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ABSTRACT

We propose approaches for static and dynamic neural optimal transport with a
relaxed Monge formulation to create optimal transport maps from a source distri-
bution to an optimized distribution constrained to have an upper-bounded density
ratio to the target distribution. In machine learning applications, this allows to
learn the mappings between imbalanced datasets, such that one dataset can be
mapped to a reweighted subset of a target dataset, with the reweighting governed
by the density ratio constraint. The density ratio is constrained to lie in [0, c] by
the f -divergence associated with the indicator function for [0, c], where c denotes
the maximum allowable upweighting factor. In the static case, neural networks
are employed to parameterize the Monge map between source and selected subset
of the target distribution and the dual function for the constraint. In the dynamic
case, two networks are also employed: first neural network parametrizes the time
dependent potential whose gradient defines the velocity field and terminal value
enforces the density ratio constraint, while the second parametrizes the interpola-
tion between the samples from source and optimized terminal distribution satisfy-
ing both the density ratio bound and the continuity equation. Since the terminal
distribution in subset alignment need not be equal to the target distribution, which
is distinct from prior work on dynamic neural optimal transport, we explore an ef-
ficient sampling scheme guided by the terminal potential. We apply both the static
and dynamic formulations on domain translations problems, and demonstrate that
the relaxed problem yields a more meaningful Monge map in cases where there
is natural alignment between source and target distributions, but the distributions
are imbalanced.

1 INTRODUCTION

Gaspard Monge proposed the original idea of optimal transport as mathematical model for the prob-
lem of minimum-cost transportation of dirt from source location to a destination Monge (1781). In
more modern parlance, given probability measures, µ defined on compact set X ⊆ Rd, ν defined
on compact set Y ⊆ Rd, and the bounded uniformly continuous cost c(·, ·) : X × Y → R, Monge
formulation of optimal transport is stated as

DMonge(µ, ν) = inf
T∈J (X ,Y)

∫
X
c (x, T (x))µ(x)dx

s.t. T#µ = ν

(1)

where the set J (X ,Y) denotes the set of measurable maps between X and Y . Monge formulation of
the optimal transport problem requires that the transport map of T to be a deterministic function. In
order to satisfy the constraint in the Monge problem 1, the transport map T must cover ν upto some
ν-null sets. Usually, the cost c is non-linearly dependent on the transportation map T , making the
problem 1 very cumbersome and very difficult to solve (Santambrogio, 2015; Villani et al., 2009).

Recently, neural networks have been widely employed to solve optimal transport problems. Seguy
et al. (2018) employed stochastic gradient-based approaches to estimate the optimal transport
(Monge) map for large-scale data. In comparison, earlier work (Genevay et al., 2016) only min-
imized the optimal transport loss using stochastic gradient-based methods, or, as in well-known
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Wasserstein-GAN (Arjovsky et al., 2017; Gulrajani et al., 2017), employed the Kantorovich-
Rubinstein duality to minimize the Waserstein-1 loss function for generative modeling; however,
the resulting generator is not trained to minimize distance as in the Monge formulation. Conversely,
optimal transport maps can realize generative models (Daniels et al., 2021; Rout et al., 2022; Ko-
rotin et al., 2023b; Amos, 2023). For squared Euclidean transport cost, transport plans have been
either directly parameterized using non-convex neural networks, (Rout et al., 2022; Korotin et al.,
2023b) or obtained by amortizing the convex conjugate as gradients of convex functions parame-
terized by input convex neural networks (Amos et al., 2017; Makkuva et al., 2020; Korotin et al.,
2021a; Amos, 2023; Vesseron & Cuturi, 2024). With recent developments in the development of
flow matching (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) as a state-
of-the-art method for image generation, considerable recent efforts have been made to develop an
efficient neural network-based framework for dynamic optimal transport for a variety of trajectory
inference and generative modeling problems (Pooladian et al., 2024; Neklyudov et al., 2023; 2024b).

While distinct from generative modeling, the Monge map is a meaningful concept for the alignment
of two real distributions (neither of which is noise) from slightly different domains, as in unsu-
pervised domain adaptation. In these cases, distributional imbalance creates challenges (Wu et al.,
2019). There has been substantial theoretical work on partial optimal transport (Figalli, 2010; Caf-
farelli & McCann, 2010; Chizat et al., 2018b;a) where two measures are not required to be of equal
mass, and Wasserstein Fisher-Rao distance (Chizat et al., 2018a;b; Bauer et al., 2016) which allows
for mass growth and destruction during the transfer process. Recent work on neural optimal trans-
port in these cases (Gazdieva et al., 2023; Choi et al., 2023; Yang & Uhler, 2019). In this work, we
formulate a relaxed version of optimal transport that creates a new distribution whose density ratio
to the target distribution is bounded.

We propose static and dynamic neural optimal transport formulations, under the constraint density
ratio constraint. To minimize the expected ground distance1, the transported distribution can have a
support that is subset of the target support. This can be interpreted as a reweighted target distribu-
tion with mass concentrated entirely on the selected subset. Our key contributions are as follows:
we formulate both static and dynamic subset alignment problems by replacing the target marginal
constraint with a penalty based on an f -divergence corresponding to the convex indicator function
of the set [0, c], where c = 1 recovers standard optimal transport; we leverage dual formulations of
our problems using neural networks, in particular, we employ Benamou-Brenier formulation (see
equation 22 in the appendix) along with the Lagrange multiplier method to obtain the dual form
of dynamic subset selection; we show that the dual formulations in both the static and dynamic
yield a potential function defined over the target support, whose sign effectively distinguishes points
within the selected subset from those outside it; and we apply our framework to unpaired domain
translation problems and use the potential function for PU-learning.

2 METHODOLOGY

2.1 STATIC SUPPORT SUBSET-SELECTION

The Kantorovich formulation (Kantorovich, 1942) for the optimal transport problem is

W(µ, ν) = inf
π

∫
X×Y

c(x,y)π(x,y)dxdy, s.t.
∫
Y
dπ(x,y) = µ(y),

∫
X
dπ(x,y) = ν(x),

(2)
where π is a density defined on X × Y . Our formulation of static support subset-selection for
optimal transport is derived from a relaxed problem where the constraint on the first marginal of the
joint density π is maintained, while the second marginal

∫
X π(x,y)dx = ν̃(y) is allowed to vary

from within a range [0, c] of the target density ν, such that 0 ≤ ν̃(y)
ν(y) ≤ c. The density ν̃ can be

interpreted as a reweighted target density ν̃(y) = ω(y)ν(y), 0 ≤ ω(y) ≤ c, where portions of
the support can be up-weighted while others are down-weighted or removed. The relaxed constraint
is equivalent to a case of the partial optimal transport relaxations using f -divergences introduced by

1While we focus on the Euclidean distance, more general distances can be considered.
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(Séjourné et al., 2023)

inf
π

∫
X×Y

c(x,y)π(x,y)dxdy +Dı[a,b]
(ν̃∥ν) s.t.

∫
Y
π(x,y)dy = µ(x), (3)

where Dı[a,b]
is the range divergence with ı[a,b] being the convex indicator function

ı[a,b](r) =

{
0, r ∈ [a, b]

+∞, o.w.
, ı∗[a,b](t) = sup

u∈[a,b]

(u · t) = max(−at, bt), (4)

and ı∗[a,b] denotes its Legendre-Fenchel conjugate. Since the function ı[a,b] is convex lower semi-
continuous, therefore ı[a,b] = ı∗∗[a,b], we can apply the variational form of the f -divergence Nguyen
et al. (2010), (Polyanskiy & Wu, 2025, Theorem 7.26), exploited by f -GAN (Nowozin et al., 2016),
leading to a form requiring only expected values

Dφ
(
ν̃∥ν

)
=

∫
Y
ı[a,b](

ν̃

ν
(y))ν(y)dy = sup

η

∫
Y
η(y)ν̃(y)dy︸ ︷︷ ︸
Eỹ∼ν̃ [η(ỹ)]

−
∫
Y
ı∗[a,b](η(y))ν(y)dy︸ ︷︷ ︸
Ey∼ν [ı∗[a,b]

(η(y))]

. (5)

To match 3, we focus on a = 0 and b = c ≥ 1, such that ı∗[0,c](t) = c ·max(0, t) and for compact-
ness denote η+(y) = max(0, η(y)). Introducing ψ as a measurable function to act as a Lagrange
multiplier to enforce the constraint in 3 and combining with equation 5 yields the problem

inf
π

sup
ψ,η

∫
(c(x,y) + η(y)− ψ(x))π(x,y)dxdy +

∫
ψ(x)µ(x)dx− c

∫
η+(y)ν(y)dy. (6)

As described in App. A.1, since c is convex and lower semi-continuous, we interchange the infπ
and supη and apply what is known as the c-transform of −η(y) (Santambrogio, 2015; Villani et al.,
2009) to obtain the dual problem with measurable map T : X → Y

sup
η

inf
T

∫
X

(
c(x, T (x)) + η(T (x))

)
µ(x)dx︸ ︷︷ ︸

Ex∼µ[c(x,T (x))+η(T (x))]

− c

∫
Y
η+(y)ν(y)dy︸ ︷︷ ︸

Ey∼ν [c·max(0,η(y))]

, (7)

For the computational implementation T and η are parameterized using neural networks with asso-
ciated parameters θT and θη and expectations are estimated using samples from µ and ν as described
in the Algorithm 1.

