexity principle for interacting gases. Advances in mathematics, 128(1):
153-179, 1997.

14


https://openreview.net/forum?id=bEoxzW_EXsa
https://openreview.net/forum?id=Zuc_MHtUma4
https://openreview.net/forum?id=Zuc_MHtUma4
https://proceedings.neurips.cc/paper_files/paper/2022/file/7f52f6b8f107931127eefe15429ee278-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7f52f6b8f107931127eefe15429ee278-Paper-Conference.pdf
https://openreview.net/forum?id=K2PTuvVTF1L
https://openreview.net/forum?id=SoismgeX7z
https://openreview.net/forum?id=SoismgeX7z
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=1k4yZbbDqX
https://openreview.net/forum?id=1k4yZbbDqX
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=5lflxpNymZr
https://openreview.net/forum?id=5lflxpNymZr

Under review as a conference paper at ICLR 2026

Petr Mokrov, Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, and Evgeny Burnaev.
Large-scale wasserstein gradient flows. In Advances in Neural Information Processing Systems,
2021.

Petr Mokrov, Alexander Korotin, Alexander Kolesov, Nikita Gushchin, and Evgeny Burnaev.
Energy-guided entropic neural optimal transport. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=
detUsZeVs/.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale
Sci., pp. 666-704, 1781.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learn-
ing stochastic dynamics from samples. In International conference on machine learning, pp.
25858-25889. PMLR, 2023.

Kirill Neklyudov, Rob Brekelmans, Alexander Tong, Lazar Atanackovic, Qiang Liu, and Alireza
Makhzani. A computational framework for solving Wasserstein lagrangian flows. In Proceed-
ings of the 41st International Conference on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pp. 37461-37485. PMLR, 21-27 Jul 2024a. URL https:
//proceedings.mlr.press/v235/neklyudov24a.html.

Kirill Neklyudov, Jannes Nys, Luca Thiede, Juan Carrasquilla, Qiang Liu, Max Welling, and Alireza
Makhzani. Wasserstein quantum monte carlo: a novel approach for solving the quantum many-
body schrodinger equation. Advances in Neural Information Processing Systems, 36, 2024b.

XuanLong Nguyen, Martin J] Wainwright, and Michael I Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. /[EEE Transactions on Information Theory,
56(11):5847-5861, 2010.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems,

29, 2016.

Matteo Pariset, Ya-Ping Hsieh, Charlotte Bunne, Andreas Krause, and Valentin De Bortoli. Unbal-
anced diffusion schrodinger bridge. arXiv preprint arXiv:2306.09099, 2023.

Abhijeet Phatak, Sharath Raghvendra, Chittaranjan Tripathy, and Kaiyi Zhang. Computing all op-
timal partial transports. In The Eleventh International Conference on Learning Representations,
2023.

Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent autoencoders.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
14104-14113, 2020.

Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. Cambridge univer-
sity press, 2025.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky T Chen. Multisample flow matching: Straightening flows with minibatch cou-
plings. ICML 2023, 2023.

Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, and Brandon Amos. Neural
optimal transport with lagrangian costs. In The 40th Conference on Uncertainty in Artificial
Intelligence, 2024. URL https://openreview.net/forum?id=x4paJ2sJyZ.

Bilal Riaz, Yuksel Karahan, and Austin J. Brockmeier. Partial optimal transport for support subset
selection. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=75CcopPxIr.

R Tyrrell Rockafellar. Integral functionals, normal integrands and measurable selections. Lecture
Notes in Mathematics, pp. 157-207, 1976.

15


https://openreview.net/forum?id=d6tUsZeVs7
https://openreview.net/forum?id=d6tUsZeVs7
https://proceedings.mlr.press/v235/neklyudov24a.html
https://proceedings.mlr.press/v235/neklyudov24a.html
https://openreview.net/forum?id=x4paJ2sJyZ
https://openreview.net/forum?id=75CcopPxIr
https://openreview.net/forum?id=75CcopPxIr

Under review as a conference paper at ICLR 2026

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention—
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part 11l 18, pp. 234-241. Springer, 2015.

Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative Modeling with Optimal Transport
Maps. In International Conference on Learning Representations, 2022.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkduser, NY, 55(58-63):94,
2015.

Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview. Bulletin
of Mathematical Sciences, 7:87-154, 2017.

Christopher Scarvelis and Justin Solomon. Riemannian metric learning via optimal transport. In
The Eleventh International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=v3y68gz-WEz.

Vivien Seguy, Bharath Bhushan Damodaran, Remi Flamary, Nicolas Courty, Antoine Rolet, and
Mathieu Blondel. Large scale optimal transport and mapping estimation. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
BlzlplbRu.

Thibault Séjourné, Gabriel Peyréa, and Francois-Xavier Vialardc. Unbalanced optimal transport,
from theory to numerics. Numerical Control: Part B, pp. 407, 2023.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrédinger
bridge matching. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URLhttps://openreview.net/forum?id=qy070HsJT5.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrodinger
bridge matching. Advances in Neural Information Processing Systems, 36, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
2256-2265, Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/sohl-dicksteinl5.htmll

Vignesh Ram Somnath, Matteo Pariset, Ya-Ping Hsieh, Maria Rodriguez Martinez, Andreas Krause,
and Charlotte Bunne. Aligned diffusion schrodinger bridges. In The 39th Conference on Un-
certainty in Artificial Intelligence, 2023. URL |https://openreview.net/forum?id=
BKWFJN7_bQ.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=StlgiarCHLP.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438-12448, 2020.

