
Expressive and Generalizable Low-rank Adaptation for Large Models
via Slow Cascaded Learning

Anonymous ACL submission

Abstract001

Efficient fine-tuning plays a fundamental role002
in modern large models, with low-rank adap-003
tation emerging as a particularly promising004
approach. However, the existing variants of005
LoRA are hampered by limited expressiveness,006
a tendency to overfit, and sensitivity to hyper-007
parameter settings. This paper presents LoRA008
Slow Cascade Learning (LoRASC), an inno-009
vative technique designed to enhance LoRA’s010
expressiveness and generalization capabilities011
while preserving its training efficiency. Our ap-012
proach augments expressiveness through a cas-013
caded learning strategy that enables a mixture-014
of-low-rank adaptation, thereby increasing the015
model’s ability to capture complex patterns.016
Additionally, we introduce a slow-fast update017
mechanism and cascading noisy tuning to bol-018
ster generalization. The extensive experiments019
on various language and vision datasets, as020
well as robustness benchmarks, demonstrate021
that the proposed method not only significantly022
outperforms existing baselines, but also miti-023
gates overfitting, enhances model stability, and024
improves OOD robustness.025

1 Introduction026

Foundation models, which are large-scale models027

pre-trained on extensive datasets and subsequently028

adapted for specific downstream tasks, have be-029

come integral to contemporary machine learning030

frameworks. Fine-tuning these models is essen-031

tial, yet full parameter fine-tuning often encoun-032

ters significant memory and computational bottle-033

necks. As a result, Parameter-Efficient Fine-Tuning034

(PEFT) techniques, which aim to minimize the035

number of trainable parameters to reduce training036

costs and improve training stability, have gained037

increasing prominence. Among these techniques,038

Low-Rank Adaptation (LoRA) (Hu et al., 2021)039

stands out due to its efficiency in reducing train-040

ing costs through low-rank approximation for full-041

parameter updates. However, despite LoRA’s ad-042

vantages, its limitations in terms of expressiveness 043

and generalization have been noted. Some studies 044

suggest that the inherent low-rankness of LoRA 045

might restrict its expressiveness (Xia et al., 2024; 046

Meng et al., 2024; Lialin et al., 2023; Huang and 047

Wei, 2024), with a preference for overparameteriza- 048

tion, while others indicate a tendency for LoRA to 049

overfit or exhibit overconfidence (Lin et al., 2024; 050

Wang et al., 2023). 051

In this work, we investigate the potential of cas- 052

cading learning to augment the expressiveness of 053

LoRA. Our approach involves initializing a new 054

LoRA module at the start of each epoch and in- 055

tegrating this module into the backbone network 056

after the epoch concludes. By employing a mixture- 057

of-low-rank adaptation, we effectively increase the 058

model’s rank, while maintaining low training costs, 059

as each cascading step consumes no more parame- 060

ters and memory than a single LoRA model. More- 061

over, this method does not add any inference over- 062

head by remerging each LoRA module into the 063

backbone network. 064

To improve LoRA’s generalization capabilities, we 065

draw inspiration from optimization techniques. We 066

repurpose certain strategies from optimizers for 067

LoRA, motivated by the observation that initializ- 068

ing a new LoRA module for each epoch can repre- 069

sent a descent direction for the dataset. In optimiza- 070

tion theory, flat minimizers are preferred, as they 071

are associated with better generalization (Hochre- 072

iter and Schmidhuber, 1997; Keskar et al., 2016). 073

Inspired by the fact that the moving average mech- 074

anism guides models towards flat minimizers (Iz- 075

mailov et al., 2018), we maintain both fast-updating 076

and its moving average version, the slow-updating 077

LoRA experts. The fast-updating expert is reini- 078

tialized regularly to learn from the data over a set 079

number of steps, while the slow-updating expert 080

undergoes updates via a proportional exponential 081

moving average after the fast-updating cycle com- 082

1



pletes. Additionally, mirroring techniques in deep083

learning optimizers where noise proportional to the084

gradient scale is used to find flat minima (Xie et al.,085

2020), we introduce noise at the beginning of each086

epoch, with the scale tied to the norm of LoRA’s087

weights.088

To verify the effectiveness of the proposed method,089

we conduct extensive experiments on both lan-090

guage and vision tasks. For language tasks, we091

utilized the Llama2 model on 12 datasets (e.g.,092

SuperGLUE, SQuAD, DROP, GSM8K, and In-093

structEval), Alpaca among other instruct follow-094

ing benchmarks to demonstrate the effectiveness095

of our design. We can directly apply our approach096

to LoRA, LoRA+ (Hayou et al., 2024), Dora (Liu097

et al., 2024), and other members of the LoRA fam-098

ily, significantly improving their performance in099

large model transfer learning. For vision tasks, we100

also validated our approach on the CLIP pre-trained101

Vit-bigG model with the ImageNet dataset, show-102

ing a significant performance improvement rela-103

tive to LoRA on domain adaptation datasets such104

as Image-R and Image-C. The proposed method105

consistently outperforms the baselines by a large106

margin.107

2 Related Work108

2.1 Low-Rank Adaptation Finetuning109

Low-Rank Adaptation(LoRA) (Hu et al., 2021) is110

a parameter-efficient fine-tuning method designed111

to adapt large models to new tasks, demonstrat-112

ing superior performance. LoRA+ (Hayou et al.,113

2024) improves performance and fine-tuning speed114

by setting different learning rates for the LoRA115

adapter matrices A and B with a carefully cho-116

sen ratio, maintaining the same computational cost117

as LoRA. Dora (Liu et al., 2024) decomposes the118

