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ABSTRACT

The field of cybersecurity has mostly been a cat-and-mouse game with the dis-
covery of new attacks leading the way. To take away an attacker’s advantage
of reconnaissance, researchers have proposed proactive defense methods such as
Moving Target Defense (MTD). To find good movement strategies, researchers
have modeled MTD as leader-follower games between the defender and a cyber-
adversary. We argue that existing models are inadequate in sequential settings when
there is incomplete information about a rational adversary and yield sub-optimal
movement strategies. Further, while there exists an array of work on learning
defense policies in sequential settings for cyber-security, they are either unpopular
due to scalability issues arising out of incomplete information or tend to ignore
the strategic nature of the adversary simplifying the scenario to use single-agent
reinforcement learning techniques. To address these concerns, we propose (1) a
unifying game-theoretic model, called the Bayesian Stackelberg Markov Games
(BSMGs), that can model uncertainty over attacker types and the nuances of an
MTD system and (2) a Bayesian Strong Stackelberg Q-learning (BSS-Q) approach
that can, via interaction, learn the optimal movement policy for BSMGs within a
reasonable time. We situate BSMGs in the landscape of incomplete-information
Markov games and characterize the notion of Strong Stackelberg Equilibrium (SSE)
in them. We show that our learning approach converges to an SSE of a BSMG and
then highlight that the learned movement policy (1) improves the state-of-the-art
in MTD for web-application security and (2) converges to an optimal policy in
MTD domains with incomplete information about adversaries even when prior
information about rewards and transitions is absent.

1 INTRODUCTION

The complexity of modern-day software technology has made the goal of deploying fully secure
cyber-systems impossible. Furthermore, an attacker often has ample time to explore a deployed
system before exploiting it. To level the playing field, researchers have introduced the idea of
proactive cyber defenses such as Moving Target Defense. In Moving Target Defense (MTD), the
defender shifts between various configurations of the cyber-system (1). This makes the attacker’s
knowledge, gathered during the reconnaissance phase, useless at attack time as the system may
have shifted to a new configuration in the window between reconnaissance and attack. To ensure
that an MTD system is effective at maximizing security and minimizing the impact on the system’s
performance, the consideration of an optimal movement strategy is important (2; 3).

MTD systems render themselves naturally to a game-theoretic formulation– modeling the cyber-
system as a two-player game between the defender and an attacker is commonplace. The expectation
is that the equilibrium of these games yields an optimal (mixed) strategy that guides the defender on
how to move their dynamic cyber-system in the presence of a strategic and rational adversary. The
notion of Strong Stackelberg Equilibrium predominantly underlies the definition of optimal strategies
in these settings (4; 5) as the defender deploys a system first (acting as a leader) while the attacker,
who seeks to attack the deployed system, assumes the role of the follower. In many real-world
scenarios, single-stage normal-form games do not provide sufficient expressiveness to capture the
switching costs of actions (4; 6) or reason about the adversary’s sequential behavior (7; 8). On the
other hand, works that consider modeling the MTD as a multi-stage stochastic game (9; 10; 11; 8),
do not model incomplete information about adversaries, a key aspect of the single-stage normal-form
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Figure 1: The defender starts with an uniform random strategy (x0); it switches to a possible
configuration of a software system with equal probability in each state. Then, the defender, upon
interactions with an environment and simulation of an adversary in their head, adapts its strategy at
every step and finally converges to the Strong Stackelberg Eq. (SSE) of the BSMG yielding x∗.

formalism (known as Bayesian Stackelberg Games (BSG) (12; 6)). To address these concerns about
expressiveness, while remaining scalable for use in cyber-security settings, we propose the unifying
framework of Bayesian Stackelberg Markov Games (BSMG). We show that BSMGs can be used to
model various Moving Target Defense scenarios, capturing the uncertainty over attacker types and
sequential impacts of attacks and switching defenses. We characterize the notion of optimal strategy
as the Strong Stackelberg Equilibrium of BSMGs and show that the robust (movement) strategy
improves the state-of-the-art found by previous game-theoretic modeling.

While multi-stage game models are ubiquitous in security settings, expecting experts to provide
detailed models about rewards and system transitions is considered unrealistic. Thus, researchers
have considered techniques in reinforcement learning to learn optimal movement policies over time
(13; 14; 15; 16). Unfortunately, these works ignore (1) the strategic nature and the rational behavior
of an adversary and (2) the incomplete knowledge a defender may possess about their opponent.
This, as we show in our experiments, results in a new attack surface where the defender’s movement
policy can be exploited by an adversary. To mitigate this, we bridge the knowledge gap between
existing work, and techniques in multi-agent reinforcement learning by proposing a Bayesian Strong
Stackelberg Q-learning (BSS-Q) approach (graphically shown in Figure 1). First, we can show that
BSS-Q converges to the Strong Stackelberg Equilibrium of BSMGs. Second, we design an Open-AI
gym (17) style multi-agent environment for two Moving Target Defenses (one for web-application
and the other for cloud-network security) and compare the effectiveness of policies learned by BSS-Q
against existing state-of-the-art static policies and other reinforcement learning agents.

In the next section, we motivate the need for a unifying framework and formally describe the proposed
game-theoretic model of BSMGs. We briefly discuss how two Moving Target Defenses are modeled
as BSGMs. We then introduce the Bayesian Strong Stackelberg Q-learning approach and show that it
converges to the SSE of BSMGs, followed by a section showcasing experimental results. Finally,
before concluding, we discuss related work.

