
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CODE2BENCH: SCALING SOURCE AND RIGOR FOR
DYNAMIC BENCHMARK CONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The evaluation of code-generating Large Language Models (LLMs) is funda-
mentally constrained by two intertwined challenges: a reliance on static, easily
contaminated problem sources and the use of superficial, low-rigor testing. This pa-
per introduces a new benchmark construction philosophy, Dual Scaling, designed
to systematically address both limitations. Our approach involves continuously
scaling the source of problems from dynamic, real-world code repositories and sys-
tematically scaling the rigor of tests via automated, high-coverage Property-Based
Testing (PBT). We instantiate this philosophy in CODE2BENCH, an end-to-end
framework that leverages Scope Graph analysis for principled dependency clas-
sification and a 100% branch coverage quality gate to ensure test suite integrity.
Using this framework, we construct CODE2BENCH-2509, a new benchmark suite
with native instances in both Python and Java. Our extensive evaluation of 10
state-of-the-art LLMs on CODE2BENCH-2509, powered by a novel "diagnostic
fingerprint" visualization, yields three key insights: (1) models exhibit a fundamen-
tal performance gap, excelling at API application (Weakly Self-Contained tasks)
but struggling with algorithmic synthesis (Self-Contained tasks); (2) a model’s
performance is profoundly shaped by the target language’s ecosystem, a nuance we
are the first to systematically quantify; and (3) our rigorous, scaled testing is critical
in uncovering an "illusion of correctness" prevalent in simpler benchmarks. Our
work presents a robust, scalable, and diagnostic paradigm for the next generation of
LLM evaluation in software engineering. The code, data, and results are available
at https://code2bench.github.io/.

1 INTRODUCTION

As Large Language Models (LLMs) are increasingly integrated into software development work-
flows Jimenez et al. (2023); Git; cur, the need for accurate and realistic evaluation of their coding
capabilities has become paramount. However, the current landscape of code benchmarks is fundamen-
tally constrained by two intertwined challenges: a reliance on static, easily contaminated problem
sources and the use of superficial, low-rigor testing.

First, ❶ the static nature of canonical benchmarks like HumanEval Chen et al. (2021) and
MBPP Austin et al. (2021) leads to an inevitable obsolescence; their problems, having existed
for years, are likely part of LLM training corpora, turning evaluation into an exercise in memorization
rather than true generalization Carlini et al. (2021); Sainz et al. (2023). While dynamic “live” bench-
marks Jain et al. (2024a); Li et al. (2024b) have emerged, they often source problems from competitive
programming, which may not reflect the complexity of real-world software engineering. Second, ❷
the superficial testing common to most benchmarks, often relying on a handful of example-based
tests, creates an illusion of correctness. As highlighted by EvalPlus Liu et al. (2023a), this insufficient
test rigor fundamentally limits their ability to uncover the subtle, edge-case failures that define the
gap between functional code and production-ready software. As summarized in Table 1, existing
methods fall short across key dimensions, highlighting the significant limitations remaining and the
necessity to design new benchmarks. To break this cycle of obsolescence and superficiality, we argue
that a paradigm shift is needed. We propose a new benchmark construction philosophy centered on
two core principles: (1) Scaling the Source, by dynamically and continuously ingesting a diverse
array of problems from the ever-evolving landscape of real-world code repositories; and (2) Scaling

1

https://code2bench.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of CODE2BENCH-2509 with existing code generation benchmarks.

Benchmark Source Dynamic Deps
Handled

Rigorous
Test

Multi-lang
Design

HumanEval Chen et al. (2021) Manual ✗ ✗ ✗ ✗
MBPP Austin et al. (2021) Manual ✗ ✗ ✗ ✗
EvalPlus Liu et al. (2023a) Manual ✗ ✗ ✓ ✗
LiveCodeBench Jain et al. (2024a) Contests ✓ ✗ ✓ ✓
RepoBench Liu et al. (2023b) Project Codebases ✗ ✓ ✗ ✗
HumanEval-X Zheng et al. (2023b) Manual ✗ ✗ ✗ ✓
BigCodeBench Zhuo et al. (2024) Synthetic ✗ ✓ ✗ ✗
DevEval Li et al. (2024c) Project Codebases ✗ ✓ ✗ ✗
EvoCodeBench Li et al. (2024b) Project Codebases ✓ ✓ ✗ ✗

CODE2BENCH-2509 (Ours) Project Codebases ✓ ✓ ✓ ✓

the Rigor, by systematically generating comprehensive test suites with deep, verifiable coverage
through Property-Based Testing (PBT) Claessen & Hughes (2000).