Pawet Teisseyre, Timo Martens, Jessa Bekker, and Jesse Davis. Learning from biased positive-
unlabeled data via threshold calibration. In The 28th International Conference on Artificial Intelli-
gence and Statistics, 2025. URL https://openreview.net/forum?id=dT01dWDBtol

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pp. 9526-9536. PMLR, 2020.

Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schrodinger bridges via score and flow
matching. In ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems,
2023.

16


https://openreview.net/forum?id=v3y68gz-WEz
https://openreview.net/forum?id=v3y68gz-WEz
https://openreview.net/forum?id=B1zlp1bRW
https://openreview.net/forum?id=B1zlp1bRW
https://openreview.net/forum?id=qy07OHsJT5
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=BkWFJN7_bQ
https://openreview.net/forum?id=BkWFJN7_bQ
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=dT0ldWDBto

Under review as a conference paper at ICLR 2026

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative mod-
els with minibatch optimal transport. Transactions on Machine Learning Research, 2024a. ISSN
2835-8856. URL https://openreview.net/forum?id=CD9Snc73AW. Expert Certifi-
cation.

Alexander Y. Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free Schrédinger bridges via score and flow
matching. In Proceedings of The 27th International Conference on Artificial Intelligence and
Statistics, volume 238 of Proceedings of Machine Learning Research, pp. 1279-1287. PMLR,
02-04 May 2024b. URL https://proceedings.mlr.press/v238/tong24a.htmll

Théo Uscidda and Marco Cuturi. The monge gap: A regularizer to learn all transport maps. In
International Conference on Machine Learning, pp. 34709-34733. PMLR, 2023.

Nina Vesseron and Marco Cuturi. On a neural implementation of brenier’s polar factoriza-
tion. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=zDCwJQY3eIl

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Wei Wan, Yuejin Zhang, Chenglong Bao, Bin Dong, and Zuoqiang Shi. A scalable deep learning
approach for solving high-dimensional dynamic optimal transport. SIAM Journal on Scientific
Computing, 45(4):B544-B563, 2023.

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
schrodinger bridge. In Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 10794-10804. PMLR, 18-24 Jul
2021. URLhttps://proceedings.mlr.press/v139/wang2ll.html.

Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of empir-
ical measures in wasserstein distance. Bernoulli, 25(4A):pp. 2620-2648, 2019. ISSN 13507265,
15739759. URL https://www. jstor.org/stable/48586009.

Yifan Wu, Ezra Winston, Divyansh Kaushik, and Zachary Lipton. Domain adaptation with
asymmetrically-relaxed distribution alignment. In Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
6872-6881. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/
wul9f.html.

Chen Xu, Xiuyuvan Cheng, and Yao Xie. Normalizing flow neural net-
works by jko scheme. In Advances in Neural Information Processing Sys-
tems, volume 36, pp. 47379-47405. Curran Associates, Inc., 2023. URL

https://proceedings.neurips.cc/paper_files/paper/2023/file/
93fce71def4e3cf418918805455d436f-Paper—-Conference.pdfl

Karren D. Yang and Caroline Uhler. Scalable unbalanced optimal transport using generative ad-
versarial networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyexA1A5Fm.

A PRELIMINARIES AND PROBLEM FORMULATION

Kantorovich [Kantorovich| (1942)) reformulated the Monge problem by relaxing the constraint that
supports of 1 and v should be related to each other by a functional relation 7'. Instead, he allowed p
and v to be related to each other by a joint measure. Kantorovich’s reformulation of the problem is
a linear program and its solution exists for all convex lower-semi-continuous costs. |[Santambrogio
(2015)); [Figalli & Glaudo|(2023). The Kantorovich problem is,

W(p,v) = inf/ ¢ (z,y) m(z,y)dedy
T JXxXY

(12)
st /y dn(z,y) = uy), /X dn(e,y) = v(@),
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where it can be observed that integrals | » and fy marginalize with respect to spaces ) and X,
respectively. Therefore, m must be the joint measure between o and v defined on the product space
X x Y, ie. m € P(X x)). In other words, constraints in the Kantorovich problem ensure that
every feasible m must be joint distribution of p and v. While in general, Kantorovich problem is
much easier to solve in comparison to Monge problem, there are the conditions of practical impor-
tance where one can employ the solutions of Kantorovich problem to obtain the solution of Monge
problem. Those conditions are more clearly discussed in terms of dual form of Kantorovich problem
(Santambrogiol 2015)), given as,

)= sup / F(@)p(a)de + /y (w)1(y)dy
ot 1@+ 9(9) < clarp)

The functions f(x) and g(y) are called Kantorovich potentials. By defining c-conjugate (also called
c-transform) of f(x), and c-conjugate (also called c-transform) of g(y) as

13)

f(y) = inf c(.y) - f(@), (14)
9°(@) = inf c(z,y) - g(y), (15)

Using c and c conjugates, Kantorovich problem is expressed as
Wiev) =swp | @iz [ @iy (16)
—swp [ g@m@)iz+ [ gy (7)

g Jx Yy

Under very general conditions, one can relate the cost ¢ with the support of optimal coupling solution
7* and optimal Kantorovich potentials f*(x) and f°*(y) (Santambrogio, 2015, Theorem 1.37) by

supp(7*) C {(@,y) € X x ¥ : f*(x) + [**(y) = c(=,y)} (18)

In discrete domains, above result is equivalent to Karush-Kuhn-Tucker (KKT) conditions for opti-
mality. One can further relate the optimal solutions of Monge and Kantorovich problems using a
landmark result by |Gangbo & McCann| (1996) , (Figalli & Glaudo, [2023] Theorem 2.7.1), which
states that there exists an optimal Kantorovich coupling of the form 7* = (Id x T™)u, where T*
is Monge map satisfying

Vzc(x, T"(x)) + Vf*(z) =0, (19)

if the following conditions are satisfied

* 1 is absolutely continuous,
* Vy € ) the map z — c(x,y) is differentiable, V « € X,
* V& € X the gradient map y — Vyc(x,y) is injective Vy € ),

* and the gradient Vc(x, y) satisfies the local Lipschitz condition ||V c(x,y)|| < C, for
all x € B,., where is 3, is ball of radius r around x.