2 BAYESIAN STACKELBERG MARKOV GAMES (BSMGS)

Markov Games (MGs) (18) are used to model multi-agent interactions in sequential planning problems.
Under this framework, a player can reason about the behavior of other agents (co-operative or
adversarial) and come up with policies that adhere to some notion of equilibrium (where no agent
can gain by deviating away from the action or strategy profile). While MGs have been widely used
to model adversarial scenarios, they suffer from two major shortcomings– (1) they do not consider
incomplete information about the adversary (19; 7; 20; 13) and/or (2) they consider weak threat
models where the attacker has no information about the defender’s policy (21; 14). On the other hand,
Bayesian Stackelberg Games (22; 6) are a single-stage game-theoretic formalism that addresses both
of these concerns but cannot be trivially generalized to sequential settings.
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To overcome these challenges of expressiveness required for Moving Target Defenses (MTDs) while
ensuring scalability, we introduce the formalism of Bayesian Stackelberg Markov Games (BSMGs).
BSMGs extend Bayesian Stackelberg Games (BSGs) to multi-stage sequential games. While one can
consider using existing formalism in Markov Games that capture incomplete information, they face
severe scalability issues and have thus been unpopular in cyber-security domains (we discuss how
BSMG is situated in this landscape of models in section 5). In the context of Moving Target Defense
(MTD), BSMG acts as a unifying framework helping us characterize optimal movement policies
against strategic adversaries, capture transition dynamics and costs of the underlying cyber-system,
aid in reasoning about stronger threat models, and consider incomplete information about strategic
adversaries. Formally, a BSMG can be represented by the tuple (P, S,Θ, A, τ, U, γD, γA) where,

• P = {D,A = {A1,A2, . . .At}} where D denotes the leader (defender) and A denotes the
follower (attacker). In our model, only the second player has t types.

• S = {s1, s2, . . . , sk} are k (finite) states of the game,

• Θ = {θ1, θ2, . . . θk} denotes k probability distributions (for k states) over the t attackers
and θi(s) denotes the probability of i-th attacker type in state s

• A = {AD, AA1 , . . . AAt} denotes the action set of the player and Ai(s) represents the set
of actions/pure strategies available to player i in state s.

• τ i(s, aD, aAi , s′) represents the probability of reaching a state s′ ∈ S from the state s ∈ S
when the D chooses aD and attacker type i choose the action aAi ,

• U = {UD, UA1 , . . . , UAt} where UD(s, aD, aAi) and U i(s, aD, aAi) represents the re-
ward/utility of D and an attacker type Ai respectively if, in state s, actions aD and aAi are
chosen by the players,

• γi 7→ [0, 1) is the discount factor for player i. We will assume that γD = γA〉 = γ.

In BSMGs the individual stage games constitute normal-form Bayesian games with a distribution
over attacker types; this is in contrast to the unit probability over a single adversary type in MGs. Both
in physical-security (22) and cyber-security (6) domains, defenders are known to have knowledge
about follower types, a classic case of known-unknowns. BSMGs provide the expressive power to
represent this information; precisely θs represents the probability estimate with which a defender
believes a certain kind of adversary is encountered in a particular state s of the game.

Note that a defender D is expected to deploy a system first. Thus, a strong threat model assumes
that all the attacker types Ai know the defender’s policy, making the Bayesian notion of Stackelberg
Equilibrium an appropriate solution concept for such games. For a normal-form game, let a defender’s
mixed policy be denoted as x and let us denote an attacker type Ai’s response set (i.e. a set of best
responses to x) as Ri(x). If the response set for all adversary types is singleton, then the action
profile (x,R1(x), . . . Rt(x)) constitutes a Stackelberg Equilibrium of the normal-form game (23).
When the response set contains more than one action, the final response chosen can yield different
rewards for D. In such cases, a popular assumption made in general-sum games is to consider
the response that results in the optimal rewards for D; this is termed as the Strong Stackelberg
Equilibrium (SSE) (24; 22; 4; 6). In contrast to the notion of Weak Stackelberg Equilibrium, which
considers the pessimistic case, an SSE is guaranteed to exist and yields a unique game value to the
defender regardless of the particular SSE chosen (25; 26). Thus, we consider SSEs as the solution
concept in BSMGs and highlight a few properties about player strategies at equilibrium for BSMGs
(the proofs are deferred to Appendix A).

Lemma 1. For a given policy of the leader/defender in BSMG, every follower/attacker type will have
a deterministic policy in all states s ∈ S that is an optimal response.

Corollary 1. For an SSE policy of the defender, denoted as x, each attacker typeAi has a deterministic
best policy qi. The action profile (x, q1, . . . qt) denotes the SSE of the BSMG.

Lemma 2. If an action profile (x, q1, . . . , qt) yields the equilibrium values V Dx,q and V Ai
x,q to the

players and is an SSE of BSMG, then ∀s ∈ S (x(s), q1(s), . . . , qt(s)) is an SSE of the bi-matrix
Bayesian game represented by the Q-values QD,i

x,qi(s), Q
Ai
x,qi(s) ∀i ∈ {1, . . . , t}.

When the parameters of a game are provided up-front, an approach similar to calculating Strong
Stackelberg Equilibrium in Bayesian Games (12) alongside Mixed-Integer Non-Linear Programming
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approaches (7) or Bellman-style approaches for Markov Games (20) can be leveraged to find the
defender’s policy. In contrast, when game-parameters are difficult to provide upfront but interaction
with an environment is considered possible, we can resort to reinforcement learning techniques.
Before proposing our model-free multi-agent reinforcement learning method in the next section, we
briefly discuss how the various MTDs, used later in the experiments, are modeled as BSMGs.

2.1 MODELING MOVING TARGET DEFENSE SCENARIOS AS BSMGS

A Moving Target Defense (MTD) is defined by the tuple 〈C, T,M〉 where C represents the set of
configurations a system can choose to be in, T represents a timing function that determines when a
system switches and M represents a movement function that determines the movement policy (3).
We assume a constant function T for switching (the game clock) and discuss how we can leverage C
to model the states and the actions of our BSMG. Finally, we leverage existing knowledge, discussed
in literature, to model the follower types for a particular MTD scenario.

2.1.1 MTD FOR WEB-APPLICATION SECURITY

In (6), the authors model an MTD for web-applications as a Bayesian Stackelberg Game (BSG) (22).
In addition, they consider the performance impact of movement between configurations (downtime,
service latency, etc.) when coming up with a movement policy. Given this utility is a function of a
two-stage strategy, this information can’t be accurately modeled by a single-stage normal-form BSG
that results in a state-agnostic sub-optimal policy. Clearly, the BSMG, given its sequential nature, is
better suited to capture this information.

The BSMG has |C| states, each representing a configuration of the MTD system. Each configuration
has an equal probability of being the start state in an episode and there exists no terminal state. In each
state, s ∈ S,AD(s) = C, i.e. the defender can choose to move to any configuration (this includes
remaining in the same state). The three attacker types are denoted as A = {A1,A2,A3} and the
probability distribution, provided in (6), over these types in-state s represented is θs. The adversary’s
action sets, denoted by (AA1 , AA2 , AA3), represent mined CVEs from the National Vulnerability
Database (27) (similar to (6)). As per the original domain, the distribution over attacker types (and
the follower’s attack set) remain the same in all states of the BSMG.

