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Abstract

Structured data, which constitutes a significant
portion of existing data types, has been a long-
standing research topic in the field of machine
learning. Various representation learning meth-
ods for tabular data have been proposed, ranging
from encoder-decoder structures to Transformers.
Among these, Transformer-based methods have
achieved state-of-the-art performance not only in
tabular data but also in various other fields, includ-
ing computer vision and natural language process-
ing. However, recent studies have revealed that
self-attention, a key component of Transformers,
can lead to an oversmoothing issue. We show that
Transformers for tabular data also face this prob-
lem. To tackle the problem, we suggest a novel
self-attention layer for tabular data, leveraging
matrix polynomials. This proposed layer serves
as a replacement for the original self-attention
layer, contributing to the improvement of model
scalability. In our experiments with three repre-
sentative table learning models equipped with our
proposed layer, we illustrate that the layer effec-
tively mitigates the oversmoothing problem and
enhances the representation performance of the
existing methods, outperforming the state-of-the-
art table representation methods.

1. Introduction
Out of the top 10 database management systems, 7 are rela-
tional databases, including Oracle, MySQL, and Microsoft
SQL Server 1. Likewise, structured data is one of the most
common data types in the fields of data mining and machine
learning. With the increasing focus on tabular data, several
recent methods have demonstrated remarkable success in
table representation, such as (Huang et al., 2020; Ucar et al.,
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Figure 1: Spectral response of an attention map from Tab-
Transformer (Huang et al., 2020)

2021; Somepalli et al., 2021; Majmundar et al., 2022), with
many of them being Transformer-based methods.

Transformers have made significant advancements in deep
learning, becoming state-of-the-art models in various do-
mains, including computer vision and natural language pro-
cessing (Vaswani et al., 2017; Radford et al., 2018; Devlin
et al., 2019; Gulati et al., 2020; Ying et al., 2021; Dosovit-
skiy et al., 2021; Touvron et al., 2021; Yu et al., 2024; Shin
et al., 2024). However, recent studies have raised concerns
about the potential limitations of self-attention, a funda-
mental component of Transformers, specifically an issue of
oversmoothing (Dong et al., 2021; Wang et al., 2022; Guo
et al., 2023b; Choi et al., 2023; Xue et al., 2023). Gong et al.
(2021) and Zhou et al. (2021) have highlighted that at deeper
layers of the Transformer architecture, all token representa-
tions tend to become nearly identical (Brunner et al., 2019).
The problem poses challenges when it comes to expanding
the scale of training Transformers, especially in terms of
depth, since Transformers rely on a simple weighted average
aggregation method for value vectors.

In our preliminary experiments, we observe that Transform-
ers designed for tabular data also exhibit the oversmoothing
issue, as illustrated in Fig. 1. As we go deeper into the layers,
TabTransformer (Huang et al., 2020), a model designed for
tabular data, tends to focus more on low-frequency compo-
nents in its attention mechanism, even though table column
relationships could be represented using a wider range of
components. (For a more detailed discussion, please refer
to Sec. 2.3.) To address this challenge, we propose a re-
designed self-attention for table representation in this paper.
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Our design is inspired by graph signal processing (GSP). In
a general sense, a graph filter on a graph G is typically ex-
pressed as a polynomial based on its adjacency or Laplacian
matrix. In the context of our work, the conventional self-
attention mechanism can be considered the most basic graph
filter, utilizing only A, where A ∈ [0, 1]n×n represents a
learned attention matrix that encodes relationships between
columns of tabular data, and n is the number of input to-
kens. In other words, the proposed mechanism generalizes
the original self-attention by allowing for more flexibility
and customization. Building upon this notion, we replace
the self-attention layer with our proposed polynomial-based
layer, designed to approximate an optimal graph filter. In
this context, we introduce our novel self-attention layer for
table representation learning as TabPSA (Table Representa-
tion using Polynomial-based Self-Attention).

Our proposed self-attention mechanism is composed of coef-
ficients αk for each polynomial term Ak, where k represents
the order of the polynomial. It is crucial to emphasize that
computing Ak may pose computational challenges when
dealing with a substantial number of tokens, a common
occurrence in natural language processing tasks. However,
in the case of tabular data, the number of tokens is typi-
cally small because each table column is treated as a token.
Consequently, tabular data do not require computationally
expensive processes due to the smaller attention matrix,
making it more feasible to compute Ak with a moderately
large value of k. This approach allows us to design a more
scalable graph filter that leverages the characteristic.

High order polynomials require multiple squares. Here, we
make use of the property of PageRank. PageRank converges
after a few iterations when a transition matrix satisfies three
conditions: i) stochasticity, ii) irreducibility, and iii) ape-
riodicity. Surprisingly, attention matrices satisfy all three
conditions, as discussed in Sec. 4.1. This means high order
polynomial terms also converge, and thus we do not need to
compute higher order polynomial terms.

Furthermore, our proposed graph filter is able to capture
a wider range of frequency information as discussed in
Sec. 5.2. To summarize, graph filter approximated by
TabPSA encompasses both low and high-frequency compo-
nents, while others often lack high-frequency signals. In
summary, our contributions are as follows:

1. To the best of our knowledge, we present the first study
on the self-attention in the field of tabular data.

2. We propose table representation learning based on
Transformer with self-attention tailored to tabular data
improves representation quality compared to existing
deep learning methods.

3. We have developed a matrix polynomial-based self-
attention mechanism that efficiently leverages proper-
ties of PageRank and self-attention matrix, without a

substantial increase in computational cost.
4. Tree-based ensemble models outperform deep neural

networks for tabular data in many cases (Grinsztajn
et al., 2022; Shwartz-Ziv & Armon, 2022). Our method
outperforms them in 6 out of the 10 experimented
datasets, which is a significant improvement.

2. Related Work
2.1. Representation Learning for Tabular Data

Representation learning focuses on learning meaningful
features from raw data. Recently, there has been a grow-
ing focus on representation learning for tabular data. The
challenges in table representation learning stem from the
absence of common correlation structure in tabular data
unlike the case of image and text data (Yoon et al., 2020).
Yoon et al. (2020) proposed VIME which is an approach to
self- and semi-supervised learning tailored for tabular data.
It incorporates a unique pretext task focused on estimating
mask vectors from corrupted tabular data, along with the
reconstruction pretext task. SubTab (Ucar et al., 2021) is
a self-supervised learning framework designed for tabular
data, which partitions the input features into multiple sub-
sets, enhancing its ability to capture more efficient latent
representations.

Transformer-based models have emerged as dominant ap-
proaches for learning useful features for tabular data (Ma-
jmundar et al., 2022; Somepalli et al., 2021; Huang et al.,
2020). TabTransformer (Huang et al., 2020) employs a
Transformer encoder to acquire contextual embeddings for
only categorical features. SAINT (Somepalli et al., 2021)
maps both continuous and categorical features into an em-
bedding space and then processes them through the Trans-
former blocks. SAINT utilizes contrastive learning and
calculates attention scores over both rows and columns to
get enhanced embeddings. MET (Majmundar et al., 2022)
is a table representation model based on masked autoen-
coders. It employs encoders with random masking to ac-
quire positional embeddings for individual feature coordi-
nates, enabling the capture of latent structures among these
coordinates. These days, representations of tables are used
to improve the performance of downstream tasks for tabu-
lar data, such as classification and regression, where deep
learning models are struggling to beat traditional machine
learning approaches.