When the cost can be written as c(x,y) = h(x — y), where h is strictly convex and translation
invariant function, one can further relate the Monge mapping with optimal dual potential by (San-
tambrogio), 2015, Theorem 1.17)

T*(x) =x — Vh* o Vf*(x), (20)
where h* is Legendre-Fenchel conjugate of h given by h*(y) = sup{(y, ) — h(x)}. In the result
TEX

above, when h(z —y) = 1|z —y||3, one obtains the result of celebrated Brenier theorem of optimal
transport for squared-Euclidean costs with T*(x) = V f*(x), where f*(x) is convex (Brenier,
1991)), (Figalli & Glaudo, 2023} Theorem 2.5.10) . The Brenier theorem on optimal transport differs
from another important theorem on polar factorization (Brenier,|1991]) stating that under very general
conditions a square integrable vector field v can be decomposed into the composition of gradient of
a unique convex function ¢ and a unique measure-preserving map u, i.e. v(x) = V& o u(x). Before
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the discussion on dynamic formulation of the problem, we would like to point out that much of the
recent work on static neural optimal transport rely on above results.

Benamou and Brenier formulated the Wasserstein distance with squared Euclidean cost as the kinetic
energy minimization problem under the assumption that both the source p and target v distributions
have finite second moments (Benamou & Brenier, |2000; |Santambrogio, [2015}, |Figalli & Glaudo),
2023). Assuming that supports of both source and target distributions lie in a convex set  C R¢,
whose normal at the boundary is given by n : 9Q — R?, for a bounded and smooth velocity-field
vi(x) : [0,1] x Q — R?, such that (vi(x), n)|aq = 0, the flow corresponding to v; is given by

d
%q)t(wt) = vt(q)t(wt))a <I>0(:130) = Iy 2D

Considering that there also exists a probability path p;(x) : [0,1] x Q@ — R, corresponding to the
flow ®;(x) such that p;(x) = ®;4po(x), Benamou-Brenier formulation of optimal transport is

1 2
inf/ /M/}t(m)dmdt
PtV Jo Q 2
0

s.t. Ept(x) +div(pe(x)ve(x)) = 0, po(x) = p(x), pi(x) = v(z),

(22)

where div(-) denotes divergence operator mapping scalar or vector fields to scalar, for the field
zi(x) by div(z(x)) = >, 8%th(:c) The optimal flow @7 is related to Monge mapping 7™ by
displacement interpolation (McCannl |1997).

O = (1 —t)ld+¢T* (23)
It is important to mention that the Benamou-Brenier formulation can be extended to Wasserstein-p

distances, for p > 1, under the assumption that both source and target distributions have finite p-th
moments (Santambrogio, [2015| chapters 5 & 6).

A.1 DERIVATION OF STATIC NEURAL SUBSET SELECTION

We denote the problem expressed in @ as inf, sup,, sup, £ (7,1, 1), where the Langrangian is

£ (m ) = /X | (e@y) + 1ty) = @) @, y)dady + /X b(@) p(@)de 4)
—C/ym(y)V(y)dy- (25)

We proceed to interchange the sup and inf which is allowed due to the strong duality property
associated with optimal transport when the cost ¢ is convex and lower semi-continuous,

infsup £ (m,v,n) = sup inf L (m,4, 7). (26)
T o np T

Optimizing with respect to 7 for given 1 and 1, the integrand in the first term of [24is unbounded
from below at any point c(x,y) + n(y) — ¢(x) < 0. Thus, 7 and ) need to ensure that c(x,y) +
n(y) — ¥(x) > 0. This constraint requires for any x € supp(p) C X, ¢¥(x) = infyecy(c(z, y) +
n(y)) (Villani et al., 2009) (Theorem 5.10 and Remark 5.13). This definition of ¢ corresponds
to the c-transform of —7(y) in the optimal transport literature (Santambrogiol 2015; |Villani et al.,
2009). Then, the inner infimum with respect to 7 is attained with zero value if V (z,y) € (X x V) :

3This requires us to verify Slater’s constraint qualifications, which are: (i) Primal is convex wrt 7 ,(which is
obvious), (ii) Dual is concave wrt 7, which is also obvious (iii) relative interior for inequality constraints set is
non-empty, which can be verified by looking at the fact that for any © the distribution 7(x, y) = u(x)o(y) is
feasible and one can see that if one defines the feasible set of coupling Il.(u,v) = {7 € P(X x )) : mx =
w,my < cv}, thenfor V1 < co < e1,Ile, (1, v) C ¢, (1, v), which in other words mean that IT.—1 (u, v) is
a subset of feasible solutions for all values of ¢ > 1, therefore relative-interior in non-empty.
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m(x,y) >0 = c(x,y) +n(y) — ¥ (x) = 0. Therefore, the dual problem becomes

sup /X (;g](C(w,y) + n(y)) p(x)dae — 0/ym(y) v(y)dy. 27)