Algorithm 1: (Static-Neural-SS) Learning Algorithm for Static Subset Selection
Inputs : Source distribution µ and target distributions ν, cost function c(·, ·),

reweighting bound c, neural networks T (·, θT ) and η(·, θη), batch size N ,
number of updates nT and nη , and optimizers optimT and optimη .

Outputs : Sample based neural estimate for transport map T
1 for all learning iterations do
2 for nT update steps do
3 sample {xi}Ni=1 ∼ µ and {yj}Nj=1 ∼ ν

4 compute gradθT = ∇θT
1
N

∑N
i=1

[
c(xi , T (xi, θT )) + η(T (xi, θT ), θη)

]
5 use gradθT to update θT with optimT

6 end
7 for nη update steps do
8 sample {xi}Ni=1 ∼ µ and {yj}Nj=1 ∼ ν

9 compute gradθη = ∇θη
1
N

∑N
i=1 [c ·max (0, η(yj , θη))− η(T (xi, θT ), θη)]

10 use gradθη to update θη with optimη

11 end
12 end
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Figure 1: Subset Alignment between two uniform distributions in R2, (a) obtained by solving 7 and
(b) obtained by solving 9 at c = 2 by using fully connected neural networks to parametrize η, T , φt
and ρt.

2.2 DYNAMIC SUBSET-SELECTION

Our formulation of dynamic support subset-selection for optimal transport is directly related to the
Benamou-Brenier formulation of Wasserstein-2 distance. Similar to the static case, we replace the
second marginal by a penalty based on the range divergence. The modified Benamou-Breneir prob-
lem is

inf
ρt,vt

∫ 1

0

∫
Ω

∥vt(x)∥2

2
ρt(x)dx dt+Dı[0,c] (ρ1∥ν)

s.t.
∂

∂t
ρt(x) + div(ρt(x)vt(x)) = 0, ρ0(x) = µ(x)

(8)

By introducing the Lagrange multiplier for φt for continuity equation constraint, one can write the
dual form of equation 8 as (see Appendix A.2 for details)

sup
ρt

inf
φt

E
x∼µ

[
φ0(x)

]
+ E

x∼ν

[
c ·max(0,−φ1(x))

]
+

∫ 1

0

E
xt∼ρt

[
∂

∂t
φt(xt) +

∥∇φt(xt)∥2

2

]
dt. (9)

From equation 41 and equation 9, one can see that, in addition to samples from source and target
distributions, one additionally needs to have a mechanism to sample from an optimized distribution
that interpolates between the source distribution and the terminal distribution that satisfies the range
divergence to the target. This is essentially a generative modeling problem and the subject of many
recent studies (Neklyudov et al., 2024a; Atanackovic et al., 2025; Du et al., 2024).

In flow-based models, instead of explicitly modeling ρt, samples x0 ∼ µ and x1 ∼ ν are used
to generate xt using an analytically defined interpolant Lipman et al. (2023); Liu et al. (2023);
Albergo & Vanden-Eijnden (2023). In this work, we adapt the computational framework for learning
Wasserstein-Lagrangian flows (WLF) (Neklyudov et al., 2024b) to parameterize ρt in terms of µ
and ν. For a given t ∈ [0, 1], WLF creates an interpolant xt ∼ ρt from x0 ∼ µ and x1 ∼ ν
(independently sampled) as

xt = (1− t)x0 + tx1 + t(1− t)Qt(x0,x1), (10)

where Qt is time-dependent neural network, which internally uses an additional Heaviside step
function input t ≥ 0.5 (Neklyudov et al., 2024b). In the case when c = 1, subset align-
ment is equivalent to the optimal transport problem, therefore optimally ρ⋆1 = ν, also given
the optimal velocity field v⋆t = ∇φ⋆t , the optimal interpolant x⋆t ∼ ρ⋆t is related to v⋆t by

x⋆t =

{
x0 +

∫ t
0
v⋆τ (xτ )dτ t < 0.5

x1 +
∫ t
1
v⋆τ (xτ )dτ t ≥ 0.5

, resulting in forward integration from x0 for t < 0.5, and

backward integration from x1 otherwise. However, for c > 1 ρ∗1 ̸= ν, therefore we can not directly
draw samples x ∼ ν and propagate them backward for t ≥ 0.5. Instead, an optimal interpolant
could simply use the forward integration from x0. This means that Q⋆t would require the capacity
to be a one-step integrator, which is not different from the t < 0.5 case for c = 1. However, in
practice, the optimization of ρt lags behind φt, and it may be advantageous to map samples from
ν (or a distribution close to ν) in order sample from ρ1. We propose to sample x̃1 ∼ ν̃, where ν̃
is chosen judiciously, and replace x1 with x̃1 in equation 10. In this case, the optimal interpolant
x⋆t ∼ ρ⋆t is still forward integration from x0 for t < 0.5, but for t ≥ 0.5, Q⋆t (x0, x̃1) needs an
internal map S⋆ such that the backward integration starts from a point sampled from the optimal

4
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terminal distribution x⋆1 = S⋆(x̃1) ∼ ρ⋆1 for t ≥ 0.5, where S⋆#ν̃ = ρ⋆1. If ν̃ = ν then S⋆ maps the
original target to ρ⋆1.

Our insight is to create ν̃ by leveraging the fact that the optimal potential φ⋆1 satisfies φ⋆1 ≤ 0
almost surely on supp(ν̃) and φ⋆1 > 0 almost surely on supp(ν) \ supp(ν̃) (see Appendix B).
Conditioning on the sign of φ⋆1 allows us to sample from the selected subset of supp(ν). Given a
current estimate φ1, we create νφ1

, a distribution supported on the subset of the target where φ1 ≤ 0,
as νφ1

(x) = ν(x | φ1(x) ≤ 0). When ν̃ = νφ⋆
1
= ρ⋆1 then S⋆(x̃1) = x̃1. During training, however,

φ1 is suboptimal and may miss part of the support of the original target ν, so we sample from the
mixture ανφ1

+ (1− α)ν, α ∈ [0, 1]. Assuming φ1 improves with training, we create a sequence
of distributions, where at the k-th learning iteration, we can sample from the mixture

ν̃(k) = α(k)ν
φ

(k)
1

+ (1− α(k))ν, (11)

where α(k) follows a monotonically non-decreasing scheduler with α(0) = 0 and α(∞) = 1.2 The
complete procedure for solving the dynamic subset selection problem is outlined in Algorithm 2,
wherein optimized parameters are θφ and θρ (variables that are functions of parameters whose gra-
dients are needed are explicitly noted).

Algorithm 2: (Dynamic-Neural-SS) Learning Algorithm for Dynamic Subset Selection
Inputs : Source distribution µ and target distributions ν, time-dependent neural network

φt(·, θφ), network for the interpolant Qt(·, ·, θρ) along with mixture schedule
α(k), batch size N , number of updates nφ and nρ, and optimizers optimφ and
optimρ.

Outputs : Sample based neural estimate for φt(·, θφ)
1 for learning iteration k = 0, 1, . . . do
2 for φt update steps do
3 sample {xi0}Ni=1 ∼ µ, {xi1}Ni=1 ∼ ν, {x̃i1}Ni=1 ∼ ν̃(k), and {ti}Ni=1 ∼ Uniform([0, 1])

4 compute x̃it = (1− ti)xi0 + tix̃i1 + ti(1− ti)Qti(x
i
0, x̃

i
1, θρ), ∀i ∈ {1, . . . , N}.

5 compute
gradθφ = ∇θφ

1

N

N∑
i=1

[
∂

∂t
φti(x̃

i
t, θφ) +

∥∇φti(x̃it, θφ)∥2

2

+ φ0(x
i
0, θφ) + c ·max

(
0,−φ1(x

i
1, θφ)

) ]
.

6 use gradθφ to update θφ with optimφ.
7 end
8 for ρt update steps do
9 sample {xi0}Ni=1 ∼ µ, {x̃i1}Ni=1 ∼ ν̃k, {ti}Ni=1 ∼ Uniform([0, 1]).

10 compute x̃it(θρ) = (1− ti)xi0 + tix̃i1 + ti(1− ti)Qti(x
i
0, x̃

i
1, θρ), ∀i ∈ {1, . . . , N}.

11 compute
gradθρ = ∇θρ

1

N

N∑
i=1

[
∂

∂t
φti(x̃

i
t(θρ), θφ) +

∥∇φt(x̃it(θρ), θφ)∥2

2

]
.

