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Abstract
State-space models (SSMs) have emerged as a
potential alternative to transformers. One theoret-
ical weakness of transformers is that they cannot
express certain kinds of sequential computation
and state tracking (Merrill & Sabharwal, 2023a),
which SSMs are explicitly designed to address
via their close architectural similarity to recurrent
neural networks. But do SSMs truly have an ad-
vantage (over transformers) in expressive power
for state tracking? Surprisingly, the answer is
no. Our analysis reveals that the expressive power
of S4, Mamba, and related SSMs is limited very
similarly to transformers (within TC0), meaning
these SSMs cannot solve simple state-tracking
problems like permutation composition and con-
sequently are provably unable to accurately track
chess moves with certain notation, evaluate code,
or track entities in a long narrative. To supple-
ment our formal analysis, we report experiments
showing that S4 and Mamba indeed struggle with
state tracking. Thus, despite their recurrent for-
mulation, the “state” in common SSMs is an illu-
sion: S4, Mamba, and related models have sim-
ilar expressiveness limitations to non-recurrent
models like transformers, which may fundamen-
tally limit their ability to solve real-world state-
tracking problems. Moreover, we show that only
a minimal change allows SSMs to express and
learn state tracking, motivating the development
of new, more expressive SSM architectures.

1. Introduction
Recent theoretical work has shown that transformer architec-
ture based models are incapable of expressing inherently se-
quential computation (Merrill & Sabharwal, 2023a). These
results reveal a surprising limitation of transformers: they
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Figure 1: We prove that SSMs, like transformers, cannot
solve inherently sequential problems like permutation com-
position (S5), which lies at the heart of state-tracking prob-
lems like tracking chess moves in source-target notation
(see Section 3.2), evaluating Python code, or entity tracking.
Thus, SSMs cannot, in general, solve these problems either.

Code: http://jpetty.org/ssm-illusion

cannot express simple kinds of state tracking problems, such
as composing sequences of permutations, which even sim-
ple recurrent neural networks (RNNs) can naturally express.
In a different line of work, state space model (SSM) archi-
tectures (Gu et al., 2021; 2022a; Fu et al., 2023; Gu & Dao,
2023; Wang et al., 2024) have been introduced as an alter-
native to transformers, with the goal of achieving RNN-like
expressive power for handling problems that are naturally
stateful and sequential (Gu et al., 2021; 2022b). But does the
seemingly stateful design of SSMs truly enable them to solve
sequential and state-tracking problems that transformers
cannot? If so, this would be a promising property of SSMs
because state tracking is at the heart of large language model
(LLM) capabilities such as tracking entities in a narrative
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(Heim, 1983; Kim & Schuster, 2023), playing chess under
certain notation1, or evaluating code. This would motivate
further research on SSM architectures and their deployment
in the next generation of LLMs.

In this work, we show that the apparent stateful design of
SSMs is an illusion as far as their expressive power is con-
cerned. In contrast to the suggestion by Gu et al. (2021;
2022b) (and, perhaps, a broader belief in the community)
that SSMs have expressive power for state tracking similar to
RNNs, we prove theoretically that linear and Mamba-style
SSMs, like transformers, cannot express inherently sequen-
tial problems, including state-tracking problems like com-
posing permutations that RNNs can easily express. Further,
our experiments confirm this prediction: both transform-
ers and these SSMs cannot learn to compose permutations
with a fixed number of layers, whereas RNNs can compose
permutations with just a single layer. Our results imply
that arguments that current SSMs have an advantage over
transformers due to being “more recurrent” or capable of
tracking state are misguided. In fact, the SSM architectures
we consider are just as theoretically unequipped for state
tracking and recurrent computation as transformers are.

We first establish the theoretical weakness of linear SSMs
and near generalizations by proving they are in the complex-
ity class L-uniform TC0, which has been previously shown
for transformers (Merrill & Sabharwal, 2023a). This implies
these SSMs cannot solve inherently sequential problems
(formally, problems that are NC1-hard), including state-
tracking problems like permutation composition (Liu et al.,
2023). Permutation composition is a fundamental problem
at the heart of many real-world state-tracking problems such
as playing chess, evaluating code, or tracking entities in a
narrative (Figure 1), implying solutions to these problems,
too, cannot be expressed by SSMs, at least in the worst case.

At first glance, our results may appear to contradict Gu et al.
(2021)’s claim that linear SSMs can simulate general recur-
rent models, which can express permutation composition.
But the contradiction is resolved by a difference in assump-
tions: Gu et al. (2021) relied on infinite depth (number of
layers) to show that SSMs could simulate RNNs. We, on
the other hand, analyze the realistic setting with a bounded
number of layers, under which we find that SSMs cannot
simulate the recurrent state of an RNN and, in fact, suffer
from similar limitations as transformers for state tracking.

Empirically, we find that S4 (Gu et al., 2022a) and S6 (Gu
& Dao, 2023) SSMs, as well as transformers, do not learn to
solve the permutation composition state-tracking problem
with a fixed number of layers, while simple RNNs can do so
with just one layer. This provides empirical support for our

1The hardness of chess state tracking holds with (source, target)
notation, but standard notation may make state tracking easier.
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Figure 2: Complexity hierarchy within NC1. Transformers
can only recognize languages within TC0 (Merrill & Sabhar-
wal, 2023a), and we show the same for SSMs (Theorems 4.2
and 4.4). Thus, both architectures cannot express the “hard
state tracking” captured by NC1-complete problems like S5,
which can be straightforwardly expressed by RNNs. The
figure assumes the widely held conjecture TC0 ̸= NC1.

theoretical separation in expressive power for state tracking
between SSMs and true recurrent models. We also find that
both transformers and SSMs struggle compared to RNNs
on state-tracking problems less complex than permutation
composition where it is not known whether they can ex-
press a solution. Thus, in practice, SSMs may struggle not
just on the hardest state-tracking problems like permutation
composition but also on easier variants.

Finally, we consider a minimal extension of a linear SSM
which makes the transition matrix input dependent, simi-
lar to Liquid S4 (Hasani et al., 2023). We show that this
extension has sufficient expressive power for state track-
ing and permutation composition. Empirically, we show
that our implementation of this extension learns to solve
permutation composition with a single layer, just like an
RNN, while being similarly parallelizable to other SSMs. It
is an open question whether such SSM architectures with
greater expressivity for state tracking are practically viable
for large-scale language modeling.

2. Background
We first present the SSM architectures we will analyze (Sec-
tion 2.1). Our analysis of the state tracking capabilities of
SSMs borrows deeply from the circuit complexity and al-
gebraic formal language theory literature. We thus review
how circuit complexity can be used to analyze the power of
neural networks (Section 2.3) and how state-tracking prob-
lems can be captured algebraically and analyzed within the
circuit complexity framework (Section 3).

2.1. Architecture of State-Space Models

SSMs are a neural network architecture for processing se-
quences similar in design to RNNs or linear dynamical
systems. SSMs have been suggested to have two potential
advantages compared to transformers owing to their recur-
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rent formulation: faster inference and, possibly, the ability
to better express inherently sequential or stateful problems
(Gu et al., 2021; 2022b). Several architectural variants of
SSMs have been proposed, including S4 (Gu et al., 2022a)
and Mamba (Gu & Dao, 2023). Recently, SSMs have been
shown to achieve strong empirical performance compared to
transformers in certain settings, particularly those involving
a long context (Gu & Dao, 2023; Wang et al., 2024).