2.1.2 MTD AGAINST MULTI-STAGE ATTACKS

MTD for cloud networks has modeled the problem of placing Intrusion Detection Systems (IDSs) as
a Markov Game (21; 20). The key objective of these works is to minimize the performance impact
of a deployed defense configuration while ensuring security is maximized. While BSMGs allow us
to represent uncertainty over attacker types, existing formulations consider single follower types,
thereby boiling down to an MG. Although we will use an MG for this scenario, we note that our
framework is capable of incorporating ongoing research on the characterizing attacker types in the
context of cyber-systems (28).

Attack graphs are an attack representation method used to capture possible attack paths through a
network (29). Nodes of this attack graph, that describe physical locations in the cloud system and an
attacker’s privilege level, constitute the states of our BSMG, similar to the MG formulation in (20).
The defender’s actions in a state AD(s) represents IDS that can be deployed in the state s to identify
possible exploits and the attacker’s actions represent the possible exploits, which are obtained by
considering CVEs effective against the defender’s cloud system.

3 BAYESIAN STRONG STACKELBERG Q-LEARNING IN BSMGS

While game-theoretic formalism has been used to model various cyber-security scenarios (30; 31; 6),
it is impractical to expect security experts to provide the parameters of the game upfront (13; 15; 16).
In the context of Moving Target Defense (MTD) in particular, determining the impact of various
attacks, the asymmetric impacts of a particular defense on performance, and the switching cost of
a system are better obtained via interaction with an environment. Further, there exists uncertainty
regarding the success of an attack (eg. a buffer overflow attack may need significant tinkering for it to
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Algorithm 1: Bayesian Strong Stackelberg Q-learning (BSS-Q) for BSMGs.
1: In: (P, S,A,Θ, γ), mtd_sim, α, num_episodes
2: Out: Policies of the players x for D, qi ∀i ∈ A
3: while num_episodes > 0 do
4: s← sample start state from S
5: while s 6= terminal state OR !max_eps_len do
6: i← sample attacker type using θs from A
7: aD, aAi ← ε-greedy sampling form x(s), qi(s)
8: rD, rAi , s′ ← mtd_sim.act(s, aD, aA)
9: QD,i ← (1− α)QD,i(s, aD, aAi) + α[rD + γDV D(s′)]

10: QAi ← (1− α)QAi(s, aD, aAi) + α[rAi + γDV Ai(s′)]
11: (x, qj), (V

D, V Aj )← solve Bayesian Stackelberg Game(QD,i, QAj ) ∀j
12: end while
13: end while

be successful) and also the success of defense mechanisms (eg. Intrusion Detection Systems based
on machine learning can be inaccurate) which can be better inferred via repeated interactions.

In existing works on MTD, the goal, in the presence of (1) game parameters and (2) incomplete
information about an adversary, is to learn a robust policy that works best, in expectation, against
all adversaries. When modeled as a multi-agent reinforcement learning problem, an interesting
distinction ensues. If the defender gets to interact with the environment and an actual adversary,
they can update their incomplete information about the adversary, leading to a Bayesian style update
regarding the attacker types in the new state returned by the environment (14). Unfortunately,
reinforcement learning methods, which are often sample-inefficient, will require abundant interaction
with a real-world adversary; an impossible feat in cyber-security scenarios. Thus, the best the defender
can do is to simulate a rational adversary in their head. Given the adversary’s type is unknown during
the policy learning phase, the defender needs to sample an attacker from the set of attacker types in
each state of the game to eventually learn a robust policy in each state.

To learn a robust policy, we consider the use of a Multi-agent Reinforcement Learning approach for
BSMG. Specifically, given the inherent leader-follower paradigm present in our setting, we propose
the use of a Bayesian Strong Stackelberg Q-learning (BSS-Q) approach for BSMGs discussed in
algorithm 1. The approach is similar to existing work in multi-agent reinforcement learning (MARL)
and considers a Bellman-style Q-learning approach for calculating the agent policies over time. In
lines 9 and 10, we update the Q-values for the players D and adversary type Ai in the state s using
the rewards obtained by acting in the environment. Since we simulate the adversary, we can select an
action on its behalf and send it across to the simulator mtd_sim. Given mtd_sim which has an idea
whether the attack succeeded or failed, it can send us back the attacker’s reward.1 In existing works
on MARL, they make a default assumption that the defender gets the attacker’s reward even when
the adversary is not simulated (32). While this assumption is somewhat justified in the context of
constant-sum or common-payoff games, it becomes unrealistic in the context of general-sum games.

In line 11, we use a Bayesian Stackelberg Game solver to calculate the BSS of the normal form
Bayesian bi-matrix game defined by the Q-values in state s. It is known that finding an SSE of a
Bayesian Stackelberg Game is NP-hard and thus, the computation in line 10 might seem prohibitive.
In practice, as shown in our experiments, compact representation of the scenario as a MILP (22) can
help in computing the value and the policy within a second even for web-application domains with
more than 300 executable attack actions (6). Note that even though only one follower type acts in
the environment, the change in the defender’s policy because of this can lead to the other follower
types switching their actions. Hence, solving the Bayesian stage game (in its full glory) becomes
essential to converge to an SSE policy of the BSMG (and batch update methods, which can speed-up
computation, become less reliable). Methods that scale-up equilibrium computation in security games
(4) rely on a known reward structure. Unfortunately, this makes it difficult to justify their use in our
setting, where the rewards are unknown and thus, may have an arbitrary reward structure.

1If interaction with an adversary is possible, the defender should consider a Bayesian style update of the
parameters θs depending on the observed action and the observed reward after line 10.
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Figure 2: The defender’s value in the four states of the BSMG modeling the MTD for web-applications
when using BSS Q-learning (blue) compared to Uniform Random Strategy (orange) (34), a Bayesian
version of EXP-Q learning (green) (13) and the optimal stage-agnostic strategy (red) (6).