12 use gradθρ to update θρ with optimρ.
13 end
14 end

3 RELATED WORK

In addition to approaches mentioned in the introduction, we review advances in static neural optimal
transport in the Appendix C.1. Our work on dynamic subset selection is most directly related to La-
grangian neural optimal transport (Pooladian et al., 2024), action-matching (Neklyudov et al., 2023)
and Wasserstein Lagrangian flows (Neklyudov et al., 2024a). Pooladian et al. (2024). The neu-
ral optimal transport with Lagrangian costs framework (Pooladian et al., 2024) focuses on optimal

2Instead of trusting the sign directly, for small finite target datasets, we evaluate φ1 for all x1 and retain the
fraction 1

c
of points with smallest value of φ1 to obtain the sample from ν̃φ.
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transport with different potentials in Euclidean space. Wasserstein-Lagrangian flows (Neklyudov
et al., 2023) is mainly developed for the applications in cellular trajectory inference and quantum
many body problems (Neklyudov et al., 2024b), and extends to more general settings on Wasser-
stein Fisher-Rao (Chizat et al., 2018a;b; Séjourné et al., 2023), with the ability to deal with mass
growth/destruction, and different types of dynamics.

All these approaches and all flow-based models are developed for the cases when the marginals are
to be preserved. (A more extensive review of recent work in dynamic neural optimal transport is
included in Appendix C.2; additionally, since the optimal transport is intimately related to recent de-
velopments in generative modeling such as flow-matching and Schrödinger bridges, we also discuss
the development in relation to optimal transport.) In contrast, with our proposed dynamic support
subset-selection it is desirable to preserve one marginal and dynamically transfer that mass to the
subset of the support of the other while minimizing the transport cost. Therefore our approach is an
novel extension of prior work (Neklyudov et al., 2024a), and although we focused on the ℓ22 cost, our
method is compatible with other Lagrangian costs (Pooladian et al., 2024), which could be useful
for side-information as in semi-supervised domain adaptation.

4 EXPERIMENTS AND RESULTS

In this section we discuss the experimental results for susbet selection on an easily interpretable
image-to-image case, where MNIST (Deng, 2012) is the source and EMNIST (Cohen et al., 2017)
is the target. In this case, images of digits are a subset of the characters in EMNIST. We then
apply our proposed approaches to domain translation on the FFHQ dataset (Karras et al., 2019) in
512-dimensional latent space of ALAE (Pidhorskyi et al., 2020).

4.1 MNIST → EMNIST DOMAIN TRANSLATION

MNIST data set contains 60,000 images of digits between 0-9 in training-subset and 10,000 images
in test-subset. MNIST dataset is roughly balanced in the sense that the proportions of each data
class in the dataset are roughly the same. EMNIST (byclass) dataset contains a set of English
alphabet and numbers. EMNIST contains 62 imbalanced classes, of which 10 classes (between 0-9)
represent numbers, and the rest of 52 classes represent upper and lower English case letters of the
English alphabet. Roughly, 16% of EMNIST represent numbers and remaining 84% are alphabet.

Since our goal is to transfer MNIST images to EMNIST images such a way that MNIST digits
are mapped to EMNIST digits while ignoring alphabet, we trained a neural network classifier to
distinguish between digits and alphabet to evaluate the learned mapping (see implementation details
in Appendix D.1. After training the classifier, we used both static and dynamic subset-selection
approaches for domain translation between MNIST and EMNIST. Implementation details of the
underlying models and there training are in Appendix D.2.

In our experiments, we trained and evaluated both static and dynamic models using both the static
and dynamic subset-selection frameworks for c ∈ {1, 2, 4, 8}. For the dynamic case, similar to any
flow based generative process, dynamic subset selection also requires a numerical integration (ODE
integration with Euler type numerical integrator with 100 integration steps), but one-step integration
can be used (Liu et al., 2023; 2024b). Figure 2 shows that perceptually, one-step integration performs
worse in comparison to both static and ODE-based generation. We evaluated the classification

(a) static (b) dynamic (one step) (c) dynamic (ODE integration)
Figure 2: Image translation outputs for MNIST →EMNIST

6
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accuracy on translation of whole MNIST dataset, confusion matrices are given in Appendix E. A
summary of accuracies of translated outputs are given in Table 1.

Method c=1 c=2 c=4 c=8
static 46.93 75.33 82.44 87.32
dynamic (one step) 64.85 75.16 93.57 95.84
dynamic (ODE) 58.80 70.47 92.68 95.00

Table 1: Classification accuracies of translated images MNIST→EMNIST evaluated with using
pretrained classifier.

4.2 POSITIVE-UNLABELED LEARNING

Positive Unlabeled (PU) learning is a binary classification problem in which only a subset of positive
data is labeled, which is then used to train a model classifying between positive and negative data
from an unlabeled (containing both positive and negative data) data set. PU Learning Bekker &
Davis (2020); Kato et al. (2019); Chapel et al. (2020); Riaz et al. (2023). Since the sign of an
optimal potential function in our framework differs between selected and unselected subsets, one
can use it to distinguish between them positive and unlabeled datasets (see Appendix B for details).
We applied applied both the static and dynamic optimal transport for PU learning on the 20 UCI-
datasets (Kelly et al.) as in (Teisseyre et al., 2025), using the same settings with 75/25 train-test split
on each dataset and the sampled completely randomly (SCAR) mechanism to selected and label
points.

Networks were 5-layer MLPs with swish activation functions of appropriate input and output di-
mensions for both static and dynamic subset alignment with fixed learning learning rates for both
static and dynamic models. Architecture and parameter details for each model are given in D.3. We
trained 20 different models for each dataset using different train test splits, so in total we trained
400 models for static and 400 models for dynamic subset alignment. We adopted alternative sign
and value based label assignment strategies for unlabeled dataset. Performance in terms of balanced
accuracy for our approaches along with the top-performing baselines PUSB (Kato et al., 2019) and
NTC-MI (Teisseyre et al., 2025) are given in Table 2.

Dataset π PUSB NTC-MI
static dynamic

sorted sign sorted sign
Abalone 0.16 0.544 ± 0.060 0.575 ± 0.025 0.561 ± 0.029 0.503 ± 0.008 0.555 ± 0.033 0.532 ± 0.030
Banknote 0.44 0.829 ± 0.050 0.922 ± 0.019 0.883 ± 0.037 0.882 ± 0.039 0.892 ± 0.048 0.895 ± 0.044
Breast-w 0.34 0.766 ± 0.145 0.870 ± 0.028 0.930 ± 0.028 0.941 ± 0.027 0.839 ± 0.197 0.831 ± 0.132
Diabetes 0.35 0.546 ± 0.042 0.700 ± 0.039 0.635 ± 0.044 0.635 ± 0.044 0.587 ± 0.094 0.603 ± 0.066
Haberman 0.26 0.513 ± 0.023 0.532 ± 0.066 0.539 ± 0.066 0.540 ± 0.067 0.528 ± 0.062 0.519 ± 0.070
Heart 0.44 0.527 ± 0.033 0.757 ± 0.053 0.637 ± 0.093 0.623 ± 0.089 0.508 ± 0.210 0.573 ± 0.139
Ionosphere 0.64 0.440 ± 0.085 0.755 ± 0.059 0.773 ± 0.091 0.762 ± 0.088 0.562 ± 0.215 0.602 ± 0.149
Isolet 0.04 0.793 ± 0.072 0.725 ± 0.006 0.881 ± 0.028 0.923 ± 0.030 0.673 ± 0.173 0.693 ± 0.202
Jm1 0.19 0.628 ± 0.016 0.628 ± 0.013 0.576 ± 0.015 0.575 ± 0.010 0.573 ± 0.038 0.565 ± 0.026
Kc1 0.15 0.645 ± 0.075 0.679 ± 0.030 0.604 ± 0.036 0.607 ± 0.035 0.611 ± 0.063 0.606 ± 0.054
Madelon 0.5 0.496 ± 0.030 0.519 ± 0.028 0.533 ± 0.025 0.523 ± 0.015 0.511 ± 0.027 0.505 ± 0.017
Musk 0.15 0.712 ± 0.036 0.767 ± 0.012 0.841 ± 0.018 0.847 ± 0.018 0.823 ± 0.020 0.840 ± 0.019
Segment 0.14 0.848 ± 0.074 0.803 ± 0.014 0.898 ± 0.038 0.927 ± 0.031 0.900 ± 0.042 0.935 ± 0.026
Semeion 0.1 0.569 ± 0.055 0.755 ± 0.022 0.824 ± 0.044 0.850 ± 0.067 0.699 ± 0.143 0.653 ± 0.144
Sonar 0.53 0.497 ± 0.041 0.573 ± 0.057 0.561 ± 0.091 0.524 ± 0.074 0.515 ± 0.107 0.511 ± 0.089
Spambase 0.39 0.821 ± 0.031 0.887 ± 0.014 0.786 ± 0.011 0.775 ± 0.010 0.703 ± 0.057 0.664 ± 0.067
Vehicle 0.26 0.549 ± 0.067 0.804 ± 0.042 0.806 ± 0.037 0.823 ± 0.032 0.639 ± 0.169 0.661 ± 0.152
Waveform 0.34 0.860 ± 0.012 0.829 ± 0.012 0.795 ± 0.015 0.743 ± 0.013 0.676 ± 0.071 0.551 ± 0.019
Wdbc 0.37 0.798 ± 0.155 0.801 ± 0.043 0.861 ± 0.068 0.845 ± 0.063 0.691 ± 0.211 0.641 ± 0.149
Yeast 0.31 0.517 ± 0.051 0.657 ± 0.024 0.630 ± 0.040 0.612 ± 0.049 0.590 ± 0.076 0.567 ± 0.063

Table 2: Comparison of average balanced accuracies of 20 models trained using static and dynamic
subset alignment methods with PUSB and NTC-MI reported Teisseyre et al. (2025). Balanced ac-
curacies for best performing methods are colored red and second best are colored blue.