We instantiate this philosophy in CODE2BENCH, a novel, end-to-end framework that automates
this dual-scaling process. ❶ To Scale the Source, CODE2BENCH first addresses the challenge of
classifying diverse, real-world code. Our analysis of the existing benchmark landscape reveals
an implicit bifurcation in evaluation focus, which we formalize into two primary task categories:
(1) Self-Contained (SC) tasks, which require pure, dependency-free logic, reflecting the focus of
benchmarks like HumanEval Chen et al. (2021) on core algorithmic reasoning; and (2) Weakly
Self-Contained (WSC) tasks, which require the correct application of common libraries, capturing
the focus of benchmarks like BigCodeBench Zhuo et al. (2024) on practical API application. This
principled classification, enabled by our Scope Graph-based analysis, allows us to systematically
generate tasks that target these distinct developer skills. ❷ To Scale the Rigor, CODE2BENCH then
employs a powerful Property-Based Testing (PBT) engine and a stringent 100% branch coverage
quality gate. This ensures that every problem in our benchmark is not only realistic but also a
fully-explorable logical challenge, backed by a test suite capable of deep, diagnostic validation.

Using this framework, we construct CODE2BENCH-2509, a new, multi-faceted benchmark suite
with native instances in Python and Java, curated from recent, real-world repositories. Our extensive
evaluation of 10 state-of-the-art LLMs on this suite demonstrates the power of our approach. The
synergy of a scaled source and scaled testing enables an unprecedentedly fine-grained diagnostic,
revealing: (1) a performance gap between models’ ability in algorithmic synthesis (SC) and API
application (WSC); (2) the profound impact of language paradigms on model failure modes, a nuance
we are the first to systematically quantify; and (3) the critical role of rigorous testing in uncovering
the “illusion of correctness” prevalent in simpler benchmarks.

We summarize our contributions as follows:

• We propose CODE2BENCH, a novel framework that introduces and operationalizes the Dual
Scaling philosophy for benchmark construction, systematically scaling the source of problems with
dynamic acquisition and the rigor of tests with a 100% coverage PBT quality gate.

• We construct and release CODE2BENCH-2509, a high-quality, contamination-resistant benchmark
with native tasks in Python and Java, demonstrating significantly higher complexity and test rigor
than prior work (Table 1).

• We provide a deep, diagnostic analysis of state-of-the-art LLMs, introducing novel visualizations
and uncovering key insights into their strengths and weaknesses in real-world coding scenarios.

2 THE CODE2BENCH FRAMEWORK: A DUAL SCALING APPROACH

In this section, we detail the architecture and technical components of the CODE2BENCH framework.
Our methodology is built upon the core philosophy of Dual Scaling: continuously scaling the source
of benchmark problems to ensure realism and novelty, and systematically scaling the rigor of our
tests to enable deep, diagnostic evaluation. We organize our discussion around these two principles.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Dynamic Acquisition Principled Classification Semantic Filtering

Temporal Filtering Scope Graph Analysis LLM-as-a-Judge

SC Pool (～10K Candidates)

WSC Pool (～5K Candidates)

SC Candidates

WSC Candidates

def	merge_dict(base,	update):
……
return	merged

def	normalize(a:	np.ndarray):
……
return	result

SC	Candidate

WSC	Candidate

1. Scaling the Source

2. Scaling the Rigor

Property-Based Testing

Test Synthesis

Input: Candidate Function

The "Great Filter"

100% Coverage Gate

Benchmark Instantiation

Versioned Benchmark

Leaderboard

Diagnostic	
Fingerprint

Only ~40% of high-quality
candidates pass this rigorous gate

Multi-Faceted
Suite (Py, Java)

Figure 1: Overview of the CODE2BENCH Framework.