pre-trained weight into two components, magni-119

tude and direction, for fine-tuning, specifically em-120

ploying LoRA for directional updates to efficiently121

minimize the number of trainable parameters. Our122

work introduces a robust cascading learning sched-123

ule for various LoRA variants, proving through ex-124

tensive experiments that it can enhance the training125

performance of LoRA, LoRA+, and Dora without126

additional training costs.127

2.2 Combination of LoRA128

LoRAhub (Huang et al., 2023) presents a simple129

framework designed for the purposeful assembly130

of LoRA modules trained on diverse tasks, aim-131

ing to achieve adaptable performance on unseen 132

tasks. MOLE (Huang and Wei, 2024) treats each 133

layer of trained LoRAs as a distinct expert and 134

implements hierarchical weight control by integrat- 135

ing a learnable gating function within each layer. 136

LoRAFlow (Wang et al., 2024) utilizes dynamic 137

weights to adjust the impact of different LoRAs. 138

These methods are not in conflict with LoRASC, as 139

they focus on learning the combination of LoRA 140

experts across different domains, while our method 141

aims to learn more generalizable experts within a 142

single domain using slow cascade learning. 143

ReLoRA (Lialin et al., 2023) enhances LoRA’s fit- 144

ting ability by continuously merging online LoRA 145

into the main network and restarting optimizer pa- 146

rameters during training. It also proposes a jagged 147

cosine scheduler to implement a learning rate re- 148

sume strategy at each step. COLA (Xia et al., 2024) 149

explores a similar approach but in a simpler manner, 150

merely restarting optimizer parameters when ini- 151

tializing new LoRAs without adjusting the learning 152

rate schedule. Our work employs a simpler cas- 153

cading learning strategy where each expert learns 154

independently for each epoch, without additional 155

design for learning schedules or optimizer parame- 156

ters. Additionally, we incorporate noise tuning and 157

slow-fast update strategy, ensuring robustness in 158

each expert merged into the pre-trained model. Our 159

method can be applied to various LoRA variants, 160

demonstrating effectiveness across multiple tasks 161

in both language and image domains. 162

3 Methods 163

3.1 LoRA 164

Low-Rank Adaptation (LoRA) is a parameter- 165

efficient fine-tuning method designed to adapt large 166

pre-trained models to specific tasks with signifi- 167

cantly fewer trainable parameters. Instead of up- 168

dating all parameters of the model, LoRA inserts 169

low-rank matrices into each layer of the pre-trained 170

model, which are then fine-tuned. This reduces the 171

computational burden and the risk of overfitting. 172

Given a pre-trained weight matrix W0 ∈ Rd×k in 173

a neural network, LoRA approximates the update 174

∆W using two low-rank matrices A ∈ Rd×r and 175

B ∈ Rr×k, where r ≪ min(d, k). The update is 176

defined as: 177

∆W = BA (1) 178

During fine-tuning, instead of updating W , we up- 179

2



date A and B, which results in:180

W = W0 +∆W = W0 +BA (2)181

This low-rank adaptation significantly reduces the182

number of trainable parameters from d× k to r ×183

(d+ k).184

3.2 LoRASC185

3.2.1 Cascading LoRA Learning186

Due to the reparameterization nature of low-rank187

adaptation (LoRA) fine-tuning, employing multi-188

ple LoRA experts incurs the same inference cost189

as using a single LoRA expert. This character-190

istic makes LoRA particularly suitable for inte-191

gration with cascading learning to enhance perfor-192

mance in transfer learning tasks. As analyzed in193

ReLoRA (Lialin et al., 2023), reinitializing new194

LoRA modules during the learning schedule can195

progressively increase the model’s rank, thereby196

improving its fitting ability.197

In LoRASC, we default to learning one LoRA ex-198

pert per epoch. After training one LoRA expert,199

it is merged into the main network, and the next200

expert learns based on the optimized residuals. The201

optimization schedule for each single LoRA expert202

is a compressed version of the original full-training203

schedule: for instance, if a model was originally204

trained for N epochs, each expert in LoRASC com-205

pletes training in 1 epoch with fixed starting and206

ending learning rates with the same but compressed207

scheduler. This makes LoRASC easy to apply to208

any large model transfer learning scenario using209

LoRA, without requiring changes to hyperparame-210

ters. The only necessary adjustment is an increase211

in the learning rate. Since the number of training212

steps is compressed, each step must be larger to213

cover the same distance. Additionally, Li et al. (Li214

et al., 2019) found that higher learning rates can215

lead to stronger generalization ability, which might216

also explain the improved out-of-domain perfor-217

mance of our method.218

Mathematically, the cascading LoRA learning can219

be described as follows:220

1. For each epoch t, train a new LoRA expert221

(At, Bt) to minimize the residual error, where L is222

the fine-tuning loss function:223

(At, Bt) = arg min
At,Bt

L (Wt−1 +BtAt) , (3)224

2. Merge the trained LoRA expert into the main 225

network: 226

Wt = Wt−1 +BtAt (4) 227

By iteratively merging each new LoRA expert into 228

the main network, loRA cascading progressively 229

enhances the model’s capacity to fit the data with- 230

out increasing the inference cost. 231

3.2.2 LoRA Slow-Fast Update 232

To enhance the generalization of large model trans- 233

fer learning, we aim to avoid local optima at each 234

step of cascading. Even with low-rank adaptation, 235

this issue persists due to the imbalance between 236

model parameters and training data. Inspired by 237

SWA (Izmailov et al., 2018), which averages model 238

parameters over several epochs to find a more gen- 239

eralized solution, we employ a sliding average 240

method to ensure the stability and robustness of 241