4.3 FFHQ IMAGE TRANSLATION

We also apply our proposed approaches to the unpaired image translation problem. We followed the
experimental setup of Gazdieva et al. (2024), where the FFHQ dataset embedded in the latent space
of Adversarial Latent Autoencoder (ALAE) (Pidhorskyi et al., 2020), is divided either by gender
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(man or woman) or age, as two orthogonal labels. Table 3 adapted from Gazdieva et al. (2024),
shows the number of images for each class, where images with age < 16 are ignored, ages between
16 and 43 are labeled young, and the remainder are labeled old. Given these classes, the task is
to learn to map a source distribution to a target distribution. There are four cases, young to old,
old to young, man to woman, and woman to man. In order to evaluate the translation process, two
classifiers pretrained in the ALAE latent space are used, one classifier is trained to classify young
vs old and another to distinguish man vs woman. The target accuracy quantifies what proportion of
translated images lie within the target-class boundary. The source accuracy quantifies whether the
translated images retain the orthogonal label. For example, with young→old the source accuracy is
whether the ‘aged’ image of a young source image retains the same gender.

Implementation details for both static and dynamic subset selection to the FFHQ dataset are given
in Appendix D.4. Between young→old, old→young, man→woman and woman→man, it was ob-
served that larger values of c tend to preserve the source accuracy, but often have lower target accu-
racy. This can be related to the fact that for larger values of c, it takes more training steps to achieve
the optimal subset selection.
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Figure 3: Accuracy curves for c ∈ {1, 2, 4, 8}, in comparison to results from LOT (Gazdieva et al.,
2024), UOT-GAN (Yang & Uhler, 2019), and UOT-SD (Choi et al., 2024b).

Class Man Woman
Young 15K 23K

Old 7K 3.5K

Table 3: Division of
FFHQ train images.

We compared our methodology with Light Unbalanced optimal trans-
port Gazdieva et al. (2024)(LOT), Yang & Uhler (2019)(UOT-GAN) and
Choi et al. (2024b)(UOT-SD) and observed that methods which achieve
better results in terms of target accuracy perform worse in terms of
source class accuracy. This can be seem from Table 4 and Figure 3, using
accuracy values reported by Gazdieva et al. (2024). Example translated
images for static and dynamic are shown for old→young in Figure 4,
with other cases provided in Appendix F.

c=1 c=2 c=4 c=8 UOT-SD UOT-GAN U-LOT
Task Accuracy static dynamic static dynamic static dynamic static dynamic
Young→Old Target 84.09 83.45 70.47 79.23 47.63 74.51 27.07 73.93 87.33 84.25 81.78

Class 70.43 71.55 91.41 84.31 95.47 90.03 96.06 90.30 45.71 73.85 84.49

Old→Young Target 96.06 93.36 92.55 86.65 85.04 85.03 72.93 83.33 97.39 95.88 87.79
Class 71.77 71.92 89.46 87.69 94.43 89.84 95.45 90.88 49.30 74.74 89.48

Man→Woman Target 96.11 94.53 92.18 91.74 85.66 90.96 77.55 90.29 98.16 97.38 90.23
Class 83.68 83.64 87.45 87.43 90.05 88.52 91.27 89.11 75.50 84.04 90.30

Woman→Man Target 93.34 92.26 87.32 88.09 78.32 84.28 64.86 81.89 94.96 92.91 88.59
Class 82.39 82.68 92.33 91.51 93.89 92.59 94.35 93.22 72.03 84.56 89.66

Table 4: Target and source accuracy (%) for different domain translations on the FFHQ dataset.
Dynamic subset selection is evaluated using Euler integration with 100 steps.

5 DISCUSSION AND CONCLUSION

Practically, one important matter of concern for the utility of Wasserstein distances is the fact that
sample estimators of Wasserstein distances are cursed by dimensionality (Weed & Bach, 2019;
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(a) (b)
Figure 4: FFHQ old→young translation using (a) static and (b) dynamic subset selection. Dynamic
subset selection is evaluated using Euler integration with 100 steps.

Fournier & Guillin, 2015), which can be alleviated to certain extent by employing the entropic
regularization (Genevay et al., 2019; Feydy et al., 2019), which in the dynamic case is intimately
connected with Schrödinger bridges.

Recently, unbalanced entropically-regularized optimal transport has been studied to model birth and
death processes for population dynamics (Pariset et al., 2023; Neklyudov et al., 2023). Our approach
can also be applied to model death processes, in cases where there is some canonical relationship
between temporally ordered events, by treating µ as the final population of survivors and ν as the
initial population.

Note the choice of c is often critical in applications. While c is interpretable, an automatic selection
of c based on the resulting transport cost, which was previously conducted for partial optimal trans-
port in the discrete case (Phatak et al., 2023), may be possible. One consolidated approach would
be to sample c from a range and use multi-task learning for optimizing networks for varying c. In
terms of implementation, this is possible using a scalar embedding of c as used for embeddings of
the time variables in dynamic networks. We would further like to point out that one can replace
range divergence with more common divergences like KL divergence but we cannot use the sign of
potential in that to distinguish between selected and rejected subsets.

Finally, we note that although we focused on relaxing the target distribution; the range-divergence
framework could potentially be adapted to also relax the source distribution. A fully relaxed version
may be applicable to other classes of problems.

In conclusion, our approaches for neural optimal transport with subset selection are motivated by
problems that require translation between two distribution with reweighting and selection of the
target. The results here, limited to image translation tasks on two datasets and 20 tabular PU-learning
tasks, show that both a meaningful subset can be learned simultaneously with a Monge map. Unlike
previous work, our dynamic formulation of allows for variation in the terminal distribution from the
original target marginal, creating flows to the nearest subset.
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Gabriel Peyré. Interpolating Between Optimal Transport and MMD using Sinkhorn Divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2681–2690.
PMLR, 2019.

Alessio Figalli. The Optimal Partial Transport Problem. Archive for Rational Mechanics and Anal-
ysis, 195(2):533–560, 2010.

Alessio Figalli and Federico Glaudo. An invitation to optimal transport, Wasserstein distances, and
gradient flows: Second Edition. European Mathematical Society, 2023.

Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the
empirical measure. Probability theory and related fields, 162(3):707–738, 2015.

Wilfrid Gangbo and Robert J McCann. The geometry of optimal transportation. Acta Mathematica,
177:113–161, 1996.

Milena Gazdieva, Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Extremal domain
translation with neural optimal transport. Advances in Neural Information Processing Systems,
36:40381–40413, 2023.

Milena Gazdieva, Arip Asadulaev, Evgeny Burnaev, and Alexander Korotin. Light unbalanced
optimal transport. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=co8KZws1YK.
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A PRELIMINARIES AND PROBLEM FORMULATION

Kantorovich Kantorovich (1942) reformulated the Monge problem by relaxing the constraint that
supports of µ and ν should be related to each other by a functional relation T . Instead, he allowed µ
and ν to be related to each other by a joint measure. Kantorovich’s reformulation of the problem is
a linear program and its solution exists for all convex lower-semi-continuous costs. Santambrogio
(2015); Figalli & Glaudo (2023). The Kantorovich problem is,

W(µ, ν) = inf
π

∫
X×Y

c (x,y)π(x,y)dxdy

s.t.
∫
Y
dπ(x,y) = µ(y),

∫
X
dπ(x,y) = ν(x),

(12)
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where it can be observed that integrals
∫
X and

∫
Y marginalize with respect to spaces Y and X ,

respectively. Therefore, π must be the joint measure between µ and ν defined on the product space
X × Y , i.e. π ∈ P (X × Y). In other words, constraints in the Kantorovich problem ensure that
every feasible π must be joint distribution of µ and ν. While in general, Kantorovich problem is
much easier to solve in comparison to Monge problem, there are the conditions of practical impor-
tance where one can employ the solutions of Kantorovich problem to obtain the solution of Monge
problem. Those conditions are more clearly discussed in terms of dual form of Kantorovich problem
(Santambrogio, 2015), given as,

W(µ, ν) = sup
f,g

∫
X
f(x)µ(x)dx+

∫
Y
g(y)µ(y)dy

s.t. f(x) + g(y) ≤ c(x,y)

(13)

The functions f(x) and g(y) are called Kantorovich potentials. By defining c-conjugate (also called
c-transform) of f(x), and c̄-conjugate (also called c̄-transform) of g(y) as

fc(y) = inf
x∈X

c(x,y)− f(x), (14)

gc̄(x) = inf
x∈X

c(x,y)− g(y), (15)

Using c and c̄ conjugates, Kantorovich problem is expressed as

W(µ, ν) = sup
f

∫
X
f(x)µ(x)dx+

∫
Y
fc(y)ν(y)dy (16)

= sup
g

∫
X
gc̄(x)µ(x)dx+

∫
Y
g(y)ν(y)dy (17)

Under very general conditions, one can relate the cost cwith the support of optimal coupling solution
π⋆ and optimal Kantorovich potentials f⋆(x) and fc⋆(y) (Santambrogio, 2015, Theorem 1.37) by

supp(π⋆) ⊂ {(x,y) ∈ X × Y : f⋆(x) + f⋆c(y) = c(x,y)} (18)

In discrete domains, above result is equivalent to Karush-Kuhn-Tucker (KKT) conditions for opti-
mality. One can further relate the optimal solutions of Monge and Kantorovich problems using a
landmark result by Gangbo & McCann (1996) , (Figalli & Glaudo, 2023, Theorem 2.7.1), which
states that there exists an optimal Kantorovich coupling of the form π⋆ = (Id × T ⋆)#µ, where T ⋆
is Monge map satisfying

∇xc(x, T
⋆(x)) +∇f⋆(x) = 0, (19)

if the following conditions are satisfied

• µ is absolutely continuous,
• ∀ y ∈ Y the map x 7→ c(x,y) is differentiable, ∀ x ∈ X ,
• ∀ x ∈ X the gradient map y 7→ ∇xc(x,y) is injective ∀ y ∈ Y ,
• and the gradient ∇xc(x,y) satisfies the local Lipschitz condition ∥∇xc(x,y)∥ ≤ Cr for

all x ∈ Br, where is Br is ball of radius r around x.