Note that one can choose to move the attacker type sampling (Line 6) outside the inner while loop.
This would imply sampling an attacker for each episode and interacting with them, making it easier
to understand that the attacker type can plan for future rewards (when γAi > 0) and come up with
far-sited strategies. Given that an attacker type used it own Q-value and value functions for updating
its Q-values (Line 10), sampling done is each state (i.e. inside the nested while loop) still ensures
that the attacker types are not myopic. Further, sampling in each states results in the defender not
over-fitting to one attacker in one episode and then having to adjust it policy for a different attacker in
the next one which can lead to a slower convergence. Now, we show that our method converges to
the optimal policy at Bayesian Strong Stackelberg Equilibrium.

Proposition 1. (Convergence Result) The Bayesian Strong Stackelberg Q-learning approach
converges to the BSS of a BSMG. (The detailed proof can be found in Appendix A.)

Proof Sketch. We show that for all the players (i.e. the defender and the individual attacker types) (1)
the Q-value calculation (that uses the game values of the future states, denoted as an operator) is a
real contraction operator and the (2) update process (Line 9-10 of algorithm 1) converges to a fixed
point. While the proof skeleton is similar to the one in (33), the proof is more complex due to the
presence of multiple attacker types. In proving (1), we need to reason about Bayesian stage games.

4 EXPERIMENTS

We conduct experiments to understand the effectiveness of the learned movement policies for two
MTD scenarios. As many existing baselines can’t handle unknown utilities and transition dynamics,
we develop an OpenAI style (17) game simulator that is aware of the underlying game parameters
but interacts with the learning agents only via selected public-facing APIs. This helps us to compare
against baselines that assume game parameters are available. While the impacts of attack actions
are obtained in the simulator using the Common Vulnerability Scoring Service (CVSS), we can
consider real system interaction, pending investigation, to obtain less-informative and sparse rewards.
More details about the game simulator and additional experiments can be found in the supplementary
material. For both experiments, the defender (who samples a follower type in each interaction) is
a single-thread process and regardless of their own policy, are pitted against a strategic and ration
adversary. The code used Gurobi for solving the Bayesian Stackelberg Game (BSG) game in line 11
of algorithm 1 and ran on an Intel Xeon(R) CPU E5-2643 v3 @ 3.40GHz with 64GB RAM.

MTD FOR WEB-APPLICATIONS

We use the game parameters obtained in (6) to design our game simulator. The simulator, given
the current state and the defender’s action, lets us return the switching costs as a part of the reward
obtained via interaction with the environment. The game has four states, each representing a full-stack
configuration of the system– {(py, MySQL),(py, PostgreSQL),(Php, MySQL),(Php, PostgreSQL))}.
We consider three attacker types– A1 (database hacker) with 269 actions, A2 (script kiddie) with
34 actions, and A3 (mainstream hacker) with 48 actions (detailed CVE-list can be found in the
supplementary material).
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Figure 4: Values in the BSMG-based MTD for IDS placement when using BSS Q-learning (blue)
compared to Uniform Random Strategy (orange), EXP-Q learning (green) and Nash Q-learning (red).

The defender’s policy in each state is a mixed strategy that directs how to switch to a different
configuration, while an attacker type’s policy prioritizes attacks that cause maximum damage. In
Figure 2, we plot the defender’s reward (over 6 trials) in this BSMG for our BSS-Q learning agent and
other baselines. In each setting, we use a discount factor of γ = 0.8, an exploration rate of ε = 0.1
(that gradually decays to 0.05) and initiate the agents with a uniform random strategy (except in the
case of S-OPT explained as follow). The average time used by the methods for one trial are is shown
in Figure 3. We will now explain all the baselines considered.

Agents Time (sec)
Static 84.097± 0.157
B-EXP-Q 224.827± 1.449
BSS-Q 151.127± 13.403
B-Nash-Q > 3600

Figure 3: Run-time of the learn-
ing agents for 80 episodes.

Static Movement Policies These defense policies, evident from
its name, are determined up-front (using game parameters pro-
vided initially) and do not change. The placebo baseline, used as a
sanity check in the context of MTDs, is the Uniform Random Strat-
egy (URS); it selects each action in a state with equal probability
(34). Then, we consider the state-agnostic optimal policy (S-OPT)
determined by the game-theoretic formulation of the MTD with
switching costs (6); this is the state-of-the-art movement policy in
this scenario.

Learning Agents In (13), the authors leverage adversarial multi-arm bandits in learning policies
for an agent in Markov Security Games. While the paper draws inspiration from works in Stackelberg
Security Games (4), the EXP Q-learning approach does not consider (1) a strategic adversary that can
adapt or (2) uncertainty over attacker types. We adapt their algorithm for BSMGs by ensuring that the
update to the sum of rewards is weighed by the attacker type’s probability. We call this the Bayesian
EXP Q-learning agent (B-EXP-Q). The Bayesian Nash Q-learning (B-Nash-Q) (14), even after we
remove the Bayesian update of θs, does not scale for this domain and thus, can only be compared
against in simple toy domains (a non-Bayesian version is discussed for the other MTD).

In Figure 2, we see that the BSS Q-learning agent outperforms URS in all the states of the BSMG and
better than B-EXP-Q and S-OPT in s2 and s3, attaining a reward close to 0, which is the maximum
reward possible in this game. In s0 and s1, the B-EXP-Q agent, similar to the BSS-Q agent, converges
to an optimal movement strategy. Meanwhile, in s3, the best response of the attacker results in lower
rewards for a particular defense action, in turn making this action less probable. As soon as the
defender switches to a more promising action, the attacker changes their response to yield a low
value for that action. It should be no surprise that defense strategies learned via single-agent RL
methods (eg. (13; 15; 16)) are prone to be exploitable against strategic opponents in cyber-security
scenarios. The existence of such a cycle makes the learned policy exploitable, resulting in low
rewards consistently. In such cases, even the URS yields better rewards because its lack of bias makes
it less exploitable. The S-OPT, as described in (6), yields a strategy that moves between two MTD
configurations represented by s2 and s3. As such a strategy can never find itself in any other state of
the game, to be fair, we ensure that the start state in each episode is uniformly sampled from s2, s3.
Thus S-OPT has no footprint in the states s0 and s1. As stated before, the S-OPT strategy, a resultant
of the state-agnostic game-theoretic formulation, is doomed to be sub-optimal. Unsurprisingly, the
policy learned by BSS-Q is shown to be better in s2 and s3. A drop in rewards near episode 70 in s1
for BSS-Q can be attributed to the discovery of powerful attacks by two follower types in one trail.
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MTD FOR IDS PLACEMENT