each LoRA merged into the main network. 242

Specifically, during training, we maintain two 243

LoRA experts at each cascading step t as shown 244

in Fig. 1: a slow-updating LoRA (Aslow
t , Bslow

t ) 245

and a fast-updating LoRA (Afast
t , Bfast

t ). At step 246

0, both slow and fast LoRA share the same ini- 247

tialization. During each cascading iteration, fast 248

LoRA undergoes fine-tuning, and after completion, 249

it is averaged with slow LoRA. The slow LoRA 250

is then merged into the pre-trained model, while 251

the fast-updating LoRA is reinitialized for the next 252

iteration. We control the retention proportion of 253

the slow expert with a hyperparameter α. 254

The update rules are given by: 255

Aslow
t+1 = αAslow

t + (1− α)Afast
t (5) 256

257
Bslow

t+1 = αBslow
t + (1− α)Bfast

t (6) 258

By employing this slow-fast update strategy, 259

LoRASC ensures that each merged LoRA expert 260

contributes to a more generalized solution, enhanc- 261

ing the overall stability and performance of the 262

model in transfer learning scenarios. 263

3.2.3 Cascading Noisy Tuning 264

To further enhance generalization, we introduce 265

random noise to the pre-trained model before 266

each new LoRA fine-tuning step. Unlike Noisy- 267

Tune (Wu et al., 2022), which adds uniform noise 268

to different parameter matrices according to their 269

standard deviations only once at the beginning of 270

3



Finetune

Task Data

Slow LoRA
𝐵𝐵𝑡𝑡+1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 A𝑡𝑡+1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Random
Noise �𝑵𝑵𝒕𝒕

New Init Fast LoRA
𝐵𝐵𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 A𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
Finetuned Fast LoRA

𝐵𝐵𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 A𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Finetuned Fast LoRA
𝐵𝐵𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 A𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
Slow LoRA
𝐵𝐵𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 A𝑡𝑡

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝛼𝛼 (1 − 𝛼𝛼)
Slow LoRA
𝐵𝐵𝑡𝑡+1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 A𝑡𝑡+1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1. Fast LoRA Expert Training

2. Slow LoRA Expert Merging 3. Update Pretrained Model

Pretrained 
Model 𝑊𝑊𝑡𝑡

Pretrained 
Model 𝑊𝑊𝑡𝑡

Pretrained 
Model 𝑊𝑊𝑡𝑡+1

Figure 1: Iterative pipeline of LoRASC. Here, t represents the iteration step, and BA denotes the low-rank learnable
vectors in LoRA. The backbone network W always has its gradients turned off, and α is the hyperparameter
controlling the pace of the slow-fast update. Our method follows three stages: 1. Fast LoRA expert training, where
noise is added to the backbone network, followed by training the fast LoRA on the task data. 2. Slow LoRA expert
merging, where a portion of the learned fast LoRA is weighted and merged into the slow LoRA. 3. Update the
pretrained model, merging the updated slow LoRA into the backbone network, and prepare for the next iteration.

fine-tuning, we apply noise before training each271

new expert. This approach helps the model escape272

local optima at every slow LoRA step, thereby re-273

ducing the risk of overfitting.274

Additionally, the presence of the slow-updating275

LoRA module indicates the direction of parameter276

changes under the new task. Therefore, we use277

the standard deviation of the slow LoRA weights278

to determine the noise scale rather than the pre-279

trained model’s weights. Incorporating this noise280

before every expert ensures that the model continu-281

ously explores robust and flatten parameter spaces,282

thus improving generalization and reducing the ten-283

dency to overfit.284

The perturbation is defined as:285

Ñt = U

(
−λ

2
,
λ

2

)
· std(Bslow

t Aslow
t ) (7)286

where std stands for standard deviation. The func-287

tion U(a, b) represents uniform distribution noise288

ranged from a to b, and λ is a hyperparameter that289

controls the relative noise intensity.290

3.3 Overview291

With LoRA cascading learning, slow-fast updates292

and noisy tuning, the pipeline of our LoRASC is as293

follows:294

W̃t−1 = Wt−1 + Ñt (8)295

(Afast
t , Bfast

t ) = arg min
Afast

t ,Bfast
t

L
(
W̃t−1 +Bfast

t Afast
t

)
(9)296

Aslow
t = αAslow

t−1 + (1− α)Afast
t (10) 297

298
Bslow

t = αBslow
t−1 + (1− α)Bfast

t (11) 299
300

Wt = W̃t−1 +Bslow
t Aslow

t (12) 301

LoRASC pipeline can be seen in Fig. 1. Although 302

we use vanilla LoRA to show slow casdade learn- 303

ing, LoRASC should be able to boost the perfor- 304

mance of any LoRA variants, such as DoRA (Liu 305

et al., 2024), LoRA+ (Hayou et al., 2024), LoRA- 306

FA (Zhang et al., 2023), etc. Moreover, LoRASC 307

is easy to implement, and we provide pseudocode 308

with more detailed explanations in Algorithm 1. 309

4 Experiments 310

We conducted extensive experiments to demon- 311

strate the effectiveness and robustness of LoRASC 312

across both NLP and CV domains. 313

For language tasks, we conducted our language 314

experiments using the popular open-source large 315

language model, Llama21. We evaluated our ap- 316

proach on several NLU and GLU tasks, selecting 317

both SuperGLUE (Wang et al., 2019a) tasks (in- 318

cluding classification and multiple-choice ) and 319

generation tasks. We also tested the model’s per- 320

formance in mathematical reasoning using the 321

GSM8K dataset (Cobbe et al., 2021). Addition- 322

ally, we performed instruction tuning experiments 323

to verify the transfer learning capability of our 324

method, achieving significant improvements on key 325

metrics such as MMLU (Hendrycks et al., 2020), 326

1https://huggingface.co/meta-llama/
Llama-2-7b-hf

4

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf


Algorithm 1 Pseudo Code for LoRASC

Require: Pre-trained model weights W0, number
of epochs T , loss function L, slow update pa-
rameter α, noise parameter λ

