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Abstract

Learning to imitate expert behavior from demonstrations is a challenging problem,
especially in environments with high-dimensional, continuous observations and
unknown dynamics. The simplest methods are behavioral cloning (BC), but they
suffer from the problem of distribution shift: it can shift away from demonstrated
states due to accumulated errors, since the agent greedily imitates demonstrated
actions. Recent methods using reinforcement learning (RL), such as generative
adversarial imitation learning (GAIL) and its variants, overcome this issue by
training an RL agent to match the demonstrations over a long horizon. However,
they all require a brittle adversarial training process with unstable rewards. And
in order to augment RL process, some other papers build a specific generative
model for the expert demonstrations, which increase the model and implementation
complexity significantly. In this paper, we propose to train the policy as a classifier
over states in expert dataset, and attenuate distribution shift by RL with fixed
rewards. Here we calculate fixed rewards, based on an energy-based model (EBM)
hidden in the policy. Moreover, we train this EBM by contrastive divergence
method, further regularized by contrastive representation learning. Different from
adversarial learning-based methods, we use fixed rewards obtained in a simple
manner. There are no extra models needed here for distribution estimation or
rewards modeling, reducing the model and implementation complexity significantly.
The experiments on various Atari games show its performance improvement over
many previous methods.

1 Introduction

It is an essential task to train artificial agents to perform complex tasks in many applications in
robotics, video games and dialogue. If the goal on the task can be accurately described using a
reward or cost function, reinforcement learning (RL) methods offer an approach to learning policies,
and it has been proven to be successful in a wide range of practical applications [11, 17, 18, 19].
However, in other cases the desired behavior may only be roughly specified and it is unclear how
to design a reward function to characterize it. For example, training a video game agent to adopt
more human-like behavior using RL would require designing a reward function which characterizes
behaviors as more or less human-like, which is difficult. Algorithms training RL agent to learn expert
behaviors fall into the category of Imitation Learning (IL)[14].

Among IL methods, behavior cloning (BC) is an elegant approach whereby agents are trained to
directly mimic the behaviors of an expert rather than optimizing a reward function [15, 23, 24, 28]. It
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basically consists of training a policy to predict the expert’s actions from states in the demonstration
data using supervised learning, which has the simplest model and implementation complexity among
IL methods. While appealingly simple, BC suffers from the problems of error accumulation and
covariance shift. It is the fact that the distribution over states observed at execution time can differ
from the distribution observed during training. Minor errors which initially produce small deviations
can be accumulated and become amplified as the policy encounters states further and further from
its training distribution. This problem was first formally tackled by [22] and a regret bound was
derived with tightness proved. Further in [24] the regret can be reduced to linear bound if the policy
is allowed to further interact with the environment and make queries to the expert policy. However
the queries to experts are not available in general situations.

Recently methods based on adversarial learning have been proposed to tackle the covariate shift
of BC [6, 7, 13, 15]. These methods train an RL agent not only to imitate demonstrated actions,
but also to visit demonstrated states. Since the true rewards are unknown, a reward function is
constructed from the demonstrations and visited trajectories via adversarial learning. However, the
alternative training of policy and discriminator can make the learning process unstable, significantly
increasing the sampling complexity [2]. Some work solve the imitation learning problem in the
frameworks of Q-learning [21, 25]. However, since these methods set the reward based on the
appearance of transitions in the expert demonstrations, resulting the problem of sparse reward when
few demonstrations are available. Another stream of work [1, 3, 29] uses an extra model, such as
random network distillation and disagreement, to estimate the support of the expert’s distribution in
state-action space, and minimizes an RL cost designed to guide the agent towards the states within the
expert’s support. But these estimation models increases the model and implementation complexity.
And they may not give a good distance between states in replay buffer and those covered by expert
demonstrations, especially in high-dimensional cases, which may mislead the agent to wrong states
far from expert’s support.

