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Abstract

Vision-Language-Action (VLA) models have demonstrated strong multi-modal
reasoning capabilities, enabling direct action generation from visual perception
and language instructions in an end-to-end manner. However, their substantial
computational cost poses a challenge for real-time robotic control, where rapid
decision-making is essential. This paper introduces VLA-Cache, a training-free
inference acceleration method that reduces computational overhead by adaptively
caching and reusing static visual tokens across frames. Exploiting the temporal con-
tinuity in robotic manipulation, VLA-Cache identifies minimally changed tokens
between adjacent frames and reuses their cached key-value representations, thereby
circumventing redundant computations. Additionally, to maintain action precision,
VLA-Cache selectively re-computes task-relevant tokens that are environmentally
sensitive, ensuring the fidelity of critical visual information. To further optimize
efficiency, we introduce a layer adaptive token reusing strategy that dynamically
adjusts the reuse ratio based on attention concentration across decoder layers, prior-
itizing critical tokens for recomputation. Extensive experiments on two simulation
platforms (LIBERO and SIMPLER) and a real-world robotic system demonstrate
that VLA-Cache achieves up to 1.7× speedup in CUDA latency and a 15% in-
crease in control frequency, with negligible loss on task success rate. The code and
videos can be found at our project page: https://vla-cache.github.io.

1 Introduction

Learning a robust and generalizable policy for robotic manipulation through policy learning has
long been a challenging problem [1], with traditional reinforcement learning approaches [2, 3] often
suffering from poor robustness and limited generalization. Recently, the rapid advancement of
foundational Vision-Language Models (VLMs) [4, 5] has demonstrated remarkable capabilities in
multimodal understanding and generalization. Leveraging large-scale real-world robotic datasets
[6, 7], pioneering works [8–11] have introduced Vision-Language-Action (VLA) models, which
integrate vision and language modalities to directly generate robotic actions in an end-to-end manner.
This emerging paradigm holds great promise for enhancing the adaptability and generalization of
robotic control systems, but leaves a large computational demand.

To mitigate the extensive cost of VLA models, existing works often adopt generic acceleration
techniques, such as model lightweighting [12], quantization [13], and early-exit [14]. While effective
to some extent, these methods often require architectural modifications or retraining, and more
importantly, they lack task-specific design tailored to the intrinsic characteristics of VLA tasks. As a
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result, they struggle to achieve an optimal balance between inference speed and action accuracy. In
this paper, we step into the nature of VLA robotic manipulation that is intrinsically different from
the VLM models. Specifically, VLA tasks involve sequentially processing a stream of temporally
adjacent visual observations, where the environment often exhibits high spatial redundancy across
time. As shown in Figure 1, large portions of the visual scene, especially background regions,
remain static and semantically irrelevant to action decisions, yet are processed repeatedly at each
time step. These static tokens contribute significantly to computational overhead while providing
limited utility for downstream control. This motivates our proposed token caching mechanism, which
explicitly exploits temporal redundancy in visual inputs to reduce redundant computation without
compromising decision quality.
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Figure 1: During the inference of the VLA model, static
tokens of the input image remain largely consistent across
steps. This consistency allows for caching the computa-
tions of these tokens from the previous step.

To address the inefficiency introduced
by repeatedly processing static visual
information, we present VLA-Cache,
a training-free inference acceleration
method that exploits temporal continu-
ity in robotic perception. Rather than
recomputing all vision tokens at every
timestep, VLA-Cache identifies tokens
that exhibit minimal change between ad-
jacent frames and reuses their cached key-
value (KV) representations to bypass re-
dundant computation. However, we ob-
serve that not all visually static tokens
can be safely reused. Some tokens, such
as those near the gripper or target ob-
ject, may appear visually unchanged but
remain semantically active and crucial
for accurate action generation. Naively
reusing all static tokens results in a sig-
nificant performance drop as shown in
Table 1. To mitigate this, VLA-Cache
incorporates a lightweight filtering mechanism based on decoder attention scores to exclude task-
relevant tokens from reuse, ensuring that semantically critical regions are always recomputed with
up-to-date features. Moreover, we observe that attention patterns vary across decoder layers, with
deeper layers exhibiting more concentrated focus. To further optimize reuse, VLA-Cache employs
a layer-adaptive caching strategy that dynamically adjusts the reuse ratio per layer based on at-
tention entropy, prioritizing precise updates in sensitive regions. These two mechanisms together
enable substantial reduction in decoding overhead, especially in large-scale language decoders (e.g.,
LLaMA [15], Gemma [16]), which typically dominate the compute cost in VLA systems.

The resulting method VLA-Cache offers a training-free and plug-and-play solution for acceler-
ating VLA models without sacrificing action performance. We evaluate VLA-Cache on robotic
manipulation tasks across two simulated environments (LIBERO [17] and SIMPLER [18]) and three
state-of-the-art VLA models (OpenVLA [11], CogAct [19], and OpenVLA-OFT [20]). VLA-Cache
consistently delivers over 1.7× acceleration with only minor drops in task success rate. Furthermore,
we demonstrate its real-world applicability by deploying it on a Kinova Jaco2 robot arm, achieving
practical speedup under real-time control scenarios.