2.2. Self-Attention Mechanism in Transformers

Self-Attention mechanism is a key components of Trans-
former architecture. Each input embedding is projected onto
three parametric matrices: key, query, and value matrices,
denoted as K ∈ Rn×d, Q ∈ Rn×d and V ∈ Rn×d, respec-
tively. The self-attention mechanism SA can be expressed
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as follows:

SA(Q,K,V) = softmax(
QKT

√
d

)V = AV, (1)

where d is the scale factor and n is the number of in-
put tokens. The basic idea of self-attention is to estab-
lish correlations between tokens (features) by assessing
similarity between their key and query representations.
With the calculated attention matrix A, which is equal
to softmax(QKT /

√
d), a value matrix V is re-weighted

through dot-product.

Self-Attention is known to have similar characteristics to
those of a graph convolution network (GCN). GCNs are
designed to process data that can be represented as graphs
denoted as G = (N , E), where N is a node set and E is a set
of edges connecting node pairs. Using graph convolutional
layers, they learn representations of nodes within a graph,
taking into account information from their local neighbor-
hoods. Self-attention matrix used in Transformers can be
seen as a normalized adjacency matrix of tokens (Guo et al.,
2023b).

2.3. Oversmoothing in GCNs and Transformers

Oversmoothing is a phenomenon that can be observed in
deep learning models, particularly in GCNs (Kipf & Welling,
2017). It describes a problem where a network excessively
smooths node features during the aggregation process, po-
tentially resulting in reduced discriminative capability in
node representations (Oono & Suzuki, 2020; Zhou et al.,
2020; Rusch et al., 2023).

Surprisingly, oversmoothing phenomenon is also observed
in Transformer (Wang et al., 2022; Shi et al., 2022). Unlike
convolutional neural networks (CNNs), Transformers do
not show performance improvements by adding more layers
beyond a specific threshold. This issue arises from attention
matrices that are similar to GCNs. In other words, it is a fun-
damental problem in Transformers, and these problems oc-
cur in Transformer-based models across different domains.
Dong et al. (2021) identifies the issue of “token uniformity”,
which diminishes the effectiveness of Transformer-based
architectures by causing all token representations to be the
same. Shi et al. (2022) explores hierarchical fusion strate-
gies, which adaptively combine representations from var-
ious layers to introduce diversity into the output, thereby
mitigating the oversmoothing issue.

Wang et al. (2022) provide a theoretical basis for the over-
smoothing phenomenon in Transformers, particularly in
self-attention. According to Theorem 1 in (Wang et al.,
2022), they demonstrate that self-attention functions as a
low-pass filter, continuously diminishing high-frequency

information.2 This inherent characteristic leads to the over-
smoothing phenomenon, as unique high-frequency features
are lost in the deeper layers of the network, further exacer-
bating the uniformity of token representations.

Through experiments, we observed the same issue occurring
in Transformer-based table representation models. There-
fore, we aim to propose an attention matrix from the per-
spective of graph filters that can enhance Transformer-based
table representation models.

3. Preliminaries
3.1. Graph Signal Processing

Leveraging insights from graph signal processing (GSP),
we designed our new attention method, TabPSA. GSP has
a close connection to discrete signal processing (DSP). In
DSP, a discrete signal with a length of n can be represented
by a vector x ∈ Rn. Let g ∈ Rn be a filter applying to x.
The convolution x ∗ g can be computed as follows:

yi =

n∑
j=1

xjgi−j , (2)

where the index refers to the i-th element in each vector.

GSP can be viewed as a generalized case of DSP — in other
words, DSP is a special case of GSP where a ring graph with
n nodes is used and therefore, the graph Fourier transform of
the line graph is identical to the discrete Fourier transform.
In addition, the linear and shift-invariant graph convolution
filter with n nodes can be written with a shift operator S
(regardless of the diagonalizability of S, i.e., S can be from
directed graphs (Marques et al., 2020)) as follows:

y =

n−1∑
k=0

wkS
kx, (3)

where x ∈ Rn is a 1-dimensional graph signal and wk ∈
[−∞,∞] is a coefficient. S is an n × n matrix where
(i, j)-th element is non-zero if and only if there is an edge
from node i to j — its diagonal elements can also be non-
zeros and therefore, two representative examples of S are
adjacency and Laplacian matrices. We note that Eq. (3) is a
generalization of Eq. (2) under the context of GSP. Eq. (3)
can be simplified as follows:

y = Hx, (4)

where the linear and shift-invariant graph filter H is the same
as

∑n−1
k=0 wkS

k in Eq. (3) which is called matrix polynomial.

2The Fourier Transform converts a signal from the time domain
to the frequency domain, decomposing it into individual frequency
components. Low-frequency signals change slowly and represent
broader trends, while high-frequency signals change quickly and
capture finer details.
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Figure 2: Convergence of AkV, where A is an attention matrix and V is a value matrix for Phishing

We note that this graph filtering operation can be extended
to d-dimensional cases. Therefore, the core part of the self-
attention, i.e., AV, can be considered as a d-dimensional
graph filter with A only, where H = A and A is a shift
operator. Our goal in this paper is design an effective form
of H considering the characteristics of tabular data.

3.2. PageRank

PageRank is an algorithm used to assess the significance
of web pages by considering both the quality and quantity
of links leading to them, which, in turn, influences their
rankings in search engine results. We refer to the collection
of web pages (or nodes) as W and the network of links (or
directed edges) as E. If a page u has a link pointing to
page v, then we say (u, v) ∈ E. We denote the number of
links leading out of a page v as dv , and the PageRank score
of page v as πv. To explain PageRank, we assume a ran-
dom surfer who navigates web pages based on a transition
probability matrix M ∈ RN×N and a visiting probability
vector π(t) ∈ RN , where N is the total number of pages
and t is the current iteration. In the matrix M , Mwv is equal
to 1/dv if page v links to page w and 0 otherwise. The
PageRank equation can be expressed as follows:

π(t)
v = (1− ϵ)

( ∑
(w,v)∈E

π
(t−1)
w

dw

)
+

ϵ

N
, (5)

where π
(t)
v is the iterative PageRank score of page v af-

ter t iterations and ϵ is reset probability, representing the
probability that the random surfer randomly jumps to an-
other page. PageRank score can be computed iteratively as
shown in Eq. (5), and the iterative method can be viewed
as the power iteration. PageRank score converges quickly
when its transition matrix M satisfies three conditions: i)
stochasticity, ii) irreducibility, and iii) aperiodicity.

4. TabPSA
In this section, we present the details of our design in a
sequential manner. We start by introducing the inspiring
concept behind our design, PageRank. Following that, we
delve into the matrix-polynomial for our self-attention layer.