We consider the General-Sum Markov Game formulated in (20). As described earlier, this domain
has four states, of which, one is a terminal state. As the set of follower types in this game in singleton,
the BSMG model boils down to Markov Game. Hence, the vanilla EXP-Q agent can be used (albeit
against a rational follower). The URS baseline remains unchanged, S-OPT deems to exist and instead
of Bayesian Nash, we can consider the relatively more scalable Nash Q-learning (Nash-Q) agent (35).
The rewards obtained by the various agents in the three non-terminal states of the game are plotted
in Figure 4. We do not plot the rewards obtained by the model-based inference algorithm in (20)
because the policy learnt by the proposed BSS-Q agent eventually converges to an optimal policy
at SSE (plotting both results in overlapping graphs after BSS-Q converges, hampering readability).
Given the domain has relatively fewer actions, we average the reward over 10 trials; each trial had
100 episodes and with an exploration rate of 0.1 and a discount factor of 0.8.

The BSS Q-learning agent outperforms the two previous baselines– URS and EXP-Q– in at least one
of the three states. In this setting, the Stackelberg threat model adversely affects the policy learned by
EXP-Q resulting in consistent low rewards for states s1 and s2. While (20) shows that the SSE ⊆
NE for the MG owing to the structure of the defender’s strategy sets, we see that Nash-Q performs
slightly worse the BSS-Q in state s1. This happens because the existence of multiple Nash Equilibria
throws-off Nash-Q from the optimal reward path (36). Similar rewards are observed in all other
states.

5 DISCUSSION AND RELATED WORK

POSG

MGII BMG

BSMG

MG

MDP

Figure 5: Situating BSMGs in the land-
scape of game-theoretic models that cap-
ture incomplete information.

The Landscape of Existing Games We seek to an-
swer two questions– where does our BSMG fit in and
why it is useful. In Figure 5, we graphically situate
BSMG in the landscape of existing work. BSMG, as
seen in the experiments, can generalize Markov Games
(18) (and therefore, MDP). Instead of assuming infi-
nite reasoning capabilities required for Bayesian Nash
equilibrium (37), Bayesian Markov Game considers sce-
narios where players have finite levels of belief about
other players(s) (38). On the other hand, Markov Games
with Imperfect Information (MGIIs) assumes a Marko-
vian property over the state, the observations, and the
joint set of actions; this results in reasoning over op-
ponent types and allows them to decompose Partially
Observable Stochastic Games (POSGs) (39) into a set
of Bayesian stage-games (40). In BSMGs, the assump-
tion of a pre-specified distribution over attacker types
helps us (1) avoid reasoning over the nested belief space,
and (2) can be interpreted as the private information of
the opponent in MGIIs (and POSGs) as being provided
upfront. Thus, BSMG becomes a special case of MGII
and BMG with the added semantics of leader-follower
interaction. Our assumptions (about modeling imperfect information) helps our game be scalable
while providing adequate expressive power in the context of MTDs.

Multi-agent Reinforcement Learning in Markov Games A standard solution strategy in MGs,
when τ and U are unknown but a simulator is available, is to adapt the Bellman’s update used in
the single-agent Markov Decision Processes (MDPs) for multi-agent reinforcement learning to learn
equilibrium policies (36). In the context of MARL, researchers have investigated different notions
of equilibrium. The min-max Q-learning is meaningful when the game has a zero-sum reward
structure (41). On the other hand, Nash Q-learning, introduced in (35), has been categorized into
two types by (42)– Friend, where the game defined by the Q-values always allows for an optimal
joint action profile, and Foe, where the game admits a saddle point solution. The convergence of
these algorithms is mostly shown by the fact that Q-values of the states in self-play, given infinite
exploration, approach the correct Q-values (i.e. calculated Q-values if all the parameters of the game
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were provided upfront). The convergence of Nash Q-learning in the context of general-sum games
becomes difficult because of the existence of multiple equilibria and the lack of a common incentive
or co-ordination amidst agents (36). In correlated equilibrium (CE) Q-learning (43), authors assume
the existence of a correlation device accessible to both players. However, the authors show that
the learned strategies of the players converge to an uncorrelated equilibrium. On the other hand,
in Stackelberg Q-learning (32), there exists a leader-follower paradigm among the players, i.e .the
leader’s strategy can be observed by a follower before the latter commits to an action. Convergence
guarantees in self-play, although popular, become less meaningful when action sets of the players are
different (defense configuration vs. exploits) and game utilities have a general-sum reward structure.

Leader-follower scenarios Researchers have investigated solution concepts in the context of
Stochastic games with multiple followers, but do not model incomplete information about them.2 The
interaction is generally modeled as a Semi-Markov Decision Process (44) and improvements consider
(1) multiple followers (45), (2) factored state spaces (46), (3) methods based on deep reinforcement
learning (47; 48) etc.

Reinforcement Learning in MTDs Works that are precursors to our BSS-Q learning approach
are the min-max Q-learning (21) in the context of complete information MGs and the Bayesian
Nash Q-learning (14) for dynamic placement of sensors. Recent works that model the multi-agent
cyber-scenarios as an MDPs (RL in Flip-it games (15)) or POMDPs (RL for MTDs (16)) generate
policies that can be exploited by a strategic adversary.

6 CONCLUSION

We proposed a Bayesian Stackelberg Markov Game (BSMG) that considers the leader-follower
scenario and uncertainty over adversary types in Markov Games. We showed that BSMGs are a
unified framework to characterize optimal movement policies in Moving Target Defenses (MTDs) and
then proposed a Bayesian Strong Stackelberg Q-learning (BSS-Q) approach to learn robust policies
when the rewards and transitions are absent. We showed that BSS-Q learning converges to the SSE of
the BSMG. Experiments conducted in two cyber-security scenarios– MTD for web-application and
MTD for cloud-networks– showed that policies learned using BSS-Q outperform existing baselines.
Supplementary material contains proofs, environment details and additional experiments.
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A APPENDIX – PROOFS

In this section, we present the proofs associated with the lemmas that characterize follower strategies
and Strong Stackelberg Equilibrium (SSE) in Bayesian Stackelber Markov Games (BSMGs). We
then show that, under specific conditions, the SSE Q-Learning (SSE-Q) converges to the SSE of
BSMGs.