2 Related Work

Vision-Language-Action Models. Large-scale vision-language models (VLMs) have significantly
advanced multimodal learning by integrating image understanding and language reasoning [5, 21].
Extending these capabilities, VLA models [8, 22] incorporate an action modality, enabling end-to-end
visuomotor control. These models typically adopt large VLM backbones [15] and fine-tune them on
robot data [6], with approaches varying from discretizing actions as language-like tokens [11, 23] to
incorporating specialized diffusion policy heads [24]. Despite their effectiveness in tasks like object
retrieval and assembly [25, 26], VLA models demand substantial computation, making real-time
deployment challenging, particularly in resource-constrained environments.
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Acceleration for Vision-Language Models. Inference acceleration has been extensively explored in
vision-language models (VLMs) through quantization [27], pruning [28], and token-level techniques
such as FastV [29], SparseVLM [30], ToMe [31], PuMer [32], and MADTP [33]. These intra-frame
strategies reduce redundancy within a single image but disregard the temporal and spatial structure
essential for robotic tasks under closed-loop control. In the VLA domain, efficiency has been
addressed through architectural modifications (e.g., RoboMamba [34], TinyVLA [12]), quantization-
aware training (QAIL [13]), and dynamic depth control (DeeR-VLA [14]). While effective, these
methods require re-training and lack generalizability. Recent high-frequency frameworks such as π0-
FAST [35], HiRT [36], and OpenVLA-OFT [20] achieve higher control frequency via action chunking
or asynchronous decoding. However, they continue to suffer from the language model decoding
bottleneck, which dominates inference time. VLA-Cache addresses this gap by introducing a cross-
frame token reuse strategy that accelerates inference without modifying the model or requiring
additional training. Furthermore, it complements existing high-frequency VLA architectures by
directly accelerating the language decoder bottleneck, offering a lightweight, plug-and-play solution
for real-time robotic inference.

3 Methodology

In robotic action prediction, most visual tokens remain static across frames except for key regions
like the manipulator or target object. While this temporal redundancy enables token reuse, reusing
all static tokens can harm accuracy when task-relevant regions subtly change. To address this, we
propose a method that identifies visually static tokens and filters out semantically important ones
based on attention scores from the VLA decoder. By avoiding redundant computation of unchanged
static tokens between adjacent frames, our approach directly alleviates the computation bottleneck of
language decoder in VLA models while preserving the accuracy of action prediction.

3.1 KV Cache for VLA Token Reusing

Key-Value (KV) caching is a widely adopted technique in large-scale autoregressive models to reduce
both computation and memory footprint during decoding. Initially proposed in the Transformer
architecture [37], KV caching enables the model to reuse previously computed key (K) and value (V)
vectors for each token, thereby avoiding redundant computation across decoding steps. Concretely,
given a sequence of input tokens X, the self-attention mechanism computes:

Q = XWQ, K = XWK , V = XWV , (1)

Attn(Q,K,V) = Softmax

(
QK⊤
√
d

)
V. (2)

During decoding, each new token’s knew and vnew are appended to the i-th cache:

Ki = Concat(Ki−1,knew), Vi = Concat(Vi−1,vnew). (3)

While KV caching is effective for language decoding within a single query in vision-language models,
this technique does not address redundancy in the visual stream, especially in Vision-Language-Action
(VLA) models. In robotic manipulation, consecutive visual inputs often share large overlapping
content, yet VLA models typically discard visual encodings after each step and recompute them from
scratch. This is both wasteful and suboptimal for real-time control.

This inefficiency motivates a key question: can we selectively reuse static visual tokens across time
with temporal KV Caching in VLA models? This idea forms the basis of our proposed VLA-Cache.
In the following sections, we introduce its core mechanisms: static token selection, task-relevance
filtering, and layer-adaptive reuse to accelerate VLA inference while preserving action accuracy.

3.2 Temporal Redundancy in Robotic Perception

In closed-loop robotic manipulation, consecutive visual frames often share large portions of static
content. As illustrated in Figure 2, background regions and stationary objects typically exhibit
negligible changes between adjacent frames. However, most existing Vision-Language-Action (VLA)
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Figure 2: VLA-Cache accelerates the VLA’s language decoding process across timesteps via the
following two steps: (a) Dynamic Token Selection reuses static tokens across frames while preserving
task-relevant ones; (b) Adaptive Token Caching dynamically adjusts reuse ratios per decoder layer
based on attention patterns.

models discard visual representations after each timestep and recompute all visual tokens from
scratch, resulting in substantial redundancy and increased inference latency.

To address this inefficiency, we propose selectively reusing visual tokens that remain static across
timesteps. Specifically, we identify and cache the representations of image regions with minimal
visual change, allowing their Key-Value (KV) representations to be reused in the next frame. This
strategy significantly reduces redundant computation in the VLA visual stream while preserving
model performance.

Static Token Selection. Given an image I ∈ RH×W×3, we divide it into N ×N non-overlapping
patches of size p × p, yielding a set of raw pixel patches Pt = {Pi,j

t }. For each patch Pi,j
t in the

current frame and its corresponding patch Pi,j
t−1 in the previous frame, we compute cosine similarity:

Sim
(
Pi,j

t ,Pi,j
t−1

)
=

Pi,j
t ·Pi,j

t−1

∥Pi,j
t ∥2 · ∥Pi,j

t−1∥2
. (4)

A patch is considered visually static if its similarity exceeds a threshold τ . We further apply a Top-k
filter to retain the most stable tokens:

Pstatic = Top-k
(
{Pi,j

t | Sim(Pi,j
t ,Pi,j

t−1) ≥ τ}
)
. (5)

This simple yet effective approach accurately selects truly static tokens across consecutive frames,
significantly reducing redundant computations and accelerating inference without compromising
overall performance.

3.3 Retaining Task-Relevant Information
Table 1: Comparison of VLA-Cache’s core
token selection strategies on OpenVLA using
the LIBERO Spatial benchmark.

Method SR (%) ↑ Latency (ms) ↓
OpenVLA 84.4 51.56
+ Static Token 74.2 31.03
+ Evict Task-Relevant 82.6 31.03
+ Layer Adaptive 83.8 32.22

While visual similarity offers a practical signal for
reusing static regions, not all visually static tokens are
safe to reuse. In robotic control tasks, certain regions,
such as the gripper or target object, though visually
unchanged, are semantically dynamic and critical for
precise action generation. Directly reusing all visu-
ally static tokens, without considering their semantic
role, can lead to serious performance degradation. As
shown in Table 1, naive static token reuse lowers the
success rate from the OpenVLA baseline of 84.4% to just 74.2%.