Finally, we introduce another key component of our design,
Jacobi basis, and discuss our design from various angles.

4.1. PageRank

PageRank scores that contain the importance of pages, con-
verge quickly when its transition matrix satisfies three con-
ditions, as in Proposition 4.1. The three conditions are as
follows: i) the transition matrix must be a stochastic, ii)
irreducible, and iii) aperiodic matrix. Interestingly, attention
matrix A in Transformers meet all the 3 conditions:

1. Stochasticity: The softmax function in Transformers
ensures that attention scores are normalized, making
the attention matrix stochastic because values in each
column sum to 1.

2. Irreducibility: In Transformers, attention matrices
assign a non-zero probability to focus on any part of
the input sequence from any position in the output
sequence — note that this is guaranteed by the soft-
max function (cf. Eq. (1)). This ensures the existence
of a pathway, though not always direct, connecting
any position to any other, satisfying the condition of
irreducibility.

3. Aperiodicity: The aperiodicity in Markov chains con-
dition denotes the lack of repeating patterns. In short,
the irreducible chain is aperiodic if all states have a
period of 1, which means that each state has at least
one self-loop. This is the case in the self-attention
since the attention matrix has non-zero elements, i.e.,
completely connected, although some are close to ze-
ros after the softmax function — note that a negative
infinite logit is required for the softmax function to
produce a zero, which is not likely in neural networks.

Proposition 4.1 (Convergence of PageRank). Define the
error term as a difference between the exact PageRank score
π∗
v and the t-th PageRank score π(t)

v : Err(t) =
∑

v|π
(t)
v −

π∗
v |, where π

(t)
v = (1− ϵ)

(∑
(w,v)∈E

π(t−1)
w

dw

)
+ ϵ

N . Then,
the total error converges within a small number of iterations.
The proof is in Appendix A.

According to Proposition 4.1, in other words, since the
attention matrix A satisfies the conditions, AkV, where
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k ∈ R, converges with a small k in matrix polynomial.
More discussions are in the following section. Moreover,
Fig. 2 shows the convergence of AkV. The change of
the result of AkV − Ak−1V quickly decreases to 0 as k
increases. In Appendix B, we discuss the convergence of
the attention matrix in detail.

4.2. Matrix Polynomial-based Transformer

Let A ∈ [0, 1]n×n, where n is the number of tokens3, be a
self-attention matrix, and Vn×d, where d is dimension of
each token and V is a value matrix. Self-attention, which
can also be viewed as a simplified version of graph filters,
can be extended using matrix polynomial. By extending
self-attention with matrix polynomial, the extended defini-
tion can be expressed as follows — as described earlier for
Eq. (3), A can be a directed adjacency matrix:

HV =

n−1∑
k=0

wkA
kV, (6)

where w are polynomial coefficients. The extended equation
requires large computation of high-order power of A. How-
ever, due to the nature of tables, which typically have only
tens of columns (tokens), the computational cost becomes
manageable. The expression of matrix polynomial-based
self-attention is as follows:

HV ≈ w0V + w1AV + w2A
2V + · · ·+ wjA

jV, (7)

where j is a point where the convergence error is tolera-
ble with respect to an enough low bound b, i.e., ∥AiV −
AjV∥F ≤ b, ∀i ≥ j. Therefore, all terms higher than j
are absorbed to wjA

jV (cf. Proposition 4.1 and Fig. 2).
As known in the existing works, we can understand that
self-attention inevitably dampens, as shown in Fig. 1, the
high-frequency elements (Dong et al., 2021; Wang et al.,
2022; Guo et al., 2023b; Xue et al., 2023). Consequently,
the original self-attention is not suitable for tasks involving
representation learning, which require capturing all forms of
information from the data. Conversely, when we allow w to
be learned and potentially take on negative values through
the model learning, the graph filter will become capable of
conveying high-frequency information, as we prove with
our experiments in Sec. 5.

4.3. Jacobi Bases

Yet, the optimization of wk, 0 ≤ k ≤ j, using Eq. (7)
may encounter instability due to the non-orthogonality of
the set of bases, denoted as {Ak|0 ≤ k ≤ j}. This lack of
orthogonality implies an absence of guaranteed convergence.
In light of this, Jacobi presents itself as a suitable alternative
for the matrix polynomial discussed earlier. Jacobi basis,

3In the perspective of GSP, n represents the number of nodes.

Attention Matrix 

 Learnable
parameters

Polynomials  

Softmax

MatMul

MatMul

Figure 3: Architecture of the proposed TabPSA

denoted as Pa,b
k (x), can be recursively defined as follows:

Pa,b
0 (x) = 1, (8)

Pa,b
1 (x) =

a− b

2
+

a+ b+ 2

2
x. (9)

For k ≥ 2, it satisfies

Pa,b
k (x) = (θkx+ θ′k)P

a,b
k−1(x)− θ′′kP

a,b
k−2(x), (10)

where

θk =
(2k + a+ b)(2k + a+ b− 1)

2k(k + a+ b)
, (11)

θ′k =
(2k + a+ b− 1)(a2 − b2)

2k(k + a+ b)(2k + a+ b− 2)
, (12)

θ′′k =
(k + a− 1)(k + b− 1)(2k + a+ b)

(k(k + a+ b)(2k + a+ b− 2)
. (13)

Pa,b
k , k = 0, · · · , j are orthogonal with a weight function

(1− x)a(1 + x)b on [−1, 1] with a, b > −1. Therefore, we
use this Jacobi polynomial to stabilize the training of the
coefficients.

To conclude, the self-attention with our expended graph
filter is as follows:

HV ≈ α0P
a,b
0 (A)V + α1P

a,b
1 (A)V (14)

+ · · ·+ αjP
a,b
j (A)V, (15)

where α are the Jacobi polynomial coefficients. Eq. (14)
can be rewritten to a polynomial of A, since Pa,b

k (A),∀k,
is a function of A. Thus, we utilize Jacobi polynomial of
order j since the self-attention AjV converges rapidly with
a small j (cf. Proposition 4.1).

Special cases of Jacobi bases. As a special case of Jacobi
polynomial, Chebyshev and Legendre polynomials also are
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orthogonal polynomials which can be applied to our pro-
posed method. Specifically, Chebyshev polynomial is a
special case of Jacobi polynomial when a = b = − 1

2 , and
Legendre polynomial is a special case of Jacobi polynomial
when a = b = 0.

4.4. Discussions

Graph filtering aspects of TabPSA. TabPSA enables bet-
ter graph filter approximation through its Jacobi polynomial
approximation. TabPSA involves iterative matrix powers as
shown in Eq. (14). Extensive computational resources are
necessary when dealing with attention matrices in tasks that
involve large datasets, such as images and graphs, which
can consist of tens of thousands of tokens. For this rea-
son, studies aiming to alleviate oversmoothing with matrix
polynomial-based graph filters often limit the use of Lapla-
cian matrix powers or optimize substitute parameter(s) to
approximate the graph filter (Chien et al., 2020; Gasteiger
et al., 2018; He et al., 2021). In contrast, attention matri-
ces for tables, typically containing fewer than 100 columns,
involve a relatively small number of tokens, making compu-
tation more manageable. In this context, our design is more
suitable for tabular data than datasets with large attention
matrices.