SSMs consist of SSM layers, which can be thought of as
simplified RNN layers. We define a generalized linear SSM
layer that encapsulates both S4 (Gu et al., 2022a) and the S6
layer used by Mamba (Gu & Dao, 2023) as special cases.
Definition 2.1 (Generalized linear SSM layer). Given a
sequence2 x1, . . . ,xn ∈ Rk, the recurrent form of a linear
SSM layer defines a new sequence of states h1, . . . ,hn ∈
Rd using projections Āi ∈ Rd×d and B̄i ∈ Rd×k, which
can themselves depend on xi. For each 1 ≤ i ≤ n,

hi = Āihi−1 + B̄ixi. (Recurrent form)

The convolutional form of the SSM layer defines the same3

h1, . . . ,hn computed differently as a summation:

hi =

i∑
j=1

 i∏
k=j+1

Āk

 B̄jxj . (Convolutional form)

The layer outputs yi = Cihi +Dixi ∈ Rk, where Ci ∈
Rk×d and Di ∈ Rk×k depend on xi.

Two common cases of this layer are when Āi does not
depend on the input (“non-gated”; Section 4.2) and when
Āi is diagonal (Section 4.3). In both of these cases, we will
show that the SSM can be simulated in TC0.

A generalized linear SSM is made up of multiple such
layers, with a linear projection and a non-linearity applied
after every layer (Rush & Karamcheti, 2022). Layer-norm
can also be applied, either before or after the layer.

Practical Details. In S4 and related SSMs, Definition 2.1
is applied elementwise (k = 1) across all m elements of
the previous layer output (Gu et al., 2022a). In practice,
the weight matrix initialization is crucial for training. Our
expressivity results (Theorems 4.2 and 4.4) apply for any
generalized linear SSM (including S4 and S6), independent
of initialization. In contrast to S4 and S6, H3 (Fu et al.,
2023) does not meet Definition 2.1 because the context is
not represented by a single vector. Rather, it resembles a
transformer with SSM components.

2In practice, this sequence is often a vector x1, . . .xn ∈ Rm

and the SSM is applied elementwise on each feature.
3The two forms express the same function over R or any other

distributive datatype. Over floating points (Section 2.2), they are
not guaranteed to be the same, but we must assume the error is
negligible for them to be well-defined and usable in practice.

2.2. Numeric Datatype

Circuit-complexity analysis of neural networks depends to
some degree on low-level details about arithmetic and the
underlying datatype D used in the network’s computation
graph. We can think of D as parameterized by the number
of bits available to represent a number in D. For instance,
non-negative integers in [0, 2p] use p bits, signed integers in
[−2p, 2p] use p+ 1 bits, FP16 uses 16 bits, etc.

Our main results (Theorems 4.2 and 4.4) will go through
for any datatype D for which the following operations are
efficiently parallel-computable (i.e., are in the complexity
class L-uniform TC0, to be defined shortly in Section 2.3):

1. Iterated addition, i.e., summing n numbers in D

2. Iterated product, i.e., multiplying n numbers in D

3. Matrix powering, i.e., computing the n-th power of a
fixed-size d× d matrix over D

When D is any finite-precision datatype, i.e., has a fixed
number of bits available (e.g., 16 or 64), then these oper-
ations are easily seen to be in L-uniform TC0. As Mer-
rill & Sabharwal (2023b) argue, however, finite-precision
datatypes severely limit the expressivity of neural architec-
tures from a formal perspective (e.g., finite-precision trans-
formers cannot represent uniform attention), motivating the
use of parameterized datatypes that can (approximately)
represent any number with a sufficiently large parameter.
Interestingly, when D is the datatype of n-bit integers, all
of the above operations are known to be in L-uniform TC0

(Hesse, 2001; Mereghetti & Palano, 2000). Realistically,
however, neural model implementations use floating point
numbers with much fewer than n bits. Following Merrill &
Sabharwal (2023b), we use the log-precision floating point
model, i.e., c log n bit floats where c is some fixed constant
(see Appendix A for a formal definition). Merrill & Sabhar-
wal (2023a) showed that iterated addition over log-precision
floats is in L-uniform TC0. We extend the arguments of
Hesse (2001) and Mereghetti & Palano (2000) to show that
iterated product and matrix powering over log-precision
floats are also in L-uniform TC0 (see Appendix A).

2.3. Limits of Transformers via Circuit Complexity

A line of recent work has used circuit complexity and logic
formalisms to identify expressivity limitations of transform-
ers on reasoning problems (Angluin et al., 2023; Merrill
& Sabharwal, 2023a; Liu et al., 2023; Chiang et al., 2023;
Merrill & Sabharwal, 2023b; Hao et al., 2022); see Strobl
et al., 2024 for a survey. In particular, Merrill & Sabharwal
(2023a) showed transformers can only solve problems in the
complexity class TC0, which is the set of problems that can
be recognized by constant-depth, polynomial-size threshold
circuit families. Such circuits, in addition to having standard
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AND, OR, and NOT gates (of arbitrary fan-in), can also use
threshold gates that output 1 iff at least k of the inputs are 1,
where k is a parameter of the gate. Informally, TC0 can be
thought of as the class of problems that can be solved with
extremely parallel (constant-depth) computation.4

Problems outside TC0, corresponding to problems that are
inherently sequential and thus cannot be parallelized, cannot
be solved by transformers. No problems in polynomial time
are known unconditionally to be outside TC0, but unless the
widely held conjecture that TC0 ̸= NC1 is false, many sim-
ple NC1-hard problems are outside TC0. In particular, this
includes simulating finite automata (NC1-complete), evalu-
ating boolean formulas (NC1-complete), determining graph
connectivity (L-complete), and solving linear equations (P-
complete). These problems have already been shown to be
inexpressible by transformers (Merrill & Sabharwal, 2023a).
By showing that SSMs can be simulated in TC0, we will
establish that they also cannot be solved by SSMs.

3. State Tracking
Informally, a state-tracking problem is a problem where the
text specifies some sequence of updates to the state of the
world, and the goal of the problem is to determine what
the world state is after the updates have been applied in se-
quence. The circuit complexity view on the power of neural
networks can be combined with other insights from alge-
braic formal language theory to analyze the kinds of state
tracking that SSMs can express. In particular, this theory
reveals which kinds of state-tracking problems are (likely)
not in TC0. This will, in turn, allow us to find examples of
hard state tracking that models like SSMs cannot express.

3.1. State Tracking as a Monoid Word Problem

From the perspective of algebraic formal language theory,
state tracking over a finite world can be captured as a word
problem on a finite monoid (Liu et al., 2023).5 Different up-
dates to the world become different elements in the monoid,
and resolving the final world state after all the updates have
been applied is equivalent to computing the product of a
sequence of elements (also called a “word”).

Definition 3.1 (Word problem). Let M be a finite set, and
(M, ·) a finite monoid (i.e., M with identity and associa-
tive multiplication). The word problem for M is to re-

4We use TC0 to mean L-uniform TC0, meaning the circuit
family is constructible by a Turing machine that runs in space log-
arithmic in the size of the input (cf. Merrill & Sabharwal, 2023a;
Strobl et al., 2024). We believe our results could be extended
from L-uniform TC0 to DLOGTIME-uniform TC0 using tech-
niques similar to Merrill & Sabharwal (2023b) for composing TC0

circuits in a way that preserves DLOGTIME uniformity.
5We consider finite monoids for simplicity, but the approach

may be extendable to infinite (e.g., finitely generated) monoids.

duce sequences in M∗ under multiplication; that is, send
m0m1 · · ·mk to m0 ·m1 · . . . ·mk ∈M . Solving the word
problem requires reducing sequences of arbitrary length.