=suwint [ (el T@) + 0T @)@z —c [ n.@)viwdy @)

= sup inf E [c(z,T(2)) +n(T(2))] —cE [n+(y)- (29)

= inf sgzpn}EN [c(@ T(@)] + E [n(T(@)] - cE [n(y)- (30)

= i%fm]gu [c(x,T(x))] + Dy, (Typllv) = ir%f mIE/L [c(x, T(x))]. (31)
Typ<cv

Equation and equation are equal due to a theorem by (Rockafellar, {1976, Theorem 3A);
equation[28|and equation [29]are equivalent by definition; equation[29|and equation [30]are equivalent
since the function is convex with respect to 7" and concave with respect to 7; and equation [30] and
equation[3T]are equivalent by the variational formula for the f-divergence. Thus, we obtain a relaxed
Monge formulation.

A.2 DERIVATION OF DYNAMIC NEURAL SUBSET SELECTION

Combining the objective and constraints in E]to obtain the Lagrangian

(1)

2
L1, pr s 0,m) / / GGy ” o)dadt + / Yo(@) (po(x) — () de
III

()

// wil2 pt dwdtJr//(Pt )div (pg () vy () dacdt

V)

+sup ( [ w@n@iz-c [ max(O,n<m>>u<w>dm) @

Since p;(x) is supported on bounded subset 2 C RY, one can change the order of integration.
Therefore, for term (III), by changing the order of integration and then computing integration by
parts one obtains,

m - | / a@)gol@iedt = [ o@n(@de— [ a@n(E
- / /Q (@@ (33)

In order to simplify (IV), we can use product rule of derivatives to write

pi(@)div(py(@)vi(2)) = div (@i () pr(®)vi(2)) — () (Vipi (), vi ().

Therefore by combining above identity with Gauss’s theorem one obtains

1 1
(IV):/O/de(cpt(m)pt(a:)vt(m)) dwdtf/O/Qpt(w)<V<pt(;v),vt(w)>da:dt

:/7{ @t(wt)pt(wtﬂvt(m),dn>dt—//pt(m)<Vg0t(w),vt(x)>d:cdt, (34
0.Joa 0/

=0
From the boundary condition on optimal transport (see the discussion above Equation[21] also|Figalli
& Glaudo| (2023)-section 4.1) , the first part of the right-hand side of [33]is zero; therefore,

(Iv) //‘Pt -div(pt(z)vi(x))dzdt = // Vo (), vi()) pi(x)dedt. (35)
0 0
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In order to eliminate primal variable v (), substitute Equation 33| and Equation [35] into [32] and
compute the variational-derivative to obtain the stationary condition. For that one can write the
terms of Lagrangian depending on v;(x) as

)= [ (B2 (90, i 6o

With the additive perturbation function 7; vanishing at¢ = O and ¢ = 1 and a scalar ¢, the Lagrangian
L(vy +e1y)is

~ 1 Vel T\ 2
E(thrs‘rt)/O/Q(” ( )Jr; @)l —(Veu(x), vt(w)+5rt(a:)>>pt(a:)dmdt

- /1/ (||vt(a:)||2 - <V<pf,(:c),vt(a:)>) pi(x)dzdt
/ / ( 2 [T (@) +s<v — Ve (z), Tt(m)>> pi(z)dadt,

and variational derivative is
d

v de e

0L (ve(x))

L(vs + et // ve(x) — Ve (x), 1e(x)) pr(x)dadt. 37

The stationarity condition requires d,, £(v;(z)) = 0. For arbitrary perturbation 74 (), the variation
6v, L(vi(x)) = 0if and only if

vi(x) = V(). (38)
Therefore one can write the Lagrangian as

Lonsthos0,) = /Q do(@) - (polx) — () dz + / o1 () () — /Q o) po () dz
+/n< or(@)dz — c- /maxon< ) (e)ds

// (at ”th( )”2>pt(w)dwdt.

Similarly, by computing d,,, £ and ,,, £ using stationary conditions, one obtains the condition,

Yo(x) = po(x), (39)
n(x) = —pi(z). (40)

Therefore the Lagrangian is simplified to

L(pes prr) = — / o) pu(e)de — ¢ / max(0, — 1 (@) () da

(4D
V 2
The simplified problem (equation E]ln the main body) is
1 2
supinf E [po(x)] + ¢+ E [max(0, —¢1(x))] + E gapt(wt) + Ve (@) dt.
py Pt TV T~V 0 Tt~pt 8t 2

B THRESHOLDING FOR PU-LEARNING AND REJECTION SAMPLING

Our idea of rejection sampling and thresholding for PU-Learning is based on the fact that the dual
form of range divergence is zero when the supremum in the dual is attained by the function n*(x)
with 7(x) = pf(x) i.e.