1: Initialize W ←W0

2: Initialize Aslow, Bslow ▷ Initialize slow LoRA
matrices

3: Initialize Afast ← Aslow, Bfast ← Bslow ▷ Fast
LoRA matrices initialized from slow ones

4: for epoch t = 1 to T do
5: if t > 1 then
6: Reinitialize Afast, Bfast ▷ Reinitialize

fast LoRA matrices for subsequent epochs
7: end if
8: W̃ ←W + U

(
−λ

2 ,
λ
2

)
· std(BslowAslow)

9: optimizer ←
InitializeOptimizer(Afast, Bfast)

10: lr_scheduler ←
InitializeLRScheduler(optimizer)

11: for batch in training data do
12: Forward pass: L← L(W̃ +BfastAfast)
13: Backward pass: Compute gradients
14: optimizer.step()
15: lr_scheduler.step()
16: end for
17: Update slow LoRA:
18: Aslow ← αAslow + (1− α)Afast

19: Bslow ← αBslow + (1− α)Bfast

20: Merge slow LoRA into main network:
W ← W̃ +BslowAslow

21: end for
22: return W

DROP (Dua et al., 2019), BBH (Srivastava et al.,327

2022) and HumanEval (Chen et al., 2021).328

For visual tasks, we chose the CLIP ViT-bigG/142329

as our pretrained model, fine-tuning it on the330

ImageNet-1K (Deng et al., 2009) training set and331

testing it on the validation set. Subsequently, we332

evaluated the trained model on perturbed datasets333

such as ImageNet-A (Hendrycks et al., 2021b),334

ImageNet-C (Hendrycks and Dietterich, 2019),335

ImageNet-R (Hendrycks et al., 2021a), ImageNet-336

V2 (Recht et al., 2019), ImageNet-Sketch (Wang337

et al., 2019b) and Stylized-ImageNet (Geirhos338

et al., 2018) demonstrating our method’s robust-339

ness and generalization capabilities.340

2https://huggingface.co/laion/
CLIP-ViT-bigG-14-laion2B-39B-b160k

4.1 Implementation Details 341

For all experiments, we exclusively fine-tuned q 342

and v in attention layers as delineated by Malladi 343

et al. (2023) and Ren et al. (2024). The fine-tuning 344

process utilized single NVIDIA H100 GPU. For 345

all tasks, we explored several learning rates and 346

reported the optimal performance. For the hyper- 347

parameters of LoRASC, we explored the factor α 348

of Slow-Fast Update in {0.5, 0.6, 0.8} to control 349

the updating ratio. Additionally, we selected the 350

noise intensity from {0.1, 1, 10}, which is a sig- 351

nificantly smaller set compared to the default 7 in 352

NoistTune (Wu et al., 2022). All the results were 353

averaged across 3 distinct random seeds, and we 354

report the optimal performance. 355

4.2 Main Results 356

4.2.1 LoRASC for Large Language Model 357

Experiment setting. For in-domain language 358

transfer learning, we consider the SuperGLUE 359

dataset collection (Wang et al., 2019a), includ- 360

ing: BoolQ (Clark et al., 2019), CB (De Marn- 361

effe et al., 2019), COPA (Roemmele et al., 2011), 362

MultiRC (Khashabi et al., 2018), ReCoRD (Zhang 363

et al., 2018), RTE (Socher et al., 2013), 364

WiC (Pilehvar and Camacho-Collados, 2019), and 365

WSC (Levesque et al., 2012). We also include 366

SST-2 (Dagan et al., 2005) , GSM8K (Cobbe et al., 367

2021) and two question answering(QA) datasets, 368

SQuAD (Rajpurkar et al., 2016) and DROP (Dua 369

et al., 2019). And we directly used 8-shot direct 370

prompting or GSM8K evaluation3. We adhered to 371

the experimental configuration described by Mal- 372

ladi et al. (2023), randomly selecting 1000 exam- 373

ples for training, 500 for validation, and 1000 for 374

testing across each dataset. The AdamW optimizer 375

was employed, with training spanning 5 epochs, 376

consistent with the baseline settings. A linear learn- 377

ing rate schedule was implemented, with the ini- 378

tial learning rate selected from {1×10-5, 5×10-5, 379

1×10-4, 5×10-4, 1×10-3}. By default the batch size 380

was set to 4 and the LoRA rank was set to 8. For 381

LoRA+, we adhered to its setup by fixing the learn- 382

ing rate of B matrices to be 16 times that of A matri- 383

ces. DoRA decomposes the pre-trained weight into 384

magnitude and direction components, with LoRA 385

efficiently updating the direction component. This 386

means that each LoRA expert represents DoRA’s 387

direction component. When applying LoRASC to 388

DoRA, we maintain continuous training of the mag- 389

3https://github.com/allenai/open-instruct

5

https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
https://github.com/allenai/open-instruct


Task SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP GSM8K
Task type —————- classification —————- – multiple choice – – generation – - math -

LoRA 95.5 87.4 91.1 85.7 70.2 72.4 85.3 85.0 81.2 90.4 51.6 19.5
w/ COLA 95.9 87.7 91.1 85.7 66.4 72.6 85.3 82.0 81.4 90.6 51.6 21.0
w/ LoRASC

+ Cascade 95.8 87.7 92.9 86.1 71.1 72.3 86.3 88.0 81.6 91.8 52.5 21.5
++ Slow LoRA 96.0 88.0 96.4 86.8 74.0 72.1 86.3 88.0 82.1 92.7 55.3 27.5
+++ Noise Tuning 96.1 88.1 96.5 87.4 75.0 72.7 86.6 88.0 82.2 92.9 56.7 27.5