Apply on Transformers. Our self-attention layer is de-
signed by drawing inspiration from the core concepts of
graph signal processing, where self-attention can be seen
as a specialized form of matrix polynomial operations. It
is noteworthy to emphasize that the seamless adoption of
TabPSA framework into the Transformer architecture en-
tails a simple step: the substitution of the conventional
self-attention layer with our self-attention layer. This archi-
tectural substitution not only demonstrates the flexibility and
compatibility of our approach but also underscores its po-
tential to enhance the performance of existing Transformer-
based models.

Representation performance on the existing methods.
To validate the effectiveness of TabPSA, we apply it to
the existing Transformer-based table representation mod-
els, specifically TabTransformer (Huang et al., 2020),
SAINT (Somepalli et al., 2021), and MET (Majmundar
et al., 2022), with minor modifications. Details are in Ap-
pendix C. The results are in the following section.

5. Experiments
5.1. Experimental Environments

Experimental settings. Our software and hardware en-
vironments are as follows: UBUNTU 20.04 LTS, PYTHON
3.8.2, PYTORCH 1.8.1, CUDA 11.4, and NVIDIA Driver
470.42.01, i9 CPU, and NVIDIA RTX A5000.

Evaluation methods. We use 10 datasets and 10 baselines
for our experiment. Details of the datasets and baselines
can be found in Appendices D.1 and D.2, respectively. To
demonstrate the efficacy of TabPSA, three selected base
models for table learning are compared with base models
trained using TabPSA. After training the representation mod-
els as proposed in the original paper, we subsequently train
auxiliary small MLP layers for classification/regression. For
classification, AUROC scores are reported, while for regres-
sion, R2 scores are presented. Each experiment is conducted
five times, and the corresponding mean values and standard
deviations are reported.

5.2. Experimental Results

Table 1: Relative score improvement over the base Trans-
formers. TabTransf. represents TabTransformer.

TabTransf. SAINT MET

Base model 76.9 84.5 79.4
Base model + TabPSA 78.5 85.4 84.0

Improvement 2.14% 1.02% 5.76%

Firstly, we discuss the efficacy of TabPSA. The experimen-
tal results are summarized in Table 1. As shown, TabPSA
improves the base models in all cases, increasing perfor-
mance by at least 1.02% in each instance. Notably, for
MET, TabPSA is particularly effective, yielding an average
performance increase of 5.76%. This enhancement can be
attributed to TabPSA’s ability to capture diverse signal fre-
quencies. It is important to note that this suggests TabPSA
has the potential to further enhance the performance of
Transformers, including both existing models and those yet
to be developed.

Fig. 4 is a visualization of feature maps from the trained Tab-
Transformer. Each figure is plotted with the averaged values
over the test dataset. In Fig. 4 (a), TabTransformer trained
with TabPSA significantly retains high-frequency data com-
pared to TabTransformer. In Fig. 4 (b), we present token-
wise cosine similarity with respect to the layers. Greater
cosine similarity indicates that the tokens in a layer become
more similar, which is a symptom of oversmoothing. Com-
pared to TabTransformer+TabPSA, TabTransformer exhibits
higher cosine similarity in general, and as the layers get
deeper, cosine similarity slightly increases, which can also
indicate oversmoothing. In Fig. 4 (c), we present the normal-
ized singular values of feature maps. The rapid decrease in
singular values of TabTransformer indicates that the feature
maps are approximately in an extremely low-rank. On the
other hand, the slow decrease in singular values of TabTrans-
former+TabPSA indicates that the feature maps are more
representative.
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Figure 4: Visualization of spectral response, cosine similarity, and singular values of feature maps in Phishing. TabTrans-
former+TabPSA represents TabTransformer trained with TabPSA.

Table 2: Sensitivity experiment with respect to k. The
reported scores are AUROC (↑) for classification, and R2

(↑) for regression.

Datasets k
TabTransf. SAINT MET
+ TabPSA + TabPSA + TabPSA

Alphabank

2 62.1±0.21 62.5±0.72 60.1±0.50
3 62.1±0.21 63.2±0.97 62.7±0.31
5 61.5±1.67 63.4±0.87 61.8±0.45
10 61.5±1.55 63.0±0.50 61.7±0.59

Contraceptive

2 65.0±1.72 75.6±0.47 78.1±0.91
3 65.3±1.95 77.0±0.85 79.0±1.13
5 66.0±1.63 77.4±1.51 77.5±0.63
10 66.0±0.97 76.9±0.83 78.0±1.41

Medicalcost

2 0.61±0.01 0.86±0.00 0.87±0.24
3 0.61±0.02 0.87±0.00 0.87±0.00
5 0.61±0.00 0.87±0.00 0.86±0.01
10 0.61±0.00 0.87±0.00 0.86±0.00

5.3. Sensitivity on the Order of Polynomial

We perform a sensitivity experiment with respect to the
order of polynomials, and the results are summarized in
Table 2. We set the order of polynomial k to 2, 3, 5, and
10. In general, we get the best scores within 5 order of
polynomials, except for one case. After a certain threshold
of k, model performance tends to saturate for all models.
This means that we do not need to use high-order polynomi-
als to approximate the graph filter, as discussed above (cf.
Section 4).

5.4. Exploring Different Polynomial Bases

We compare four polynomial bases: Power, Chebyshev, Leg-
endre, and Jacobi, the latter three of which are orthogonal.
The results are summarized in Table 3. Generally, we find
that the representation performance is robust across different
types of polynomials. Among the four bases, Chebyshev

Table 3: Experimental result w.r.t. matrix polynomial forms.
The reported scores are AUROC (↑) for classification, and
R2 (↑) for regression.

Datasets Polynomials TabTransf. SAINT MET
+ TabPSA + TabPSA + TabPSA

Default

Power 78.2±0.08 77.1±0.39 77.9±0.43
Chebyshev 78.0±0.06 77.4±0.71 77.9±0.33
Legendre 78.0±0.06 78.4±0.30 77.2±0.81
Jacobi 78.0±0.13 50.5±0.78 63.4±4.62

Buddy

Power 89.5±1.94 94.8±0.73 87.6±4.16
Chebyshev 88.8±1.27 92.1±0.96 87.6±1.07
Legendre 90.0±1.20 90.8±1.25 83.9±3.49
Jacobi 89.0±1.29 53.0±2.96 73.2±20.4

Activity

Power 79.8±1.27 89.7±0.73 88.7±2.93
Chebyshev 80.2±1.41 90.8±0.53 90.9±2.39
Legendre 80.9±0.67 91.1±0.47 90.9±1.06
Jacobi 80.3±1.59 49.7±0.44 70.2±9.27

and Legendre polynomials provide better representation of
datasets, achieving the highest scores in 6 out of 9 cases.
Interestingly, the performance of the Jacobi polynomial dete-
riorates in some instances; for example, in all three datasets
when combined with SAINT+TabPSA and MET+TabPSA.
Moreover, in the case of MET+TabPSA, Jacobi polynomial
introduces substantial standard deviation. This can be at-
tributed to the tendency of the Jacobi polynomial to suppress
mid-frequency signals, as noted by Guo et al. (2023a), while
effective data representation requires capturing a diverse
range of frequency signals.