In this work, we propose a simple imitation learning method by incorporating the idea of contrastive
learning. Recently the work [9] has reinterpreted a standard discriminative classifier as an energy-
based model for the joint distribution of sample and labels, achieving both successful generative and
discriminative learning in the same model. Inspired by that, in addition to the supervised learning
of expert’s actions, we use the generative model hidden within the policy network as the reward
generator, guiding the agent back to the support of expert’s demonstrations in state space, alleviating
the covariate shift problem. This generative model is trained by contrastive divergence method [12],
by maximizing the unnormalized density between states in the expert’s support and those in replay
buffer. We use an RL process, which maximizes the rewards given by this generative model, guiding
the agent to the states covered by expert demonstrations. In order to further reduce the sample
complexity of RL process, we extract high-level features by learning contrastive representations in
comparison of states covered by expert’s demonstrations and those just visited by the learning policy.
Different from previous contrastive learning methods [4, 27], we modify the learning objective,
compatible with the supervised learning of expert’s actions.

Compared with previous work, our method has multiple merits. First, since supervised learning
for cloning expert’s actions and contrastive learning for generating rewards are conducted in one
policy model, it keeps the simplicity of behavior cloning, without adding extra models for support or
distribution estimation. Second, by avoiding the adversarial learning, the training process can be stable.
Third, as far as we know, it is first to introduce the contrastive representation learning into imitation
learning, which can reduce the sample complexity significantly. The empirical experiments on
difficult imitation learning tasks, such as image-based Atari games, show the significant improvement
of our method compared with previous work.

2 Methodology

Our method is motivated from the perspective of divergence minimization over imitation learning [8].
We decompose the occupancy measure divergence into two parts, i.e.,

Df (ρ
πE (s, a)‖ρπθ (s, a)) = Df (πE(s, a)‖πθ(a|s)) +Df (ρ

πE (s)‖ρπθ (s)) (1)
Minimizing the first term in (1) is same as that the learning policy mimics expert’s actions conditioned
on the states, in the support of expert’s demonstrations. But in order to minimize the second term
of (1), the RL agent should be able to realize and return when it’s outside of the support of states in
expert’s demonstrations.
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Specifically, the first part is addressed by the standard behavior cloning [16, 28], i.e., a supervised
learning on expert’s actions. Regarding the second part, we use an RL process to maximize rewards
in proportional to the similarity of current states and states of expert’s behavior. Without using extra
models, we utilize a generative model hidden in the policy model, trained by contrastive divergence
method. In order to augment the sample efficiency, contrastive learning is incorporated into imitation
learning here, specially designed to boost the behavior cloning and reward learning at the same time.
Our method has minimal changes on the architecture and learning pipeline compared with classical
ones. It is simple to implement and train.

Here we denote πθ(·|s) and πE(·|s) as learning policy and expert policy respectively. Denote
DE = {(si, ai)} as the dataset containing state-action pairs along expert’s demonstrations. Let dπ
denote the distribution over states induced by following π. For discrete action environment, we use
NA to denote the number of possible actions. In contrastive learning, we denote P as the set of
positive samples and N as the set of negative samples.

We first define the behavior cloning (BC) loss. Following the classical work [22] the supervised
behavior cloning loss JBC is integrated over the state distribution induced by expert policy, i.e.,

JBC(θ) = Es∼dπE [‖πE(·|s)− πθ(·|s)‖] (2)

For environments with discrete actions, the BC objective becomes cross-entropy loss same as that in
classification problems.

2.1 Reward Learning

In order to guide the agent return to the states covered by expert’s behavior, we have to establish a
reward signal for notification when the agent is away from the support of expert’s states. In this paper,
we propose a simple method for measuring the distance of states and use it as reward signal. Here
we utilize a generative model hidden inside the policy network. More specifically, in discrete action
cases, the policy network gives, for ∀a ∈ A,

πθ(a|s) =
exp(fθ(s)[a])∑

a′∈A exp(fθ(s)[a′])
(3)

where fθ(s) : S → RNA is the mapping from state space to the logits, i.e., fθ(s)[a] is the logit
corresponding to label a. What’s more, we utilize these logits to define an energy based model of the
joint distribution of state-action pairs, and an unnormalized density model of states, i.e.,:

pθ(s, a) =
exp(fθ(s)[a])

Z(θ)
, pθ(s) =

∑
a′∈A exp(fθ(s)[a

′])

Z(θ)
(4)

Then we can define an energy function at state s as below

Eθ(s) = − log
∑
a′∈A

exp(fθ(s)[a
′]) (5)

The negation of this energy function is used as reward during the RL process, i.e., r(st, at) =
−Eθ(st+1), where st+1 is the next state by applying action at. And it’s trained in a loss function
inspired by contrastive learning.