LoRA+ 95.7 87.0 91.4 85.9 69.2 72.1 85.7 87.0 81.3 90.5 55.8 22.0
w/ LoRASC

+ Cascade 95.7 87.0 92.9 86.2 71.2 72.8 85.3 88.0 81.9 91.2 55.8 19.5
++ Slow LoRA 95.7 88.1 92.9 85.9 67.3 73.5 85.7 88.0 81.9 92.0 56.3 23.0
+++ Noise Tuning 95.8 88.1 92.9 86.3 71.4 74.1 86.1 88.0 81.9 92.0 56.4 24.0

DoRA 95.4 87.4 96.4 85.7 72.1 71.5 84.7 88.0 81.1 91.1 54.8 21.0
w/ LoRASC

+ Cascade 95.8 87.4 96.4 85.8 65.4 72.8 84.1 88.0 81.6 91.7 52.6 22.5
++ Slow LoRA 95.8 88.1 96.4 85.8 65.4 72.8 86.1 88.0 81.9 92.8 54.8 25.0
+++ Noise Tuning 96.0 88.5 96.5 87.6 75.6 72.8 86.8 89.0 82.2 93.3 56.5 25.5

Table 1: Comparative Performance of LoRA, LoRA+, and DoRA enhanced with LoRASC across multiple in-domain
fine-tuning datasets.

Method MMLU DROP HEval BBH GSM8K

LoRA 45.83 32.76 31.26 13.41 11.5
w/ LoRASC

+ Cascade 45.53 32.71 31.61 14.02 11.5
++ Slow LoRA 45.68 33.74 31.38 17.07 12.5
+++ Noise 45.98 33.02 31.61 15.24 16.5

Table 2: Results on instruction-following tasks. The model was trained on Alpaca and evaluated on InstructEval
metrics and GSM8K. LoRASC consistently achieves the best performance compare to vanilla LoRA.

nitude while applying our technique to the direction390

component. We follow the standard procedure of391

merging and reinitializing LoRA and align it with392

the slow-fast update and noisy tuning.393

For instruction tuning, we use the Alpaca4 (Taori394

et al., 2023) dataset for training. The batch size was395

set to 128. We follow the training scripts of Ren396

et al. (2024) in our experiment. We finetune our397

model for 3 epochs. A linear learning rate schedule398

was applied, with the initial learning rate selected399

from {1×10-4, 3×10-4, 5×10-4, 1×10-3}. For evalua-400

tion we use InstructEval5 (Chia et al., 2023), 5-shot401

direct prompting for MMLU , 3-shot direct prompt-402

ing for BBH and DROP, 0-shot direct prompting403

for HEval.404

LoRASC exhibits excellent adaptability to LoRA405

variants. In the experiments shown in Table 1,406

LoRASC outperforms the COLA across various407

4https://github.com/tatsu-lab/stanford_
alpaca/

5https://github.com/declare-lab/instruct-eval

tasks, demonstrating the effectiveness of our LoRA 408

cascading technique. Moreover, LoRASC effec- 409

tively boosted the performance of LoRA, LoRA+, 410

and DoRA across 12 in-domain training datasets en- 411

compassing four major tasks: classification, multi- 412

ple choice, generation, and mathematics. LoRASC 413

achieved significant improvements across all these 414

tasks, demonstrating its ability to enhance the learn- 415

ing capabilities and in-domain generalization of the 416

LoRA family of models. Moreover, the progressive 417

addition of cascading learning, slow-fast updates, 418

and noisy tuning further improved performance, 419

validating the design of our approach. The robust 420

slow cascading strategy not only enhanced overall 421

performance but also provided strong generaliza- 422

tion capabilities. 423

LoRASC on Instruction-Following tasks. Ta- 424

ble 2 presents the performance of our proposed 425

method, LoRASC, applied to LoRA across sev- 426

eral instruction-following tasks. These instruction- 427

following tasks are particularly challenging due 428

6

https://github.com/tatsu-lab/stanford_alpaca/
https://github.com/tatsu-lab/stanford_alpaca/
https://github.com/declare-lab/instruct-eval


Figure 2: Performance of LoRASC compared to LoRA and COLA across various ranks and learning schedules in
a subset of text transfer learning tasks. It can be observed that LoRASC consistently achieves stable performance
improvements across all ranks and learning schedules, particularly at higher ranks and longer epochs, where
LoRASC can mitigate performance degradation caused by overfitting.

