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Abstract

This paper surveys and organizes research001
works on medical dialog systems, which is002
an important yet challenging task. Although003
these systems have been surveyed in the med-004
ical community from an application perspec-005
tive, a systematic review from a rigorous tech-006
nical perspective has to date remained notice-007
ably absent. As a result, an overview of the008
categories, methods, and evaluation of medical009
dialogue systems remain limited and underspec-010
ified, hindering the further improvement of this011
area. To fill this gap, we investigate an initial012
pool of 325 papers from well-known computer013
science, and natural language processing con-014
ferences and journals, and make an overview.015
Recently, large language models have shown016
strong model capacity on downstream tasks,017
which also reshaped medical dialog systems’018
foundation. Despite the alluring practical appli-019
cation value, current medical dialogue systems020
still suffer from problems. To this end, this pa-021
per lists the grand challenges of medical dialog022
systems, especially of large language models.023

1 Introduction024

Dialogue systems for the medical domain, which025

are designed to converse with patients to obtain026

additional symptoms, make a diagnosis and recom-027

mend a treatment plan automatically (Tang et al.,028

2016; Wei et al., 2018; Liao et al., 2020; Zhong029

et al., 2022). Medical dialogue systems have sig-030

nificant potential to simplify the diagnostic proce-031

dure and reduce the cost of collecting information032

from patients, thus containing alluring application033

value and attracting academic and industrial atten-034

tion (Wang et al., 2023a; Chen et al., 2023d).035

Existing medical dialogue systems have played036

an important role in diagnosis (Liao et al., 2020;037

Lin et al., 2019), monitoring (Lee et al., 2019; Ma-038

harjan et al., 2019), intervention (Javed et al., 2018),039

counselling (Lee et al., 2017), education (Ali et al.,040

2021), and etc. To meet these real meets, re- 041

trieval (Tao et al., 2021; Zhu et al., 2022), gen- 042

eration (Zhong et al., 2022; Liu et al., 2022b; Du 043

et al., 2019), and hybrid (Li et al., 2018; Yang 044

et al., 2021) methods are applied for building med- 045

ical dialogue systems. Specifically, retrieval-based 046

methods select appropriate responses from a pre- 047

built index, generation-based methods respond in 048

a generative manner, and hybrid methods combine 049

both approaches, using retrieval for efficiency and 050

generative methods for flexibility. 051

Recently, the revolutionary progress in large 052

language models (LLM) (Zeng et al., 2022a; Ope- 053

nAI, 2023; Touvron et al., 2023; Bao et al., 2023) 054

has catalyzed substantial technological transfor- 055

mations in dialogue systems. LLMs are sophis- 056

ticated neural network-based systems that have 057

been trained on vast amounts of text data, enabling 058

them to generate human-like responses and achieve 059

remarkable accuracy, thus reshaping medical dia- 060

logue systems’ foundation. 061

Despite the potential performance in the med- 062

ical question-answering, there remains a transla- 063

tional gap (Newman-Griffis et al., 2021)1 between 064

cutting-edge techniques and realistic requirements 065

in various medical scenarios. For example, in Fig- 066

ure 2, LLMs operate in a question-and-answering 067

manner, instead of diagnosing like doctors, which 068

may lead to patients being unable to obtain precise 069

diagnostic results and effective treatment strategies. 070

To move towards closing this gap, this work (a) 071

summarizes the system categories, methods, and 072

evaluation of medical dialogue systems, (b) ana- 073

lyzes the current issues and challenges of medical 074

dialogue systems, then (c) attempts to provide po- 075

tential solutions to facilitate further development. 076

1Translational NLP research is focused on identifying the
factors that contribute to the success or failure of translations
and on creating versatile and adaptable methodologies that can
bridge the gap between theoretical NLP advancements and
their practical implementation in various real-world scenarios.
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System Categories (§2)

Functions

Diagnosis KS-DS (Xu et al., 2019), KNSE (Chen et al., 2023c), DISC-MedLLM (Bao et al., 2023), BenTsao (Wang et al., 2023a)

Intervention TRIK (Ljunglöf et al., 2009), Lekbot (Ljunglöf et al., 2011), ASD (Ali et al., 2020; Di Nuovo et al., 2020)

Monitoring Hear me out (Maharjan et al., 2019), Dr. Youth (Lee et al., 2019), I hear you I feel you (Lee et al., 2020)

Counselling Psychiatric Counseling (Oh et al., 2017), Robo (Moghadasi et al., 2020), Woebot (De Nieva et al., 2020)

Education VirtualPatient (Campillos-Llanos et al., 2020), SOPHIE (Ali et al., 2021)

Multi-objective Robo (Moghadasi et al., 2020), Woebot (De Nieva et al., 2020), Therapy Chatbot (Sharma et al., 2018)

Types

Task-oriented Dialogue TeenChat (Huang et al., 2015a), DQN-Agent (Liu et al., 2018), KS-DS (Xu et al., 2019), HRL (Liao et al., 2020)

Dialogue Recommendation CF (Huang et al., 2012), SPA-ACA (Hoens et al., 2013), fb-kNN (Bhatti et al., 2019), DP-CRNN (Zhou et al., 2020b)

ChitChat Dialogue EmotionalChat (Huber et al., 2018; Lan et al., 2021; Chen and Liang, 2022; Zhang et al., 2023e; Zhao et al., 2023)

Question-and-answering MEANS (Abacha and Zweigenbaum, 2015), BenTsao (Wang et al., 2023a), DISC-MedLLM (Bao et al., 2023)

Mixed-type Dialogue InsMed (Shi et al., 2023)

Methods before LLM (§3)

Retrieval
Literature Retrieval SemBioNLQA (Sarrouti and El Alaoui, 2020), BioMedBERT (Chakraborty et al., 2020), MedCPT (Jin et al., 2023)

Dialogue Retrieval SHIHbot (Brixey et al., 2017), Healthcare Bot (Athota et al., 2020)

Generation

Pipeline

Natural Language
Understanding

Token-level: ULisboa (Leal et al., 2015), BERT (Miftahutdinov and Tutubalina, 2019),
MTAAL (Zhou et al., 2021a), generate-and-rank (Xu et al., 2020)

Utterance-level:
BiGRU (Li et al., 2019), MSL (Shi et al., 2021), MedDG (Liu et al., 2022b)

Dialog-level: SAT (Du et al., 2019), MIE (Zhang et al., 2020a),
CMUI (Dai et al., 2022), CSDM (Zeng et al., 2022b)