2.1 SCALING THE SOURCE: DYNAMIC ACQUISITION FROM REAL-WORLD CODE

Temporal Filtering for Contamination Resistance. The primary threat to the validity of LLM
evaluation is data contamination, where benchmarks become obsolete as their contents are absorbed
into training corpora. To combat this inevitable obsolescence, our framework’s first principle is to
dynamically source problems that are provably unseen. We achieve this through Temporal Filtering,
a deterministic strategy grounded in the version control timestamps of real-world code. Our method
leverages a simple axiom: a model cannot have been trained on code that did not exist prior to its
knowledge cutoff date. For each model under evaluation, we run our acquisition pipeline to extract
functions exclusively from GitHub commits created after its official knowledge cutoff.

Scope Graph-based Analysis for Dependency Classification. To impose a meaningful structure
on our diverse pool of functions, we automate their classification based on dependencies. We employ a
Scope Graph-based analysis Néron et al. (2015)—a formal, language-agnostic method that precisely
identifies all external dependencies, a task where simpler methods like AST traversal often fail.

Our classification algorithm is a deterministic, two-step process: (1) Dependency Identification,
where we use the Scope Graph to compute the set of all unresolved references (D) for each function.
(2) Rule-based Classification, where we apply rules based on a predefined allowed libraries, Lallowed:

• If D = ∅, it is classified as Self-Contained (SC) (pure algorithmic reasoning).
• If D’s dependencies resolve entirely within Lallowed, it is Weakly Self-Contained (WSC) (API

application).
• Otherwise, it is discarded (e.g., Project-Dependent).

This principled, automated process is a cornerstone of our framework, enabling the targeted evaluation
of distinct model capabilities.

Program Analysis for Testability and Complexity. Following dependency classification, we apply
a final layer of automated program analysis to ensure candidates are both testable and non-trivial.
First, to guarantee testability, we use Control-Flow Graph (CFG) analysis to discard functions lacking
a verifiable, input-dependent output (e.g., no return statement). Second, to ensure a meaningful
complexity, we filter functions based on their Cyclomatic Complexity McCabe (1976), targeting a
range (e.g., [2, 10]) that balances challenge with solvability. This dual-filtering stage is crucial for
curating a high-quality benchmark of tasks that are both evaluable and diagnostically valuable.

LLM-based Semantic Filtering. While prior analyses ensure structural soundness, they cannot
distinguish a meaningful task from a trivial one. To assess for semantic relevance and conceptual
challenge, we therefore employ an LLM-as-a-Judge Zheng et al. (2023a); Li et al. (2024a). This final

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

filtering step, designed for high reliability via deterministic decoding and a structured classification
prompt, ensures our benchmark contains problems of genuine substance. A rigorous validation,
detailed in Appendix D, confirms its near-perfect agreement with human experts (Cohen’s κ = 0.95).

2.2 SCALING THE RIGOR: AUTOMATED SYNTHESIS VIA PROPERTY-BASED TESTING(PBT)

Property-Based Testing (PBT) for Comprehensive Input Generation. Traditional example-
based tests verify a function against a small, fixed set of known inputs. In contrast, Property-Based
Testing (PBT) Claessen & Hughes (2000) explores a much larger input space by generating hundreds
or thousands of random, yet structured, inputs and asserting that a general property of the code holds
true for all of them. In our framework, the core property we test is functional equivalence with the
ground-truth implementation. For any valid input x generated by our PBT engine, the output of an
LLM-generated function fLLM(x) must match the output of the original, real-world ground-truth
function fgt(x). The ground-truth function thus serves as a perfect test oracle.