Example 3.2. Consider the monoid {0, 1} where · is addi-
tion modulo 2. The word problem is to compute the parity
of a string, e.g., 0011 7→ 0. From a state-tracking perspec-
tive, this monoid captures a world with a single light switch.
Identity 0 corresponds to no action, and 1 flips the switch.

Modeling state tracking with word problems lets us draw
connections between circuit complexity and algebra to un-
derstand which word problems are hard to solve. Krohn &
Rhodes (1965) established that not all word problems are
created equal: some, like Example 3.2, are in TC0, while
others are NC1-complete, requiring recurrent processing
to solve (Immerman & Landau, 1989; Barrington, 1989).
Because we will show SSMs can be simulated in TC0, it
follows that NC1-complete state-tracking problems cannot
be expressed by SSMs (cf. Figure 2).

Whether or not a word problem is NC1-complete depends on
the algebraic structure of the underlying monoid. Barrington
(1989) showed that the word problem of every finite non-
solvable6 group is NC1-complete. That non-solvable groups
have NC1-complete word problems is notable because of
the ubiquity with which non-solvable groups show up in
tasks involving state tracking. The canonical example of an
NC1-complete word problem is that of S5, the symmetric
group on five elements that encodes the permutations over
five objects. As an immediate instantiation of this, consider
a document describing a sequence of transpositions: “swap
ball 1 and 3, swap ball 3 and 5, swap ball 4 and 2, ...”.
Being able to answer the question “where does ball 5 end
up?” for all possible swap sequences requires solving the S5

word problem.7 Beyond permutations, Figure 1 shows how
many natural state-tracking problems like tracking chess
moves, evaluating code, or tracking entities also encode the
structure of S5, meaning these state-tracking problems also
cannot be expressed by a model in TC0. Rather, in order to
solve these problems, the depth of the model would have to
be expanded to accommodate longer inputs.

Although the S5 word problem is canonical, in this paper we
will consider the word problem on a closely related group
A5: the alternating group on five elements. We do this for
simplicity: A5 is a subgroup of S5 containing only even
permutations, and is the smallest non-solvable subgroup.
We will compare the word problem on A5 to two other
baseline groups: A4×Z5, a non-abelian but solvable group;

6We focus on word problems on groups, which are monoids
with inverses. Formally, a group G is solvable exactly when there
is a series of subgroups 1 = G0 < G1 < · · · < Gk = G such
that Gi−1 is normal in Gi and Gi/Gi−1 is abelian.

7W.l.o.g., any permutation can be factored into a sequence of
transpositions, or swaps.

4



The Illusion of State in State-Space Models

and Z60, an abelian group encoding mod-60 addition. We
choose these groups as points of comparison because they
all have 60 distinct elements, meaning that the difficulty
in learning their word problems will come only from the
complexity of learning the group multiplication operation.

3.2. Encoding S5 in Chess State Tracking

Figure 1 already gives some intuition into how state-tracking
problems encode S5. Out of these examples, the most intri-
cated case is chess. We now give a proper reduction from
S5 to tracking chess moves, showing formally that not just
S5, but chess state tracking as well, is NC1-complete. We
define the chess state-tracking problem as follows:

• Input: A chessboard state and sequence of chess
moves, where each move is written in UCI notation
as a tuple (source square, target square). This differs
from the standard SAN notation that represents other
information like piece type (Toshniwal et al., 2021).

• Output: The resulting board state after starting in the
initial board state and applying the sequence of moves
one after another, ignoring draws. If any move is illegal
given the previous board state, a null state is returned.

We show that S5 can be reduced to chess state tracking,
establishing its NC1-completeness:

Proposition 3.3. S5 can be reduced to chess state tracking
in UCI notation via NC0 reductions.

Proof. Without loss of generality, we consider the variant
of S5 where the output is true if and only if the original first
element returns to the first position after the given sequence
of permutations has been applied.

The idea, as illustrated in Figure 1, is to map each element
of S5 to a fixed sequence of chess moves that permutes five
pieces accordingly on the chessboard. Given an instance
of the S5 word problem, we will construct an initial board
state and a sequence of moves such that the final chessboard
state encodes the output of that S5 problem instance.

LetM denote the set of chess moves in the UCI, i.e., (source
square, target square), notation.

Initial Board State. We construct a chessboard similar to
Figure 1 but with a black rook at a8 and black queens at b8
to e8.

Chess Move Sequence. We then construct a finite function
f : S5 →M∗ that encodes a permutation π as a sequence
of chess moves. We first factor each permutation π to a
sequence of transpositions τ1(π) · · · τmπ

(π). Each trans-
position τ ∈ T can in turn be expressed as a sequence of
chess moves analogously to Figure 1. For example, trans-
posing items 1 and 3 can be expressed as the move sequence:

(a8, a7), (a1, b1), (c8, c6), (b1, a1), (a7, c7), (a1, b1),
(c6, a6), (b1, a1), (c7, c8), (a1, b1), (a6, a8), (b1, a1),
which has the crucial property that it transposes a8 with c8.
We denote the mapping from transpositions to chess move
sequences as f : T →M∗. Putting it all together, we have

f(π) =

mπ

j=1

f(τj(π)).

To reduce a sequence of permutations w ∈ S∗
5 , we let

f(w) =

n

i=1

f(wi).

Putting It All Together. We call our oracle for chess state
tracking with the constructed initial board state and f(w) as
the sequence of chess moves. By construction, we can then
return true if and only if the rook is at a8. The reduction can
be implemented in NC0 because it is a simple elementwise
mapping of the input tokens, and decoding from the output
chessboard is a finite table lookup.

As a fun aside, we note that the chess board constructed
in the above proof is reachable in a standard chess game.
The chess sequences encoding permutation sequences are
all valid in the game of chess, except that they ignore the
fact that repeated board states in chess technically lead to a
draw.

Since S5 is NC1-complete under AC0 reductions and NC0 ⊆
AC0, we have:

Corollary 3.4. The chess state-tracking problem is NC1-
complete under AC0 reductions.

Theorem 3.2 of Feng et al. (2023) uses a similar reduction
to prove formula evaluation is NC1-complete. Reductions
can be constructed for evaluating Python or tracking entities
in a dialog, as suggested by Figure 1. As for chess, the
task formatting for entity tracking affects its hardness. For
instance, the formatting used by Kim & Schuster (2023)
in their Figure 1 is not NC1-complete, whereas the variant
shown in our Figure 1 is. This underscores the value of
theory for constructing examples of hard state tracking.

4. SSMs Can be Simulated in TC0

In this section, we show that the convolutional form of
common variants of SSM can be simulated in TC0. As-
suming the convolutional form of the model computes the
same function as the recurrent form, this implies such SSMs
cannot solve inherently sequential problems, despite their
appearance of recurrence and statefulness. We first show
containment in TC0 for non-gated SSMs (Theorem 4.2), and
then show the same holds for diagonal SSMs (Theorem 4.4).
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4.1. Conditions for Linear SSMs in TC0

Before characterizing specific SSM architectures, we first
show that the complexity of computing transition matrix
products essentially determines the complexity of simulat-
ing an SSM with a circuit family.

Lemma 4.1. Let M be a log-precision generalized linear
SSM. Then there exists an L-uniform TC0 circuit family that
computes M ’s convolutional form if:

1. For any integer interval [j, k], the matrix product∏k
i=j Āi can be computed in L-uniform TC0 as a func-

tion of Āj , . . . , Āk (to c log n precision for any c > 0).