Dialogue Management DQN Agent (Wei et al., 2018), KR-DQN (Xu et al., 2019),
DSMD (Liu et al., 2022a), HRL (Zhong et al., 2022)

Natural Language
Generation VRBot (Li et al., 2021),GEML (Lin et al., 2021),KnowInject (Naseem et al., 2022)

End-to-end MedDialog (Zeng et al., 2020a), VA (Saha et al., 2021), CovidDialog (Zhou et al., 2021c), MedPIR (Zhao et al., 2022a)

Hybrid HRGR-Agent (Li et al., 2018), MedWriter (Yang et al., 2021), BIOREADER (Frisoni et al., 2022), PMC-Patients (Zhao et al., 2022b)

LLM-based Methods (§4)

Prompting LLMs DeID-GPT (Liu et al., 2023c), ChatCAD (Wang et al., 2023d), Dr. Knows (Gao et al., 2023), MedPrompt (Nori et al., 2023),
MedPaLM (Singhal et al., 2023a), MedPaLM2 (Singhal et al., 2023b), MedAgent (Tang et al., 2023b)

Fine-tuning LLMs
PULSE (Zhang et al., 2023d), BenTsao (Wang et al., 2023a), HuatuoGPT (Zhang et al., 2023a), ChatDoctor (Li et al., 2023b),
DoctorGLM (Xiong et al., 2023), Zhongjing (Yang et al., 2023), Qilin-med (Ye et al., 2023b), AMIE (Tu et al., 2024),
MEDITRON (Chen et al., 2023e), Radiology-LLaMA2 (Liu et al., 2023b), Clinical Camel (Toma et al., 2023), XrayGLM (Wang et al., 2023c)

Evaluation (§5)

Evaluation Metrics
Retrieval: Mean Average Precision (Luo et al., 2022), etc.
Pipeline: Precision, Recall, F1, Accuracy, etc. (Qin et al., 2023)
End-to-end Generation: BLUE (Papineni et al., 2002), ROUGE (Lin, 2004), Distinct (Li et al., 2015), human evaluation (Shi et al., 2023), etc.

Datasets

Retrieval: BioASQ (Luo et al., 2022)
Pipeline: CMDD (Lin et al., 2019), MIE (Zhang et al., 2020a), MedDG (Liu et al., 2022b), IMCS-21 (Chen et al., 2022),

MZ (Wei et al., 2018), DX (Xu et al., 2019)
End-to-end Generation: MedDialog (Zeng et al., 2020b), MedDG (Liu et al., 2022b), MidMed (Shi et al., 2023),

CovidDialog (Yang et al., 2020), Ext-CovidDialog (Varshney et al., 2023)

Grand Challenges (§6)

Challenges Inherited from General Domain Hallucination (Huang et al., 2023a), Numberical Data (Akhtar et al., 2023), Adversarial Attack (Shayegani et al., 2023)

Medical-specific Challenges Medical Specialization (Gao et al., 2023), Medical Evaluation (Cai et al., 2023),
Multi-modal Dialogue (Wang et al., 2023d), Multi-disciplinary Treatment (Tang et al., 2023b)

Figure 1: The main content flow and categorization of this survey.