This degradation occurs because task-relevant tokens, though minimally changed at the pixel level,
exhibit greater feature sensitivity to subtle environmental changes. Unlike vision-language models
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Algorithm 1 Dynamic Token Selection

1: Input: Frames {It−1, It}, thresholds τ ,
τtask, hyperparameter k

2: Output: Reusable token indices Pfinal

3: ▷ Static Token Selection
4: Patchify both frames It−1, It and compute

Sim(Pt,Pt−1) among related patches
5: Select Pstatic where similarity ≥ τ
6: Apply top-k filtering to refine static token

selection
7: ▷ Evict Task-Relevant Tokens
8: Compute text-to-vision attention scores

Stask-relevance
9: Select Ptask-relevant where attention ≥ τtask

10: Compute reusable tokens: Pfinal = Pstatic \
Ptask-relevant

11: return Pfinal

Algorithm 2 Adaptive Token Caching

1: Input: Token indices Pfinal, previous KV
cache {Kl

t−1,V
l
t−1}, representations Hl

t

2: Output: Updated KV cache {Kl
t,V

l
t}

3: Compute entropy Rl
cum, reuse ratio αl, sub-

set Preuse ⊆ Pfinal

4: for each layer l and token i do
5: if i ∈ Preuse then
6: Reuse cached values:

Kl
t(i) = Kl

t−1(i),V
l
t(i) = Vl

t−1(i)
7: else
8: Recompute:

Kl
t(i) = W l

KHl
t(i),

Vl
t(i) = W l

V H
l
t(i)

9: end if
10: end for
11: return {Kl

t,V
l
t}

(VLMs), VLA models must track object states and interactions over time, making them more
dependent on accurate visual encoding. Therefore, to ensure alignment with the latest environment
state, task-relevant regions must be recomputed each step.

Evicting Task-Relevant Tokens. To avoid reusing semantically critical but visually static tokens, we
propose a lightweight filtering mechanism using cross-attention scores from the language decoder.
For each decoder layer l, we extract the text-to-vision attention matrix Al

vis-text from the full attention
tensor Al ∈ RNheads×Ntokens×Ntokens as:

Al
vis-text = Al[:, vstart : vend, tstart : tend], (6)

where vstart, vend and tstart, tend are the indices of the vision and text tokens, respectively. To
aggregate the attention scores across multiple heads, we compute the mean attention for each
vision token as Al

avg = Meanheads
(
Al

vis-text

)
. For task relevance across multiple layers L, the

final task relevance scores are obtained by averaging the scores across the selected layers as
Stask-relevance = Meanl∈L

(
Al

avg

)
. Using these scores, we rank the vision tokens based on their

task relevance and apply a threshold τtask to select the most task-relevant tokens:

Ptask-relevant = {Pi,j
t | Stask-relevance[i, j] ≥ τtask}. (7)

Finally, we combine the set of static tokens Pstatic selected in the first step with the task-relevant
tokens. Tokens that are both static and highly task-relevant are removed from the reusable token set
to ensure they are recomputed in the current step:

Preuse = Pstatic \ Ptask-relevant. (8)

By filtering out semantically significant tokens from the static reuse set, our method restores the
degraded success rate from 74.2% to 82.6%, while maintaining the computational gains in FLOPs
and latency. This balance between task fidelity and efficiency illustrates the value of cross-modal
attention as a lightweight signal for safe token reuse in VLA models.

3.4 Layer Adaptive Token Reusing

While static token selection and task-relevance filtering eliminate a large portion of redundant
computation, we observe that attention distributions within the VLA decoder vary significantly across
different layers. This finding is consistent with observations reported by prior work FastV [29],
indicating that both VLA and VLM decoders exhibit similar patterns of attention flow: early layers
display dispersed attention, followed by fluctuations in intermediate layers, and eventually a partial
rebound near the final layers.

To account for these differences, we propose a layer-adaptive strategy that adjusts the fraction of
reused tokens based on each layer’s attention concentration. Specifically, we quantify the attention
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distribution at layer l via an entropy measure, following the same mean-attention computation
described in Eq. 6. Let E l denote the resulting entropy. We then define an entropy ratio Rl =
(E l−1 − E l)/E l−1, which captures how much more concentrated the attention is in layer l compared
to layer l − 1.

A positive Rl indicates that the attention distribution at layer l is more focused than that of layer l− 1.
We accumulate these ratios across layers to obtain a cumulative score, which in turn determines the
proportion αl of static tokens (from Pfinal) that are reused at layer l. Formally,

αl = min
(
k

l∑
j=1

Rj , 1
)
, (9)

where k is a hyperparameter that governs the impact of attention concentration. Layers with larger
cumulative entropy reduction are allowed to reuse a higher fraction of tokens, reflecting the insight
that as attention becomes more focused, fewer tokens are likely to require recomputation.

In practice, this layer-adaptive mechanism dynamically adjusts token reuse based on the evolving
attention patterns in the VLA decoder, effectively balancing computational efficiency with task
accuracy. By selectively retaining only the most relevant tokens at each layer, our method significantly
reduces redundant computations while maintaining reliable action prediction.

4 Implementations

4.1 Cross-Frame Visual Token Caching

During inference, VLA-Cache accelerates robotic action prediction by reusing previously computed
key-value (KV) representations of visual tokens across time. Instead of recomputing all visual tokens
in each time step, the model identifies a subset of static tokens, those that exhibit minimal change
across frames, and reuses their cached representations from the previous time step. In contrast,
dynamic tokens, which undergo significant visual change or are task-relevant, are freshly computed
to maintain accurate action generation.