Lemma 1. For a given policy of the leader/defender in BSMG, every follower/attacker type will have
a deterministic policy ∀s ∈ S.

We note that BSMGs adhere to the Markovian nature and thus, a leader’s policy is a Markov stationary
policy (7). For each follower type, a modified state transition function τ ′ that accounts for (1) the
original transition τ and (2) the leader policy x constitutes a Markov Decision Process (MDP) (i.e.
τ ′ = τ · x). This guarantees that each follower type has a deterministic best-response policy given a
leader’s policy.

Corollary 1. For an SSE policy of the defender, denoted as x, each attacker typeAi has a deterministic
policy qi. The action (x, q1, . . . qt) denotes the SSE of the BSMG.

We can now extend results known for Markov Games with a single follower type with a singleton
response set where the distinction between Strong and Weak SE does not arise (32).

Lemma 2. An action profile (x, q1, . . . , qt) that yields the equilibrium values V Dx,q and V Ai
x,q to the

players is at SSE of BSMG, iff ∀s ∈ S (x(s), q1(s), . . . , qt(s)) is an SSE of the bi-matrix Bayesian
game represented by the Q-values QDx,qi(s), Q

Ai
x,qi(s).

First, note that a follower type can have a pure strategy response that corresponds to a Strong
Stackelberg Equilibrium for single-stage normal-form games. Given a defender’s policy, the attacker
solves a linear (reward) maximization that always has a pure strategy in support of an optimal mixed
strategy (22). Hence, qi(s) is a pure-strategy of the bi-matrix game represented by the Q-values if

12
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state s. This ensures that the SSE of the BSMG (Corollary 1) and the SSE of the bi-matrix games in
each state admit pure-strategy for the individual follower types.

We will now prove the lemma in the forward direction by considering a proof by contradiction.
Let us assume that (1) (x, q1, . . . , qt) is an SSE action profile of BSMG with equilibrium values
V p
x,qi ∀p ∈ P but, (2) ∃s ∈ S for which (x(s), q1(s), . . . , qt(s)) is not the SSE of the bi-matrix

Bayesian game defined by the Q-values of s . If it were so, given that an SSE is bound to exist for
the bi-matrix Bayesian game and it yields the highest unique pay-off to the players in a bi-matrix
Bayesian game, a player p (D or Ai) should switch from their current strategy to an SSE in state s.
This would clearly yield values higher than V p

x,qi(s) for that state. This violates (1) because V p
x,qi(s)

was the equilibrium values of the BSMG corresponding to an SSE policy that has a unique optimal
value. Thus, (1) implies (2).

A similar proof by contradiction can be constructed for the backward direction. Briefly, if the strategy
in the states constitute SSE of the stage game but are not an SSE of the BSMG, it must be possible
to switch the strategy in at least one state to yield the higher value guaranteed by the SSE of the
BSMG. But if that is the case, the original assumption that the initial strategy in that state is an SSE
is contradicted. �

A.1 PROPOSITION 1 (CONVERGENCE RESULTS)

Our proof of convergence is inspired from the initial work by (33). Let us call the Q-value update
step as a process Ω : Q→ Q where Q represents the space of Q-values. Formally we can express the
update equation for the leader D as,

Ω(QD,i(s, aD, aAi)) = UD,i(s, aD, aAi) + γV D(sT+1)

Where V D represents the leader’s game value in the Bayesian Stackelberg Game (BSG) defined by
Q-values and the distribution over follower types in state sT+1. With some abuse of notation, we can
drop the arguments (s, aD, aAi) for both the functions QD and UD and rewrite the above equation
by expanding the value function as follows.

Ω(QD,i) = UD,i + γV D(sT+1)

To prove convergence of the function/operator/process Ω, we need to show the following two
conditions hold (as described in (33); the other two conditions mentioned hold trivially in our setting,
as it holds in the case of other Q-learning approaches).

(1) The following processes converge to a fixed point.

QD,i
T+1 = (1− αT )QD,i

T + αT Ω(QD,i
sse) ∀ i

QAi

T+1 = (1− αT )QAi

T + αT Ω(QAi
sse) ∀ i

where Qsse represents the Q-values at SSE of the BSMG.
(2) The process Ω is a real contraction operator.

||Ω(Q)− Ω(Q̄)|| ≤ a||Q− Q̄|| ∀Q, Q̄ ∈ Q

where 0 < a < 1 and || · || denotes the supremum operator over the vector space Q.

To prove the conditions in (1), we leverage the Condition Averaging Lemma stated in (33) and thus,
have to show that,

QD,i
sse = E[Ω(QD,i

sse)] , QAi
sse = E[Ω(QAi

sse)] ∀ i
where the expectation is over the states reached. To show this, we first expand the right hand side of
the equation and showing that this expansion is equal to the left hand side.

E[Ω(QD,i
sse)] = UD + γ E[V D(s′)]

= UD + γ E[V Dsse(s
′)]

= UD + γ
∑
s′

τ(s′|s, σ) ∗ V Dsse(s′)

= QD,i
sse
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where V Dsse indicates the game value of the defender at SSE. V D = V Dsse because the Q-matrices in all
state represent the value at SSE. The final equality is a result of the Bellman equation for multi-agent
settings. It is easy to see that the same line of reasoning holds for all all follower types.