E [n*(z)] — ¢ E [ReLU(7"(2))] = 0 (42)

T~ T~V
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By defining .A=supp(v) , A=supp(#), and A=A4/.A, one can also see that A N A = (), therefore
one can write Equation 42]as

/An (z)o(x)dx — C/A RelU (n*(z)) v(x)dx — c/ ReLU(n*(x))v(x)de =0.  (43)

A
One can further write

n*(x) =ReLU (n*(x)) — ReLU (—n*(x)) . 44)
After substituting Equation 4] into Equation [43]one obtains
LHS RHS
/~ ReLU(n*(x))(P(x) — cv(x))dx = /~ ReLU(—n*(x))v(x)dx + c/ ReLU(n*(x))v(x)dx
A JA A
(45)

The dual form Equation 43| is optimal with zero duality gap, if the primal form satisfies V& €
A, 1j0,¢)(%(x)) = 0, which can also be restricted to V & € A v[g, (%(2)) = 0. This is equivalent
to (x) < cv(ax) almost-everywhere in A. Therefore, one can say that 0 > LHS and also

RHS

0> / ReLU(—1* (2))v(@)da + ¢ / ReLU(n* (2))v() dax (46)
A A
We can now see that both integrands in Equation [46]are nonnegative and sum to a value less than or

equal to zero, which is only possible if both are equal to zero. Therefore, one can write

A

Further, two non-negative integrals are evaluated on two mutually exclusive sets, therefore to have
sum equal to zero value we can conclude that each integral is zero individually. Therefore, we can
write

0= /AReLU(—n*(:E))u(w)d:c—i—c/ ReLU(n* (x))v(x)dx 47)

0= /AReLU(n*(w))V(m)da: = c/ﬁ ReLU(n*(x))v(x)dx (48)

A
The Equation {i8]is therefore equivalent to following element-wise test

n*(x) > 0, almost surely in A

.z (49)
n*(x) < 0, almost surely in A
Additionally, from the Equation 47| one can also conclude that
LHS
/~ ReLU(n*(x))(P(x) — cv(x))dx = 0, (50)
A

which is a complementary slackness condition in the sense that 7(x) < cv(x) = n*(x) =
0 almost every-where in .A. During the neural network training with finite data-points, potential
function 7 is usually suboptimal and its sign cannot be relied, therefore instead of directly using
the sign, one can sort values of potential at data points and select predetermined proportion (prior)
of data-points. Therefore for training PU-learning models, we applied both sign and sorting based
filtration of data. Form the figures[TaJand[Tb] one can observed that for the optimal potential for static
problem exactly follows equation[49] whereas in the dynamic case the sign of ¢; is inverted, which
is due to the relation obtained in equation 40| which ensures that for the at optimal ¢} following
relation holds

©¥(x) < 0, almost surely in A 1)
@5 (x) > 0, almost surely in A.

The Figure [5] gives snapshots of the transition of ¢;(x) between ¢ = 0 and ¢ = 1 for the dynamic
subset alignment results shown [Tb]
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Figure 5: ¢; between ¢ = 0 and ¢ = 1 for subset alignment between 2D uniform distributions for
which ¢ is also shown in Figure[Ib] It can be seen that unlike 7 in static problem ¢, is function of
time and varies with ¢.
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C SURVEY OF RECENT WORK ON NEURAL OPTIMAL TRANSPORT

In this section, we discuss the recent related work on computational optimal transport and its appli-
cations. More specifically, we consider the works which are related to neural estimation of optimal
transport maps with occasional reference to theoretical developments.

C.1 STATIC NEURAL OPTIMAL TRANSPORT

Seguy et al. (2018) employed stochastic gradient based approaches in one of the earliest works to
estimate the optimal transport map using neural networks. Notably, the work by |Seguy et al.|(2018)
differed from early work |Genevay et al.| (2016)) in the sense that the later work employed stochas-
tic gradient based methods to estimate the transport plan for large scale data, whereas earlier work
Genevay et al.[ (2016) only minimized the optimal transport loss using stochastic-gradient based
methods. This is also in contrast to the well-known Wasserstein-GAN |Arjovsky et al.| (2017); |Gul-
rajani et al.[(2017) that employs the Kantorovich-Rubinstein duality to minimize the Wasserstein- 1
loss function for generative modeling, where neural networks are employed as parameterizations for
both dual-potential and data generator, but do not provide transport plans. Finally, the Sinkhorn-
GAN employs an approximation of the discrete Wasserstein distance between latent representations
of data and that of samples from non-informative prior |Genevay et al.| (2018)) for generative mod-
eling. Now, we can see clear distinction between two different classes of approaches employing
Wasserstein distances in generative modeling, the first class of works concerns with employing
Wasserstein distance as a loss for generative modeling, without any explicit concern for obtaining
the underlying transport plan across the distributions |Arjovsky et al.|(2017);|Gulrajani et al.| (2017).
The second class seeks to learn a transport plan to realize the generative model.

Efforts to learn Monge maps were motivated by a theorem by [Brenier| (1991), which essentially
states that, for continuous distributions with squared-Euclidean transportation cost, the optimal so-
lution of the Monge problem is the gradient of a convex function (Figalli & Glaudo, 2023} (Theorem
2.5.10)). Therefore initially, gradient of input-convex neural networks (ICNN) |Amos et al.|[(2017)
we employed to estimate the transport plan for the Wasserstein-2 distance [Makkuva et al.| (2020);
Korotin et al.| (2021ajb). This approach has also been employed to supervised conditional neural
Monge maps (Bunne et al., [2022a) and unbalanced optimal transport (Liibeck et al., [2022). The
study by |/Amos et al.|(2023)) focuses on the development of an efficient neural optimal solution that
could be implemented quickly in more practical scenarios. This approach to solve Wasserstein-2 dis-
tances employing convex potentials involves computationally challenging evaluation of the Fenchel
conjugate of a ICNN parameterized convex function. More recent work in this direction focuses
on improved optimization strategies and better ICNN architectures to bypass problems related to
Fenchel conjugate evaluations and ICNN training |Amos| (2023); |Vesseron & Cuturi| (2024). Recent
work also focuses on some batch-based schemes have also been devised to improve the regularity of
learned neural Monge maps |Uscidda & Cuturi (2023); Eyring et al.[(2024).