2. For 1 ≤ i ≤ n, Āi, B̄i,Ci, and Di can be computed
in L-uniform TC0 as a function of xi.

Proof. Following the proof structure of Merrill & Sabhar-
wal (2023a), we describe how to construct a log-space
bounded Turing machine TM that, given x1, . . . ,xn as in-
put, prints a circuit that simulates M on this input. We
first note that for all processing done before or after an
SSM layer (projection, non-linearity, layer norm, etc.), TM
can follow known simulations of such operations for trans-
formers (Merrill & Sabharwal, 2023a; 2024) to output a
TC0 circuit simulating this processing. We thus focus on
simulating an individual SSM layer.

Recall from Definition 2.1 that M ’s convolutional form
requires computing hi =

∑i
j=1

(∏i
k=j+1 Āk

)
B̄jxj and

yi = Cihi +Dixi. By the second precondition, TM can
print a TC0 circuit that computes all matrices involved here.
Further, by the first precondition, TM can also print a TC0

circuit that computes the innermost product in the com-
putation of each hidden state hi, namely

∏i
k=j+1 Āk. It

can now print a TC0 circuit to multiply the resulting prod-
uct8 with B̄j and xj , and then print a circuit to compute
an iterated sum over the i resulting vectors to compute hi

(cf. iterated addition in Appendix A). It can similarly print a
(simpler) circuit to compute yi. Thus, the entire SSM layer
can be simulated by an L-uniform TC0 circuit.

We will use Lemma 4.1 to show that any non-gated or diag-
onal generalized linear SSM can be simulated in TC0.

4.2. Non-Gated SSMs are in TC0

Theorem 4.2 (Non-gated SSM). Let M be a log-precision
generalized linear SSM such that, for any i,

Āi = Ā, B̄i = B̄, Ci = C, Di = D.

8Let c logn be the SSM’s precision. We compute
∏

k Āk to
c′ logn precision for a large enough c′ (similar to the proof of
Lemma A.5) such that the full product

(∏
k Āk

)
B̄jxj is correct

to at least c logn bits, as technically required by Definition A.3.

Then there exists an L-uniform TC0 circuit family that com-
putes M ’s convolutional form.

Proof. We prove this by showing that both conditions from
Lemma 4.1 are satisfied. Computing the matrix product
reduces to powering Āk−j . Crucially, we can use the
fact that matrix powering over floats is in L-uniform TC0

(Lemma A.8, extending Mereghetti & Palano, 2000). Fi-
nally, Āi, B̄i,Ci, and Di can be computed in L-uniform
TC0 because they are constants.

As S4 satisfies the premises of Theorem 4.2, we obtain:

Corollary 4.3. There exists an L-uniform TC0 circuit family
that computes S4’s convolutional form.

4.3. Diagonal SSMs are in TC0

Theorem 4.4 (Diagonal SSM). Let M be a log-precision
generalized linear SSM where for 1 ≤ i ≤ n:

1. the transition matrix Āi is diagonal, denoted diag(āi)
where āi ∈ Rd;

2. each of āi, B̄i,Ci and Di can be computed in L-
uniform TC0 as a function of xi.

Then there exists an L-uniform TC0 circuit family that com-
putes M ’s convolutional form.

Proof. By the first condition,
∏

i Āi =
∏

i diag(āi). It-
erated multiplication of diagonal matrices is reducible to
several iterated scalar multiplications, placing this product
in L-uniform TC0 (Lemma A.5). The second condition
from Lemma 4.1 is satisfied by assumption. Thus, M ’s
convolutional form is computable in L-uniform TC0.

Since S6 satisfies the premises of Theorem 4.4, we have:

Corollary 4.5. There exists an L-uniform TC0 circuit family
that computes S6’s convolutional form (used by Mamba).

Proof. For the first condition, note that S6’s transition ma-
trix Āi is defined as exp(δiA) for a fixed diagonal A. The
set of diagonal matrices is closed under scalar multiplica-
tion and matrix exponentiation, so Āi is also diagonal. See
Appendix B for a proof that the second condition is satisfied
by the S6 parameterization.

Appendix C extends Theorem 4.4 to hold even when {Āi}
are simultaneously diagonalizable, rather than just diago-
nal. Specifically, we prove the following generalization:

Theorem 4.6 (Simultaneously diagonalizable SSM). Let
W be a fixed matrix. Let M be a log-precision generalized
linear SSM such that, for 1 ≤ i ≤ n,

6
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1. the transition matrix Āi is computable to log precision
by the expression W diag(āi)W

−1, where āi ∈ Rd;

2. each of āi, B̄i,Ci and Di can be computed in L-
uniform TC0 as a function of xi.

Then there exists an L-uniform TC0 circuit family that com-
putes M ’s convolutional form.

This, in turn, allows us to prove that a simultaneously diag-
onalizable transition matrix generalization of the S6 layer is
also in L-uniform TC0 (Corollary C.7).

4.4. Discussion

Theorems 4.2 and 4.4 establish that common SSM variants,
like transformers, can only express solutions to problems in
the class TC0. This means these SSMs cannot solve NC1-
hard problems like evaluating boolean formulas or graph
connectivity. In particular, it shows that they are limited as
far as their state tracking capabilities as they are unable to
compose permutations (solve the S5 word problem):

Corollary 4.7. Assuming TC0 ̸= NC1, no log-precision
SSM with the S4 or S6 architecture can solve the word
problem for S5 or any other NC1-hard problem.

In contrast, RNNs can easily express S5 via standard con-
structions that encode finite-state transitions into an RNN
(Minsky, 1954; Merrill, 2019). This shows that SSMs can-
not express some kinds of state tracking and recurrence that
RNNs can. This tempers the claim from Gu et al. (2021,
Lemma 3.2) that SSMs have the expressive power to sim-
ulate RNNs, which relied on the assumption that SSMs
can have infinite depth. In a more realistic setting with
a bounded number of layers, our results show SSMs can-
not express many state-tracking problems, including those
which can be solved by fixed-depth RNNs.

5. Extending the Expressive Power of SSMs
We have shown that S4 and S6, despite their seemingly
“stateful” design, cannot express problems outside TC0,
which includes state tracking like S5. We show how SSMs
can be extended to close the gap in expressive power with
RNNs, allowing them to express S5. Two simple extensions
can bring about this increase in expressive power, assuming
layer input dimension k > 1. First, adding a nonlinearity
makes the SSM into an RNN, adding expressive power but
degrading parallelism. On the other hand, allowing Āi to
be input-dependent makes the SSM more like a weighted
finite automaton (WFA; Mohri, 2009), adding expressive
power while remaining parallelizable.

5.1. Via Nonlinearities

One extension to the SSM is to add a nonlinearity, effectively
making it an RNN. We call this an RNN-SSM layer:

hi = sgn
(
Āhi−1 + B̄xi

)
.

A model with this architecture can solve the S5 word prob-
lem when the input dimension k > 1:

Theorem 5.1. For any regular language L ⊆ Σ∗ (includ-
ing the word problem for S5), there exists a one-layer log-
precision RNN-SSM with k = |Σ| that recognizes L.

Proof. The standard constructions for simulating automata
with RNNs (cf. Minsky, 1954; Merrill, 2019) apply. The
condition k = |Σ| comes from needing to represent token
types with linearly independent vectors.

Adding a nonlinearity to the output of an SSM layer (as in
Mamba) is not the same thing as an RNN-SSM. Rather, an
RNN-SSM applies the nonlinearity at each recurrent update.
A downside of this approach is that it becomes nonlinear
to parallelize the RNN-SSM computation graph with the
SCAN algorithm used by linear SSMs (Blelloch, 1990).