The process of input synthesis is driven by automated strategy generation. For each function
candidate, our framework analyzes its signature, including parameter types and type hints, to compose
a set of PBT strategies. These strategies are not simple random generators, but intelligent explorers of
the input domain, designed to produce a rich distribution of values—including typical inputs, boundary
cases (e.g., empty lists, zeros, min/max values), and complex nested structures (e.g., variable-shaped
lists of dictionaries). This automated process yields a comprehensive suite of hundreds of input-output
pairs (xi, fgt(xi)) for each function, forming the foundation for the rigorous validation described
next. The specific PBT libraries used for each language (e.g., Hypothesis for Python, jqwik for Java)
are detailed in Appendix E.

The “Great Filter”: A 100% Coverage Quality Gate. While Property-Based Testing generates a
high volume of diverse inputs, quantity alone does not guarantee rigor. A test suite, however large,
is only effective if it thoroughly exercises the internal logic of the function under test. To enforce
this level of rigor systematically, we introduce the final and most stringent stage of our pipeline: the
“Great Filter”, a quality gate that mandates 100% branch coverage.

The mechanism is as follows: after a PBT suite is synthesized for a ground-truth function fgt, we
execute the entire suite against fgt itself and measure the resulting branch coverage using standard
language-specific tools (e.g., coverage.py). A function candidate and its corresponding test
suite are only accepted into the final benchmark if and only if this execution achieves 100% branch
coverage. This seemingly simple requirement has a profound impact on the final benchmark’s quality
and character. It acts as a powerful, dual-purpose filter:

• It filters out inadequate tests. If a PBT suite fails to achieve full coverage, it indicates that the
input generation strategy was not sophisticated enough to explore all logical paths of the function.
Such a test suite would be incapable of providing a truly rigorous evaluation, and is discarded.

• It filters out untestable functions. More importantly, if even a well-designed PBT strategy cannot
trigger all branches, it often signals that the function itself is "untestable" in isolation. This typically
occurs in functions with defensive code for unreachable states, complex error handling coupled to
external systems, or other logic that cannot be exercised through its public API. These functions,
while present in real-world code, are unsuitable for a standalone, functional correctness benchmark.

The “Great Filter” is the primary reason for the significant reduction in candidates observed in our
data funnel (as shown in Figure 1). It is a deliberate trade-off, prioritizing uncompromising rigor
over sheer volume. The result is a smaller, but significantly more potent, benchmark where every
single problem is guaranteed to be a non-trivial, fully-explorable logical puzzle, backed by a test suite
capable of validating every branch of its solution.

Instruction Generation for Task Specification. To ensure a fair and effective evaluation, each task
is accompanied by a clear, unambiguous instruction. Our framework automates the generation of these
instructions by refining a function’s original source docstring and signature using a powerful LLM
(GPT-4o) with deterministic decoding. To mitigate potential biases, we also employ a back-translation
perturbation technique Zhuo et al. (2024); Wang et al. (2022); Dhole et al. (2021).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Crucially, the instruction style is systematically adapted to the task’s dependency classification,
ensuring the model is provided with the precise context needed for the specific challenge:

• For SC Tasks(e.g., SC-Python, SC-Java): Instructions use language-native conventions—Python
docstrings with types like list and dict for SC-Python, and Javadoc with Java types like
List<String> for SC-Java. Though library-free, these tasks assess a model’s proficiency with
each language’s core built-in features and data structures.

• For WSC Tasks: The instruction is made library-aware and language-native. It explicitly names
the required external libraries (e.g., NumPy) and uses the precise, idiomatic types of the target
language’s ecosystem (e.g., numpy.ndarray). This targets the evaluation on a model’s practical
ability to correctly apply common APIs.

Benchmark Instantiation and Runner Generation. The final step of our framework packages each
curated problem into an executable benchmark instance. This instance comprises two key components:
a test suite and a test runner. The test suite, containing hundreds of input-output pairs, is generated
using a native Property-Based Testing (PBT) engine (e.g., Hypothesis, jqwik) to ensure high
coverage and rigor. To conduct the evaluation, a corresponding language-native Test Runner is
automatically generated. The runner is responsible for deserializing the test suite, executing the
LLM-generated code, and performing a rigorous deep comparison against the ground-truth outputs.
To guarantee the runner’s correctness, we perform a dry run where the LLM’s function is replaced
by the ground-truth function, ensuring the entire test harness passes flawlessly before evaluation.
This end-to-end native approach, validated by a dry run, ensures our evaluation is both stringent and
reliable. Further details are in Appendix F.