5.5. Comparison to Other Methods

Table 4 presents the performances of various methods in-
cluding machine learning models and deep learning models.
In this comparison, machine learning models exhibit strong
performance, which is widely acknowledged within our
community (Grinsztajn et al., 2022). However, in 6 out of
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Table 4: Comparison of base models with our proposed self-attention layer and other models. Contra., Medical., and Super.
represent Contraceptive, Medicalcost, and Superconductivity, respectively. TabTransf. means TabTransformer. We report
AUROC (↑) for classification and R2 (↑) for regression. The best results are in boldface, and the second-best results are
underlined. For Superconductivity, TabTransformer, which makes attention using categorical features only, cannot be used
due to the absence of categorical features.

Methods Binary Classification Multi-class Classification Regression
Income Default Phishing Alphabank Clave Contra. Activity Buddy Medical. Super.

MLP 89.8±0.14 78.2±0.28 84.9±0.15 62.1±0.38 92.0±0.80 68.5±4.30 86.1±1.01 85.7±2.62 0.74±0.00 0.86±0.01

Decision Tree 89.5±0.07 76.2±0.00 83.1±0.00 60.4±0.06 84.8±0.17 75.8±0.00 88.5±0.23 82.1±0.04 0.87±0.00 0.84±0.00

Regression 57.3±0.00 65.1±0.00 85.2±0.00 61.5±0.00 91.0±0.00 73.6±0.00 68.8±0.00 50.0±0.00 0.75±0.00 0.72±0.00

XGBoost 92.1±0.07 77.5±0.21 82.3±0.43 60.5±0.54 95.9±0.09 75.0±0.56 98.1±0.06 93.5±0.30 0.81±0.01 0.90±0.00

Random Forest 91.2±0.02 78.6±0.15 85.0±0.15 59.8±0.15 93.3±0.17 77.3±0.08 98.0±0.04 88.5±1.34 0.87±0.00 0.91±0.00

TabNet 89.8±0.10 77.1±0.67 81.9±0.70 61.8±0.62 87.0±1.58 52.4±8.17 66.6±1.87 79.8±5.44 -1.18±0.02 0.88±0.00

VIME 87.3±44.5 78.0±0.26 83.3±0.56 60.8±0.88 95.8±0.21 69.1±1.82 76.5±1.41 80.6±2.43 0.80±0.06 0.87±0.01

TabTransformer 88.9±0.87 78.2±0.07 84.2±0.35 59.5±1.16 92.9±0.85 64.1±1.58 78.0±2.54 85.9±2.11 0.60±0.00 -
SAINT 91.0±0.07 78.4±0.23 85.3±0.11 60.9±1.60 96.5±0.19 75.4±0.91 89.2±1.32 94.7±0.57 0.86±0.01 0.88±0.00

MET 87.8±2.63 76.9±0.67 84.5±0.46 61.8±1.80 92.9±0.25 76.5±1.55 59.0±4.66 84.6±1.71 0.85±0.01 0.86±0.01

TabTransf.+TabPSA 89.0±0.94 78.2±0.08 84.6±0.20 62.1±0.21 94.6±0.63 66.0±0.97 80.9±0.67 90.0±1.20 0.61±0.02 -
SAINT+TabPSA 91.2±0.35 78.4±0.30 85.7±0.34 63.4±0.87 96.8±0.16 77.4±1.51 91.1±0.47 94.8±0.73 0.87±0.00 0.88±0.00

MET+TabPSA 89.7±0.16 77.9±0.33 85.5±0.31 62.7±0.31 93.1±0.11 77.9±2.47 90.9±2.39 87.6±4.16 0.87±0.00 0.88±0.00

10 datasets, Transformers with TabPSA achieves the high-
est score among all the evaluated models, outperforming
the machine learning models. In the remaining 4 datasets,
Transformer-based model with TabPSA is very close to
the best model except for Activity. In Activity, ensem-
ble models, XGBoost, and Random Forest perform better
than other methods. However, among the remaining meth-
ods, excluding ensemble methods, SAINT and MET with
TabPSA consistently demonstrate the highest performance.
In case of Alphabank, Contraceptive, and Medicalcost, the
Transformer-base models alone do not outperform the other
methods. However, when TabPSA is incorporated into the
base models, they outperform all other methods, which
clearly demonstrates the effectiveness of TabPSA. In Al-
phabank, Clave, and Buddy, the Transformer-based model
exhibit high performance surpassing that of ensemble mod-
els, and the addition of TabPSA to the base model further
improve its performance. This indicates that enhancing the
performance of the base model can lead to the creation of
even better-performing models. In Appendix F, we summa-
rize the results of various additional experiments, including
combining TabPSA with Transformers for language model-
ing and performing sensitivity analyses with regularization
on polynomial coefficients.

5.6. Computation Efficiency Analysis

Time complexity. The original attention mechanism has
a time complexity of O(n2d), where n is the number of
tokens and d is a dimension of each token. TabPSA adds

Table 5: Training time per epoch in wall-clock seconds (↓)
and memory usage for training models in milliseconds (↓)

Training time Memory usage(per epoch)

TabTransformer 1.84s 19.26MB
TabTransf.+TabPSA 1.87s (↑ 1.63%) 19.30MB (↑ 0.21%)

SAINT 3.81s 251.02MB
SAINT+TabPSA 4.55s (↑ 25.08%) 251.29MB (↑ 0.18%)

MET 2.11s 273.85MB
MET+TabPSA 2.32s (↑ 10.11%) 301.78MB (↑ 10.24%)

complexity to compute Ak with k−1 matrix multiplications,
resulting in a time complexity of O(n2d+(k−1)n2.371552),
where we assume that we use algorithm in (Williams et al.,
2024). Practically, when d > (k − 1)n2.371552, the time
complexity of TabPSA becomes O(n2d), a condition met
in almost all cases in our experiments.

Memory usage. In Table 5, we summarize the wall-clock
training time and memory usage required for training Trans-
formers with our proposed method. These metrics are av-
eraged across all datasets, with detailed results available in
Appendix E. To ensure a fair comparison, the architecture
of the base models and the +TabPSA models are maintained
constant, and Jacobi polynomial of order 3 is employed for
TabPSA. Our findings indicate that, on average, integrating
TabPSA leads to an increase in training time of up to 25%.
Regarding memory usage, the addition of TabPSA results
in only a minimal increase, with the additional learnable
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parameter count for incorporating TabPSA being k + 1.