To prove the condition in (2), we will first expand the Left Hand Side (LHS) followed by the expansion
of the Right Hand Side (RHS). Then we will show that a stricter case of the inequality is satisfied.
We first show this for the follower and then, for the leader.

||Ω(QAi)− Ω(Q̄Ai)||
= max

s

(
Ω(QAi(s, x,R(x)))− Ω(Q̄Aii(s, x,R(x)))

)
= γmax

s

(
V Ai(s′)− V̄ Ai(s′)

)
= γmax

s

(
max

x
QAi(s′, x,RAi(x))−max

x
Q̄Ai(s′, x,RAi(x))

)
= γ

(
max

x
QAi(s′, x,RAi(x))−max

x
Q̄Ai(s′, x,RAi(x))

)
(1)

The first equality is based on the use of the supremum operator. Given that the max occurs for some
s, without loss of generality, we can assume this state is s going to state s′. In a similar way, we can
expand the RHS for the follower.

a||QAi − Q̄Ai ||
= amax

s
max

x
max

q

(
QAi(s, x, q)− Q̄Ai(s, x, q)

)
≥ amax

x
max

q

(
QAi(s′, x, q)− Q̄Ai(s′, x, q)

)
≥ amax

x

(
QAi(s′, x,RAi(x))− Q̄Ai(s′, x,RAi(x))

)
(2)

Note that we now have a stricter version of the RHS. If we can now show that Equation 1≤ Equation 2,
then we can prove condition (2) holds for the Q-values of all follower types. Given 0 ≤ γ < 1, we
can consider a = γ. Now we have,

γ
(

max
x

QAi(s′, x,RAi(x))−max
x

Q̄Ai(s′, x,RAi(x))
)

= a
(

max
x

QAi(s′, x,RAi(x))−max
x

Q̄Ai(s′, x,RAi(x))
)

≤ amax
x

(
QAi(s′, x,RAi(x))− Q̄Ai(s′, x,RAi(x))

)
≤ a||QAi − Q̄Ai ||

The first inequality holds because in the second step, one can select two different x-s to minimize the
difference while in the third step, one is constrained to select the same x for both the Q-values.

Now, we show that Ω is also a contraction operator for the Q-values of the defender. Showing the
property holds is difficult to show for individual follower types because of the Bayesian nature of the
game. It is possible to show this for a transformed attacker conjured using the Harsanyi transformation
(49). In this setting, the single attacker type has actions that are cross product of the action of all
other players and the utilities of the Q-value matrix is the expected Q-value over the original attacker
types. Given this single attacker type, we use QD to denote the Q-values against this new transformed
attacker. Given the solver we are using in our BSS Q-learning approach in calculating SSE of the
BSG stage games is equivalent to the SSE of this transformed game (22), showing Ω is a contraction
operator for QD is sufficient to show convergence. We use A in the superscripts to denote value for
this transformed attacker type.
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||Ω(QD)− Ω(Q̄D)||
= max

s

(
Ω(QD(s, x,RA(x)))− Ω(Q̄D(s, x,RA(x)))

)
= γmax

s

(
V D(s′)− V̄ D(s′)

)
= γmax

s

(
max

x

∑
i

θi(s′)QD,i(s′, x,RD,i(x))−max
x

∑
i

θi(s′)Q̄D,i(s′, x,RD,i(x))
)

= γ
(

max
x

∑
i

θi(s′)QD,i(s′, x,RD,i(x))−max
x

∑
i

θi(s′)Q̄D,i(s′, x,RD,i(x))
)

= a
(

max
x

∑
i

θi(s′)QD,i(s′, x,RD,i(x))−max
x

∑
i

θi(s′)Q̄D,i(s′, x,RD,i(x))
)

≤ amax
x

(∑
i

θi(s′)QD,i(s′, x,RD,i(x))−
∑
i

θi(s′)Q̄D,i(s′, x,RD,i(x))
)

≤ amax
s

max
x

(∑
i

θi(s)QD,i(s, x,RD,i(x))−
∑
i

θi(s)Q̄D,i(s, x,RD,i(x))
)

≤ amax
s

max
x

Π max
qAi

(∑
i

θi(s)QD,i(s, x, qAi)−
∑
i

θi(s)Q̄D,i(s, x, qAi)
)

≤ amax
s

max
x

max
qA

(
QD(s, x, qA)− Q̄D(s, x, qA)

)
= a||QD − Q̄D||

If we were now to consider Q̄ = Qsse for all the player and player types, then the Q-values learned
by our method will approach Qsse. While this completes our convergence proof, we note that
convergence rate depends on two factors. First, Selecting randomly among best-responses, even if
multiple exist, for the follower results in slower convergence. Selecting consistently in some order
(eg. first after sorting the response set) results in faster convergence. Note that random selection does
not cause issues beyond slowing down convergence because for each follower type, given a leader’s
strategy, regardless of the best response strategy selected, the game value for both players remains the
same due to nature of SSE (25; 26). Second, a similar line of reasoning for the defender concludes
that a pre-defined selection mechanism can result in faster convergence.

B APPENDIX – ENVIRONMENT DESCRIPTION

In this section, we first describe the Open-AI style game-simulator interface that can be used by the
learning agents. We then briefly describe how some of the simulator functionalities are provided for
the domains and future directions in this regard.

1 def get_states():
2 . . .
3 return []
4 """
5 @Input
6 None
7 @Output
8 Returns a list (essentially a set) consisting of states in the game.
9 """

10

11 def get_start_state():
12 . . .
13 return s
14 """
15 @Input
16 None
17 @Output
18 A start state s ∈ start_S ⊆ S denoting the start state for an episode.
19 """
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20

21 def get_actions():
22 . . .
23 (return [[ [], [], . . . ], []])
24 """
25 @Input
26 None
27 @Output
28 A list with the first element representing attacker actions and the

second element representing defender actions. The first list can be
further decomposed in to set of lists representing actions for each
attacker/follower type.

29 """
30

31 def is_end(s):
32 . . .
33 return True/False
34 """
35 @Input
36 A state s ∈ S.
37 @Output
38 AssertionError if s 6∈ S.
39 True if the input state s ∈ end_S ⊆ S
40 False otherwise
41 """
42

43 def act(s, aD, aA, θ):
44 . . .
45 return RD, RA, st+1

46 """
47 @Input
48 A state s ∈ S, defender’s action aD, attacker/follower’s action aA, the

attacker type θ
49 @Output
50 AssertionError if s 6∈ S, aD (or aA) is not a defender (or attacker type θ

’s) action.
51 RD -- Defender’s utility
52 RA -- Attacker’s utility
53 st+1 -- Next state
54 """

B.1 MOVING TARGET DEFENSE FOR WEB-APPLICATIONS

As mentioned earlier, we leverage the fully specified game domain from (6) to build the simulator.
In the context of the simulator functions, the get_state method returns four states of the system.
Each state of the defender constitutes choosing an implementation language (Php or python) and a
database technology (SQL or PostgreSQL) that can be used to host the web-application.