At each timestep t, given the visual token sequence Ht, the model identifies a subset Preuse of tokens
that remain unchanged from the previous frame and reuses their cached representations:

Kt(i) =

{
Kt−1(i), i ∈ Preuse

WKHt(i), otherwise
, Vt(i) =

{
Vt−1(i), i ∈ Preuse

WV Ht(i), otherwise
. (10)

This design avoids redundant computation for static tokens while ensuring dynamic or task-relevant
inputs are freshly computed. Most existing approaches reduce computation by pruning or merging
tokens within a single frame [29–33]. In contrast, VLA-Cache exploits temporal redundancy by
caching and reusing visual tokens across frames, making it better aligned with the closed-loop nature
of robotic control. Notably, it is compatible with high-frequency architectures and directly alleviates
the decoding bottleneck. Since it requires no model modification or retraining, VLA-Cache serves as
a plug-and-play optimization for efficient robotic inference. An overview of the inference procedure
is shown in Algorithm 1 and Algorithm 2, detailing token selection and adaptive caching. Additional
implementation details are provided in Appendix D.

4.2 Theoretical Analysis of Computational Complexity

Overhead of Token Selection. The cost of static token identification is approximately O(H2)
due to patch similarity checks, while task-relevance filtering introduces a cross-modal attention
aggregation cost of O(LtLvD). The entropy-based layer-adaptive strategy incurs an additional
O(L2D) complexity, which remains significantly lower than the baseline per-layer cost.

Computational Cost Reduction. In standard VLA inference, each Transformer layer processes L
tokens, with a total FLOP cost per layer:

FLOPs ≈ 4LD2 + 2L2D + 2LDM. (11)

VLA-Cache reduces effective token count per layer to Lr = α×Pfinal, leading to theoretical savings:

∆FLOPslayer ≈ 4LrD
2 + 2L2

rD + 2LrDM. (12)
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Figure 3: Tasks on LIBERO Benchmark, the SIMPLER Environment and Real World.

Total Complexity Reduction. Bringing all components together, the theoretical overall FLOP
reduction per layer is:

∆FLOPstotal ≈
(
4LrD

2 + 2L2
rD + 2LrDM

)
−

(
H2 + LtLvD + L2D

)
. (13)

Please refer to Appendix C for detailed derivations, including static token selection costs, attention
filtering complexity, and layer-adaptive entropy calculations.

5 Experiment

To validate the effectiveness of VLA-Cache, we evaluate our method in both simulation and real-world
settings. In simulation, we evaluate VLA-Cache on three open-source VLA models: OpenVLA [11],
OpenVLA-OFT [20] and CogAct [19], using the LIBERO benchmark [17] and SIMPLER environ-
ment [18], respectively. All experiments are conducted on an NVIDIA RTX 4090 GPU.

5.1 Experiment Setup

Compared Methods. We leverage the architectural similarity between VLA and VLM models,
which allows direct application of existing VLM acceleration methods to VLA inference. Specifically,
we adopt two state-of-the-art token-level acceleration techniques SparseVLM [30] and FastV [29] on
OpenVLA as compared methods in the LIBERO benchmark.

Evaluation Metrics. We evaluate VLA-Cache using four metrics: success rate, control frequency,
FLOPs, and CUDA latency. Success rate and control frequency respectively assess task performance
and the responsiveness of action prediction in closed-loop control. FLOPs measure theoretical
computation, while CUDA latency captures actual GPU runtime. These two efficiency metrics are
widely adopted in VLM/VLA acceleration methods.

5.2 Evaluation Benchmark

LIBERO. The LIBERO Benchmark [17] covers four task suites: Spatial, Object, Goal, and Long,
each testing a different aspect of manipulation generalization. We follow the standard setup from
OpenVLA [11] and OpenVLA-OFT [20], using official weights and machines for consistency. Each
suite includes ten subtasks evaluated over multiple episodes.

SIMPLER. The SIMPLER simulator [18] offers two settings, Visual Matching and Variant Aggrega-
tion, designed to bridge simulation-to-reality gaps. Following CogAct’s setup [19], we evaluate both
settings on a Google robot arm across four manipulation tasks. CogAct, which integrates a Diffusion
Policy for continuous control, serves as our baseline. These evaluations demonstrate the generality of
VLA-Cache under different action heads and simulation variations.

Real Robot Evaluation. We deploy VLA-Cache on a Kinova Jaco2 manipulator equipped with a
front-facing camera. The robot is evaluated on four tasks: PickPot, PlaceCube, PutSausage, and
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Table 2: Comparison of different VLA acceleration methods on the LIBERO benchmark.

Method Success Rate ↑ FLOPs
(T)↓

Latency
(ms)↓

Control Freq.
(Hz)↑Spatial Object Goal Long Average

OpenVLA 84.4% 86.6% 75.6% 53.2% 75.0% 1.864 51.91 4.23
+ SparseVLM 79.8% 67.0% 72.6% 39.4% 64.7% 1.407 83.39 3.72
+ FastV 83.4% 84.0% 74.2% 51.6% 73.3% 1.864 53.28 4.19
+ VLA-Cache 83.8% 85.8% 76.4% 52.8% 74.7% 1.355 31.83 4.59

OpenVLA-OFT 97.8% 97.6% 97.6% 94.2% 96.8% 4.013 79.05 65.10
+ VLA-Cache 98.3% 97.5% 98.3% 95.4% 97.4% 3.097 62.59 78.98

Table 3: Comparison of VLA-Cache within the CogACT model in the SIMPLER environment.