Another recent direction of work is based on the idea that ICNNs can be overly restrictive, there-
fore more general neural network architectures should be employed to directly parameterize the
transport maps |[Rout et al.| (2022); Korotin et al.| (2023b). The work by |[Fan et al.| (2022aj [2023))
focuses on employing neural networks to approximate the solution for Monge’s transport problem
also draws inspiration from the recent developments in neural-network-based parametric realizations
for approximating Kantorovich plans. Recently neural optimal transport has also been extended to
unbalanced transportation setting (Yang & Uhler, |2019; (Choti et al., [2023)). Another work directly
related to static subset selection problem is (Gazdieva et al., 2023).

Unless there is a corresponding Monge mapping (Choi et al., [2024a; Mokrov et al., 2024} |Geuter
et al.| [2025), optimal transport requires a stochastic transport plans. A recent body of work (Korotin
et al., 2023bja; |Asadulaev et al.,[2024) deals with learning transportation plans using a weaker for-
mulation of optimal transport (Gozlan et al., 2017} Backhoff-Veraguas et al.,|2019) along with noise
outsourcing techniques, which is also extended to more general costs. Apart from the applications in
image translation (Korotin et al., 2023b)), neural optimal transport has been applied for bio-medical
image registration (Kim et al.;[2024) and to study single cell perturbations (Bunne et al.,2023)). Neu-
ral optimal transport have also been employed for metric learning (Howard et al., 2024} Scarvelis &
Solomon, [2023)).
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C.2 DYNAMIC NEURAL OPTIMAL TRANSPORT

The potential applications of dynamic optimal transport in the cellular trajectory inference (Tong
et al.,[2020) and its connections with flow based models for generative modeling (Huang et al., 2021}
Huguet et al., |2022) has been instrumental in the recent research developments in this direction.
Jordan-Kinderlehrer-Otto flow (JKO) is time discretization scheme to solve Wasserstein gradient
flows for different energy functionals (Jordan et al.| |[1998; [Santambrogiol 2017)). Therefore, a lot
of effort done in that regard is focused on neural network parameterized schemes to solve JKO-
flow problem for both cellular trajectory inference and generative modeling (Ma et al.| [2021]; [Fan
et al., [2022b; Lambert et al., 2022; [Bunne et al., [2022b; [ Xu et al., [2023}; |(Cho1 et al., 2023} [2024cf
Altekriiger et al.|, [2023; Mokrov et al.}2021;|Alvarez-Melis et al.,[2022)). JKO-scheme has also been
studied for the applications related to molecular discovery (Alvarez-Melis et al.| [2022). A recent
study deals with convergence properties of JKO-based generative models (Cheng et al.| 2024).

Recent developments in flow-matching models based on flow matching (Lipman et al., 2023} |Al-
bergo & Vanden-Eijnden, [2023; |Liu et al., [2023) for generative modeling lead to even more inter-
est in the development of algorithms to solve dynamic optimal transportation problems. Action-
Matching based framework lead to the development of a more general framework to solve both
trajectory inference and generative modeling problems (Neklyudov et al.l[2023)) for the cases where
one could also sample from the trajectory between two terminal marginals. Rectified flow-matching
(L1u et al., [2023;2024b) uses the neural-optimal transport in additional rectification step to improve
the linearity of flows, so that after training the model, images could be generated efficiently with
only a single-step integration along straight lines paths. For generative modeling, in contrast to
target-conditional flow matching (Lipman et al.| [2023)), where during training, flows are conditioned
on target samples, discrete optimal transport conditioned flow-matching employs the mini-batch op-
timal transport to create the conditionals (Pooladian et al., 2023 |2024; [Tong et al.,|2024b). Another
recent work (Kornilov et al., [2024])) attempts to alleviate the error accumulation problems associated
with mini-batch optimal transport by learning straight paths between source and target distributions
in single step. Flow-matching (Albergo & Vanden-Eijnden, 2023} |Albergo et al.| [2023)), diffusion
models (Sohl-Dickstein et al., 2015 |Song & Ermon, 2020; Song et al., 2021), and Schrédinger
bridges (Wang et al.l 2021} [Liu et al.| 2022} 2024a; |Shi et al., 2023} |Gushchin et al.l 2023bga), and
(Somnath et al.}[2023)) are deeply interconnected under the framework of generalized bridge match-
ing (Tong et al.,2023; |Albergo et al., 2023 [Tong et al.,2024a; Shi et al., [2024)). Recently, there has
also been attempts to understand diffusion models as approaches to minimize the dynamic Wasser-
stein distances (Kwon et al., 2022; Khrulkov et al., 2023)). Another recent work extends the flow
matching to the flows on Riemannian manifolds (Chen & Lipman, [2024; |Atanackovic et al., [2025)).
Recent works generalize flow-matching from different perspectives, Chen & Lipman| (2024) gener-
alize the flow-matching to the flows on Riemannian manifolds, |Atanackovic et al.| (2025)) attempt
to extend the flow-models to return meaningful flows for the data beyond training distributions, and
Haviv et al|(2025) generalize the flow matching to the cases where data can be treated as distribu-
tions of distributions.