In the existing literature, medical dialogue sys-077

tems have been discussed and surveyed (Laranjo078

et al., 2018; Vaidyam et al., 2019; Kearns et al.,079

2019; Valizadeh and Parde, 2022; He et al., 2023;080

Hadi et al., 2023). This survey differs from these081

surveys in two aspects. First, our survey is a sys-082

tematic review from a rigorous technical perspec-083

tive, summarizing methods before LLM, and LLM-084

based methods. Second, this survey highlights the085

grand challenges of current medical dialogue sys-086

tems, including medical specialization (Gao et al.,087

2023) and multi-disciplinary treatment (Tang et al.,088

2023b), which may inspire further research.089

This survey is organized as follows: Section 2090

introduces the system categories of medical dia-091

logue systems, followed by the methods before092

LLM, LLM-based methods, and evaluation of med-093

ical dialogue systems in Section 3, Section 4, and094

Section 5, respectively. Finally, we summarize the 095

major challenges and possible solutions for further 096

work in Section 6. 097

The contributions of this paper are as follows: 098

• First survey: To our knowledge, we are the 099

first to present a comprehensive survey for 100

medical dialogue systems from a technical 101

perspective, summarizing categories, methods 102

before LLM, and LLM-based methods. 103

• New frontiers: We discuss frontiers and sum- 104

marize common and medical-specific chal- 105

lenges, which shed light on further research; 106

• Abundant resources: We make the first at- 107

tempt to organize medical dialogue resources 108

including open-source implementations, cor- 109

pora, and paper lists, which may help new 110

researchers quickly adapt to this field. 111

2



2 System Categories112

This section briefly summarizes the functions and113

techniques of current medical dialogue systems.114

Specifically, the functions can be divided into five115

categories according to the dominant subjects, in-116

cluding doctors (diagnosis, intervention), patients117

(monitoring, counseling), and medical students118

(medical education).119

2.1 Functions of Systems120

It is essential to figure out the different functions121

of medical dialogues in our daily life. As shown in122

Figure 1, there are eight main system objectives:123

Diagnosis systems (Xu et al., 2019; Chen et al.,124

2023c; Bao et al., 2023; Wang et al., 2023a) are de-125

signed to first collect the patient’s medical history,126

symptoms, signs, and then predict health condition;127

Intervention systems (Ljunglöf et al., 2009, 2011;128

Ali et al., 2020; Di Nuovo et al., 2020) are designed129

to provide comprehensive approaches and strate-130

gies to prevent diseases, cure or reduce the severity131

or duration of diseases;132

Monitoring systems (Maharjan et al., 2019; Lee133

et al., 2019, 2020) are designed to continuously134

track, record, and analyze vital signs and other135

health-related data of patients;136

Counseling systems (Oh et al., 2017; Moghadasi137

et al., 2020; De Nieva et al., 2020) are designed to138

guide medical counseling services, such as recom-139

mending hospitals and doctors;140

Medical education systems (Ali et al., 2021) are141

designed to provide a simulation of real clinical142

scenarios. A typical application is patient simulator143

systems (Sijstermans et al., 2007; Danforth et al.,144

2009; Menendez et al., 2015);145

Multi-objective systems (Moghadasi et al., 2020;146

De Nieva et al., 2020; Sharma et al., 2018) are147

designed for more than one of those goals.148

The above are brief descriptions of the different149

functions of medical dialogue systems, and new150

functions of medical dialogue systems will emerge151

according to emergent user demands, which gives152

rise to various challenges.153

2.2 Types of Dialogues154

From the aspect of the dialogue type, current medi-155

cal dialogue systems can be divided into five cate-156

gories:157

Task-oriented dialogue systems (Young et al.,158

2013; Huang et al., 2015a; Liu et al., 2018; Xu159

et al., 2019; Liao et al., 2020) are designed to help160

users complete specific tasks through dialogue in- 161

teraction; 162

Dialogue recommendation systems (Huang et al., 163

2012; Hoens et al., 2013; Bhatti et al., 2019; Zhou 164

et al., 2020a; Ko et al., 2022) are designed to recom- 165

mend information, products, or services that users 166

may be interested in by analyzing users’ historical 167

behavioral data and portraits; 168

Chit-chat dialogue systems (Huber et al., 2018; 169

Lan et al., 2021; Chen and Liang, 2022; Yan et al., 170

2022; Zhang et al., 2023e; Zhao et al., 2023) are 171

designed to revolve around exchanging information 172

and discussing topics with users; 173

Question-and-answer systems (Abacha and 174

Zweigenbaum, 2015; Zaib et al., 2022; Wang et al., 175

2023a; Bao et al., 2023) are designed to provide 176

relevant and accurate answers according to users’ 177

specific questions; 178

Mixed-type dialogue systems (Shi et al., 2023) 179

are designed to finish complex tasks by the combi- 180

nation of the above four types of dialogues. 181

3 Methods before LLM 182

In this section, we briefly summarize the med- 183

ical dialogue systems before the emergence of 184

LLM from the technical aspect of publicly avail- 185

able resources. The methods can be mainly di- 186

vided into three categories, retrieval-based meth- 187

ods, generation-based methods, and hybrid meth- 188

ods (Wang et al., 2023b). 189

3.1 Retrieval-based methods 190

Retrieval-based medical dialogue systems are de- 191

signed to select appropriate responses from the 192

pre-built index (Tao et al., 2021; Zhu et al., 2022), 193

which can be mainly divided into two categories ac- 194

cording to different sources of indexed documents, 195

medical literature, and medical dialogue. 196

Medical Literature Retrieval. The recent statis- 197

tics show that 61% of adults look online for health 198

information (Fox et al., 2011). This demands 199

proper retrieval systems for health-related biomed- 200

ical queries. Major challenges in the biomedical 201

domain are in handling complex, ambiguous, in- 202

consistent medical terms and their ad-hoc abbrevi- 203

ations (Zhao et al., 2019; Luo et al., 2019). 204

Biomedical information retrieval has tradition- 205

ally relied upon term-matching algorithms (such 206

as TF-IDF (Aizawa, 2003), BM25 (Robertson 207

et al., 1995), and In_expC2 (Robertson et al., 2009; 208

Sankhavara, 2018)), which search for documents 209
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that contain terms mentioned in the query.210

However, term-matching suffers from semantic211

retrieval, especially for terms that have different212

meanings in different contexts. To alleviate the213

issue, Luo et al. (2022) provides context-specific214

vector representations for each context and query,215

and the matching is conducted with the vector simi-216

larity. Vector representation focuses on semantic in-217

formation, thus alleviating semantic inconsistency.218

Medical Dialogue Retrieval. Medical dialogue219

systems with the dialogue retrieval method are de-220

signed to select appropriate responses from the pre-221

built dialogue index. Typically, medical dialogue222

retrieval methods choose responses that are ranked223

highest but may choose a lower-ranked response to224

avoid repetition (Athota et al., 2020; Brixey et al.,225

2017). The selection is conducted with a response226

classifier that is trained on linked questions and227

responses. If the score of the top-ranked response228

is below a predefined threshold, the medical dialog229

systems instead select an off-topic response that230

indicates “I do not understand”.231

Despite the efficiency, the results may not ex-232

actly match patients’ queries, which may trigger233

serious safety risks.234

3.2 Generation-based Methods235

Generation-based methods can be divided into236

two categories, pipeline and end-to-end. The237

pipeline methods typically generate system re-238

sponse through sub-components, while the end-239

to-end methods directly generate system response240

given only dialogue history and the corresponding241

knowledgebase without intermediate supervision.242

3.2.1 Pipeline243

The pipeline methods mainly contain three sub-244

components (natural language understanding, dia-245

logue management, and natural language genera-246

tion) (Young et al., 2013).247

Natural Language Understanding. Natural lan-248

guage understanding for medical dialogue is de-249

signed to capture key semantic meaning (Zhang250

et al., 2020b). This work divides the medical nat-251

ural language understanding task into three lev-252

els: token-level (medical concept normalization),253

utterance-level (slot filling, intent detection), and254

dialogue-level (medical dialogue information ex-255

traction).256

Token-level. Medical concept normalization aims257

to map a variable length medical mention to a258

medical concept in some external coding sys-259

tem. The technique development can be summa- 260

rized as: string-matching or dictionary look-up ap- 261

proach (Leal et al., 2015; D’Souza and Ng, 2015; 262

Lee et al., 2016), deep learning based classification 263

method (Limsopatham and Collier, 2016; Miftahut- 264

dinov and Tutubalina, 2019; Luo et al., 2018; Zhao 265

et al., 2019; Zhou et al., 2021b,a), generate-and- 266

rank method (Xu et al., 2020), constrained genera- 267

tion method (Yan et al., 2020). 268

Utterance-level. Intent detection and slot filling 269

are utterance-level natural language understand- 270

ing tasks. An intent specifies the goal underlying 271

the expressed utterance while slots are additional 272

parameters for these intents. Intent detection is usu- 273

ally defined as a multi-label classification problem 274

and slot filling is usually defined as a sequence 275

labeling problem (Weld et al., 2022; Liu et al., 276

2022b). To further utilize semantic information 277

from these two tasks, intent detection and slot fill- 278

ing are usually jointly learned (Zhang et al., 2019a; 279

Li et al., 2019; Song et al., 2022). 280

Dialog-level. Medical dialogue information ex- 281

traction is designed to extract key information 282

from medical dialogues, which greatly facilitates 283

the development of many real-world applications 284

such as electronic medical record generation (Guan 285

et al., 2018), automatic disease diagnosis (Xu et al., 286

2019), etc. Du et al. (2019); Zhang et al. (2020a) 287

propose to convert doctor-patient dialogues into 288

electronic medical records, effectively reducing the 289

labor costs of doctors. To enhance the exploitation 290

of the inter-dependencies in multiple utterances, 291

Dai et al. (2022) introduces a selective attention 292

mechanism to explicitly capture the dependencies 293

among utterances. Furthermore, to alleviate the 294

issue of speaker role ambiguity, Zeng et al. (2022b) 295

introduces a multi-view aware channel that cap- 296

tures different information in dialogues. 297

Dialog Management. Dialog management aims 298

to select the next actions for response based on the 299

current dialog state toward achieving long-term di- 300

alog goals (Young et al., 2013; Thrun and Littman, 301

2000; Schatzmann et al., 2006). 302

Wei et al. (2018); Xu et al. (2019) cast the med- 303

ical dialogue system as a Markov Decision Pro- 304

cess and train the dialogue policy via reinforcement 305

learning, which is composed of states, actions, re- 306

wards, policy, and transitions. Besides, Zhong et al. 307

(2022) propose to integrate a hierarchical policy 308

structure of two levels into the dialog system for 309

policy learning, alleviating the huge action space in 310

the real environment. In addition, Liu et al. (2022a) 311
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propose an interpretable decision process to en-312