to the weak correlation between the training data429

and the benchmarks, making them entirely out-of-430

domain tests. Despite this difficulty, our method431

achieved notable improvements across various eval-432

uation metrics used in InstructEval and GSM8K.433

Furthermore, the design of slow-fast updates and434

noisy tuning still steadily enhanced the perfor-435

mance of cascading learning, further validating the436

effectiveness of our approach and motivation.437

4.2.2 LoRASC for CLIP ViT-bigG438

Experiment setting. For the ImageNet-1K vi-439

sual classification task, to validate the transfer per-440

formance of our method on larger vision models,441

we selected CLIP ViT-bigG/14 as our pre-training442

backbone.We utilized the AdamW optimizer and a443

cosine scheduler, training for a total of 10 epochs444

on the ImageNet-1K training set. The batch size445

was fixed at 64, and the learning rate was chosen446

from {1×10-4, 5×10-4, 1×10-3}. For evaluation, we447

first test our model on the ImageNet-1K valida-448

tion set using top-1 accuracy. To demonstrate the449

improvement in our method’s transferability and ro-450

bustness, we conducted further tests on robustness 451

benchmarks from Mao et al. (2022) for transfer 452

learning tasks. 453

Evaluation of LoRASC on ImageNet and Ro- 454

bustness Benchmarks. Table 3 showcases the 455

performance of our proposed method, LoRASC, ap- 456

plied to LoRA on ImageNet-1K and several robust- 457

ness benchmarks, including IN-V2, IN-C, IN-R, 458

IN-A, IN-SK, and IN-ST. These benchmarks test 459

the model’s robustness and generalization ability 460

beyond the standard ImageNet dataset. Our method 461

demonstrates consistent improvements in top-1 ac- 462

curacy across all evaluated benchmarks. LoRASC 463

consistently enhances the robustness and general- 464

ization of the ViT-bigG model across these chal- 465

lenging benchmarks, validating the effectiveness 466

of cascading learning, slow-fast updates, and noisy 467

tuning in improving model performance in diverse 468

and robust scenarios. 469

7



Method ImageNet IN-V2 IN-C IN-R IN-A IN-SK IN-ST

LoRA 87.1 77.7 66.2 87.1 72.6 64.9 24.1
w/ LoRASC

+ Cascade 87.1 77.5 66.7 88.5 73.6 65.4 24.3
++ Slow LoRA 87.7 78.3 66.8 88.1 73.4 65.2 24.1
+++ Noise Tuning 87.8 78.4 66.8 88.7 73.4 65.5 24.4

Table 3: Top-1 accuracy of various methods on ImageNet-1K and 6 robustness benchmarks. The table compares
the baseline LoRA with our three proposed techniques. Our approach demonstrates improved robustness on the
ViT-bigG model across all the evaluated benchmarks.

Experts RTE DROP WIC BoolQ ReCoRD SST-2 SQuAD

2 87.0 53.8 72.4 85.3 81.3 95.5 92.0
5 88.1 56.7 72.6 87.4 82.2 96.1 92.9

25 86.7 51.2 70.5 83.5 81.4 95.5 92.2
125 83.8 50.2 70.5 84.5 81.2 95.1 90.7
1250 83.8 49.4 69.4 85.3 81.1 92.9 88.1

Table 4: Evaluation with varing expert number of LoRASC. The highest average performance for each task is
highlighted in bold.

4.3 Ablation Study and Analysis470

Larger Ranks and Longer Epochs. As shown471

in Fig. 2, LoRASC consistently achieves more472

stable performance on datasets such as SQuAD,473

DROP, and GSM8K compared to both LoRA and474

COLA, which also employs a cascading strategy.475

This validates our motivation: LoRASC is a training476

strategy that retains LoRA’s beneficial properties477

while seamlessly enhancing its fitting ability and478

robust generalization.479

Ablation for LoRASC Expert Cascade Fre-480

quency. LoRASC defaults to updating once per481

epoch, as each expert completes training on the482

entire dataset within one epoch. In Table 4, we483

experimented with different update frequencies. In484

this setting, we trained for a total of 5 epochs, with485

each epoch consisting of 250 iterations, resulting486

in a total training period of 1250 iterations. The487

table shows that having 5 experts, corresponding488

to one new expert per epoch, yields the optimal489

performance. Interestingly, we observe that even490

with 1250 experts, where a new expert is initial-491

ized every iteration, the model still achieves highly492

competitive performance. In this extreme case, fol-493

lowing Algorithm 1, the model cannot iterate the494

learning rate as each backpropagation step is im-495

mediately followed by the initialization of a new496

expert. We speculate that the strong generaliza-497

tion capability of slow cascading compensates for498

the weak fitting ability in this scenario. With 2499

experts(one expert every 2.5 epochs), which aligns500

with COLA’s default setting for this scenario, the 501

performance is lower than LoRASC’s default of one 502

expert per epoch. This may be due to the model 503

being more prone to local optima after 2.5 epochs, 504

which negatively impacts the effectiveness of slow 505

cascading. 506

5 Conclusion 507

In this paper, we address the limitations of fine- 508

tuning large pre-trained models, particularly the is- 509

sue of overfitting and the high computational costs 510

associated with transferring these models to niche 511

tasks. We introduce a novel technique, LoRASC, 512

which enhances the Low-Rank Adaptation (LoRA) 513

approach by integrating cascading learning, slow- 514

fast updates, and noisy tuning. Our method aims to 515

improve the fitting capability and generalization of 516

LoRA models without incurring additional compu- 517

tational costs. 518

We provide a detailed analysis of LoRASC and 519

demonstrate its effectiveness through extensive ex- 520

periments in both the natural language processing 521

(NLP) and computer vision (CV) domains. Our 522

method consistently outperforms baseline LoRA 523

models and their variants (LoRA+, Dora) across 524

multiple datasets and tasks, including SuperGLUE, 525

SQuAD, DROP, GSM8K, and various instruction- 526

following benchmarks. Additionally, our method 527

enhances the robustness and transferability of vi- 528

sion models on ImageNet and several robustness 529

benchmarks. 530

8



Limitations531

While LoRASC attempts to find a better balance532

between model convergence and generalization,533

it does not fundamentally resolve the issue. Our534

proposed mechanisms of slow-fast updating and535

noisy tuning can enhance model generalization and536

prevent overfitting; however, if the magnitude of537

these adjustments is too large, it may still lead538

to difficulties in model convergence. Therefore,539

it is necessary to adjust the α parameter in the540

slow-fast merging process and λ in the intensity of541

noise added to each expert according to the specific542

task. In our experiments, only a few candidate ad-543

justments were needed to significantly outperform544

vanilla LoRA, yet this still incurs additional costs.545

Adaptive adjustment of these parameters according546

to the task is a direction for future work that we547

intend to explore.548

Additionally, while this study only explores LoRA549

cascading learning for single training tasks and550

finds it to effectively enhance model performance,551

in practice, we could combine LoRA experts from552

multiple domains, similar to the MoLE (Huang553

and Wei, 2024) approach, to further improve model554

capabilities. In such cases, how to better perform555

slow cascading would be an interesting issue to556

address.557

References558

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,559
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri560
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,561
et al. 2021. Evaluating large language models trained562
on code. arXiv preprint arXiv:2107.03374.563