Additionally, there has been recent dynamic extension to the conditional neural optimal transport
(Hosseini et al.|, |2023} [Kerrigan et al., 2024). There has also been efforts to study neural network
based scalable approaches to solve high-dimensional partial differential equations (Wan et al., 2023)).

D IMPLEMENTATION DETAILS

D.1 EMNIST CLASSIFIER

We merged the whole alphabet into one class and each number is treated as a separate class (digits
between 0 and 9 are given same label as their value and any letter is labeled 10). In order to cir-
cumvent the effects of data imbalancedness on classifier training, we employed the class-reweighted
softmax loss function. For k-class classification, consider the vector z € RF containing the counts
for class in the training data, we define the reweighting vector w € R¥ with

-1
N

wi= Y2 L vielk (52)

.
j=1"7

25



Under review as a conference paper at ICLR 2026

For one hot encoded label vector y and softmax activation output at neural network output g, the
reweighted loss (risk) is given by

Uy, 9) =1, (wOyOH) (53)

The classifier for EMNIST is trained with the same train/validation split as provided in EMNIST
dataset (Cohen et al., [2017)). We trained the classifier with ResNet-18 (He et al., 2016) architecture
and class-reweighted softmax loss function in equation[53] Adam optimizer (Kingma & Bal [2014)
along with warmup-cosine learning rate scheduler (Loshchilov & Hutter, 2017) is used to train
the classifier with peak learning rate of 1 x 10" with 500 warm-up steps. Total decay steps for
cosine scheduler are set to 20, 000 with end-value of learning rate set to be equal to 1 x 10°. The
classifier training is stopped after 20,000 training steps, when classifier achieves more than 90%
overall validation accuracy and 99% accuracy on digits. Confusion matrix of classifier are given in

Appendix [E]
D.2 MNIST-EMNIST TRANSLATION MODELS

For the static domain translation, the transport network 7" is a U-Net|Ronneberger et al.| (2015) with
base-factor of 48 and the critic network 7 is ResNet-51 |He et al| (2016). In order to train both
transport and critic networks, Adam optimizer |Kingma & Bal(2014) is used with initial learning rate
of 1 x 10™*, which is scheduled to be halved after 10,0004 5000¢, 20,000+ 5000¢, 30, 000+ 5000c¢,
40,000 + 5000¢ and 70,000 + 5000c training steps. Algorithm I]is used for training with 50, 000
learning iterations with 10 T update steps for each n update step, our training settings for static
case are very similar to those of |(Gazdieva et al.[ (2023). For dynamic subset selection, following
the settings from Neklyudov et al.| (2023), the vector field ¢, is parametrized using a U-Net with
time embeddings from DDPM (Song & Ermon, 2020). Similar to action matching (Neklyudov
et al.| 2023)), ¢; is parametrized to return scalar by ¢;(x) = (U-Net(z), z). Likewise, Q;, which
parametrizes p;, is also a U-Net with time embeddings. We used AdamW optimizer with learning
rate scheduling for 50,000 iterations. The optimizer parameters are 5 = (0,0.999), weight decay =
0.1 and drop out = 0.1. Additionally, we also employed exponential moving averages (EMA) in
the training with the ema-rate 0.999. These settings are very similar to rectified flow matching and
action matching (Liu et al.| [2023; [Neklyudov et al| 2023). Learning rate linearly increases from
0 to maximum value during first 5,000 iterations and then stays constant at maximum value with
maximum learning rates of 2 x 107 and 1 x 10 for ¢; and @y, respectively. Additionally, we
clipped gradients to lie within [-1, 1]. Algorithm 2]is employed with 50,000 training iterations and
2 ¢, for each p; update.

D.3 MODELS FOR PU-LEARNING USING SUBSET ALIGNMENT

For PU learning with both static and dynamic subset alignment based approaches respectively,
model architectures are given in code listings [D.3] and [D.3] respectively. For all models num_hid
is set to be 1024, for Smodel and etamodel, the parameter num_out is by definition 1, whereas
for Qmodel and Tmodel, outputs are set to be equal to data dimension. For both static and dy-
namic models, we used Adam optimizer Kingma & Ba) (2014)), with default settings, and learning
rates 1 x 10™% and 2 x 1075 respectively. Additionally, we used EMA with ema-rate of 0.999 to
evaluate models on both the test dataset and the validation datasets. We trained the model for the
total of 20,000 learning iterations, with 10 T" update steps for single n update step using the Algo-
rithm[I} Similarly, Algorithm[2]is employed to train neural networks for dynamic subset alignment.
learning iterations, with 2 @, update steps for single p; update step. The dynamic models contain
time embeddings with trainable parameters. We employed the Adam algorithm for gradient based
updates of neural network parameters. For all the tests for PU learning we fix ¢ = T% For each data

set same batch sizes are used to train both static and dynamic models and table[3] gives the values.
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Dataset n dim 7 batch size
Abalone 4177 8 0.16 20
Banknote 1372 4 044 10
9
8

Breast-w 699 034 10
Diabetes 768 035 6
Haberman 306 3 026 6

Heart 270 13 044 6
Ionosphere | 351 34 064 6
Isolet 7797 617 0.04 4
Jml 10885 21 0.19 20
Kcl 2109 21 0.15 20
Madelon 2600 500 05 20
Musk 6598 166 0.15 20

Segment 2310 19 0.14 20
Semeion 1593 256 0.1 4

Sonar 208 60 053 4
Spambase | 4601 57 0.39 20
Vehicle 846 18 026 6
Waveform | 5000 40 034 20
Wdbc 569 30 037 6
Yeast 1484 8 031 10