When the cost can be written as c(x,y) = h(x − y), where h is strictly convex and translation
invariant function, one can further relate the Monge mapping with optimal dual potential by (San-
tambrogio, 2015, Theorem 1.17)

T ⋆(x) = x−∇h∗ ◦ ∇f⋆(x), (20)

where h∗ is Legendre-Fenchel conjugate of h given by h∗(y) = sup
x∈X

{⟨y,x⟩ − h(x)}. In the result

above, when h(x−y) = 1
2∥x−y∥22, one obtains the result of celebrated Brenier theorem of optimal

transport for squared-Euclidean costs with T ⋆(x) = ∇f⋆(x), where f⋆(x) is convex (Brenier,
1991), (Figalli & Glaudo, 2023, Theorem 2.5.10) . The Brenier theorem on optimal transport differs
from another important theorem on polar factorization (Brenier, 1991) stating that under very general
conditions a square integrable vector field v can be decomposed into the composition of gradient of
a unique convex function ξ and a unique measure-preserving map u, i.e. v(x) = ∇ξ ◦ u(x). Before
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the discussion on dynamic formulation of the problem, we would like to point out that much of the
recent work on static neural optimal transport rely on above results.

Benamou and Brenier formulated the Wasserstein distance with squared Euclidean cost as the kinetic
energy minimization problem under the assumption that both the source µ and target ν distributions
have finite second moments (Benamou & Brenier, 2000; Santambrogio, 2015; Figalli & Glaudo,
2023). Assuming that supports of both source and target distributions lie in a convex set Ω ⊆ Rd,
whose normal at the boundary is given by n : ∂Ω → Rd, for a bounded and smooth velocity-field
vt(x) : [0, 1]× Ω → Rd, such that ⟨vt(x),n⟩|∂Ω = 0, the flow corresponding to vt is given by

d

dt
Φt(xt) = vt(Φt(xt)), Φ0(x0) = x0. (21)

Considering that there also exists a probability path ρt(x) : [0, 1]× Ω → R+, corresponding to the
flow Φt(x) such that ρt(x) = Φt#ρ0(x), Benamou-Brenier formulation of optimal transport is

inf
ρt,vt

∫ 1

0

∫
Ω

∥vt(x)∥2

2
ρt(x) dxdt

s.t.
∂

∂t
ρt(x) + div(ρt(x)vt(x)) = 0, ρ0(x) = µ(x), ρ1(x) = ν(x),

(22)

where div(·) denotes divergence operator mapping scalar or vector fields to scalar, for the field
zt(x) by div(zt(x)) =

∑
i
∂
∂xi

zt(x). The optimal flow Φ⋆t is related to Monge mapping T ⋆ by
displacement interpolation (McCann, 1997).

Φ⋆t = (1− t)Id + tT ⋆ (23)

It is important to mention that the Benamou-Brenier formulation can be extended to Wasserstein-p
distances, for p > 1, under the assumption that both source and target distributions have finite p-th
moments (Santambrogio, 2015, chapters 5 & 6).

A.1 DERIVATION OF STATIC NEURAL SUBSET SELECTION

We denote the problem expressed in 6 as infπ supψ supη L (π, ψ, η), where the Langrangian is

L (π, ψ, η) =

∫
X×Y

(c(x,y) + η(y)− ψ(x))π(x,y)dxdy +

∫
X
ψ(x)µ(x)dx (24)

− c

∫
Y
η+(y)ν(y)dy. (25)

We proceed to interchange the sup and inf ,3 which is allowed due to the strong duality property
associated with optimal transport when the cost c is convex and lower semi-continuous,

inf
π

sup
ψ,η

L (π, ψ, η) = sup
η,ψ

inf
π

L (π, ψ, η) . (26)

Optimizing with respect to π for given η and ψ, the integrand in the first term of 24 is unbounded
from below at any point c(x,y) + η(y)− ψ(x) < 0. Thus, η and ψ need to ensure that c(x,y) +
η(y) − ψ(x) ≥ 0. This constraint requires for any x ∈ supp(µ) ⊆ X , ψ(x) = infy∈Y(c(x,y) +
η(y)) (Villani et al., 2009) (Theorem 5.10 and Remark 5.13). This definition of ψ corresponds
to the c-transform of −η(y) in the optimal transport literature (Santambrogio, 2015; Villani et al.,
2009). Then, the inner infimum with respect to π is attained with zero value if ∀ (x,y) ∈ (X ×Y) :

3This requires us to verify Slater’s constraint qualifications, which are: (i) Primal is convex wrt π ,(which is
obvious), (ii) Dual is concave wrt η, which is also obvious (iii) relative interior for inequality constraints set is
non-empty, which can be verified by looking at the fact that for any ν̃ the distribution π(x,y) = µ(x)ν̃(y) is
feasible and one can see that if one defines the feasible set of coupling Πc(µ, ν) = {π ∈ P(X × Y) : πX =
µ, πY ≤ cν}, then for ∀ 1 ≤ c0 ≤ c1,Πc0(µ, ν) ⊆ Πc1(µ, ν), which in other words mean that Πc=1(µ, ν) is
a subset of feasible solutions for all values of c > 1, therefore relative-interior in non-empty.
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π(x,y) > 0 =⇒ c(x,y) + η(y)− ψ(x) = 0. Therefore, the dual problem becomes

sup
η

∫
X

(
inf
y∈Y

(c(x,y) + η(y)

)
µ(x)dx− c

∫
Y
η+(y) ν(y)dy. (27)

= sup
η

inf
T

∫
X

(
c(x, T (x)) + η(T (x))

)
µ(x)dx− c

∫
Y
η+(y) ν(y)dy (28)

= sup
η

inf
T

E
x∼µ

[
c(x, T (x)) + η(T (x))

]
− c E

y∼ν
[η+(y)]. (29)

= inf
T

sup
η

E
x∼µ

[
c(x, T (x))

]
+ E

x∼µ

[
η(T (x)

]
− c E

y∼ν
[η+(y)]. (30)

= inf
T

E
x∼µ

[
c(x, T (x))

]
+Dı[0,c](T♯µ∥ν) = inf

T
T#µ≤cν

E
x∼µ

[
c(x, T (x))

]
. (31)

Equation 27 and equation 28 are equal due to a theorem by (Rockafellar, 1976, Theorem 3A);
equation 28 and equation 29 are equivalent by definition; equation 29 and equation 30 are equivalent
since the function is convex with respect to T and concave with respect to η; and equation 30 and
equation 31 are equivalent by the variational formula for the f -divergence. Thus, we obtain a relaxed
Monge formulation.

A.2 DERIVATION OF DYNAMIC NEURAL SUBSET SELECTION

Combining the objective and constraints in 8 to obtain the Lagrangian

L(vt, ρt, ψ0, φt, η) =

(I)︷ ︸︸ ︷∫ 1

0

∫
Ω

∥vt(x)∥2

2
ρt(x)dxdt+

(II)︷ ︸︸ ︷∫
Ω

ψ0(x) (ρ0(x)− µ(x)) dx

+

(III)︷ ︸︸ ︷∫ 1

0

∫
Ω

φt(x)
∂

∂t
ρt(x)dxdt+

(IV)︷ ︸︸ ︷∫ 1

0

∫
Ω

φt(x)div (ρt(x)vt(x)) dxdt

+

(V)︷ ︸︸ ︷
sup
η

(∫
Ω

η(x)ρ1(x)dx− c

∫
Ω

max(0, η(x))ν(x)dx

)
. (32)

Since ρt(x) is supported on bounded subset Ω ⊂ Rd, one can change the order of integration.
Therefore, for term (III), by changing the order of integration and then computing integration by
parts one obtains,

(III) =
∫
Ω

∫ 1

0

φt(x)
∂

∂t
ρt(x)dxdt =

∫
Ω

φ1(x)ρ1(x)dx−
∫
Ω

φ0(x)ρ0(x)dx

−
∫ 1

0

∫
Ω

∂

∂t
φt(x)ρt(x)dxdt. (33)