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-564
janya Poria. 2023. Instructeval: Towards holistic evalu-565
ation of instruction-tuned large language models. arXiv566
preprint arXiv:2306.04757.567

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom568
Kwiatkowski, Michael Collins, and Kristina Toutanova.569
2019. BoolQ: Exploring the surprising difficulty of570
natural yes/no questions. In Proceedings of the 2019571
Conference of the North American Chapter of the As-572
sociation for Computational Linguistics: Human Lan-573
guage Technologies, Volume 1 (Long and Short Papers),574
pages 2924–2936.575

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,576
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-577
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.578
2021. Training verifiers to solve math word problems.579
arXiv preprint arXiv:2110.14168.580

Ido Dagan, Oren Glickman, and Bernardo Magnini.581

2005. The pascal recognising textual entailment chal- 582
lenge. In Machine learning challenges workshop, pages 583
177–190. Springer. 584

Marie-Catherine De Marneffe, Mandy Simons, and Ju- 585
dith Tonhauser. 2019. The commitmentbank: Investi- 586
gating projection in naturally occurring discourse. In 587
proceedings of Sinn und Bedeutung, volume 23, pages 588
107–124. 589

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai 590
Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hi- 591
erarchical image database. In 2009 IEEE conference 592
on computer vision and pattern recognition, pages 248– 593
255. Ieee. 594

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel 595
Stanovsky, Sameer Singh, and Matt Gardner. 2019. 596
DROP: A reading comprehension benchmark requir- 597
ing discrete reasoning over paragraphs. In Proceedings 598
of the 2019 Conference of the North American Chapter 599
of the Association for Computational Linguistics: Hu- 600
man Language Technologies, Volume 1 (Long and Short 601
Papers), pages 2368–2378. 602

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, 603
Matthias Bethge, Felix A Wichmann, and Wieland Bren- 604
del. 2018. Imagenet-trained cnns are biased towards 605
texture; increasing shape bias improves accuracy and 606
robustness. arXiv preprint arXiv:1811.12231. 607

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024. 608
Lora+: Efficient low rank adaptation of large models. 609
arXiv preprint arXiv:2402.12354. 610

Dan Hendrycks, Steven Basart, Norman Mu, Saurav 611
Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, 612
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. 2021a. 613
The many faces of robustness: A critical analysis of 614
out-of-distribution generalization. In Proceedings of the 615
IEEE/CVF international conference on computer vision, 616
pages 8340–8349. 617

Dan Hendrycks, Collin Burns, Steven Basart, Andy 618
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 619
hardt. 2020. Measuring massive multitask language 620
understanding. arXiv preprint arXiv:2009.03300. 621

Dan Hendrycks and Thomas Dietterich. 2019. Bench- 622
marking neural network robustness to common 623
corruptions and perturbations. arXiv preprint 624
arXiv:1903.12261. 625

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein- 626
hardt, and Dawn Song. 2021b. Natural adversarial ex- 627
amples. In Proceedings of the IEEE/CVF conference on 628
computer vision and pattern recognition, pages 15262– 629
15271. 630

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Flat 631
minima. Neural computation, 9(1):1–42. 632

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 633
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 634
Weizhu Chen. 2021. Lora: Low-rank adaptation of large 635
language models. arXiv preprint arXiv:2106.09685. 636

9



Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu637
Pang, Chao Du, and Min Lin. 2023. Lorahub: Efficient638
cross-task generalization via dynamic lora composition.639
Preprint, arXiv:2307.13269.640

Shaohan Huang and Furu Wei. 2024. Mixture of lora641
experts. In ICLR 2024.642

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,643
Dmitry Vetrov, and Andrew Gordon Wilson. 2018. Av-644
eraging weights leads to wider optima and better gener-645
alization. In 34th Conference on Uncertainty in Artifi-646
cial Intelligence 2018, UAI 2018, 34th Conference on647
Uncertainty in Artificial Intelligence 2018, UAI 2018,648
pages 876–885. Association For Uncertainty in Arti-649
ficial Intelligence (AUAI). Publisher Copyright: ©650
34th Conference on Uncertainty in Artificial Intelli-651
gence 2018. All rights reserved.; 34th Conference on652
Uncertainty in Artificial Intelligence 2018, UAI 2018 ;653
Conference date: 06-08-2018 Through 10-08-2018.654

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-655
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.656
2016. On large-batch training for deep learning: Gen-657
eralization gap and sharp minima. arXiv preprint658
arXiv:1609.04836.659

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,660
Shyam Upadhyay, and Dan Roth. 2018. Looking be-661
yond the surface: A challenge set for reading compre-662
hension over multiple sentences. In Proceedings of663
the 2018 Conference of the North American Chapter of664
the Association for Computational Linguistics: Human665
Language Technologies, Volume 1 (Long Papers), pages666
252–262.667

Hector Levesque, Ernest Davis, and Leora Morgenstern.668
2012. The winograd schema challenge. In Thirteenth669
international conference on the principles of knowledge670
representation and reasoning.671

Yuanzhi Li, Colin Wei, and Tengyu Ma. 2019. Towards672
explaining the regularization effect of initial large learn-673
ing rate in training neural networks. Advances in neural674
information processing systems, 32.675

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-676
atira, and Anna Rumshisky. 2023. Stack more layers677
differently: High-rank training through low-rank up-678
dates. arXiv preprint arXiv:2307.05695.679

Yang Lin, Xinyu Ma, Xu Chu, Yujie Jin, Zhibang Yang,680
Yasha Wang, and Hong Mei. 2024. Lora dropout as681
a sparsity regularizer for overfitting control. arXiv682
preprint arXiv:2404.09610.683