5.2. Via Input-Dependent Transition Matrices

Another way to get greater expressive power is to let the
transition matrix Āi be fully input-dependent, as explored
by Liquid S4 (Hasani et al., 2023). To illustrate this, we
define a minimally different SSM called Input-Dependent
S4 (IDS4) that achieves greater expressive power for state
tracking. Let πA : Rk → Rd×d be some affine transforma-
tion where the output vector is interpreted as a d× d matrix,
and let Āi = πA(xi). Let B̄,C,D be fixed (w.r.t. i). By
Definition 2.1, the IDS4 convolutional form computes an
iterated product of non-diagonal, input-dependent matrices:

hi =

i∑
j=1

 i∏
k=j+1

πA(xi)

 B̄xj .

In contrast to matrix powers or iterated products of diagonal
matrices, iterated products of general matrices cannot be
computed in TC0 (Mereghetti & Palano, 2000). This means
that the arguments from Theorems 4.2 and 4.4 will not
go through for IDS4. In fact, we can show IDS4 gains
expressive power beyond TC0:

Theorem 5.2. For any regular language L ⊆ Σ∗ (includ-
ing the word problem for S5), there exists a one-layer log-
precision IDS4 SSM with k = |Σ| that recognizes $L, where
$ ̸∈ Σ is a special beginning-of-string symbol.

Proof. It suffices to show that IDS4 can simulate a deter-
ministic finite automaton (DFA). We do this via a transition

7
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Figure 3: Minimum number of layers (lower is better) required to attain > 90% validation accuracy on group multiplication
problems by sequence length and group. RNN and IDS4 models of constant depth can solve arbitrarily long sequences,
while transformer, S4, and Mamba models require depths monotonically increasing in sequence length.

monoid construction. For any w ∈ Σ∗, let δw : Q→ Q be
the function mapping a state to its eventual destination state
after w is read from that state. For any DFA, this set of func-
tions forms a finite monoid (the transition monoid) under
composition, following from the Myhill-Nerode theorem
(Hopcroft et al., 2001). Further, each monoid element δw
can be represented as a boolean transition matrix, making
matrix multiplication isomorphic to monoid composition.
Computing the transition monoid of a DFA allows recogniz-
ing valid words: compute the monoid element for a word
by multiplying the elements for its tokens and then check
whether the initial state maps to an accepting state.

Fix a DFA and its transition monoid δ. To complete the
proof, we show there exists an SSM that, for all w ∈ Σ∗,
computes δw given input x = $w. Let Āi be the transition
matrix representation of δxi

. Matrix multiplication is iso-
morphic to composition of transition monoid elements. We
view indices in hi as states and define B̄$ as 1 at the initial
state q0 and 0 elsewhere. For other σ, let B̄σ = 0⃗. This
yields the following convolutional form:

hi =

(
i∏

k=2

Āi

)
B$ ≡

(
i

k=2

δxk

)
(q0).

Since x = $w, we conclude that h|x| ≡ δw(q0).

5.3. Discussion

Theorems 5.1 and 5.2 show that two minimal extensions of
the SSM enable expressive power outside TC0, allowing the
model to solve hard state-tracking problems:
Corollary 5.3. There exist a one-layer log-precision RNN-
SSM and WFA-SSM that express the word problem for S5

(with a beginning-of-string symbol), and these these SSMs
cannot be simulated in TC0.

But would these variants of SSMs be feasible to use in prac-
tice? Besides expressive power, there are two competing
practical concerns that might make these extensions prob-
lematic: parallelism and the impact on learning dynamics.

Parallelism. To be used effectively in an LLM, a model
architecture must be parallelizable on practical hardware.
Architectures in TC0 are parallelizable by design (Merrill
& Sabharwal, 2023a), but architectures in NC1 may still be
parallelizable to log depth even if they cannot be parallelized
to constant depth. For IDS4, the bottleneck would be com-
puting iterated matrix product with a log-depth computation
graph. This could be achieved with the SCAN algorithm
(Blelloch, 1990) similar to S4 and S6. In contrast, it is less
clear how to parallelize a model with a nonlinearity.

Learning Dynamics. Another potential concern for IDS4
is that learning dynamics could be degraded. In particular,
an iterated product of matrices may lead to vanishing or
exploding gradients. However, this is already potentially
an issue for the S6 architecture, where the selective gating
involves computing an iterated product of scalars.

6. Can SSMs Learn Permutations in Practice?
Having established theoretical limitations of SSMs for state
tracking, we empirically test how well SSMs can learn such
tasks, focusing on the A5 word problem. Since this problem
is NC1-complete and transformers, S4, and Mamba can only
express functions in TC0, these models should require a
depth that grows with the input length to solve this problem.

Task. We model word problems (see Section 3.1) as a
token-tagging task. Models are given as input a sequence
g0g1g2 · · · gn drawn from one of A5, A4 × Z5, or Z60. At
each step i, the label is the product of the first i elements of

8
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the sequence. Modeling the problem as a tagging task rather
than as a sequence classification task provides the models
with more supervision during training, making it as easy as
possible to learn the correct function. We tokenize inputs
such that each element gets a unique token.

Models. We train a transformer as a TC0 baseline, an RNN
that we expect can perform state tracking, and three SSMs:
S4 (Gu et al., 2022a), Mamba (Gu & Dao, 2023), and IDS4
(Section 5.2). For IDS4, we initialize the affine projection α
as a random normal centered around the identity: α(xi) ∼
I + N (0, σ2). This ensures that, at initialization, input-
dependent transitions tend to propagate the previous state,
which we expect to aid learning efficiency.

Experimental Setup. We train models on sequences of
length n for successively larger values of n and report full-
sequence accuracy on a test set.9 To validate the prediction
that SSMs and transformers require growing depth to solve
longer A5 word problems, we plot the minimum depth with
90% test accuracy as a function of input sequence length.

Results. Figure 3 shows single-layer RNN and IDS4 models
learn the word problem for arbitrarily long sequences for
all three groups. In contrast, transformer, S4, and Mamba
models require depth monotonically increasing in sequence
length to attain good test accuracy for the non-commutative
groups. We draw three conclusions from this:

1. As expected, S4 and Mamba show the same limitations
as transformers on the A5 word problem. Longer A5 se-
quences require deeper models, consistent with these models
being in TC0. In contrast, RNNs (Theorem 5.1) and IDS4
(Theorem 5.2) can efficiently solve the A5 word problem.

2. Transformers, S4, and Mamba require greater depth
even for A4 × Z5, which can be theoretically expressed by
TC0 circuits. Although transformer and Mamba models
of a given depth perform as good or better on A4 × Z5

as they on A5, they still require increasingly many layers
to handle proportionally longer sequences. There are two
possible interpretations of this. First, it could be that while
these word problems are expressible in TC0, they cannot be
expressed by S4, Mamba, or transformers (which can each
likely recognize only a proper subset of TC0). On the other
hand, it is possible that these word problems are expressible
by transformers, S4, and Mamba but that effectively learning
a constant-depth solution is difficult.

3. Despite this limitation, S4 and Mamba appear empirically
better than transformer at approximate state tracking on
the non-commutative tasks. For length-n sequences from
A4 × Z5 or A5, the transformer requires at least as many
(and frequently more) layers as S4 or Mamba.

9We always include all 3600 pairwise sequences of length 2 in
the training data along with the training split of length-n sequences.

7. Conclusion
We formally analyzed a family of generalized linear SSMs
and showed that, like transformers, common SSM variants
including S4 and Mamba can only express computation
within the complexity class L-uniform TC0 of highly par-
allel computations. This means they cannot solve inher-
ently sequential problems like graph connectivity, boolean
formula evaluation, and—of particular interest for state
tracking—the permutation composition problem S5. S5

can be naturally expressed by true recurrent models like
RNNs and captures the essence of hard state tracking due
to its NC1-completeness. In practice, one-layer RNNs can
easily learn a task capturing S5 while linear SSMs require
depth growing with the sequence length. These results re-
veal that S4, Mamba, and related SSMs cannot truly track
state: rather, they can only solve simple state-tracking prob-
lems for which shallow shortcuts exist (Liu et al., 2023).