JR(θ) =

∑
s∈P exp(−Eθ(s))∑

s∈P exp(−Eθ(s)) +
∑
s′∈N exp(−Eθ(s′))

(6)

where samples in P are states sampled from expert dataset, while samples in N are states sampled
from trajectories visited by learning policy.

2.2 Contrastive Regularization

In order to further alleviate covariate shift and reduce sample complexity, we introduce a contrastive
objective as another auxiliary loss, with minimal changes to the RL algorithm and architectures. Here
we first define an objective compatible with both behavior cloning and contrastive learning, especially
in discrete-action environments. Without building another pair of encoders [27], we produce queries
and keys of states directly at the second last layer of learning and target policy networks, where the
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target policy network is updated in a soft way. And every observed state is augmented by random
cropping, to increase the generalizability of learned representations. Different from previous work
[5, 10, 20], there is no need to have a separate model for learning context representation.

Denoting the number of state-action pairs having action a in the expert minibatch P as NE
a ,∀a ∈ A.

Denote the latent (second last) layer of policy network as gθ(s), i.e., fθ(s) = Wπgθ(s), where
Wπ ∈ RNA×D and D is the dimension of latent representation.

For every observed state s, it is first augmented by random cropping process, denoted as rc(s).
Then query q and key z are generated by the latent layer of learning policy πθ and target policy
π
θtarget , i.e., q(s) = rc(gθ(s)) and z(s) = rc(g

θtarget(s)). Here we adopt bilinear product [20]
as the similarity between query and key pairs of each state, i.e., q(s)Wcz(s), where Wc ∈ RD×D.
Then the contrastive object used in discrete-action environments is as below.

JC(θ) =
∑
a∈A

1
NEa

∑
(s′,a′)∈P,a′=a q(s

′)Wcz(s
′)∑

(s′,a′)∈P q(s
′)Wcz(s′) +

∑
(s′′,a′′)∈N q(s

′′)Wcz(s′′)
(7)

Therefore, the total loss for updating the policy network is

JBC(θ) + αJR(θ) + βJC(θ,Wc) (8)

where α and β are tuned empirically. And parameters of policy network is update as θ := (1− γ)θ+
γθtarget. Both θ and Wc are updated by stochastic gradient descent separately in experiments. The
overall algorithm is summarized as below.

Algorithm 1: Imitation Learning via Contrastive Regularization

Input :Expert demonstration data DE = {(si, ai)}Ni=1
1 Initialize the policy πθ and replay buffer B
2 Pre-training πθ by behavior cloning on DE
3 for e = 1, . . . , do
4 Sample trajectories by playing policy πθ and store them into replay buffer B.
5 Sample minibatch P and N from DE and B respectively.
6 Conduct SGD with objective (8) to optimize θ and Wc separately.
7 Conduct one step of policy gradient on πθ, with negative energy function of next state (5)

as rewards.
8 end

3 Experiments

We evaluated the proposed IL method on many Atari environments. The expert policy is trained by
PPO [26] and generate a butch of expert trajectories stored in DE . In order to stabilize the training
process, the reward is clipped into −1 or 1 based on the threshold, set by the β−quantile of rewards
over all the states in expert’s demonstrations [1].

The baselines for comparison are standard behavior cloning (BC) [22] and generative adversarial
imitation learning (GAIL) [13]. We find that the propose method can outperform both BC and
GAIL in all of the evaluated environments. It is already known that GAIL cannot perform well on
image-based environments [21], and our method has significant improvement over that.
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Figure 1: Experiments on Atari games. Average reward vs number of expert trajectories.
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