SIMPLER Method Success Rate ↑ FLOPs
(T)↓

Latency
(ms) ↓

Control Freq.
(Hz) ↑PickCan MoveNear Drawer DrawerApple Average

Matching CogACT 91.3% 85.0% 71.8% 50.9% 74.8% 1.847 54.29 12.42
+ VLA-Cache 92.0% 83.3% 70.5% 51.6% 74.4% 1.496 39.63 14.66

Aggregation CogACT 89.6% 80.8% 28.3% 46.6% 61.3% 1.807 53.54 12.36
+ VLA-Cache 91.7% 79.3% 32.5% 45.8% 62.3% 1.493 39.11 14.48

WipeTable, with the last task including diverse distractor objects to test robustness. Demonstrations are
collected via teleoperation at 10 Hz using an Xbox controller, resulting in 150-200 trajectories per task.
We fine-tune OpenVLA with LoRA [38] and evaluate on the same tasks, using the LIBERO tuning
setup for consistency. More details about real-world experiments are available in the AppendixE.4.

5.3 Results on Simulation Environment

Main Results on LIBERO. Table 2 summarizes results across the four LIBERO task suites. VLA-
Cache reduces FLOPs by 27.31% and improves latency by 1.63× over standard OpenVLA, with
only a 0.3% drop in success rate. It performs robustly across tasks and exceeds the baseline on
goal-oriented manipulation. When applied to OpenVLA-OFT, a faster variant with action chunking,
VLA-Cache further boosts control frequency by nearly 14 Hz, showing strong compatibility with
high-frequency architectures and delivering additive gains even on optimized VLA models. In
contrast, FastV and SparseVLM fail to improve inference speed and often degrade task performance.
Their token pruning and merging strategies operate within a single frame and disrupt spatial fidelity,
which is critical for precise manipulation. Moreover, these methods target long output sequences,
whereas VLA models generate short action outputs (e.g., 7 tokens), rendering the speedups marginal.

Table 4: Ablation on token pruning/reuse in
LIBERO-Spatial using OpenVLA (256 vision
tokens). Best values are in bold.

#Tokens Methods SR % ↑ FLOPs ↓ Latency (ms) ↓
0 Baseline 84.4 1.888 52.37

50
SparseVLM 79.8 1.358 88.08

FastV 84.6 1.888 53.10
Ours 85.4 1.611 33.43

100
SparseVLM 74.6 1.097 61.01

FastV 83.4 1.888 45.72
Ours 83.8 1.295 31.29

200
SparseVLM 44.4 0.735 57.42

FastV 72.8 1.888 45.19
Ours 68.3 0.823 30.29

As illustrated in Figure 4, VLA-Cache effec-
tively reduces visual computation redundancy dur-
ing robotic manipulation by precisely identify-
ing static tokens and filtering out task-relevant
regions in real time. Notably, OpenVLA-OFT
takes both fixed third-person and dynamic wrist-
camera views as inputs. Its strong performance
demonstrates that VLA-Cache not only enhances
control frequency but also maintains robustness
under dynamic viewpoints and camera shifts.

Ablation on Token Reusing/Pruning Rate. Ta-
ble 4 presents an ablation study varying the num-
ber of reused/pruned tokens. For all methods, ag-
gressive token reduction harms success rate, underscoring the need to preserve informative content.
VLA-Cache maintains stable performance at moderate reuse rates (i.e., 100 tokens), while FastV and
SparseVLM suffer larger drops due to loss of critical visual details. By directly updating KV entries,
VLA-Cache remains more efficient and robust under different token reuse configurations.

Token Selection Strategies. As shown in Table 1, directly reusing all static tokens leads to a notable
drop in success rate 74.2%, indicating that visual similarity alone is insufficient for reliable reuse in
robotic control. By filtering out task-relevant tokens based on decoder attention, our method recovers
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Figure 4: Visualization of VLA-Cache token reuse across settings. (a) LIBERO simulation with
OpenVLA. (b) Real-world task under dynamic background. (c) and (d) Main and wrist camera views
from OpenVLA-OFT. Blue: static tokens, Yellow: task-relevant, Red: overlapping. VLA-Cache
reduces redundant computation and preserves accuracy under varying conditions.

performance to 82.6%. Introducing a layer-adaptive strategy further improves accuracy to 83.8%,
with minimal increase in CUDA latency.

Main Results on SIMPLER Table 3 indicates that VLA-Cache exhibits success rates comparable
to the CogACT baseline in the SIMPLER environment while substantially reducing computational
overhead.

The efficiency gains are evident in the FLOPs and inference time measurements. VLA-Cache
achieves roughly 20% fewer FLOPs than the baseline, coupled with a 1.37× reduction in inference
latency. Notably, these results highlight the portability of VLA-Cache across different action heads,
establishing it as a general acceleration strategy for VLA.

Table 5: Comparison of success rate on real robot tasks.

Method Success Rate ↑ FLOPs
(T)↓

Latency
(ms) ↓

Control Freq.
(Hz) ↑PickPot PlaceCube PutSausage WipeTable Average

OpenVLA 95.0% 83.3% 80.0% 70.0% 82.1% 1.814 64.16 4.02
+ VLA-Cache 90.0% 90.0% 85.0% 73.3% 84.6% 1.303 51.85 4.21

5.4 Results on Real Robot

Table 5 illustrates the performance of VLA-Cache in real-world robotic tasks. Among the four
tasks, PickPot shows a slightly lower success rate than the baseline, whereas VLA-Cache exceeds
the baseline on other three tasks. The method also achieves considerable reductions in FLOPs and
inference time. Overall, VLA-Cache improves the average success rate by 2.4%, likely due to
reduced interference from redundant visual tokens and enhanced decision robustness. With improved
robustness as a foundation, VLA-Cache’s ability to prune or reuse redundant tokens may further
enhance the model’s resilience, thus yielding higher success rates.