The get_start_state method of the game simulator returns on of the four states at random,
implying the system can start in any one of the four configurations. We allow a user to override
the global variable that describes the set of start states because, in the context of certain baseline
strategies such as BSG formulation (6), they consider only a sub-set of the MTD configurations.
Thus, a strategy that places zero probability of switching to a configuration can new start or find itself
in the configuration.

The get_actions method returns the set of actions available to the attacker types and the defender.
Similar to the original game designed in (6), we pair up an attacker types expertise level and a set
of technologies it has expertise in to the Common Vulnerabilities and Exploits (CVEs) mined from
the NVD database to define their attack set. For the defender, the four configurations it can choose
constitute the attack set.

The is_end always returns False in this setting as the game has not terminal state and the goal of the
defender is to continuously keep moving the system. While we can stop when policy converges for
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Figure 6: Comparing BBS-Q with URS (orange) and EXP-Q learning (green) on MTD for web-
applications with switching costs incorporated in the transition function of BSMGs.

our proposed BSS-Q algorithm, for the other algorithm, owing to the lack of convergence guarantees,
we run it for a predefined number of episodes.

The act method considers the action of the defender and the attacker’s actions to determine the
impact. Ideally, this can be done by deploying the system on a new configuration and then sending
out an actual request to the web-service with the attack folder as part of a request. Then, depending
on the return, decide if the attack was successful or not. While we seek to generate a class of attacks
that can represent the 300+ CVEs used in the domain, this was out of scope for this work. Further,
the attack success or failure might only give a binary indication of the rewards fro the attacker, which
constitutes a sparse signal and treats impactful and trivial attacks under the same umbrella. To address
this, we leverage the Common Vulnerability Scoring Service (CVSS) and use the Impact score as
the attacker type reward if the chosen attack is expected to work on the defense configuration being
deployed. We use the current state of the system and the defender action to compute the cost of the
movement. Ideally, we want to determine this by running a system with multiple virtual machines–
one hosting the current configuration and the other bringing up the next configuration (determined by
aD). The time taken in bringing up the new configuration and then the amount of packets dropped or
the extra resources used in the switching should all be part of the switching costs. While one can
come up with an elaborate procedure to do so, this is beyond the present scope of our paper and we
consider the costs calculated based on configuration-based similarity (6)– configurations that are
more dissimilar incur higher switching costs.

B.1.1 REAL-TIME DECISION BASED ON SWITCHING COST THRESHOLD

We consider a different perspective on switching costs that is possible to represent using BSMG but
cannot be captured by existing work in (6). In this setting, we do not capture the switching cost as
part of the reward metric, but use it to guide the transition dynamics of the underlying environment.
Precisely, when an act API is called, we use the defender’s action aD to perform the switch. While
performing the switch action, if we observe a drop in the successful processing of packets or an
increase in the response latency, calibrated by a threshold, we abort the move action and stay in the
same state. This introduces stochasticity in the underlying environment, which, as per the domain in
(6), was initially deterministic. We use the existing switching cost to guide the transition dynamics,
i.e. expensive switches have a higher probability of failing to execute the switch and thus, remain in
the same state.

Experimental Results In Figure 6, we plot the rewards obtained by the proposed BSS Q-learning
agent in comparison to the baselines described in the paper– namely the Uniform Random Strategy
(URS) and the adversarial multi-arm bandit based EXP-Q learning agent. We ignore the state-agnostic
optimal policy in this setting because it only expects to see itself in two configuration of the system
and thus, becomes sub-optimal in this setting given the stochastic nature of the environment (that it
cannot even model). We use a discount factor of 0.8, a exploration rate of 0.15 (that decays gradually
to 0.05 and a learning rate of 0.06.

Similar to our results in the scenario described in the paper, BSS-Q gathers higher reward, over six
trails, than URS. In this setting, it performs better than EXP-Q in three states s0, s2 and s3 (the
margin of improvement being significantly better in s0 and s2).
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Figure 7: An example cloud system highlighting its network structure, the attacker and defender
(admin) agents and the possible attacks and monitoring mechanisms (20).

B.2 MOVING TARGET DEFENSE FOR PLACEMENT OF INTRUSION DETECTION SYSTEMS IN
CLOUD NETWORKS

Before describing the design of the simulator, we provide the underlying cloud network, scenario,
derived from the modeling in (20), in Figure 7. This scenario, via two transformation steps– first, to
an attack graphs and then to a Markov Game– can be used to build our game simulator. For details of
this process, we refer the reader to look at (20).

The get_start_state method of the game simulator returns the single start state that represents
the case where an attacker has user access to the LDAP server on the public facing interface of the
network system.

The get_actions returns the set of attack actions, discovered using vulnerability scanners on the
cloud system and a part of the attack graph representation in (20), that are possible for an attacker to
execute in a given state of the cloud network system. The action set for the defender indicates the set
of Intrusion detection systems they can place and a no-op action implying that they may not choose
to place an IDS system at all.

The is_end returns a single state of the BSMG. This state represents the condition where the
attacker has administrator access on the file server.

The act method considers the action of the defender and the attacker’s actions to determine if the
attack action is detected. Ideally, we want to play the defender’s strategy of placing IDS system and
then execute the attack action chosen by the attacker. While this needs an entire cloud network setup
with Virtual Machines (VMs), we use similar resources used in (20) to determine the utilities and the
transition. If the IDS placed is able to detect the exploit, we return a reward proportional to the effort
required by the attacker in executing the attack action. This, similar to (20), is determined using the
exploitability score of the CVE determined from the Common Vulnerability Scoring System (CVSS).
If the IDS systems fails to detect the attack, then the attacker has an impact proportional to the base
score obtained from CVSS which considers both the impact and the complexity of the attack vector.
Futher, the game transitions into a new state where the attacker has either escalated privileges on the
same VM (or physical server) or gets access to a new VM on the cloud. The defender besides the
impact score, which represents the security impact, considers the impact on network bandwidth if
they deploy a Network Intrusion Detection System (NIDS) and impact on memory or CPU resources
if they deploy a Host-based Intrusion Detection System (HIDS). We use the scaling used in (20) to
come up with a single utility value for the defender.
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