On the other hand, we showed that an input-dependent SSM
similar to Hasani et al.’s (2023) Liquid S4 can both express
and learn the S5 word problem, providing evidence that
the expressiveness limitations of current SSMs can be over-
come. Ultimately, this line of work could unlock new neural
architectures that balance the parallelism of transformers
and SSMs with full expressive power for state tracking, en-
abling LLMs that can benefit from scale while enjoying a
greater capacity to reason about games, code, and language.
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This paper aims to advance the foundational understanding
of state-space architectures for deep learning. Such work
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A. Floating-Point Arithmetic
Our results use the log-precision floating point model used
by Merrill & Sabharwal (2023b) to analyze transformers.
For some fixed constant c ∈ Z+, a c log n precision float
is a tuple ⟨m, e⟩ where m, e are signed integers together
taking c log n bits. Using |x| to mean the number of bits
used to represent integer x, this float represents the value
m · 2e−|m|+1.

Unlike for integers, arithmetic operations over log-precision
floats are not closed. That is, the product ϕ1 × ϕ2 of two
p-precision floats is a well-defined number but may not
be exactly representable as a p-precision float. It is thus
necessary to define approximate versions of these operations
when formalizing log-precision floating-point arithmetic.
To this end, Merrill & Sabharwal (2023a) define a natural
notion of approximate iterated addition over log-precision
floats and show that it is computable in L-uniform TC0.
We can naturally apply their definition of iterated addition
for floats to matrices of floating points, defining iterated
summation over matrices of datatype D as the result of
treating the numbers as reals, performing exact arithmetic,
and casting the exact output ϕ back to D, denoted castD(ϕ).
Formally:

Definition A.1 (Iterated D-matrix sum; Merrill & Sabhar-
wal, 2023a). For matrices M1, . . . ,Mn over D with the
same size, their iterated D-sum is

z⊕
i=1

Mi ≜ castD

(
z∑

i=1

castR(Mi)

)
.

Here castR converts a number in D to the corresponding
real number. D is implicit in the notations castR and

⊕
.

Integer addition can be obtained as a special case for 1-
dimensional matrices. We can also analogously defined
iterated summation, which will be necessary for formalizing
SSMs:

Definition A.2 (Iterated D-matrix product). For square ma-
trices M1, . . . ,Mz over D, their iterated D-product is

z⊗
i=1

Mi ≜ castD

(
z∏

i=1

castR(Mi)

)
.

Merrill & Sabharwal (2023a) showed that iterated addition
from for log-precision floats is in L-uniform TC0. It nat-
urally follows from their argument that iterated addition
over log-precision float matrices is also in L-uniform TC0.
In general, iterated matrix products are not necessarily com-
putable in TC0. However, we extend the arguments of Hesse
(2001) and Mereghetti & Palano (2000) for integers to show
that two special cases (iterated scalar multiplication and ma-
trix powering) over log-precision floats are also computable
in L-uniform TC0.

Finally, we define a canonical value for a compositional
arithmetic expression over floats that enjoys the associative
property.

Definition A.3 (Flattened expression evaluation). Let ϕ be
a compositional expression over floats, which may contain
alternating sums and products as well as other operations
like exp. We define the canonical value of ϕ as the value
returned by the computation graph obtained by flattening
all adjacent sums into a single sum (and analogously for
products).

Definition A.3 has the nice effect of making Definition A.2
associative. The only results that rely on this assumption
are our analysis of diagonalizable SSMs in Appendix C. We
also deal with the details of this assumption in Lemma 4.1,
though the proof there also goes through directly without
handling these details.

A.1. Complexity of Iterated Scalar Multiplication

The first special case of iterated matrix products we analyze
is when the matrices are simply scalars (or, w.l.o.g., diagonal
matrices). In this case, the iterated product can be computed
in L-uniform TC0.

Lemma A.4 (Iterated D-product). Let ϕ1, . . . , ϕz ∈ D be
such that z ≤ n and each ϕi can be represented as an n-bit
integer. If operators castD and castR are in L-uniform TC0,
then the iterated D-product

⊗z
i=1 ϕi can be computed in

L-uniform TC0.

Proof. By preconditions of the lemma, we can compute
yi = castR(ϕi) for each i in L-uniform TC0. Since each
ϕi is equivalent to an n-bit integer, yi can be viewed as an
n-bit integer. The iterated integer product y =

∏z
i=1 yi

can be computed with an L-uniform TC0 circuit (Hesse,
2001). Finally, by a precondition of the lemma, we can cast
the result back to D, i.e., compute castD(y) which equals
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the iterated D-product
⊗z

i=1 ϕi, with an L-uniform TC0

circuit.

Lemma A.5 (Iterated float product). Let ϕ1, . . . , ϕz be
c log n precision floats and z ≤ n. Then the iterated float
product

⊗z
i=1 ϕi can be computed in L-uniform TC0.

Proof. The idea is to convert (by scaling up) the sequence
of ϕi to another sequence of floats that are all representable
as integers, apply Lemma A.4, reverse the scaling, and cast
the result back to a c log n precision float.

Let e be the smallest exponent across all ϕi and q =
max{0,−e}. Construct re-scaled floats ψi = ϕi2

q by
adding q to the exponent of ϕi, using up to c log n additional
bits in the exponent if necessary to keep the computation
exact. Note that e, q, and all ψi can easily be computed ex-
actly by an L-uniform TC0 circuit as they involve fixed-arity
arithmetic operations. Further, by construction, every ψi

has a non-negative exponent and thus represents an integer.

The maximum number representable by each c log n preci-
sion float ϕi is upper bounded by 2n

c

. Thus, the maximum
number representable by each entry ψi is 2n

c ×2q = 2n
c+q .

Let m = nc + q. It follows that each ψi can be equivalently
represented as an m-bit integer. Further, this integer can be
computed by left-shifting the mantissa of ψi by a number
of bits equal to the value of the exponent of ψi (which is
non-negative). Finally, this left-shift, and thus the castR op-
eration over m-precision floats, can be easily computed by
an L-uniform threshold circuit of size poly(m). In the other
direction, casting from reals to m-precision floats can also
be easily accomplished by an L-uniform threshold circuit of
size poly(m).

Observing that ψ1, . . . , ψz is a sequence of floats each rep-
resentable as an m-bit integer, we now apply Lemma A.4
with D being ‘float’ to conclude that iterated float product
τ =

⊗z
i=1 ψi can be computed by an L-uniform threshold

circuit of size poly(m). Since m ≤ 2nc, this circuit is also
of size poly(n).

Finally, to compute the original iterated float product⊗z
i=1 ϕi, we divide τ by 2qz . This can be accomplished

by subtracting qz from the exponent of τ ; again, we do this
computation exactly, using up to (c + 1) log n additional
bits in the exponent if necessary. We then cast the resulting
float back to a c log n precision float. All this can be done
in L-uniform TC0, finishing the proof that

⊗z
i=1 ϕi can be

computed in L-uniform TC0.

A.2. Complexity of Matrix Powering

The second special case we analyze is matrix powering: i.e.,
a matrix product where all the matrices being powered are
the same. Mereghetti & Palano (2000) showed that when the
datatype D is n-bit integers, one can compute Mn in TC0.