Performance under Dynamic Background. To assess robustness, we introduced background
motion (e.g., human hands and moving objects) in the PickPot task. As shown in Table 7, success
rate of baseline dropped from 95% to 80% under noise. With VLA-Cache, the same success rate was
maintained while reducing FLOPs by 42% and latency by 35%. These results highlight VLA-Cache’s
ability to filter out transient or irrelevant tokens, preserving both efficiency and stability in dynamic
real-world settings. Figure 4 visualizes this effect, showing robust token selection despite background
disturbances.
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6 Conclusion

In this paper, we introduce VLA-Cache, a training-free method for VLA that selectively reuses static
tokens while filtering out task-relevant ones, reducing redundant computation without sacrificing
accuracy. Additionally, our layer-adaptive token reuse strategy improves model success rates by
adjusting token reuse based on attention concentration. Extensive experiments on three VLA mod-
els, OpenVLA, CogAct and OpenVLA-OFT, across two simulation environments, LIBERO and
SIMPLER, demonstrate that VLA-Cache achieves a 1.7× speedup while maintaining performance.
Furthermore, we demonstrate its real-world applicability by deploying it on a Kinova Jaco2 robot
arm, and VLA-Cache achieves practical speedup under real-time control scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper proposes VLA-Cache, a training-free, plug-and-play method for
accelerating inference in Vision-Language-Action (VLA) models. The claims in the abstract
and introduction are well-aligned with the paper’s scope, demonstrating generalizability
across state-of-the-art VLA systems, real-world applicability, and robustness to dynamic
environments.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include the limitations of our work in Appendix A

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a theoretical analysis of computational complexity in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details are provided in Sec.5 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Github link offered.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided detals in Sec. 5 and Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Performing multiple repetitive experiments in order to compute error bars
islabor-intensive and has significant overhead for the large VLA models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research follows the NeurlPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We fully discuss the potential social impacts in Appendix B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used are from publicly available sources. They are released under
open-access or research licenses, which are respected and cited in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the relevant documentation in the Appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve any crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve any crowdsourcing or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing language embellishment and grammar checking.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

In this section, we discuss the potential limitations of the proposed VLA-Cache: (i) In dynamic
environments with substantial background or object motion, the number of non-reusable tokens
increases, reducing acceleration gains. As visualized in Figure 4, dynamic regions (highlighted in
yellow) require full recomputation. (ii) Our experiments focus on three state-of-the-art open-source
VLA architectures (OpenVLA [11], CogAct [19], OpenVLA-OFT [20]) based on LLaMA2 [15]
decoders. The applicability of VLA-Cache to emerging VLA systems with different backbones (e.g.,
Gemma2 [16] in π0 [24]) or more complex VLA systems remains an open direction for future work.

B Impact Statement

While VLA-Cache demonstrates robust performance even under dynamic conditions, we emphasize
the importance of careful deployment and continuous monitoring to ensure safe, interpretable, and
reliable behavior in real-world robotic systems.

C Complexity Analysis Details

Static Token Selection. We compute patch-wise similarity for visual tokens:

FLOPsstatic-sim = N2
patchDpatch ≈ H2. (14)

Since Npatch = H/p, this cost remains small relative to Transformer computations.

Task-Relevance Filtering. The attention-based filtering step computes cross-modal importance
scores:

FLOPstask-filter ≈ LtLvD. (15)

A sorting operation of O(L logL) follows for threshold selection.

Layer-Adaptive Entropy Computation. The entropy-based reuse strategy involves:

FLOPsentropy ≈ L2D. (16)

The per-layer reuse ratio is then computed as:

αl = min
(
k

l∑
j=1

Rj , 1
)
. (17)

These overheads remain modest compared to the full forward pass cost, enabling efficient token
reuse.

Final FLOP Reduction. The total FLOP savings across all layers follow:

∆FLOPstotal =

Ω∑
l=1

∆FLOPslayer. (18)

This confirms that dynamic token reuse significantly reduces computation without sacrificing model
performance.

D Inference Detail of VLA-Cache

Inference Procedure. VLA-Cache accelerates robotic action prediction by reusing static visual
tokens across frames during inference. At each timestep t, current visual tokens Ht are compared
with those from the previous frame to identify unchanged regions. Tokens that are both visually static
and task-irrelevant are reused via cached key-value (KV) entries, while task-relevant or dynamic
tokens are recomputed. This selective reuse substantially reduces visual processing cost without
altering model architecture or training.
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Token Reuse Mechanism. Our implementation modifies the VLA decoder’s forward pass as
follows:

• Position and Attention Masking. We maintain a cache_position array to mark tokens
requiring recomputation. Static tokens retain their previous position encodings, allowing
attention masks to be pruned to match the reduced token set.

• Rotary Embedding. For recomputed tokens, rotary embeddings are applied to introduce
positional information. Tokens that are skipped retain their previous encoded states.

• Dynamic Cache Updates. Newly computed tokens update their respective {Kl
t,V

l
t} entries,

while reused tokens inherit values from the previous frame’s cache {Kl
t−1,V

l
t−1}. Due to

the permutation invariance of Transformers, this partial update yields valid attention results.

This strategy is fully compatible with standard KV caching in autoregressive decoding. The largest
computational gain occurs when generating the first action token at each timestep; subsequent tokens
are decoded autoregressively without additional cost.

Experimental Settings. All experiments are conducted using OpenVLA with 256 visual tokens.
Unless specified otherwise, we use a static token similarity threshold τ = 0.996, top-k = 100 for
retained static tokens, and a task-relevance threshold τtask = 0.5. These parameters are applied
consistently across all simulated and real-world settings, including SIMPLER with CogAct. For
real-world Jaco2 experiments, we slightly reduce the similarity threshold to τ = 0.85 to accommodate
environmental noise. Training on the real robot used LoRA-based fine-tuning for 50,000 steps, and
all evaluations were performed on an NVIDIA RTX 4090 GPU.