In order to simplify (IV), we can use product rule of derivatives to write

φt(x)div(ρt(x)vt(x)) = div (φt(x)ρt(x)vt(x))− ρt(x)⟨∇φt(x),vt(x)⟩.
Therefore by combining above identity with Gauss’s theorem one obtains

(IV) =

∫ 1

0

∫
Ω

div (φt(x)ρt(x)vt(x)) dxdt−
∫ 1

0

∫
Ω

ρt(x)⟨∇φt(x),vt(x)⟩dxdt

=

∫ 1

0

∮
∂Ω

φt(xt)ρt(xt)⟨vt(x), dn⟩dt︸ ︷︷ ︸
=0

−
∫ 1

0

∫
Ω

ρt(x)⟨∇φt(x),vt(x)⟩dxdt.
(34)

From the boundary condition on optimal transport (see the discussion above Equation 21, also Figalli
& Glaudo (2023)-section 4.1) , the first part of the right-hand side of 35 is zero; therefore,

(IV) =

∫ 1

0

∫
Ω

φt(x) · div(ρt(x)vt(x))dxdt = −
∫ 1

0

∫
Ω

⟨∇φt(x),vt(x)⟩ρt(x)dxdt. (35)
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In order to eliminate primal variable vt(x), substitute Equation 33 and Equation 35 into 32 and
compute the variational-derivative to obtain the stationary condition. For that one can write the
terms of Lagrangian depending on vt(x) as

L̃(vt) =
∫ 1

0

∫
Ω

(
∥vt(x)∥2

2
− ⟨∇φt(x),vt(x)⟩

)
ρt(x)dxdt. (36)

With the additive perturbation function τt vanishing at t = 0 and t = 1 and a scalar ε, the Lagrangian
L̃(vt + ετt) is

L̃(vt + ετt) =

∫ 1

0

∫
Ω

(
∥vt(x) + ετt(x)∥2

2
−

〈
∇φt(x), vt(x) + ετt(x)

〉)
ρt(x)dxdt

=

∫ 1

0

∫
Ω

(
∥vt(x)∥2

2
−

〈
∇φt(x),vt(x)

〉)
ρt(x)dxdt

+

∫ 1

0

∫
Ω

(
ε2

∥τt(x)∥2

2
+ ε

〈
vt(x)−∇φt(x), τt(x)

〉)
ρt(x)dxdt,

and variational derivative is

δL̃(vt(x))
∣∣∣
vt

=
d

dε

∣∣∣∣
ε=0

L̃(vt + ετt) =

∫ 1

0

∫
Ω

⟨vt(x)−∇φt(x), τt(x)⟩ρt(x)dxdt. (37)

The stationarity condition requires δvtL̃(vt(x)) = 0. For arbitrary perturbation τt(x), the variation
δvt

L̃(vt(x)) = 0 if and only if
vt(x) = ∇φt(x). (38)

Therefore one can write the Lagrangian as

L(ρt, ψ0, φt, η) =

∫
Ω

ψ0(x) · (ρ0(x)− µ(x)) dx+

∫
Ω

φ1(x)ρ1(x)dx−
∫
Ω

φ0(x)ρ0(x)dx

+

∫
Ω

η(x)ρ1(x)dx− c ·
∫
Ω

max(0, η(x))ν(x)dx

−
∫ 1

0

∫
Ω

(
∂

∂t
φt(x) +

∥∇φt(x)∥2

2

)
ρt(x)dxdt.

Similarly, by computing δψ0
L and δρ1L using stationary conditions, one obtains the condition,

ψ0(x) = φ0(x), (39)
η(x) = −φ1(x). (40)

Therefore the Lagrangian is simplified to

L(ρt, φt, η) = −
∫
Ω

φ0(x)µ(x)dx− c

∫
Ω

max(0,−φ1(x))ν(x)dx

−
∫ 1

0

∫
Ω

(
∂

∂t
φt(x) +

∥∇φt(x)∥2

2

)
ρt(x)dxdt.

(41)

The simplified problem (equation 9 in the main body) is

sup
ρt

inf
φt

E
x∼µ

[
φ0(x)

]
+ c · E

x∼ν

[
max(0,−φ1(x))

]
+

∫ 1

0

E
xt∼ρt

[
∂

∂t
φt(xt) +

∥∇φt(xt)∥2

2

]
dt.

B THRESHOLDING FOR PU-LEARNING AND REJECTION SAMPLING

Our idea of rejection sampling and thresholding for PU-Learning is based on the fact that the dual
form of range divergence is zero when the supremum in the dual is attained by the function η⋆(x)
with ν̃(x) = ρ⋆1(x) i.e.

E
x∼ν̃

[η⋆(x)]− c E
x∼ν

[ReLU(η⋆(x))] = 0 (42)
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By defining A=supp(ν) , Ã=supp(ν̃), and Ā=A/Ã, one can also see that Ã ∩ Ā = ∅, therefore
one can write Equation 42 as∫

Ã
η⋆(x)ν̃(x)dx− c

∫
Ã
ReLU (η⋆(x)) ν(x)dx− c

∫
Ā
ReLU(η⋆(x))ν(x)dx = 0. (43)

One can further write
η⋆(x) =ReLU (η⋆(x))− ReLU (−η⋆(x)) . (44)

After substituting Equation 44 into Equation 43 one obtains

LHS︷ ︸︸ ︷∫
Ã
ReLU(η⋆(x))(ν̃(x)− cν(x))dx =

RHS︷ ︸︸ ︷∫
Ã
ReLU(−η⋆(x))ν̃(x)dx+ c

∫
Ā
ReLU(η⋆(x))ν(x)dx

(45)
The dual form Equation 43 is optimal with zero duality gap, if the primal form satisfies ∀x ∈
A, ι[0,c]

(
ν̃
ν (x)

)
= 0, which can also be restricted to ∀ x ∈ Ã ι[0,c]

(
ν̃
ν (x)

)
= 0. This is equivalent

to ν̃(x) ≤ cν(x) almost-everywhere in Ã. Therefore, one can say that 0 ≥ LHS and also

0 ≥

RHS︷ ︸︸ ︷∫
Ã
ReLU(−η⋆(x))ν(x)dx+ c

∫
Ā
ReLU(η⋆(x))ν(x)dx (46)

We can now see that both integrands in Equation 46 are nonnegative and sum to a value less than or
equal to zero, which is only possible if both are equal to zero. Therefore, one can write

0 =

∫
Ã
ReLU(−η⋆(x))ν(x)dx+ c

∫
Ā
ReLU(η⋆(x))ν(x)dx (47)

Further, two non-negative integrals are evaluated on two mutually exclusive sets, therefore to have
sum equal to zero value we can conclude that each integral is zero individually. Therefore, we can
write

0 =

∫
Ã
ReLU(−η⋆(x))ν(x)dx = c

∫
Ā
ReLU(η⋆(x))ν(x)dx (48)

The Equation 48 is therefore equivalent to following element-wise test

η⋆(x) ≥ 0, almost surely in Ã
η⋆(x) < 0, almost surely in Ā

(49)

Additionally, from the Equation 47, one can also conclude that

LHS︷ ︸︸ ︷∫
Ã
ReLU(η⋆(x))(ν̃(x)− cν(x))dx = 0, (50)

which is a complementary slackness condition in the sense that ν̃(x) < cν(x) =⇒ η∗(x) =
0 almost every-where in A. During the neural network training with finite data-points, potential
function η is usually suboptimal and its sign cannot be relied, therefore instead of directly using
the sign, one can sort values of potential at data points and select predetermined proportion (prior)
of data-points. Therefore for training PU-learning models, we applied both sign and sorting based
filtration of data. Form the figures 1a and 1b, one can observed that for the optimal potential for static
problem exactly follows equation 49, whereas in the dynamic case the sign of φ1 is inverted, which
is due to the relation obtained in equation 40, which ensures that for the at optimal φ⋆1 following
relation holds

φ⋆1(x) ≤ 0, almost surely in Ã
φ⋆1(x) > 0, almost surely in Ā.

(51)

The Figure 5 gives snapshots of the transition of φt(x) between t = 0 and t = 1 for the dynamic
subset alignment results shown 1b.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 5: φt between t = 0 and t = 1 for subset alignment between 2D uniform distributions for
which φ1 is also shown in Figure 1b, It can be seen that unlike η in static problem φt is function of
time and varies with t.
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C SURVEY OF RECENT WORK ON NEURAL OPTIMAL TRANSPORT

In this section, we discuss the recent related work on computational optimal transport and its appli-
cations. More specifically, we consider the works which are related to neural estimation of optimal
transport maps with occasional reference to theoretical developments.