hance interpretability.313

Natural Language Generation. Natural language314

generation is designed to convert system acts into315

text or speech (Young et al., 2013). Li et al. (2021)316

propose to summarize diagnosis history through317

a key phrase and propose a variational Bayesian318

generative approach to generate based on patient319

states and physician actions. Besides, to enhance320

the rationality of medical dialogues, Naseem et al.321

(2022) leverage an external medical knowledge322

graph and injects triples as domain knowledge into323

the dialogue generation. To capture the correlations324

between different diseases, Lin et al. (2021) pro-325

pose to utilize a commonsense knowledge graph to326

characterize the prior disease-symptom relations.327

3.2.2 End-to-end Dialogue Generation328

End-to-end dialogue generation aims to directly329

generate responses based on dialogue history and330

knowledgebase, which mostly adopts a sequence-331

to-sequence framework (Bahdanau et al., 2014;332

Vaswani et al., 2017). It consists of a context333

encoder to encode the dialogue history and a de-334

coder to generate the responses. Formally, give335

a sequence of inputs (x1, . . . , xT ), the goal of336

the task is to estimate the conditional probabil-337

ity p(y1, . . . , yT ′ |x1, . . . , xT ), where (y1, . . . , yT ′ )338

is the output sequence, T is the input se-339

quence length and T
′

is the output sequence340

length. The probability of y1, . . . , yT ′ is usually341

computed in the autoregressive manner. Each342

p(yt|x1, . . . , xT , y1, . . . , yt−1) distribution is rep-343

resented with a softmax overall words.344

In the medical domain, Saha et al. (2021), Yang345

et al. (2020); Zhou et al. (2021c) and Zeng et al.346

(2020b) apply the above generative models for dia-347

logues on mental health, COVID-19 and diagnosis,348

respectively. Besides, Zhao et al. (2022a) build a349

medical dialogue graph that exploits the medical re-350

lationship between utterances and trains the model351

to generate the pivotal information before produc-352

ing the actual response, thus learning to focus on353

the key information.354

3.3 Hybrid Methods355

Due to the limited coverage and timeliness of train-356

ing data, generation-based models often result in357

hallucination (Ji et al., 2023; Ye et al., 2023a),358

which are particularly severe in medical scenarios359

and may lead to serious risks. To alleviate the issue,360

retrieval augmented generation methods (Lewis361

et al., 2020; Li et al., 2022) are proposed, which re- 362

trieve accurate and in-time information to augment 363

generation to obtain precise responses. 364

In the medical domain, BIOREADER (Frisoni 365

et al., 2022) fetches and assembles relevant scien- 366

tific literature chunks from a neural database, and 367

then enhances the domain-specific T5-based solu- 368

tion (Raffel et al., 2020). By contrast, Zhao et al. 369

(2022b) retrieve PubMed Central articles using sim- 370

ple heuristics and Retrieved articles are utilized as 371

supplementary materials for generating responses 372

for clinical decision-supporting systems. For re- 373

port generation, MedWriter (Yang et al., 2021) first 374

employs the retrieval module to retrieve the most 375

relevant sentences from retrieved reports for given 376

images, and then fuses them to generate meaning- 377

ful medical reports. For sentence retrieval, HRGR- 378

Agent (Li et al., 2018) utilizes reinforcement learn- 379

ing with sentence-level and word-level rewards. 380

4 Large Language Model-based Methods 381

LLMs have generated significant interest due 382

to their remarkable performance in understand- 383

ing instructions and generating human-like re- 384

sponses. This section summarizes the medical di- 385

alogue methods based on LLMs. Current LLMs- 386

based methods can be divided into two categories, 387

prompting, and fine-tuning general LLMs. Typical 388

medical LLMs are listed in Table 1. 389

4.1 Prompting based Methods 390

The training corpora of LLMs contain medical liter- 391

ature, therefore it is possible to align the LLMs with 392

medical scenarios through appropriate prompts. 393

Popular prompting methods include hand-crafted 394

prompting and prompt tuning. 395

4.1.1 Hand-crafted Prompting 396

Hand-crafted prompting aims to create prompts 397

manually create intuitive templates based on human 398

introspection. Specifically, hand-crafted prompting 399

methods in the current medical dialogue system can 400

be mainly divided into three categories, zero/few- 401

shot prompting, chain-of-thought prompting, and 402

prompting ensemble. 403

Zero/Few-shot Prompting. Zero-shot prompting 404

aims to directly give instructions to prompt LLMs 405

to efficiently perform a task following the given 406

instruction. Meanwhile, the few-shot prompting 407

strategy aims to include samples describing the 408

task through demonstrations, which has shown ef- 409
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fectiveness in various tasks (Brown et al., 2020;410