E More Experiment Results

E.1 Simulation Experiment

LIBERO Task Definitions. Similarly, we also utilize all task suites provided in LIBERO for our
evaluations. The Robosuite-based robot setup includes the following tasks: 1) “place bowl on plate
with spatial variation” (e.g., drawer positions), 2) “pick object” (e.g., ketchup, bowl, apple), 3) “(open
/ close) target drawer; action object” (e.g., “open top drawer; place apple into drawer”), and 4)
“achieve goal using shared objects” (e.g., rearranging spatial relationships or altering object states).

SIMPLER Task Definitions. We utilize all task variants provided in SIMPLER for our evaluations,
which include the Google robot setup with the following tasks: 1) “pick Coke can”, 2) “move obj1
near obj2”, 3) “(open / close) (top / middle / bottom) drawer”, and 4) “open top drawer; place apple
into top drawer”. Evaluations for the Google robot setup are provided for both Visual Matching (VM)
and Variant Aggregations (VA).

Implementation Details. Simulated evaluations for CogACT and SIMPLER are conducted on
a single NVIDIA RTX 4090 GPU in BF16 precision. During inference, we use DDIM sampling
with 10 steps and a classifier-free guidance (CFG) coefficient of 1.5. Similarly, for OpenVLA and
LIBERO, inference is performed on a single NVIDIA RTX 4090 GPU in BF16 precision.

E.2 Additional Simulation Results

Result of Subtask on LIBERO Spatial Task Suit. Table 6 presents detailed results on each subtask
in the LIBERO-Spatial suite. We observe that VLA-Cache, along with methods like SparseVLM and
FastV, occasionally surpasses the baseline’s success rate on individual subtasks. This suggests that
certain redundant tokens may distract the baseline model, and pruning or reusing tokens can in fact
enhance its robustness.

Visualization Results. Figure 5 present evaluation examples of each tasks executed by OpenVLA
with VLA-Cache in LIBERO. More visualized results are available in the supplementary materials.
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Table 6: Comparison of success rates across different tasks in the LIBERO-Spatial benchmark.

Method Success Rate % ↑ FLOPs ↓ CUDA Time (ms) ↓
1 2 3 4 5 6 7 8 9 10 Avg

Baseline (OpenVLA) 90 90 84 96 70 90 96 76 82 70 84.4 1.888 52.37
SparseVLM 88 60 90 90 60 82 90 92 72 74 79.8 1.367 88.08
FastV 92 90 90 94 58 92 90 80 78 70 83.4 1.888 54.00
VLA-Cache 90 90 88 94 66 84 94 84 76 72 83.8 1.382 32.22

Table 7: Real-world PickPot task under dynamic background (human/object motion).

Method Success (%) ↑ FLOPs ↓ Latency (ms) ↓
Baseline (OpenVLA) 95 1.800 68.03
+ Noise 80 1.807 68.22
+ Noise, VLA-Cache 80 1.275 50.59

Figure 5: VLA-Cache test results and attention heat map in a simulated environment

E.3 Additional Ablations and Comparisons

Attention vs. object–mask proxies for task relevance. To validate whether attention score is a
reliable proxy for task relevance, we compared our default attention–based filtering with an object-
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mask alternative using Efficient Track Anything[39]. On LIBERO-Spatial with OpenVLA-OFT,
attention-based proxy yields both higher success rate and lower latency than the mask variant:

Method SR (%) ↑ FLOPs(T) ↓ Latency (ms) ↓ Freq. (Hz) ↑
OPENVLA-OFT 97.8 3.99 78.35 65.44

+ VLA-Cache (Attention) 98.3 3.04 61.12 81.67
+ VLA-Cache (Object Mask) 87.4 3.15 87.49 64.78

Table 8: Attention vs. object-mask proxies for task relevance on LIBERO-SPATIAL.

While object masks provide spatial localization, they can miss fine-grained or contextual signals
essential for manipulation, especially with background clutter or small, relevant parts. In contrast,
attention scores are dynamically produced and tightly coupled with the model’s internal reasoning,
providing a lightweight, task-adaptive proxy for relevance.

Sensitivity to static-token budget k and relevance threshold τ . We further analyze the trade-off
between accuracy and efficiency by varying the number of static tokens k (with τ=0.5 fixed) and the
task-relevance threshold τ (with k=100 fixed) on LIBERO-Spatial using OpenVLA-OFT. Results
indicate robustness across a wide range; our default (k=100, τ=0.5) offers a strong balance.

Method SR (%) ↑ FLOPs (T) ↓ Latency (ms) ↓ Freq. (Hz) ↑
OPENVLA-OFT 97.8 3.995 78.35 65.44

+ VLA-Cache (k=50) 97.6 3.332 66.82 77.23
+ VLA-Cache (k=80) 97.8 3.226 66.55 78.66
+ VLA-Cache (k=100) 98.2 3.156 64.88 79.88
+ VLA-Cache (k=120) 98.0 3.109 62.99 80.56
+ VLA-Cache (k=150) 97.4 3.043 61.12 81.67
+ VLA-Cache (k=180) 96.6 2.936 60.46 82.51

Table 9: Varying the static-token budget k (with τ=0.5).

Method SR (%) ↑ FLOPs (T) ↓ Latency (ms) ↓ Freq. (Hz) ↑
OPENVLA-OFT 97.8 3.995 78.35 65.44

+ VLA-Cache (τ=0.2) 95.6 3.384 66.93 76.74
+ VLA-Cache (τ=0.3) 96.2 3.283 67.03 79.31
+ VLA-Cache (τ=0.4) 98.0 3.204 66.38 79.79
+ VLA-Cache (τ=0.5) 98.2 3.156 64.88 79.88
+ VLA-Cache (τ=0.6) 98.6 3.131 64.27 81.98
+ VLA-Cache (τ=0.7) 98.4 3.068 63.12 82.96

Table 10: Varying the relevance threshold τ (with k=100).