C.1 STATIC NEURAL OPTIMAL TRANSPORT

Seguy et al. (2018) employed stochastic gradient based approaches in one of the earliest works to
estimate the optimal transport map using neural networks. Notably, the work by Seguy et al. (2018)
differed from early work Genevay et al. (2016) in the sense that the later work employed stochas-
tic gradient based methods to estimate the transport plan for large scale data, whereas earlier work
Genevay et al. (2016) only minimized the optimal transport loss using stochastic-gradient based
methods. This is also in contrast to the well-known Wasserstein-GAN Arjovsky et al. (2017); Gul-
rajani et al. (2017) that employs the Kantorovich-Rubinstein duality to minimize the Wasserstein-1
loss function for generative modeling, where neural networks are employed as parameterizations for
both dual-potential and data generator, but do not provide transport plans. Finally, the Sinkhorn-
GAN employs an approximation of the discrete Wasserstein distance between latent representations
of data and that of samples from non-informative prior Genevay et al. (2018) for generative mod-
eling. Now, we can see clear distinction between two different classes of approaches employing
Wasserstein distances in generative modeling, the first class of works concerns with employing
Wasserstein distance as a loss for generative modeling, without any explicit concern for obtaining
the underlying transport plan across the distributions Arjovsky et al. (2017); Gulrajani et al. (2017).
The second class seeks to learn a transport plan to realize the generative model.

Efforts to learn Monge maps were motivated by a theorem by Brenier (1991), which essentially
states that, for continuous distributions with squared-Euclidean transportation cost, the optimal so-
lution of the Monge problem is the gradient of a convex function (Figalli & Glaudo, 2023, (Theorem
2.5.10)). Therefore initially, gradient of input-convex neural networks (ICNN) Amos et al. (2017)
we employed to estimate the transport plan for the Wasserstein-2 distance Makkuva et al. (2020);
Korotin et al. (2021a;b). This approach has also been employed to supervised conditional neural
Monge maps (Bunne et al., 2022a) and unbalanced optimal transport (Lübeck et al., 2022). The
study by Amos et al. (2023) focuses on the development of an efficient neural optimal solution that
could be implemented quickly in more practical scenarios. This approach to solve Wasserstein-2 dis-
tances employing convex potentials involves computationally challenging evaluation of the Fenchel
conjugate of a ICNN parameterized convex function. More recent work in this direction focuses
on improved optimization strategies and better ICNN architectures to bypass problems related to
Fenchel conjugate evaluations and ICNN training Amos (2023); Vesseron & Cuturi (2024). Recent
work also focuses on some batch-based schemes have also been devised to improve the regularity of
learned neural Monge maps Uscidda & Cuturi (2023); Eyring et al. (2024).

Another recent direction of work is based on the idea that ICNNs can be overly restrictive, there-
fore more general neural network architectures should be employed to directly parameterize the
transport maps Rout et al. (2022); Korotin et al. (2023b). The work by Fan et al. (2022a; 2023)
focuses on employing neural networks to approximate the solution for Monge’s transport problem
also draws inspiration from the recent developments in neural-network-based parametric realizations
for approximating Kantorovich plans. Recently neural optimal transport has also been extended to
unbalanced transportation setting (Yang & Uhler, 2019; Choi et al., 2023). Another work directly
related to static subset selection problem is (Gazdieva et al., 2023).

Unless there is a corresponding Monge mapping (Choi et al., 2024a; Mokrov et al., 2024; Geuter
et al., 2025), optimal transport requires a stochastic transport plans. A recent body of work (Korotin
et al., 2023b;a; Asadulaev et al., 2024) deals with learning transportation plans using a weaker for-
mulation of optimal transport (Gozlan et al., 2017; Backhoff-Veraguas et al., 2019) along with noise
outsourcing techniques, which is also extended to more general costs. Apart from the applications in
image translation (Korotin et al., 2023b), neural optimal transport has been applied for bio-medical
image registration (Kim et al., 2024) and to study single cell perturbations (Bunne et al., 2023). Neu-
ral optimal transport have also been employed for metric learning (Howard et al., 2024; Scarvelis &
Solomon, 2023).
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C.2 DYNAMIC NEURAL OPTIMAL TRANSPORT

The potential applications of dynamic optimal transport in the cellular trajectory inference (Tong
et al., 2020) and its connections with flow based models for generative modeling (Huang et al., 2021;
Huguet et al., 2022) has been instrumental in the recent research developments in this direction.
Jordan-Kinderlehrer-Otto flow (JKO) is time discretization scheme to solve Wasserstein gradient
flows for different energy functionals (Jordan et al., 1998; Santambrogio, 2017). Therefore, a lot
of effort done in that regard is focused on neural network parameterized schemes to solve JKO-
flow problem for both cellular trajectory inference and generative modeling (Ma et al., 2021; Fan
et al., 2022b; Lambert et al., 2022; Bunne et al., 2022b; Xu et al., 2023; Choi et al., 2023; 2024c;
Altekrüger et al., 2023; Mokrov et al., 2021; Alvarez-Melis et al., 2022). JKO-scheme has also been
studied for the applications related to molecular discovery (Alvarez-Melis et al., 2022). A recent
study deals with convergence properties of JKO-based generative models (Cheng et al., 2024).

Recent developments in flow-matching models based on flow matching (Lipman et al., 2023; Al-
bergo & Vanden-Eijnden, 2023; Liu et al., 2023) for generative modeling lead to even more inter-
est in the development of algorithms to solve dynamic optimal transportation problems. Action-
Matching based framework lead to the development of a more general framework to solve both
trajectory inference and generative modeling problems (Neklyudov et al., 2023) for the cases where
one could also sample from the trajectory between two terminal marginals. Rectified flow-matching
(Liu et al., 2023; 2024b) uses the neural-optimal transport in additional rectification step to improve
the linearity of flows, so that after training the model, images could be generated efficiently with
only a single-step integration along straight lines paths. For generative modeling, in contrast to
target-conditional flow matching (Lipman et al., 2023), where during training, flows are conditioned
on target samples, discrete optimal transport conditioned flow-matching employs the mini-batch op-
timal transport to create the conditionals (Pooladian et al., 2023; 2024; Tong et al., 2024b). Another
recent work (Kornilov et al., 2024) attempts to alleviate the error accumulation problems associated
with mini-batch optimal transport by learning straight paths between source and target distributions
in single step. Flow-matching (Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023), diffusion
models (Sohl-Dickstein et al., 2015; Song & Ermon, 2020; Song et al., 2021), and Schrödinger
bridges (Wang et al., 2021; Liu et al., 2022; 2024a; Shi et al., 2023; Gushchin et al., 2023b;a), and
(Somnath et al., 2023) are deeply interconnected under the framework of generalized bridge match-
ing (Tong et al., 2023; Albergo et al., 2023; Tong et al., 2024a; Shi et al., 2024). Recently, there has
also been attempts to understand diffusion models as approaches to minimize the dynamic Wasser-
stein distances (Kwon et al., 2022; Khrulkov et al., 2023). Another recent work extends the flow
matching to the flows on Riemannian manifolds (Chen & Lipman, 2024; Atanackovic et al., 2025).
Recent works generalize flow-matching from different perspectives, Chen & Lipman (2024) gener-
alize the flow-matching to the flows on Riemannian manifolds, Atanackovic et al. (2025) attempt
to extend the flow-models to return meaningful flows for the data beyond training distributions, and
Haviv et al. (2025) generalize the flow matching to the cases where data can be treated as distribu-
tions of distributions.

Additionally, there has been recent dynamic extension to the conditional neural optimal transport
(Hosseini et al., 2023; Kerrigan et al., 2024). There has also been efforts to study neural network
based scalable approaches to solve high-dimensional partial differential equations (Wan et al., 2023).

D IMPLEMENTATION DETAILS

D.1 EMNIST CLASSIFIER

We merged the whole alphabet into one class and each number is treated as a separate class (digits
between 0 and 9 are given same label as their value and any letter is labeled 10). In order to cir-
cumvent the effects of data imbalancedness on classifier training, we employed the class-reweighted
softmax loss function. For k-class classification, consider the vector z ∈ Rk containing the counts
for class in the training data, we define the reweighting vector ω ∈ Rk with

ωi =

 N∑
j=1

zi
zj

−1

, ∀ i ∈ [k]. (52)
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For one hot encoded label vector y and softmax activation output at neural network output ŷ, the
reweighted loss (risk) is given by

ℓ(y, ŷ) = 1⊤
k (ω ⊙ y ⊙ ŷ) (53)

The classifier for EMNIST is trained with the same train/validation split as provided in EMNIST
dataset (Cohen et al., 2017). We trained the classifier with ResNet-18 (He et al., 2016) architecture
and class-reweighted softmax loss function in equation 53. Adam optimizer (Kingma & Ba, 2014)
along with warmup-cosine learning rate scheduler (Loshchilov & Hutter, 2017) is used to train
the classifier with peak learning rate of 1 × 10-3 with 500 warm-up steps. Total decay steps for
cosine scheduler are set to 20, 000 with end-value of learning rate set to be equal to 1 × 10-5. The
classifier training is stopped after 20,000 training steps, when classifier achieves more than 90%
overall validation accuracy and 99% accuracy on digits. Confusion matrix of classifier are given in
Appendix E.