6. Conclusion
Modern Transformers have revealed limitations related to
oversmoothing, a phenomenon where as the depth of the
Transformer model increases, hidden representations be-
come similar for all tokens. For tabular data, we show
that this problem also occurs. In order to address this phe-
nomenon, we propose the use of polynomial-based self-
attention, drawing inspiration from graph signal processing.
In our experiments, which encompassed 10 datasets and
10 baseline models, Transformer-based table representation
learning models trained with our proposed self-attention
mechanism, demonstrated significant performance improve-
ments in downstream tasks such as classification and regres-
sion. These improvements are substantial. We anticipate our
proposed method, TabPSA, can used for other Transformers,
if any, when the token numbers are not large.

Impact Statement
Given our study on the novel self-attention layer for
Transformer-based methods for tabular data, the societal
impacts could be substantial. This work has the potential
to significantly improve data analyses across various fields,
making processes more efficient and accurate. However, it
also brings to the fore ethical considerations around data
privacy and the fairness of automated decisions. As we
push the boundaries of machine learning, it is vital to con-
sider these implications to ensure that advancements benefit
society equitably and responsibly.
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A. Proof of Proposition 4.1

Proof. Let π(t)
v be a iterative PageRank of page v after t iterations, and π

(0)
v = 1

N , where N is the total number of pages.
Then, at every iteration of the algorithm, the following formula is used to compute the PageRank:

π(t)
v = (1− ϵ)

( ∑
(w,v)∈E

π
(t−1)
v

dw

)
+

ϵ

N
. (16)

To prove that the convergence time is small, we define π∗
v as the true PageRank of v. Then we can define the total error at

step t to be

Err(t) =
∑
v

|π(t)
v − π∗

v |. (17)

Since π∗
v is the true solution, we know that it must satisfy the PageRank equations exactly:

π∗
v = (1− ϵ)

( ∑
(w,v)∈E

π∗
w

dw

)
+

ϵ

N
. (18)

To find the error, we subtract this from the iterative method equation, and optain:

π(t)
v − π∗

v = (1− ϵ)
( ∑

(w,v)∈E

π
(t−1)
w − π∗

w

dw

)
. (19)

Using the Triangle Inequality, we get this experssion for the error in PageRank v at ste t:

|π(t)
v − π∗

v | ≤ (1− ϵ)
( ∑

(w,v)∈E

|π(t−1)
w − π∗

w|
dw

)
. (20)

We can sum over all v to get the total error. Notice that the page w will occur dw times on the right hand side, and since
there s a dw on the denominator, these will cancel.

Err(t) =
∑
v

|π(t)
v − π∗

v | ≤ (1− ϵ)
( ∑

(w,v)∈E

|π(t−1)
w − π∗

w|
)

(21)

We are left with (1− ϵ) times the total error at time t− 1 on the right hand side.

Err(t) ≤ (1− ϵ)Err(t− 1) (22)

This shows the fast convergence, because the decease in total error is compounding.

B. Convergence of Attention Matrix
The self-attention matrix and the PageRank matrix share one key common characteristic that their adjacency matrices are
fully connected with many small values. PageRank uses a matrix of (1 − α)A + α 1

N , where A is an adjacency matrix,
N is the number of nodes, and α is a damping factor, and therefore, all elements have small non-zero values. In the
self-attention matrix, this is also the case since Transformers use the softmax function. Because of this characteristic, in
addition, PageRank converges and so does TabPSA.

The self-attention matrix is unpredictable. As long as the self-attention matrix is fully connected, however, TabPSA works.
The softmax hardly produces zeros although some values are very small. Note that in PageRank, small values are also used
when N is very large, i.e., a web-scale graph of billions of nodes.

We claim that an attention matrix that satisfies the three conditions converges quickly, as in Proposition 4.1. The three
conditions are i) stochasticity, ii) irreducibility, and iii) aperiodicity. The first and second conditions are trivial, as attention
matrices are normalized with the softmax function, and they hardly have zero values, as discussed earlier. To demonstrate
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the satisfaction of the third condition, showing that self-attention matrices satisfy aperiodicity, we refer to (Levin & Peres,
2017).

Let T (x) := {t ≥ 1 : P t(x, x) > 0} be the set of times when it is possible for the chain to return to starting position x,
where P is an irreducible chain if for any two states x, y ∈ X there exists an interger t such that P t(x, y) > 0. The period
of state x is defined to be the greatest common divisor (gcd) of T (x).

Lemma B.1. If P is irreducible, then gcd T (x) = gcd T (y) for all x, y ∈ X .

Proof. Fix two states x and y. There exist non-negative integers r and l such that P r(x, y) > 0 and P l(x, y) > 0. Letting
m = r + l, we have m ∈ T (x)

⋂
T (y) and T (x) ⊂ T (y) − m, whence gcd T (y) divides all elements of T (x). We

conclude that gcd T (y) ≤ gcd T (x). By an entirely parallel argument, gcd T (x) ≤ gcd T (y).

For an irreducible chain, the period of the chain is defined to be the period that is common to all states. The irreducible
chain will be called aperiodic if all states have a period of 1. This means a Markov chain is aperiodic if there is at least
one self-loop. As discussed earlier, the self-attention matrix has non-negative values for all elements, including diagonal
elements, making the self-attention matrix aperiodic.

C. Modification on the Existing Methods
TabTransformer (Huang et al., 2020) When pretraining TabTransformer-MLM, masks are applied only to the categorical
features, which is impossible to do on datasets consisting solely of continuous features such as Superconductivity. Therefore,
we also apply masks to continuous features and utilize a loss function that is a weighted sum of cross-entropy loss and mean
squared error loss, note that we use coefficient for cross-entropy loss.

SAINT (Somepalli et al., 2021) SAINT is a Transformer-based table representation model. SAINT introduces column-
wise and row-wise self-attention blocks into its Transformer architecture. The model undergoes self-supervised learning,
employing techniques such as contrastive learning and denoising during pre-training. Following the pre-training phase,
SAINT proceeds to fine-tune the model through supervised training on downstream tasks. For SAINT, we use the original
form of the model without any modification.

MET (Majmundar et al., 2022) MET is a masked autoencoder (He et al., 2022)-based table representation learning model,
which incorporates adversarial loss and reconstruction loss for self-supervised representation learning. In downstream
evaluation tasks, the model omits the decoder and relies solely on the representations generated by the encoder. These
representations are then used to train auxiliary small Multi-Layer Perceptron (MLP) layers to predict the classes or values of
records, with the encoder held fixed. In our experiments, we fine-tune the encoder while training the auxiliary MLP layers.
This approach contributes to enhancing the model’s representation performance in a supervised training fashion.

D. Experimental Details
In this section, we provide details of our experiments, including datasets and baselines description, searched hyperparameters
and so on.

Reproducibility Statement To reproduce the experimental results, we have made the following efforts: 1) Source codes
used in the experiments are available in the supplementary material. By following the README guidance, the main results
are easily reproducible. 2) All the experiments are repeated five times, and their mean and standard deviation values are
reported. 3) We provide dataset and baseline details in Appendix D.