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo684
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting685
Cheng, and Min-Hung Chen. 2024. Dora: Weight-686
decomposed low-rank adaptation. arXiv preprint687
arXiv:2402.09353.688

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex689
Damian, Jason D Lee, Danqi Chen, and Sanjeev Arora.690
2023. Fine-tuning language models with just forward691
passes. Advances in Neural Information Processing692
Systems, 36:53038–53075.693

Xiaofeng Mao, Yuefeng Chen, Xiaodan Li, Gege 694
Qi, Ranjie Duan, Rong Zhang, and Hui Xue. 2022. 695
Easyrobust: A comprehensive and easy-to-use toolkit 696
for robust computer vision. https://github.com/ 697
alibaba/easyrobust. 698

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang, 699
Shaoxiang Wu, Xiaochen Wang, Peiyi Wang, Qingxiu 700
Dong, Liang Chen, and Zhifang Sui. 2024. Periodiclora: 701
Breaking the low-rank bottleneck in lora optimization. 702
arXiv preprint arXiv:2402.16141. 703

Mohammad Taher Pilehvar and Jose Camacho-Collados. 704
2019. WiC: the word-in-context dataset for evaluating 705
context-sensitive meaning representations. In Proceed- 706
ings of the 2019 Conference of the North American 707
Chapter of the Association for Computational Linguis- 708
tics: Human Language Technologies, Volume 1 (Long 709
and Short Papers), pages 1267–1273. 710

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and 711
Percy Liang. 2016. SQuAD: 100,000+ questions for 712
machine comprehension of text. In Proceedings of the 713
2016 Conference on Empirical Methods in Natural Lan- 714
guage Processing, pages 2383–2392. 715

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, 716
and Vaishaal Shankar. 2019. Do imagenet classifiers 717
generalize to imagenet? In International conference on 718
machine learning, pages 5389–5400. PMLR. 719

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi 720
Zhang, Zhaochun Ren, Maarten de Rijke, Zhumin 721
Chen, and Jiahuan Pei. 2024. Mini-ensemble low- 722
rank adapters for parameter-efficient fine-tuning. arXiv 723
preprint arXiv:2402.17263. 724

Melissa Roemmele, Cosmin Adrian Bejan, and An- 725
drew S Gordon. 2011. Choice of plausible alternatives: 726
An evaluation of commonsense causal reasoning. 727

Richard Socher, Alex Perelygin, Jean Wu, Jason 728
Chuang, Christopher D Manning, Andrew Y Ng, and 729
Christopher Potts. 2013. Recursive deep models for se- 730
mantic compositionality over a sentiment treebank. In 731
Proceedings of the 2013 conference on empirical meth- 732
ods in natural language processing, pages 1631–1642. 733

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 734
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 735
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià 736
Garriga-Alonso, et al. 2022. Beyond the imitation game: 737
Quantifying and extrapolating the capabilities of lan- 738
guage models. arXiv preprint arXiv:2206.04615. 739

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 740
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and 741
Tatsunori B. Hashimoto. 2023. Stanford alpaca: An 742
instruction-following llama model. https://github. 743
com/tatsu-lab/stanford_alpaca. 744

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 745
preet Singh, Julian Michael, Felix Hill, Omer Levy, 746
and Samuel Bowman. 2019a. Superglue: A stickier 747
benchmark for general-purpose language understanding 748
systems. In Advances in neural information processing 749
systems, volume 32. 750

10

https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269
https://arxiv.org/abs/2307.13269
https://www.microsoft.com/en-us/research/publication/mixture-of-lora-experts/
https://www.microsoft.com/en-us/research/publication/mixture-of-lora-experts/
https://www.microsoft.com/en-us/research/publication/mixture-of-lora-experts/
https://github.com/alibaba/easyrobust
https://github.com/alibaba/easyrobust
https://github.com/alibaba/easyrobust
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Hanqing Wang, Bowen Ping, Shuo Wang, Xu Han, Yun751
Chen, Zhiyuan Liu, and Maosong Sun. 2024. Lora-752
flow: Dynamic lora fusion for large language models in753
generative tasks. arXiv preprint arXiv:2402.11455.754

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P755
Xing. 2019b. Learning robust global representations by756
penalizing local predictive power. Advances in Neural757
Information Processing Systems, 32.758

Xi Wang, Laurence Aitchison, and Maja Rudolph. 2023.759
Lora ensembles for large language model fine-tuning.760
arXiv preprint arXiv:2310.00035.761

Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang,762
and Xing Xie. 2022. Noisytune: A little noise can help763
you finetune pretrained language models better. arXiv764
preprint arXiv:2202.12024.765

Wenhan Xia, Chengwei Qin, and Elad Hazan. 2024.766
Chain of lora: Efficient fine-tuning of language models767
via residual learning. arXiv preprint arXiv:2401.04151.768

Zeke Xie, Issei Sato, and Masashi Sugiyama. 2020. A769
diffusion theory for deep learning dynamics: Stochastic770
gradient descent exponentially favors flat minima. arXiv771
preprint arXiv:2002.03495.772

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen773
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient low-774
rank adaptation for large language models fine-tuning.775
arXiv preprint arXiv:2308.03303.776

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng777
Gao, Kevin Duh, and Benjamin Van Durme. 2018.778
Record: Bridging the gap between human and machine779
commonsense reading comprehension. arXiv preprint780
arXiv:1810.12885.781

11


	Introduction
	Related Work
	Low-Rank Adaptation Finetuning
	Combination of LoRA

	Methods
	LoRA
	LoRASC
	Cascading LoRA Learning
	LoRA Slow-Fast Update
	Cascading Noisy Tuning

	Overview

	Experiments
	Implementation Details
	Main Results
	LoRASC for Large Language Model
	LoRASC for CLIP ViT-bigG

	Ablation Study and Analysis

	Conclusion