We note that their construction also works for computing
Mz for any z ≤ n, z ∈ Z+. Further, as they remark,
their construction can, in fact, be done in uniform TC0.
Specifically, we observe most of their construction involves
sums and products of constantly many n-bit integers, which
can be done in L-uniform TC0. The only involved step is
dividing a polynomial of degree (up to) n by a polynomial of
degree (up to) d−1 and returning the remainder. It turns out
that this “polynomial division with remainder” operation can
also be performed in L-uniform TC0 (see Corollary 6.5 of
Hesse et al., 2002 and an explanation in Appendix A.3). We
thus have the following extension of Mereghetti & Palano’s
result:

Lemma A.6 (Integer matrix power, derived from Mereghetti
& Palano, 2000). Let d ∈ Z+ be a fixed constant. Let M be
a d×d matrix over n-bit integers and z ≤ n, z ∈ Z+. Then
integer matrix power Mz can be computed in L-uniform
TC0.

We extend this to matrix powers over D rather than integers:

Lemma A.7 (D-matrix power). Let d ∈ Z+ be a fixed
constant. Let M be a d× d matrix over a datatype D with
entries equivalently representable as n-bit integers. Let
z ≤ n, z ∈ Z+. If operators castD and castR are in L-
uniform TC0, then D-matrix power Mz can be computed in
L-uniform TC0.

Proof. By preconditions of the lemma, we can compute
castR(M) in L-uniform TC0. Since the entries of M are
equivalent to n-bit integers, castR(M) can be viewed as a
d× d integer matrix of n-bit integers. By Lemma A.6, we
can compute castR(M)z using an L-uniform TC0 circuit.
Finally, by a precondition of the lemma, we can cast the
result back to D, i.e., compute castD(castR(M)z) which
equals Mz , with an L-uniform TC0 circuit.

Lemma A.8 (Float matrix power). Let d, c ∈ Z+ be fixed
constants. Let M be a d× d matrix over c log n precision
floats. Let z ≤ n, z ∈ Z+. Then float matrix power Mz can
be computed in L-uniform TC0.

Proof. The idea is to convert (by scaling up) M to another
float matrix all whose entries are representable as integers,
apply Lemma A.7, reverse the scaling, and cast the result
back to c log n precision floats.

Let e be the smallest exponent across all float entries of M
and q = max{0,−e}. Construct a re-scaled float matrix
M̃ = M2q by adding q to the exponent of every entry of
M, using up to c log n additional bits in the exponent if
necessary to keep the computation exact. Note that e, q,
and M̃ can easily be computed exactly by an L-uniform
TC0 circuit as they involve fixed-arity arithmetic operations.
Further, by construction, M̃ has non-negative exponents in
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all its float entries. Thus, every entry of M̃ represents an
integer.

The maximum number representable by each c log n pre-
cision float in M is upper bounded by 2n

c

. Thus, the
maximum number representable by each entry of M̃ is
2n

c × 2q = 2n
c+q. Let m = nc + q. It follows that each

entry ϕ of M̃ can be equivalently represented as an m-bit in-
teger. Further, this integer can be computed by left-shifting
the mantissa of ϕ by a number of bits equal to the value
of the exponent of ϕ (which is non-negative). Finally, this
left-shift, and thus the castR operation over m-precision
floats, can be easily computed by an L-uniform threshold
circuit of size poly(m). In the other direction, casting from
reals to m-precision floats can also be easily accomplished
by an L-uniform threshold circuit of size poly(m).

Note that 2q ∈ [0, nc] and hence m ∈ [nc, 2nc]. In partic-
ular, m ≥ n. Thus z ≤ n (a precision) implies z ≤ m.
Observing that M̃ is a matrix of floats each representable as
an m-bit integer, we now apply Lemma A.7 with D being
‘float’ to conclude that float matrix power M̃z can be com-
puted by an L-uniform threshold circuit of size poly(m).
Since m ≤ 2nc, this circuit is also of size poly(n).

Finally, to compute Mz , we first divide each entry of M̃z

by 2qz . This can be accomplished by subtracting qz from
the exponent of each entry of M̃; again, we do this compu-
tation exactly, using up to (c + 1) log n additional bits in
the exponent if necessary. We then cast all entries of the
resulting matrix back to c log n precision floats. All this can
be done in L-uniform TC0, finishing the proof that Mz can
be computed in L-uniform TC0.

A.3. L-Uniformity of Polynomial Division in TC0

Hesse et al. (2002) state that polynomial division is in L-
uniform TC0 in Corollary 6.5. For historical reasons, this
claim is preceded by weaker claims in older papers. We
briefly clarify this situation to help understand why the
stronger claim is valid.

Reif & Tate (1992) establish that polynomial division can be
performed in P-uniform TC0, whereas we state our results
for L-uniform TC0, which is a smaller class. However, the
only issue preventing the polynomial division result from
originally going through in the L-uniform case is that, at
the time of Reif & Tate’s publication, it was not known
whether integer division and iterated integer multiplication
are computable in L-uniform TC0. However, Hesse (2001)
later proved exactly this. Combining the two results, The-
orem 3.2 of Reif & Tate (1992) goes through even with
L-uniformity (not just P-uniformity). Its Corollary 3.3 then
allows us to conclude that integer polynomial division can
be solved by L-uniform TC0 circuits because the output of
integer polynomial division is an analytic function whose

Taylor expansion has a finite number of terms (Reif & Tate,
1992).

B. S6 Parameterization
To justify that the S6 architecture used by Mamba is com-
putable in TC0, we justify that Āi, B̄i,Ci,Di can be com-
puted as a function of xi in TC0.

We begin by summarizing how exactly is S6 parameterized.
S6 first defines continuous-time parameters:

1. A is a fixed, diagonal matrix that is invertible (each
aii ̸= 0);

2. Bi = πB(xi) is computed via a projection;

3. Ci = πC(xi) is computed via a projection;

4. Di = I .

Next, we need to discretize the matrices A and B. S6 does
this using an input-dependent discretization factor δi:

δi = softplus(δ + πδ(xi)).

The discretized matrices are then defined as:

Āi = exp(δiA)

B̄i = (δiA)−1
(
Āi − I

)
δiBi.

It is clear to see that the diagonalizability condition of Theo-
rem 4.4 is satisfied because Āi itself is diagonal. Addition-
ally, all the relevant matrices can be computed in TC0.

Proposition B.1. Āi, B̄i,Ci, and Di can all be computed
as functions of xi in L-uniform TC0.

To prove this, observe that A,Bi,Ci,Di can all be com-
puted in L-uniform TC0 because they are either constants
or linear transformations of xi. To justify that Āi and B̄i

can be computed in L-uniform TC0, we just need to justify
that we can invert diagonal matrices and compute softplus
and exp in L-uniform TC0.

Lemma B.2. Diagonal matrices over log-precision floats
can be inverted in L-uniform TC0.

Proof. Inverting a diagonal matrix just involves forming the
reciprocal along the diagonal. Scalar reciprocals can be ap-
proximated to error at most 2−nc

(for any c) in TC0 (Hesse
et al., 2002). This means we can compute the reciprocal
of a log-precision float (cf. Appendix A) exactly up to log
precision.

In Appendix D, we show that we can compute the nonlin-
earities exp and softplus over a bounded domain in TC0.
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C. Diagonalizable SSMs
We extend Theorem 4.4 to cover the case when the SSMs
transition matrices are simultaneously diagonalizable, rather
than just diagonal. This requires us to note that when work-
ing with log-precision floating point representations of matri-
ces, a diagonal matrix A and its diagonalized decomposition
W diag(a)W−1 are numerically substitutable.