D.1. Dataset

We use 10 real-world tabular datasets. The general statistics of datasets are listed in Table 6.

• Income is a binary classification dataset used to determine whether individual earns an annual income exceeding $50K,
using census data as the basis.
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Table 6: Statistics of Datasets

Dataset Task (# class) # Features # Continuous # Categorical Dataset Size # Train set # Valid set # Test set

Income Binary 14 6 8 45,222 22,632 7,530 15,060
Default Binary 23 15 8 30,000 21,000 3,000 6,000
Phishing Binary 19 3 16 7,032 5,450 527 1,055
Alphabank Binary 7 1 6 30,477 21,333 4,572 4,572

Clave Multi-class (4) 16 0 16 10,800 7,560 1,620 1,620
Contraceptive Multi-class (3) 9 2 7 1,473 1,031 221 221
Activity Multi-class (6) 17 15 2 6,264 4,384 846 1,034
Buddy Multi-class (4) 9 6 3 17,357 12,149 2,084 3,124

Medicalcost Regression 6 3 3 1,338 1,003 134 201
Superconductivity Regression 81 81 0 21,263 14,884 2,552 3,827

• Default (Yeh, 2016) is a binary classification dataset describing data related to default payments among credit card
clients in Taiwan.

• Phishing (Mohammad & McCluskey, 2015) is a binary classification dataset used to differentiate between phishing and
ligitimate webpages.

• Alphabank is a binary classification dataset to determine whether the client subscribed to a long-term deposit.

• Clave (Vurka, 2015) is a multi-class classification dataset comprising binary attack-point vectors and their clave-
direction class(es).

• Contraceptive (Lim, 1997) is a multi-class classification dataset used to predict a woman’s choice of the current
contraceptive method, taking into account her demographic and socio-economic characteristics.

• Activity (Fuller, 2020) is a multi-class classification dataset used to predict physical activity types, with indirect
calorimetry serving as the reference standard.

• Buddy is a multi-class classification dataset comprising of attributes related to adoptable animals.

• Medicalcost is a regression dataset used to predict individual medical costs billed by health insurance with demographic
features.

• Superconductivity (Kam, 2018) is a regression dataset encompassing 81 features derived from superconductors. Its
primary objective is to predict the critical temperature.

The download links for each dataset are as follows:

• Income: https://www.kaggle.com/lodetomasi1995/income-classification

• Default: https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

• Phishing: https://archive.ics.uci.edu/ml/datasets/phishing+websites

• Alphabank: https://www.kaggle.com/raosuny/success-of-bank-telemarketing-data

• Clave: https://archive.ics.uci.edu/dataset/324/firm+teacher+clave+direction+
classification

• Contraceptive: https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice

• Activity: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/ZS2Z2J
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• Buddy: https://www.kaggle.com/datasets/akash14/adopt-a-buddy

• Medicalcost: https://www.kaggle.com/mirichoi0218/insurance

• Superconductivity: https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data

D.2. Baselines

To verify the effectiveness of our model, we compare our model with 10 baselines, which include deep learning models and
ensemble algorithms in machine learning. For training Decision Tree, Regression and Random Forest, we use scikit-learn
package.

• MLP is a abbreviation of multi-layer perceptron. We use 2-layer perceptron for baseline.

• Decision Tree partitions data into subsets based on features, creating a tree-like structure to make sequential decisions.

• Regression is a statistical method for tabular data. Note that we use logistic regression for classification task, and linear
regression for regression task.

• XGBoost4 (Chen et al., 2015) is a gradient boosting algorithm that excels in predictive modeling tasks by sequentially
training decision trees to correct the errors.

• Random Forest is an ensemble machine learning algorithm that combines the predictions from multiple decision trees
to improve predictive accuracy and reduce overfitting.

• TabTransformer5 (Huang et al., 2020) is a Transformer-based model which uses a Transformer encoder to learn
contextual embeddings on categorical features. Note that we use TabTranformer-MLM for self-supervised learning.

• VIME6 (Yoon et al., 2020) proposed an semi- and self-supervised learning for tabular data with pretext task on
estimating mask vectors, along with the reconstruction pretext task.

• TabNet7 (Arik & Pfister, 2021) combines decision trees and attention mechanisms to make accurate predictions on
structured datasets.

• SAINT8 (Somepalli et al., 2021) is a Transformer-based model which utilizes contrastive learning and performs
attention over both rows and columns.

• MET9 (Majmundar et al., 2022) is a table representation model based on masked autoencoders (He et al., 2022).

D.3. Hyperparameters

TabTransformer+TabPSA We use 8 hyperparameters including depth of Transformer, embedding dimensions, learning
rate, the number of heads, the value of weight decay, hidden dimension of mlp layer, polynomial type, and k. Best
hyperparameters are in Table 7.

SAINT+TabPSA We use 8 hyperparameters including learning rate, embedding dimensions, the number of heads,
cutmix augmentation probability pcutmix, mixup parameter α, temperature parameter τ , polynomial type, and k. Best
hyperparameters are in Table 8.

MET+TabPSA We use 7 hyperparameters including embedding dimensions, the number of attention heads, depth of
encoder, depth of decoder, learning rate, polynomial type, and k. Best hyperparameters are in Table 9.

4https://github.com/dmlc/xgboost
5https://github.com/lucidrains/tab-transformer-pytorch
6https://github.com/jsyoon0823/VIME
7https://github.com/dreamquark-ai/tabnet
8https://github.com/somepago/saint
9https://github.com/google-research/met
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Table 7: Best hyperparameters for TabTransformer+TabPSA

Datasets Depth Embedding dim LR # heads Weight decay Hidden dim Polynomial Type k

Income 6 32 2 1e-3 1e-3 128 Chebyshev 5
Default 3 32 4 2e-3 1e-3 256 Power 3
Phishing 6 32 4 1e-6 5e-3 512 Chebyshev 3
Alphabank 3 64 2 1e-3 1e-3 128 Chebyshev 3

Clave 6 64 4 1e-6 1e-3 64 Jacobi 10
Contraceptive 6 64 4 1e-7 1e-3 256 Jacobi 10
Activity 3 32 4 1e-6 1e-3 256 Legendre 3
Buddy 3 64 1 1e-6 5e-3 64 Legendre 3

Medicalcost 3 32 4 1e-6 5e-3 512 Chebyshev 3

Table 8: Best hyperparameters for SAINT+TabPSA

Datasets LR Embedding dim # heads pcutmix α τ Polynomial type k

Income 8e-4 32 4 0.1 1.0 0.5 Legendre 5
Default 8e-4 32 4 0.1 1.0 0.5 Power 5
Phishing 1e-5 16 4 0.1 10.0 0.7 Chebyshev 5
Alphabank 8e-4 16 4 0.1 10.0 0.5 Power 5

Clave 8e-4 32 4 0.1 10.0 0.5 Legendre 10
Contraceptive 8e-4 16 4 0.1 10.0 0.5 Chebyshev 5
Activity 8e-4 32 4 0.1 1.0 0.5 Legendre 3
Buddy 5e-3 32 4 0.1 0.1 0.5 Power 3