Table 5: UCI datasetets for PU Learning, along with total number of data points (n), dimension
(dim), positive prior (7) and batch sizes employed in training the correspsonding models.

import jax
from jax import numpy as Jjnp
from flax import linen as nn
import math
etamodel: neural network parameterization for eta function
Tmodel: neural network parameterization for T function
rr
class etamodel (nn.Module) :
num_hid : int
num_out : int
@nn.compact
def _ _call_ (self, x):
= nn.Dense (self.num_hid) (x)
= nn.swish (h)
= nn.Dense (self.num_hid) (h)
= nn.swish (h)
= nn.Dense (self.num_hid) (h)
= nn.swish (h)
= nn.Dense (
return h

o= e Sie s Sie gl )
|

self.num_out) (h)

3 class Tmodel (nn.Module) :

num_hid : int

num_out : int

@nn.compact

def _ _call__ (self, x):
def transport_net (x):

MLP_out = nn.Sequential ([
nn.Dense (self.num_hid),
nn.swish,
nn.Dense (self.num_hid),
nn.swish,
nn.Dense (self.num_hid),
nn.swish,
nn.Dense (self.num_hid),
nn.swish,
nn.Dense (self.num_out),]) (x)
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ResConnect = nn.Dense(self.num_out) (x)
return MLP_out + ResConnect
output = transport_net (x)
return output
Listing 1: Model architectures for PU-Learning with static subset alignment
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import jax

from jax import numpy as jnp
from flax import linen as nn
import math

class Smodel (nn.Module) :
num_hid : int
num_out : int

@nn.compact
def __call__ (self, t, x):
if Jnp.ndim(t) == 0:

t = jnp.broadcast_to(t, x.shape[0:-1]1+(1,))

= jnp.concatenate ([t,x], axis=-1)
= nn.Dense (self.num _hid) (h)
= nn.swish (h)
= nn.Dense (self.num_hid) (h)
nn.swish (h)
= nn.Dense (self.num_hid) (h)
= nn.swish (h)
= nn.Dense (self.num_hid) (h)
= nn.swish (h)
(self.num_out) (h)

o= e jile S= e Sie e o Jlo )
Il

= nn.Dense
return h

class Qmodel (nn.Module) :
num_hid : int
num_out : int

@nn.compact
def _ _call_ (self, t, x 0, x_1):

= nn.Dense (self.num _hid) (h)
= nn.swish (h)
= nn.Dense (self.num _hid) (h)
= nn.swish (h)
= nn.Dense (self.num _hid) (h)
= nn.swish (h)
= nn.Dense (self.num _hid) (h)
= nn.swish (h)
= nn.Dense (self.num_out) (h)

o e jile Sl e e jie e Jlo §

X_t = (1-t)*x_0 + t*x(x_1) + tx(1-t)=*h

return x_t

= jnp.concatenate([t, x_0, x_1, t<0.5],

axis=-1)

Listing 2: Model architectures for PU learning with dynamic subset alignment

D.4 IMAGE-TO-IMAGE TRANSLATION ON FFHQ

In our experiments for static subset alignment, we used a three layered MLP architecture with swish
activation functions in hidden layers to parameterize both the transportation map 7" and the potential
7. For the network parameterizing 7', an additional skip connection connecting input and output
is also used, which also contains a linear mapping, without any non-linear activation. Dimension
of hidden layers are set to 1,024 for both Networks. Output dimension of the transport network is
same as its input dimension (512), whereas potential network returns a scalar output. The Adam
optimization algorithm is used to train both networks with a fixed learning rate of 1 x 10°. We
employ EMA with ema-rate 0.999 in the training process. Algorithm[I]is used in the training with
50,000 learning iterations with 5 T updates for each 1 update.
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In order to train the dynamic models, the model architectures employed are also three layered MLPs
but with time embeddings. The neural network parameterizing ¢, is a three layers MLP with 64
dimensional time embeddings, 1,024 dimensional hidden layers, and a scalar output. The neural
Network parameterizing p; contains two branches for static and dynamic components respectively.
The dynamic part of network parameterizing p; also contains 64 dimensional time embeddings. We
also use EMA with ema-rate 0.999 to train both networks, and a fixed learing rate of 1 x 107 .
Dynamic models are trained using algorithm 2| for 50,000 learning ierations with 1 ¢, update for 5
pt updates.

E CONFUSION MATRICES FOR MNIST — EMNIST DOMAIN TRANSLATION
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Figure 6: Confusion matrices for EMNIST classifier discussed in section
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Figure 7: Confusion matrices for MNIST—EMNIST domain translation using static subset selec-
tion. Accuracy is computed by computing ratio between trace and some of all entries of confusion
matrices.
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Figure 8: Confusion matrices for MNIST—EMNIST domain translation using dynamic subset se-

lection.
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F RESULTS FROM FFHQ

(a) (b)
Figure 9: FFHQ young—old translation using (a) static and (b) dynamic subset selection. Dynamic
subset selection. Dynamic subset selection is evaluated using Euler integration with 100 steps.

(a) (b)
Figure 10: FFHQ woman—man translation using (a) static and (b) dynamic subset selection. Dy-
namic subset selection is evaluated using Euler integration with 100 steps.

(@) (b)
Figure 11: FFHQ man—woman translation using (a) static and (b) dynamic subset selection. Dy-
namic subset selection is evaluated using Euler integration with 100 steps.
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