Min et al., 2022).411

In the medical domain, expert hand-crafted412

prompting is widely utilized. Current works mainly413

focus on question-and-answering (Nori et al., 2023;414

Singhal et al., 2023a,b), diagnosis (Wang et al.,415

2023d; Gao et al., 2023; Tang et al., 2023b), and416

text de-identification (Liu et al., 2023c). For417

question-and-answering, MedPaLM (Singhal et al.,418

2023a), MedPaLM 2 (Singhal et al., 2023b), and419

MedPrompt (Nori et al., 2023) collaborate with420

a panel of qualified clinicians to identify the best421

demonstration examples and meticulously craft the422

few-shot prompts. For diagnosis, ChatCAD (Wang423

et al., 2023d), Dr. Knows (Gao et al., 2023), MedA-424

gents (Tang et al., 2023b) design task-specific425

prompts for computer-aided diagnosis on medical426

image, diagnosis prediction, and multi-disciplinary427

treatment, respectively. Another LLM prompt-428

ing applied in the medical domain is text de-429

identification and anonymization of medical re-430

ports (Liu et al., 2023c).431

Chain-of-Thought Prompting. Chain-of-432

Thought (CoT) improves LLMs’ ability to solve433

complex problems by encouraging it to explain its434

reasoning process step by step before generating435

answers (Wei et al., 2022).436

In the medical domain, medical questions in-437

volve complex multi-step reasoning, making them438

a good fit for CoT prompting techniques. Sing-439

hal et al. (2023a,b) craft CoT prompts to provide440

clear demonstrations of how to reason and an-441

swer the given medical questions. Besides, Med-442

Prompt (Nori et al., 2023) utilizes GPT-4 to gen-443

erate CoT with task-specific prompts and to miti-444

gate the hallucinated or incorrect reasoning chains,445

MedPrompt (Nori et al., 2023) utilizes the label-446

verification. Specifically, GPT-4 is required to gen-447

erate both a rationale and an estimation of the most448

likely answer to follow from that reasoning chain,449

and the reliability of generated chains is judged by450

whether the answers match the ground truth label.451

Self-consistency Prompting. MedPaLM (Sing-452

hal et al., 2023a) and MedPaLM2 (Singhal et al.,453

2023b) utilize self-consistency prompting (Wang454

et al., 2022b) to improve the performance on the455

multiple-choice benchmarks by prompt and sample456

multiple decoding outputs from the model. The457

method is based on the rationale that for the med-458

ical domain with complex reasoning paths, there459

might be multiple potential routes to the correct460

answer (Singhal et al., 2023a). Therefore, the final461

answer is the one with the majority vote. 462

4.1.2 Prompt Tuning 463

The above methods utilize hand-crafted static 464

prompts, which are knowledge-intensive and 465

training-free. To better align general LLMs with 466

the medical domain, inspired by the great suc- 467

cess of prompting (Liu et al., 2023a) and fine- 468

tuning (Hu et al., 2023), prompt tuning (Liu et al., 469

2021b; Lester et al., 2021) introduces learnable 470

prompts, which is fine-tuned during the training 471

stage. In contrast to traditional fine-tuning meth- 472

ods (Hu et al., 2023), prompt tuning only fine- 473

tuning a very small set of parameters, thus effec- 474

tively aligning LLMs to the medical domain (Nori 475

et al., 2023). Recently, MedPaLM (Singhal et al., 476

2023a) and MedPaLM2 (Singhal et al., 2023b) ap- 477

ply the prompt tuning in various medical question- 478

and-answer datasets and achieve a competitive per- 479

formance compared to human experts. 480

4.2 Fine-tuning Based Methods 481

Compared to small-scale models, LLMs exhibit 482

strong generalization across various natural lan- 483

guage processing tasks and a unique emergent abil- 484

ity to solve unseen or complicated tasks. However, 485

despite their numerous merits, LLMs are not de- 486

signed to cater specifically to the medical domain. 487

Their general domain knowledge often falls short 488

when addressing such specialized fields, where ac- 489

curate and domain-specific expert knowledge is 490

critical. This can lead to sub-optimal diagnostic 491

precision, drug recommendations, and medical ad- 492

vice, potentially endangering patients. Recently, 493

efforts have been made to address this problem. 494

The typical training method is fine-tuning founda- 495

tion models on medical data. 496

Various works, including PULSE (Zhang 497

et al., 2023d), BenTsao (Wang et al., 2023a), 498

HuatuoGPT-II (Chen et al., 2023b), ChatDoctor (Li 499

et al., 2023b), MEDITRON (Chen et al., 2023e), 500

Radiology-LLaMA2 (Liu et al., 2023b), Clinical 501

Camel (Toma et al., 2023), XrayGLM (Wang et al., 502

2023c), conduct supervised fine-tuning by fine- 503

tuning foundation models with their task-specific 504

tasks. Besides, Zhongjing (Yang et al., 2023) im- 505

plements an entire training pipeline from contin- 506

uous pre-training, and supervised fine-tuning, to 507

reinforcement learning from human feedback, and 508

training with a Chinese multi-turn medical dia- 509

logue dataset, which enhances the model’s capa- 510

bility for complex dialogue. In addition, to ad- 511
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dress the issue of overconfident predictions and tap-512