Theorem 4.6 (Simultaneously diagonalizable SSM). Let
W be a fixed matrix. Let M be a log-precision generalized
linear SSM such that, for 1 ≤ i ≤ n,

1. the transition matrix Āi is computable to log precision
by the expression W diag(āi)W

−1, where āi ∈ Rd;

2. each of āi, B̄i,Ci and Di can be computed in L-
uniform TC0 as a function of xi.

Then there exists an L-uniform TC0 circuit family that com-
putes M ’s convolutional form.

Proof. When the first condition is satisfied, the following
equality holds over log-precision floats:∏

i

Āi =
∏
i

(
W diag(āi)W

−1
)
.

By the associativity of D-matrix products, we can remove
the parentheses to get∏

i

Āi =
∏
i

W diag(āi)W
−1

= W

[∏
i

diag(āi)

]
W−1.

Iterated multiplication of diagonal matrices is reducible to
several iterated scalar multiplications, which is in L-uniform
TC0 (Lemma A.5). Then the product of all Āi is the product
of three L-uniform TC0-computable matrices, so is itself
L-uniform TC0-computable. The second condition from
Lemma 4.1 is satisfied by assumption. Thus, the convolu-
tional form for M can be computed in L-uniform TC0.

C.1. Diagonalizable S6

We can define an extension of S6 which satisfies these con-
ditions to show that it is also in L-uniform TC0.

Definition C.1. Diagonalizable S6 has continuous-time
parameters:

1. A is a fixed matrix diagonalizable as W diag(a)W−1

that is invertible (each aii ̸= 0);

2. Bi = πB(xi) is computed via a projection;

3. Ci = πC(xi) is computed via a projection;

4. D = I.

As in the standard S6, the discretization of A and B is done
by an input-dependent discretization factor δi:

δi = softplus(δ + πδ(xi)).

The discretized matrices are then defined as

Āi = exp(δiA),

B̄i = (δiA)−1(Āi − I)δiBi.

To prove that Āi and B̄i have the necessary properties, we
first introduce some lemmas dealing with matrix-valued
functions of diagonalizable matrices.

Lemma C.2. If a matrix A is diagonalizable, then we can
substitute its diagonalized decomposition W diag(a)W−1

in a computation graph over log-precision floats involving
A without incurring any meaningful error.

Proof. Let A be diagonalizable. Then there exists invertible
W and diagonal diag(a) such that A = W diag(a)W−1.
Note that the product of a fixed number of matrices is
in L-uniform TC0, and so the first c log n bits of A and
W diag(a)W−1 are identical.

Lemma C.3. Let A be diagonalizable as W diag(a)W−1,
where a ∈ Rd. Then c ·A is simultaneously diagonalizable
with A via c ·A = Wc · diag(a)W−1.

Proof. Scalar multiplication commutes around matrix mul-
tiplication.

Lemma C.4. Let A be diagonalizable as W diag(a)W−1,
where a ∈ Rd. Then exp(A) = W exp(diag(a))W−1.

Proof. The matrix exponential is defined as a power series,
so for diagonalizable A it follows that

exp(A) = exp(W diag(a)W−1)

=

∞∑
k=0

1

k!
(W diag(a)W−1)k

=

∞∑
k=0

1

k!
W diag(a)kW−1

= W

( ∞∑
k=0

1

k!
diag(a)k

)
W−1

= W exp(diag(a))W−1.

The expressions in Lemma C.4 are equivalent not just over
real numbers but also over log-precision floats. This is
because we know both expressions can be approximated in
TC0 with error at most 2−nc

, which means the c log n bits
of the approximation must be equivalent.
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Lemma C.5. Diagonalizable matrices over log-precision
floats can be inverted in L-uniform TC0.

Proof. Let A = W diag(a)W−1. Then A−1 =
W−1 diag(a)−1W. We are guaranteed that each of these
matrices exists, and furthermore by Lemma B.2 we know
that diag(a)−1 is computable in L-uniform TC0. Their prod-
uct, involving a finite number of additions and multiplies, is
also computable in L-uniform TC0.

Proposition C.6. Āi and B̄i can be computed as functions
of xi in L-uniform TC0.

Proof. We first show that Āi is L-uniform TC0 computable.
By definition,

Āi = exp(δiA).

By Corollary D.2, δi is computable in L-uniform TC0. The
product δiA is simultaneously diagonalizable with A so

Āi = exp(Wδi diag(a)W
−1) (Lemma C.3)

= W exp(diag(a))W−1. (Lemma C.4)

Since the exponential of scalars is L-uniform TC0 com-
putable by Corollary D.2, then Āi is as well.

Turning to B̄i, note that the term (δiA)−1 is L-uniform
TC0 computable by Lemma C.5 since δiA is diagonalizable.
Since Āi is L-uniform TC0 computable, the difference Āi−
I is as well. Then every term in

B̄i = (δiA)−1(Āi − I)δiBi

is L-uniform TC0 computable, and so their product is as
well.

Remark. Since Ci and Di are unchanged between the stan-
dard and diagonalizable versions of S6, the proofs of their
computability as functions of xi in L-uniform TC0 pass
through from Appendix B.

Corollary C.7. There exists an L-uniform TC0 circuit fam-
ily that computes Diagonalizable S6’s convolutional form.

Proof. Note that since A = W diag(a)W−1 is fixed the
set of transition matrices {Āi} is simultaneously diagonal-
izable via W for all i.

Then Diagonalizable S6 meets the conditions for Theo-
rem 4.6.

D. Nonlinearities in L-Uniform TC0

.

The parameterization of SSMs (and transformers) involves
computing nonlinearities like exp and softplus. We lever-
age existing circuit complexity results (Reif & Tate, 1992) to

show that, in general, any well-behaved nonlinearity should
be computable in L-uniform TC0 when used in conjunction
with pre- or post-layer norm.

Lemma D.1 (Adapts Corollary 3.3, Reif & Tate, 1992). Let
X = (−B,B) be a bounded interval. Let f be a function
over X with a convergent Taylor series:

f(x) =

∞∑
n=0

an
bn

(x− x0)
n,

where an, bn are integers with magnitude at most 2n
O(1)

computable in L-uniform TC0. Then f can be approximated
over X by L-uniform TC0 circuits to log precision (error at
most 2−nc

for any c ≥ 1).

Proof. Reif & Tate (1992) give a proof when X = (−1, 1).
We generalize to X = (−B,B), assuming w.l.o.g. B = 2k.
The idea is to transform f to have domain (−1, 1) via

g(x) = f(Bx).

Then, we can apply Corollary 3.3 of Reif & Tate (1992)
to approximate g with error at most 2−nc

. Reif & Tate
(1992) state their result for P-uniform TC0, but through
advances in circuit complexity since the time of publica-
tion (Appendix A.3), their construction naturally applies for
L-uniform TC0 as well.

To approximate f , compute z = x/B, which can be done
exactly since B = 2k. We conclude by computing g(z) =
f(x), which, as established, has error at most 2−nc

.

Because of pre- and post-norm layers, the elements of xi in
an SSM will remain in a bounded domain (−B,B). Thus,
the following lemma shows we can compute them:

Corollary D.2. The pointwise nonlinearities exp, log, and
softplus are computable over (−B,B) in L-uniform TC0.

Proof. By Reif & Tate (1992, Corollary 3.3) know that the
Taylor series for exp and log is convergent with an, bn com-
putable in L-uniform TC0. Then exp and log are themselves
computable in L-uniform TC0.

Since softplus(x) = log (1 + exp(x)) is a fixed compo-
sition of L-uniform TC0-computable functions, it too is
computable in L-uniform TC0.
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