D.2 MNIST-EMNIST TRANSLATION MODELS

For the static domain translation, the transport network T is a U-Net Ronneberger et al. (2015) with
base-factor of 48 and the critic network η is ResNet-51 He et al. (2016). In order to train both
transport and critic networks, Adam optimizer Kingma & Ba (2014) is used with initial learning rate
of 1×10-4, which is scheduled to be halved after 10, 000+5000c, 20, 000+5000c, 30, 000+5000c,
40, 000 + 5000c and 70, 000 + 5000c training steps. Algorithm 1 is used for training with 50, 000
learning iterations with 10 T update steps for each η update step, our training settings for static
case are very similar to those of Gazdieva et al. (2023). For dynamic subset selection, following
the settings from Neklyudov et al. (2023), the vector field φt is parametrized using a U-Net with
time embeddings from DDPM (Song & Ermon, 2020). Similar to action matching (Neklyudov
et al., 2023), φt is parametrized to return scalar by φt(x) = ⟨U-Net(x), x⟩. Likewise, Qt, which
parametrizes ρt, is also a U-Net with time embeddings. We used AdamW optimizer with learning
rate scheduling for 50,000 iterations. The optimizer parameters are β = (0, 0.999), weight decay =
0.1 and drop out = 0.1. Additionally, we also employed exponential moving averages (EMA) in
the training with the ema-rate 0.999. These settings are very similar to rectified flow matching and
action matching (Liu et al., 2023; Neklyudov et al., 2023). Learning rate linearly increases from
0 to maximum value during first 5,000 iterations and then stays constant at maximum value with
maximum learning rates of 2 × 10-4 and 1 × 10-4 for φt and Qt, respectively. Additionally, we
clipped gradients to lie within [-1, 1]. Algorithm 2 is employed with 50,000 training iterations and
2 φt for each ρt update.

D.3 MODELS FOR PU-LEARNING USING SUBSET ALIGNMENT

For PU learning with both static and dynamic subset alignment based approaches respectively,
model architectures are given in code listings D.3 and D.3, respectively. For all models num hid
is set to be 1024, for Smodel and etamodel, the parameter num out is by definition 1, whereas
for Qmodel and Tmodel, outputs are set to be equal to data dimension. For both static and dy-
namic models, we used Adam optimizer Kingma & Ba (2014), with default settings, and learning
rates 1 × 10−4 and 2 × 10−5 respectively. Additionally, we used EMA with ema-rate of 0.999 to
evaluate models on both the test dataset and the validation datasets. We trained the model for the
total of 20,000 learning iterations, with 10 T update steps for single η update step using the Algo-
rithm 1. Similarly, Algorithm 2 is employed to train neural networks for dynamic subset alignment.
learning iterations, with 2 φt update steps for single ρt update step. The dynamic models contain
time embeddings with trainable parameters. We employed the Adam algorithm for gradient based
updates of neural network parameters. For all the tests for PU learning we fix c = 1

π+
. For each data

set same batch sizes are used to train both static and dynamic models and table 5, gives the values.
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Dataset n dim π batch size
Abalone 4177 8 0.16 20
Banknote 1372 4 0.44 10
Breast-w 699 9 0.34 10
Diabetes 768 8 0.35 6
Haberman 306 3 0.26 6
Heart 270 13 0.44 6
Ionosphere 351 34 0.64 6
Isolet 7797 617 0.04 4
Jm1 10885 21 0.19 20
Kc1 2109 21 0.15 20
Madelon 2600 500 0.5 20
Musk 6598 166 0.15 20
Segment 2310 19 0.14 20
Semeion 1593 256 0.1 4
Sonar 208 60 0.53 4
Spambase 4601 57 0.39 20
Vehicle 846 18 0.26 6
Waveform 5000 40 0.34 20
Wdbc 569 30 0.37 6
Yeast 1484 8 0.31 10

Table 5: UCI datasetets for PU Learning, along with total number of data points (n), dimension
(dim), positive prior (π) and batch sizes employed in training the correspsonding models.

1 import jax
2 from jax import numpy as jnp
3 from flax import linen as nn
4 import math
5 ’’’
6 etamodel: neural network parameterization for eta function
7 Tmodel: neural network parameterization for T function
8 ’’’
9 class etamodel(nn.Module):

10 num_hid : int
11 num_out : int
12 @nn.compact
13 def __call__(self, x):
14 h = nn.Dense(self.num_hid)(x)
15 h = nn.swish(h)
16 h = nn.Dense(self.num_hid)(h)
17 h = nn.swish(h)
18 h = nn.Dense(self.num_hid)(h)
19 h = nn.swish(h)
20 h = nn.Dense(self.num_out)(h)
21 return h
22

23 class Tmodel(nn.Module):
24 num_hid : int
25 num_out : int
26 @nn.compact
27 def __call__(self, x):
28 def transport_net(x):
29 MLP_out = nn.Sequential([
30 nn.Dense(self.num_hid),
31 nn.swish,
32 nn.Dense(self.num_hid),
33 nn.swish,
34 nn.Dense(self.num_hid),
35 nn.swish,
36 nn.Dense(self.num_hid),
37 nn.swish,
38 nn.Dense(self.num_out),])(x)
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39 ResConnect = nn.Dense(self.num_out)(x)
40 return MLP_out + ResConnect
41 output = transport_net(x)
42 return output

Listing 1: Model architectures for PU-Learning with static subset alignment
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1 import jax
2 from jax import numpy as jnp
3 from flax import linen as nn
4 import math
5

6 class Smodel(nn.Module):
7 num_hid : int
8 num_out : int
9

10 @nn.compact
11 def __call__(self, t, x):
12 if jnp.ndim(t) == 0:
13 t = jnp.broadcast_to(t, x.shape[0:-1]+(1,))
14 h = jnp.concatenate([t,x], axis=-1)
15 h = nn.Dense(self.num_hid)(h)
16 h = nn.swish(h)
17 h = nn.Dense(self.num_hid)(h)
18 h = nn.swish(h)
19 h = nn.Dense(self.num_hid)(h)
20 h = nn.swish(h)
21 h = nn.Dense(self.num_hid)(h)
22 h = nn.swish(h)
23 h = nn.Dense(self.num_out)(h)
24 return h
25

26

27

28 class Qmodel(nn.Module):
29 num_hid : int
30 num_out : int
31

32 @nn.compact
33 def __call__(self, t, x_0, x_1):
34

35 h = jnp.concatenate([t, x_0, x_1, t<0.5], axis=-1)
36 h = nn.Dense(self.num_hid)(h)
37 h = nn.swish(h)
38 h = nn.Dense(self.num_hid)(h)
39 h = nn.swish(h)
40 h = nn.Dense(self.num_hid)(h)
41 h = nn.swish(h)
42 h = nn.Dense(self.num_hid)(h)
43 h = nn.swish(h)
44 h = nn.Dense(self.num_out)(h)
45

46 x_t = (1-t)*x_0 + t*(x_1) + t*(1-t)*h
47

48 return x_t

Listing 2: Model architectures for PU learning with dynamic subset alignment

D.4 IMAGE-TO-IMAGE TRANSLATION ON FFHQ

In our experiments for static subset alignment, we used a three layered MLP architecture with swish
activation functions in hidden layers to parameterize both the transportation map T and the potential
η. For the network parameterizing T , an additional skip connection connecting input and output
is also used, which also contains a linear mapping, without any non-linear activation. Dimension
of hidden layers are set to 1,024 for both Networks. Output dimension of the transport network is
same as its input dimension (512), whereas potential network returns a scalar output. The Adam
optimization algorithm is used to train both networks with a fixed learning rate of 1 × 10-5. We
employ EMA with ema-rate 0.999 in the training process. Algorithm 1 is used in the training with
50,000 learning iterations with 5 T updates for each η update.
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In order to train the dynamic models, the model architectures employed are also three layered MLPs
but with time embeddings. The neural network parameterizing φt is a three layers MLP with 64
dimensional time embeddings, 1,024 dimensional hidden layers, and a scalar output. The neural
Network parameterizing ρt contains two branches for static and dynamic components respectively.
The dynamic part of network parameterizing ρt also contains 64 dimensional time embeddings. We
also use EMA with ema-rate 0.999 to train both networks, and a fixed learing rate of 1 × 10-5 .
Dynamic models are trained using algorithm 2 for 50,000 learning ierations with 1 φt update for 5
ρt updates.

E CONFUSION MATRICES FOR MNIST → EMNIST DOMAIN TRANSLATION

(a) Unnormalized confusion matrix (b) Normalized confusion matrix
Figure 6: Confusion matrices for EMNIST classifier discussed in section 4.1

(a) c = 1 (b) c = 2

(c) c = 4 (d) c = 8
Figure 7: Confusion matrices for MNIST→EMNIST domain translation using static subset selec-
tion. Accuracy is computed by computing ratio between trace and some of all entries of confusion
matrices.
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Figure 8: Confusion matrices for MNIST→EMNIST domain translation using dynamic subset se-
lection.
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F RESULTS FROM FFHQ

(a) (b)
Figure 9: FFHQ young→old translation using (a) static and (b) dynamic subset selection. Dynamic
subset selection. Dynamic subset selection is evaluated using Euler integration with 100 steps.

(a) (b)
Figure 10: FFHQ woman→man translation using (a) static and (b) dynamic subset selection. Dy-
namic subset selection is evaluated using Euler integration with 100 steps.

(a) (b)
Figure 11: FFHQ man→woman translation using (a) static and (b) dynamic subset selection. Dy-
namic subset selection is evaluated using Euler integration with 100 steps.
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