ping into domain-specific insights, Qilin-med (Ye513

et al., 2023b) presents a method combining domain-514

specific continued pre-training, supervised fine-515

tuning, and direct preference optimization.516

5 Evaluation517

5.1 Metrics518

In this section, we introduce two common evalua-519

tion methods: automatic and human evaluation.520

Automatic Evaluation. For retrieval tasks, the521

mean average precision is utilized in Luo et al.522

(2022). For the pipeline tasks (except dialogue pol-523

icy learning), precision, recall, F1, and accuracy524

are utilized as the evaluation metrics (Qin et al.,525

2023). For the end-to-end generation, automatic526

evaluation usually uses various indicators and eval-527

uation tools, such as BLEU (Papineni et al., 2002),528

ROUGE (Lin, 2004), BERTScore (Zhang et al.,529

2019b), etc., to quantify the similarity and quality530

between the model-returned results and the refer-531

ence results. Compared with human evaluation,532

automatic evaluation does not require human par-533

ticipation, which saves costs and time.534

Human Evaluation. Human evaluation is espe-535

cially for generation tasks, due to the reason that536

free text of the generated model exhibits diverse537

expressions which are formally different, but se-538

mantically similar, thus is more reliable for gen-539

eration tasks (Novikova et al., 2017). Compared540

with automatic evaluation, manual evaluation is541

closer to the actual application scenario and can542

provide more comprehensive and accurate feed-543

back. In the manual evaluation, evaluators (such544

as experts, researchers, or ordinary users) are usu-545

ally invited to evaluate generated results. Despite546

the effectiveness, even human evaluations can have547

high variance and instability due to cultural and548

individual differences (Peng et al., 1997).549

5.2 Datasets and Benchmarks550

Medical evaluation datasets are used to test and551

compare the performance of different dialogue sys-552

tems on various tasks. We list fourteen popular553

datasets and benchmarks from Table 3 to Table 7.554

Each benchmark focuses on different aspects and555

evaluation criteria, providing valuable contribu-556

tions to their respective domains. These bench-557

marks are divided into four categories.558

Benchmarks for Retrieval. BioASQ (Tsatsaronis559

et al., 2015) assesses the ability of systems to se-560

mantically index very large numbers of biomedical 561

scientific articles and to return concise and user- 562

understandable answers to given natural language 563

questions by combining information from biomedi- 564

cal articles and ontologies. The evaluation metric 565

is the mean average precision. The benchmark on 566

BioASQ is listed in Table 2. 567

Benchmarks for Pipeline Tasks. Medical dia- 568

logue systems contain a vast majority of tasks. To 569

this end, existing benchmarks tend to evaluate the 570

performance in different tasks. 571

For sentence-level natural language understand- 572

ing, there are three datasets, including CMDD (Lin 573

et al., 2019), MedDG (Liu et al., 2022b), and 574

IMCS-21 (NER) (Chen et al., 2022). The widely 575

used evaluation metrics are precision, recall, and 576

F1. The benchmark is listed in Table 3. Besides, 577

MIE (Zhang et al., 2020a) is a dialogue-level natu- 578

ral language understanding dataset. The benchmark 579

is listed in Table 4. 580

For the dialogue act classification task, IMCS- 581

21 (Chen et al., 2022) contains a sub-task. The 582

utilized evaluation metrics are precision, recall, F1, 583

and accuracy. The benchmark is listed in Table 5. 584

For the dialogue policy learning, the benchmark 585

on MZ (Wei et al., 2018), DX (Xu et al., 2019), 586

IMCS-21 (DDP) (Chen et al., 2022) is listed in 587

Table 6. 588

Benchmarks for Generation Tasks. For the end- 589

to-end dialogue generation, there are five dialogue 590

datasets, including MedDialog (Zeng et al., 2020a), 591

MedDG (Liu et al., 2022b), CovidDialog (Yang 592

et al., 2020), Ext-CovidDialog (Varshney et al., 593

2023), and MidMed (Shi et al., 2023). The auto- 594

matic evaluation metrics utilized for the medical 595

generation include BLEU-4, Distinct-1, Distinct-2, 596

etc. The benchmark is listed in Table 7. 597

Evaluations for LLM. The summarization of 598

LLM evaluation is listed in Table 8, including auto- 599

matic evaluation, human evaluation, and evaluation 600

data. Current LLM evaluations are primarily con- 601

ducted in the form of multiple-choice questions and 602

question-and-answers, which lack assessments of 603

capabilities in clinical scenarios. 604

6 Grand Challenge 605

Our summarization of the medical dialogue sys- 606

tem inspires us to redesign a wide spectrum of as- 607

pects. This section summarizes current challenges 608

for medical dialogue systems. 609
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6.1 Challenges Inherited from General610

Domain611

Hallucination. Hallucination is defined as the gen-612

erated content that is nonsensical or unfaithful613

to the provided source content (Filippova, 2020;614

Maynez et al., 2020; Zhou et al., 2020a). Halluci-615

nation in medical LLMs is concerning because it616

hinders performance and raises safety concerns for617

real-world medical applications and may lead to618

potential privacy violations (Carlini et al., 2021).619

To alleviate the issue, the popular methods are620

high-quality data construction, randomness reduc-621

tion, retrieval-augmented generation (Zhang et al.,622

2023c; Lee et al., 2022), multi-agent debate (Du623

et al., 2023), and post-process (Chen et al., 2023a;624

Gou et al., 2023).625

Numberical Data Process. Medical dialogue sys-626

tems often involve medical statistical data, and the627

understanding of the data directly affects the accu-628

racy of system consultation. The reason for this629

issue is that LLMs are probability-based genera-630

tive models. They generate text responses from a631

softmax function probability distribution.632

A key solution for this issue is plug-in (Schick633

et al., 2023; Shen et al., 2023), which exploits ex-634

ternal tools to improve their capabilities. Inspired635

by Toolformer (Schick et al., 2023) and hugging-636

GPT (Shen et al., 2023), a solution for medical637

numberical values is that LLMs can be designed638

to return mathematical expressions, perform calcu-639

lations with mathematical plug-ins, and return the640

calculation results to the large model for reply.641

Adversarial Attack. Adversarial examples are in-642

puts designed by an adversary to cause a neural643

network to perform some incorrect behavior (Big-644

gio et al., 2013; Szegedy et al., 2013), which may645

cause serious medical accidents.646

The possible solutions for this issue are adver-647

sarial training (Shafahi et al., 2019), and ensemble648

learning (Dong et al., 2020). A combination of649

these techniques, along with ongoing research and650

vigilance, can help improve the robustness of neu-651

ral networks to adversarial attacks.652

6.2 Medical-specific Challenges653

Medical Specialization. Current medical LLMs654

can not perform as a doctor to make a clinical diag-655

nosis and are more like a medical Q&A. Two exam-656

ples from patient-doctor and patient-ChatGPT are657

shown in Figure 2. In the example, the doctor in-658

quires for additional patient information, provides659

diagnostic results, and then gives treatment advice. 660

However, ChatGPT lists possible diagnoses for the 661

input question, instead of a specific conclusion. 662

The possible solutions for this issue are curat- 663

ing specialized medical training data with medi- 664

cal decision-making processes, and retrieval aug- 665

mented generation. 666

Medical LLMs Evaluation. Towards the evalua- 667

tion of medical LLMs’ capabilities, current evalua- 668

tion methods can be divided into two main kinds, 669

which are medical information extraction, and med- 670

ical question-and-answering. Current LLM evalu- 671

ations are insufficient for the evaluation of LLMs’ 672

diagnostic capabilities in real clinical scenarios 673

as they neglect either multi-turn diagnostic inter- 674

viewing or rigorous diagnostic results. Therefore, 675

there is a great demand for designing a unified and 676

comprehensive evaluation criterion for evaluating 677

LLMs’ diagnostic capability in real clinical appli- 678

cations. 679

Multi-Modal Medical Dialogue. Current medi- 680

cal dialogue systems conduct diagnoses based on 681

text interaction. However, a lack of multi-modal 682

information may lead to incorrect diagnostic re- 683

sults. For example, if specific images are missing 684

during the process of seeking medical treatment for 685

skin diseases, accurate diagnostic results can not 686

be made for the specific disease obtained by the 687

patient. To alleviate the issue, multi-modal medi- 688

cal dialogue systems are needed to understand and 689

process multi-modal inputs. 690

Multi-disciplinary Treatment. Multidisciplinary 691

consultation provides an opportunity for specialists 692

from different disciplines to engage in formal dis- 693

cussions over diagnostic and therapeutic strategies 694

in oncology. In complex clinical situations, special- 695

ists discuss decisions collectively, particularly in 696

cases involving palliative chemotherapy. 697

LLM-based multi-agent society is a promising 698

method to conduct multidisciplinary consultation. 699

Zhang et al. (2023b); Tang et al. (2023b) has shown 700

that collaborative strategies with various permuta- 701

tions of thinking patterns attribute significantly to 702

performance. 703

7 Conclusion 704

We summarized the progress of medical dialogue 705

systems by introducing categories, methods before 706

LLM, LLM-based methods, metrics, and datasets. 707

In addition, we discussed some new trends and their 708

challenges, which may attract more breakthroughs. 709
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Limitation710