Medicalcost 8e-4 16 4 0.1 10.0 0.7 Power 5
Superconductivity 8e-4 8 4 0.1 1.0 0.3 Legendre 3

Table 9: Best hyperparameters for MET+TabPSA

Datasets Embedding dim # heads Encoder depth Decoder depth LR Polynomial type k

Income 8 8 3 3 8e-4 Power 5
Default 4 2 3 3 8e-4 Chebyshev 10
Phishing 64 4 3 3 5e-3 Jacobi 3
Alphabank 8 8 6 3 1e-3 Legendre 3

Clave 4 4 9 9 8e-4 Jacobi 3
Contraceptive 16 2 3 3 8e-4 Legendre 3
Activity 16 4 6 3 1e-3 Chebyshev 5
Buddy 32 2 3 3 5e-3 Power 3

Medicalcost 32 2 6 9 8e-4 Legendre 3
Superconductivity 16 4 6 3 8e-4 Legendre 3
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E. Computational Efficiency Analysis
Tables 10 and 11 present the evaluation results for the computational efficiency of applying our method to Transformer-based
models, detailing the results for each model across all datasets. Table 10 measures the wall-clock training time on five
occasions and reports the average. Table 11 documents the memory usage required to train Transformer-based models with
TabPSA.

Table 10: Wall-clock training time per epoch in seconds (↓) for all datasets

Methods Binary Classification Multi-class Classification Regression

Income Default Phishing Alphabank Clave Contra. Activity Buddy Medical. Super.

TabTransformer 4.10s 4.03s 1.03s 2.49s 1.03s 0.67s 0.92s 1.67s 0.59s -
TabTrans.+TabPSA 4.16s 4.04s 1.06s 2.52s 1.07s 0.69s 0.97s 1.72s 0.63s -

SAINT 5.49s 6.79s 1.57s 5.03s 1.88s 0.51s 1.42s 2.38s 0.41s 12.57s
SAINT+TabPSA 6.77s 7.64s 2.06s 6.31s 2.39s 0.58s 1.89s 4.00s 0.45s 13.43s

MET 3.89s 3.51s 1.07s 3.51s 1.40s 0.26s 0.92s 2.13s 0.38s 3.99s
MET+TabPSA 4.98s 3.63s 1.12s 3.56s 1.55s 0.29s 0.96s 2.20s 0.46s 4.44s

Table 11: GPU memory usage for training Transformers equipped with TabPSA in MB (↓) for all datasets

Methods Binary Classification Multi-class Classification Regression
Income Default Phishing Alphabank Clave Contra. Activity Buddy Medical. Super.

TabTransformer 19.08MB 19.33MB 20.98MB 18.77MB 20.92MB 18.75MB 18.40MB 18.69MB 18.45MB -
TabTrans.+TabPSA 19.13MB 19.37MB 21.02MB 18.82MB 20.96MB 18.80MB 18.41MB 18.73MB 18.49MB -

SAINT 86.42MB 177.25MB 128.75MB 37.70MB 101.41MB 48.59MB 110.29MB 48.83MB 34.60MB 1,736.35MB
SAINT+TabPSA 86.43MB 177.94MB 129.19MB 37.72MB 102.30MB 48.60MB 110.33MB 48.84MB 34.62MB 1,736.93MB

MET 132.22MB 316.09MB 54.72MB 140.28MB 121.37MB 157.64MB 120.91MB 56.55MB 85.72MB 1,552.95MB
MET+TabPSA 136.40MB 337.28MB 55.67MB 241.22MB 127.45MB 158.59MB 125.23MB 56.84MB 85.77MB 1,693.33MB

F. Additional Experiments
F.1. Evidence of the Proposed Mechanism in Other Domain

We integrated TabPSA with BERTbase and conducted text classification tasks on the GLUE benchmark. The models
were fine-tuned for 5 epochs with our self-attention layer, and a slight modification was introduced in the initialization of
coefficients — specifically, w0 = 0, w1 = 1, and wi = 0 for i ≥ 2. The reason for this modification is that the pre-trained
BERTbase is trained with the original self-attention mechanism, which is the multiplication of the attention matrix and the
value matrix. As shown in Table 12, we find that the proposed self-attention layer also improves transformer-based model
for language modeling.

Table 12: Performance comparison of BERTbase and BERTbase + TabPSA across various datasets

Methods CoLA SST-2 MRPC QQP STS-B MNLI-m MNLI-mm QNLI RTE Avg.

BERTbase 56.79 93.81 88.70 88.32 88.16 84.96 84.15 91.63 66.06 82.51
BERTbase + TabPSA 59.43 93.58 91.78 88.46 89.10 82.19 83.08 91.67 69.68 83.22

F.2. Experiment on Recent Transformer-based Model for Tables

We summarize the performance comparison of TP-BERTa (Yan et al., 2024) and TP-BERTa + TabPSA in Table 13. TP-
BERTa is a more recent Transformer-based model for tabular data, specifically pre-trained for table prediction. The results
show a consistent performance improvement with TabPSA, as demonstrated thus far.
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Table 13: Performance comparison of TP-BERTa and TP-BERTa + TabPSA across various datasets

Models Parkinsons Phishing Contraceptive Wine Medicalcost

TP-BERTa 96.34±1.57 82.98±0.36 74.05±1.38 0.90±0.05 0.85±0.00
TP-BERTa + TabPSA 98.14±1.33 83.58±0.23 76.14±0.97 0.95±0.02 0.85±0.01

Increase (%) 1.86% 0.72% 2.83% 6.18% 0.31%

F.3. Sensitivity Analyses with Regularization on Polynomial Coefficient

For further analysis of sensitivity with respect to k, we conducted the same experiment as in Table 2, but with regularization
on the polynomial coefficient w. This experiment aims to check for symptoms of overfitting in the coefficients. The
experimental results shown in Table 14 suggest that training without regularization introduces mild overfitting to the
coefficients.

Table 14: Sensitivity analyses with regularization over coefficient w

Datasets k TabTransformer+TabPSA SAINT+TabPSA MET+TabPSA

Alphabank

2 62.1±0.16 62.2±0.22 61.6±1.08
3 62.1±0.19 62.4±0.52 61.2±0.62
5 62.1±0.22 62.4±0.76 61.0±0.83
10 62.1±0.20 62.5±0.50 60.3±1.56

Contraceptive

2 65.2±1.44 75.5±0.81 77.1±1.84
3 65.6±1.80 76.1±0.36 76.5±0.97
5 65.7±2.34 75.3±0.47 77.3±2.62
10 66.6±0.94 75.9±0.65 77.4±0.83

Medicalcost

2 0.61±0.02 0.87±0.00 0.74±0.11
3 0.61±0.04 0.86±0.01 0.87±0.00
5 0.61±0.05 0.86±0.00 0.86±0.01
10 0.61±0.26 0.86±0.00 0.87±0.01
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