Overall, efficiency (FLOPs and latency) improves monotonically with larger k and τ , while success
rate remains consistently high, corroborating the stability of VLA-Cache across sensitivity settings.
Our default (k=100, τ=0.5) is used for all main results unless stated otherwise.

Applicability to diffusion-based and alternative VLA architectures. VLA-Cache is designed to
accelerate the language-decoder stage of VLAs and is therefore not directly applicable to models
without a vision–language backbone, such as standalone diffusion policies. However, for hybrid
architectures that combine a VLM with a diffusion-based policy head (e.g., CogACT [19]), our method
remains fully compatible and has shown consistent efficiency gains and stable task performance in the
SIMPLER environment, as shown in Table 3. Since VLA-Cache operates by reusing temporally static
visual tokens before action generation, it can be integrated with diffusion-based or transformer-style
models (e.g., RDT, DiT) that exhibit inter-frame redundancy, offering a promising direction for future
generalization.
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E.4 Real Robot Experiment

Robot Setup. The setup of the Franka Robot is shown in Figure 6. In this example, a Kinova Jaco
robot arm with 6 degrees of freedom is rigidly fixed to the frame. We use a Sony AX53 camera,
which is placed opposite the robot arm. The camera is facing the operating table and transmits the
video in real time.

Figure 6: Kinova Jaco Robot Setup

Data Collection. Our data collection work is based on the CLVR_Jaco_Play dataset. We employed
PyBullet as an inverse kinematics (IK) controller. The system receives incremental Cartesian
displacement inputs (∆x,∆y,∆z) from an Xbox controller, which are processed to generate joint
velocity commands. These commands are transmitted to the robotic arm's velocity controller at
a 10Hz control frequency for real-time execution. We record four types of observations: Third-
person camera observations (front_cam_ob), End-effector Cartesian pose (ee_cartesian_pos_ob),
End-effector Cartesian velocity (ee_cartesian_vel_ob), Jaco arm joint positions (joint_pos_ob).

Data Preprocessing. The preprocessing procedure was conducted as follows. Initially, the recorded
frames underwent center cropping, reducing the resolution from 1280×720 to 912×720, followed by
resizing to 224×224. Subsequently, episodes were manually selected based on a visual inspection of
the video sequences generated from the recorded frames. To minimize potential biases associated with
excessively long episodes, those exceeding 250 steps were excluded from the dataset. Furthermore,
steps in which all recorded action values were zero were removed to ensure data relevance and
integrity.

Task Definitions and Success Criteria. We design four single-instruction tasks for the real-world
robot setting to evaluate manipulation performance across diverse object types and interaction modes.
The task definitions are as follows:

1. Pick Up Orange Pot (PickPot): The robot's goal is to grasp the orange pot and lift it
completely off the table. A trial is successful if the pot is grasped and raised with visible
clearance from the surface. We collected 218 valid demonstrations for the training dataset,
with slight random adjustments to the initial positions of the pot and the robotic arm in each
episode. During evaluation, each trial is recorded as a success (1) or failure (0); there is no
partial credit.

2. Place Blue Cube in Box (PlaceCube): The robot's goal is to place the held blue cube into the
target container. A trial is successful if the cube is fully inside the container at the terminal
step without contact-induced ejection. We collected 212 valid demonstrations for the training
dataset, with randomized container positions and robotic arm initial configurations in each
episode. During evaluation, each trial is recorded as a success (1) or failure (0); there is no
partial credit.

3. Put Sausage in Blue Pan (PutSausage): The robot's goal is to stably place the held sausage
into the blue pan. Success requires the sausage to rest inside the pan boundary at the terminal
step. We collected 219 valid demonstrations for the training dataset, with randomized pan
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coordinates and robotic arm joint angles across trials. During evaluation, each trial is
recorded as a success (1) or failure (0); there is no partial credit.

4. Wipe Table (WipeTable): The robotic arm's goal is to sweep scattered items into a fixed-
position dustpan using a broom. Success requires all designated items to be inside the
dustpan area at termination. For the training dataset, we collected 187 valid demonstrations
featuring randomized placements of simulated items (e.g., fries/cheese) on the table and
varied initial joint configurations of the robotic arm, while the dustpan location remained
fixed. This task explicitly incorporates dynamic environmental variations to rigorously test
generalization capabilities. During evaluation, each trial is recorded as a success (1) or
failure (0); there is no partial credit.

Trial Protocol and Randomization. We run 20 trials for PickPot and PutSausage, and 30 trials for
PlaceCube and WipeTable, for a total of 100 trials per method. For each trial we randomize the initial
robot configuration and the object placement within a bounded region of the workspace. Trials are
single-attempt with a fixed horizon; there is no human intervention or reset within a trial. Outcomes
are recorded as binary success or failure per the criteria above.

OPENVLA OPENVLA + VLA-CACHE

Task Success Failure SR (%) Success Failure SR (%)

PickPot (20) 19 1 95.0 18 2 90.0
PlaceCube (30) 25 5 83.3 27 3 90.0
PutSausage (20) 16 4 80.0 17 3 85.0
WipeTable (30) 21 9 70.0 22 8 73.3

Total (100) 81 19 82.1 84 16 84.6
Table 11: Real-world results with trial counts and success rates.

Results with Counts and Rates. Table 11 reports per-task successes and failures, along with the
corresponding success rate. Average success is computed across all 100 trials.

Visualization Results. Figure 7 present evaluation examples of each tasks executed by OpenVLA
with VLA-Cache on the Kinova Jaco Robot Arm. More visualized results are available in the
supplementary materials.
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Figure 7: Comparison between baseline (OpenVLA) and VLA-Cache in real environment.
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