This study presented a comprehensive review from711

a technical perspective. However, the current ver-712

sion primarily focuses on technique, lacking analy-713

sis from a medical perspective. In the future, we in-714

tend to include more in-depth comparative analyses715

to gain a better understanding of current medical716

dialogues from the medical perspective.717
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Date Name Institution Foundation Model / Manner # of Parameter Code

2024-01 AMIE Google PaLM2 / Tuning 540B -

2023-12 Zhongjing Zhengzhou University Ziya-LLaMA / Tuning 13B Github

2023-11 MedAgents Yale University GPT-4 / Prompting - Github

2023-11 MedPrompt Microsoft GPT-4 / Prompting 7B, 13B -

2023-11 HuatuoGPT-II CUHKShenzhen Baichuan2 / Tuning 7B, 13B Github

2023-11 MEDITRON EPFL LLaMA2 / Tuning 70B Github

2023-11 Qilin-Med Peking University Baichuan / Tuning 7B Github

2023-08 Radiology-LLaMA2 University of Georgia LLaMA2 / Tuning - -

2023-08 Dr. Knows University of
Wisconsin Madison ChatGPT / Prompting - -

2023-07 CoDoC Google - - Github

2023-07 CareGPT Macao Polytechnic
University

Baichuan2, LLaMA2,
InternLM / Tuning

7B, 13B,
20B Github

2023-05 Med-PaLM2 Google PaLM2 / Prompting 540B -

2023-05 Clinical Camel University
of Toronto LLaMA2 / Tuning 70B Hugginface

2023-05 DeID-GPT University
of Georgia GPT-4 / Prompting - Github

2023-04 DoctorGLM ShanghaiTech
University ChatGLM / Tuning 6B Github

2023-04 ChatCAD ShanghaiTech
University ChatGPT / Prompting - -

2023-04 XrayGLM Macao Polytechnic
University VisualGLM / Tuning 6B Github

2023-03 BianQue South China
University of Technology ChatGLM / Tuning 6B Github

2023-03 PULSE Shanghai Artificial
Intelligence Laboratory BLOOMZ, InternLM / Tuning 7B, 20B Github

Table 1: Some typical medical LLMs, including AMIE (Tu et al., 2024), Zhongjing (Yang et al., 2023), MedA-
gents (Tang et al., 2023b), MedPrompt (Nori et al., 2023), HuatuoGPT-II (Chen et al., 2023b), MEDITRON (Chen
et al., 2023e), Radionlogy-LLaMA2 (Liu et al., 2023b), Dr. Knows (Gao et al., 2023), CoDoC (Dvijotham et al.,
2023), CareGPT (Rongsheng et al., 2023), Med-PaLM2 (Singhal et al., 2023b), Clinical Camel (Toma et al., 2023),
DeID-GPT (Liu et al., 2023c), DoctorGLM (Xiong et al., 2023), ChatCAD (Wang et al., 2023d), XrayGLM (Wang
et al., 2023c), BianQue (Chen et al., 2023d), PULSE (Zhang et al., 2023d), which are sorted by the release date of
the models or the publication date of the corresponding papers and resources. “Tuning” and “Prompting” represent
the fine-tuning method and the prompting method, respectively.

BM25 DPR128 DPR256 P-DPR128 P-DPR256 Hybrid (P-DPR128)

BioASQ-Small (Luo et al., 2022) 65.10 53.31 42.89 66.66 63.62 68.25
BioASQ-Large (Luo et al., 2022) 34.32 - - 33.13 - 36.26

Table 2: Results on medical retrieval dataset BioASQ (Luo et al., 2022). The evaluation metric is the mean average
precision, which is expressed as percentages (%).
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Dataset Model Precision Recall F1

CMDD (Lin et al., 2019)

Bi-GRU (Dyer et al., 2015) 76.02 88.09 81.61
Bi-LSTM (Dyer et al., 2015) 76.64 87.60 81.62
Bi-GRU-CRF (Huang et al., 2015b) 86.44 89.13 87.77
Bi-LSTM-CRF (Huang et al., 2015b) 89.93 89.56 89.74
CNNs-Bi-GRU-CRF (Ma and Hovy, 2016) 87.08 90.82 88.91
CNNs-Bi-LSTM-CRF (Ma and Hovy, 2016) 90.45 90.48 90.47

MedDG (Liu et al., 2022b)

LSTM (Hochreiter and Schmidhuber, 1997) 25.34 27.75 26.49
TextCNN (Kim, 2014) 22.37 30.12 25.67
BERT-wwm (Cui et al., 2021) 26.05 31.09 28.35
PCL-MedBERT (Wang et al., 2022a) 26.46 33.07 29.40
MedDGBERT (Liu et al., 2022b) 25.34 36.20 29.81

IMCS-21 (NER) (Chen et al., 2022)

Lattice LSTM (Zhang and Yang, 2018) 89.37 90.84 90.10
BERT-CRF (Devlin et al., 2018) 88.46 92.35 90.37
ERNIE (Zhang et al., 2019d) 88.87 92.27 90.53
FLAT (Li et al., 2020) 88.76 92.07 90.38
LEBERT (Liu et al., 2021a) 86.53 92.91 89.60
MC-BERT (Zhang et al., 2021) 88.92 92.18 90.52
ERNIE-Health (Zhang et al., 2019d) 89.71 2.82 91.24

Table 3: Results on medical information extraction datasets, including CMDD (Lin et al., 2019), MedDG (Liu et al.,
2022b), and IMCS-21 (NER) (Chen et al., 2022). The evaluation metrics are precision, recall, and F1, which are
expressed as percentages (%).

Model Category Item Full

Precision Recall F1 Precision Recall F1 Precision Recall F1

Plain-Classifier 93.57 89.49 90.96 83.42 73.76 77.29 61.34 52.65 56.08
MIE-Classifier-single 97.14 91.82 93.23 91.77 75.36 80.96 71.87 56.67 61.78
MIE-Classifier-multi 96.61 92.86 93.45 90.68 82.41 84.65 68.86 62.50 63.99
MIE-single 96.93 90.16 92.01 94.27 79.81 84.72 75.37 63.17 67.27
MIE-multi 98.86 91.52 92.69 95.31 82.53 86.83 76.83 64.07 69.28

Table 4: Result on MIE. The evaluation metrics are precision, recall, and F1, which are expressed as percentages
(%). The results are reported in category-level, item-level, and full-level.

Models Precision Recall F1 Accuracy

TextCNN (Kim, 2014) 74.02 70.92 72.22 78.99
TextRNN (Liu et al., 2016) 73.07 69.88 70.96 78.53
TextRCNN (Lai et al., 2015) 73.82 72.53 72.89 79.40
DPCNN (Johnson and Zhang, 2017) 74.30 69.45 71.28 78.75
BERT (Devlin et al., 2018) 75.35 77.16 76.14 81.62
ERNIE (Zhang et al., 2019d) 76.18 77.33 76.67 82.19
MC-BERT (Zhang et al., 2021) 75.03 77.09 75.94 81.54
ERNIE-Health (Zhang et al., 2019d) 75.81 77.85 76.71 82.37

Table 5: Results of models on dialogue act classification task on IMCS-21. The evaluation metrics are precision,
recall, F1, and accuracy, which are expressed as percentages (%).

Dataset Model Success Match Rate Turn

MZ (Wei et al., 2018) DQN (Liao et al., 2020) 0.65 - 5.11
KR-DQN (Xu et al., 2019) 0.73 - -

DX (Xu et al., 2019) DQN (Liao et al., 2020) 0.731 0.110 3.92
KR-DQN (Xu et al., 2019) 0.740 0.267 3.36

IMCS-21 (DDP) (Chen et al., 2022)

DQN (Liao et al., 2020) 0.408 0.047 9.75
KR-DQN (Xu et al., 2019) 0.485 0.279 6.75
REFUEL (Kao et al., 2018) 0.505 0.262 5.50
GAMP (Xia et al., 2020) 0.500 0.067 1.78
HRL (Zhong et al., 2022) 0.556 0.295 6.99

Table 6: Results of models on medical dialogue policy learning. The evaluation metrics are success rate, match rate,
and average turn. Success rate and match rate are expressed as percentages (%).
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Dataset Model BLEU-4 Distinct-1 Distinct-2

Transformer (Vaswani et al., 2017) 0.9 0.03 2.0
BERT-GPT (Zeng et al., 2020b) 0.5 0.02 2.1MedDialog (Zeng et al., 2020a)
GPT-2 (Solaiman et al., 2019) 1.8 0.02 2.0

Seq2Seq (Sutskever et al., 2014) 19.20 0.75 5.32
HRED (Lei et al., 2018) 21.19 0.75 7.06
GPT-2 (Solaiman et al., 2019) 16.56 0.87 11.20
DialoGPT (Zhang et al., 2019c) 18.61 0.77 9.87
BERT-GPT (Zeng et al., 2020b) 23.84 0.65 11.25

MedDG (Liu et al., 2022b)

MedDGBERT-GPT (Liu et al., 2022b) 23.99 0.63 11.04

Transformer (Vaswani et al., 2017) 5.2 3.7 6.4
GPT-2 (Solaiman et al., 2019) 7.6 13.9 31.0
BART (Lewis et al., 2019) 6.0 16.8 35.7CovidDialog (Yang et al., 2020)

BERT+TAPT (Yang et al., 2020) 3.4 11.5 25.3

DialogGPT (Zhang et al., 2019c) 0.015 - -
BERT (Devlin et al., 2018) 0.038 - -
BART (Lewis et al., 2019) 0.047 - -Ext-CovidDialog (Varshney et al., 2023)

BioBERT (Chakraborty et al., 2020) 0.048 - -

BST (Smith et al., 2020) 1.02 - -
MGCG (Liu et al., 2020) 1.06 - -
VRbot (Li et al., 2021) 1.31 - -
Seq2Seq (Sutskever et al., 2014) 1.01 - -
DialoGPT (Zhang et al., 2019c) 1.53 - -
BART (Lewis et al., 2019) 18.87 - -

MidMed (Shi et al., 2023)

InsMed (Shi et al., 2023) 19.73 - -

Table 7: Results of models on the medical dialogue generation task. The results are expressed as percentages (%).

Model/Project Name Automatic Eval Human Eval Evaluation Data

Med-PaLM (Singhal et al., 2023a) Accuracy, Self-consistency ✓ MedMCQA, PubMedQA, et al.
CMB (Wang et al., 2023e) GPT-4 evaluation ✓ CMB-Exam, CMB-Clin
MES (Tang et al., 2023a) ROUGE-L, BLEU, etc. ✓ -
C-Eval (Med) (Huang et al., 2023b) Accuracy ✓ C-Eval (Clinical Medicine, Basic Medicine)
CMMLU (Med) (Li et al., 2023a) Accuracy ✓ CMMLU (College Medicine)
PromptCBLUE (Wei et al., 2023) Accuracy, ROUGE-L, etc. ✗ CMeIE, CHIP-CDEE, MedDG, et al.
MedBench (Zhang, 2024) Accuracy, ROUGE-L, etc. ✗ Med-Exam, MedHC, MedSafety, et al.

Table 8: Summarization of LLM evaluation projects, including automatic evaluation, human evaluation, and
evaluation data. Seven LLM models/ projects are listed, Med-PaLM (Singhal et al., 2023a), CMB (Wang et al.,
2023e), MES (Tang et al., 2023a), C-Eval (Huang et al., 2023b), CMMLU (Li et al., 2023a), PromptCBLUE (Wei
et al., 2023), and MedBench (Zhang, 2024).

Patient-Doctor Dialogue Patient-ChatGPT Dialogue 
Patient: I have excessive sweating and dry peeling in 
hands and feet. In summer, skin peeling is serious and 
hands are sweaty.
Doctor: Do you feel itching?
Patient: I do not feel itching.
Doctor: It considered to be sweat, which is a 
manifestation of eczema.
Patient: Thanks.
Doctor: Drug therapy is recommended. Soak your hands 
in warm water for half an hour, then apply 
dexamethasone cream.

Patient: I have excessive sweating and dry peeling in hands and feet. In summer, skin peeling 
is serious and hands are sweaty.
ChatGPT: I'm sorry to hear that. Excessive sweating and dry peeling in hands and feet can 
be uncomfortable and inconvenient. Here are some suggestions that may help:
1. Use antiperspirant: …
2. Wear breathable clothing: …
3. Soak your hands and feet in warm water: …
4. Moisturize your skin: ...
5. Avoid hot and spicy foods: ...
6. See a doctor: ...

Figure 2: Two dialogues by patient-doctor and patient-chatgpt.
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