3 THE CODE2BENCH-2509 BENCHMARK SUITE

Table 2: Quantitative characteristics of the CODE2BENCH-2509, compared to prior benchmarks.

Metric / Dimension SC-Python WSC-Python SC-Java HumanEval MBPP

I. Scale & Complexity
Tasks 217 194 249 164 974
Avg. Lines of Code (LoC) 20.6 18.3 14.1 7.3 6.5
Avg. Cyclomatic Complexity (CC) 5.3 2.6 3.6 2.8 2.3
Difficulty (E:M:H Ratio) 0.30:0.40:0.30 0.28:0.41:0.31 0.27:0.43:0.30 - -

II. Testing Rigor
Avg. Test Cases per Task ~500 ~500 ~500 ~7.8 ~3.0
Test Coverage Guarantee 100% Branch 100% Branch 100% Branch Variable Variable

III. Diversity & Extensibility
Source Type Real-World Real-World Real-World Hand-Crafted Crowd-Sourced
Dependency Scope Self-Contained >30 Libraries Self-Contained Self-Contained Self-Contained
Language Extensibility (Python) (Python) Java Native (Python) (Python)

Testin
g Rigor

Basic

Moderate

Rigorous

Dependency Level
Self-Contained

(SC)

Weakly Self-Contained
(WSC)

Project-Dependent
(PD)

Extensibility

Limited

Moderate

Extensible

HumanEval
MBPP
EvalPlus
RepoBench
DevEval
EvoCodeBench

BigCodeBench
LiveCodeBench
HumanEval-X
SC-Python
WSC-Python
SC-Java

 Dependency
Scaling

 Language
Scaling

Figure 2: The CODE2BENCH multi-dimensional eval-
uation landscape.

CODE2BENCH-2509 is a new benchmark
suite, automatically curated from May to
September 2025, designed to overcome
the limitations of prior benchmarks by
systematically expanding evaluation along
three key dimensions: Testing Rigor, De-
pendency Level, and Framework Exten-
sibility. Figure 2 visually situates our
benchmark within this landscape, showcas-
ing its significant leap forward compared
to predecessors like HumanEval and Big-
CodeBench. We targeted actively main-
tained, open-source repositories on GitHub.
To minimize noise and bias, we enforced
the following criteria: (1) Community Val-
idation: Repositories must have ≥ 500
stars; (2) Active Maintenance: Commits
within the last 3 months; and (3) Domain
Diversity: We employed stratified sam-
pling across 10 diverse domains (e.g., Web, ML, System) to prevent over-representation of any

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

single field. We actively filtered out homework assignments and tutorials. A detailed disclosure of
the selection criteria, sampling strategy, and the full repository list is provided in Appendix H. The
quantitative evidence for this advancement is detailed in Table 2. Our instances demonstrate signifi-
cantly higher structural complexity (e.g., an average Cyclomatic Complexity of 5.3 for SC-Python
vs. 2.8 for HumanEval) and an order-of-magnitude increase in testing rigor, featuring ~500 test cases
per task with a guaranteed 100% branch coverage. Beyond these metrics, the suite’s high quality is
rooted in the rich diversity of its tasks, sourced from 220 Python and 189 Java recent, real-world
repositories. This ensures wide topical coverage, while the successful instantiation of a native Java
suite provides concrete proof of our framework’s extensibility. This combination of complexity, rigor,
diversity, and extensibility provides a more challenging and realistic platform for assessing the true
capabilities of modern LLMs. More details can be found in Appendix H.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Evaluated Models. We selected a diverse suite of 10 state-of-the-art Large Language Models,
encompassing both leading closed-source APIs and prominent open-source families. A cornerstone
of our evaluation integrity is the strict prevention of data contamination. The CODE2BENCH-2509
benchmark was constructed exclusively from code committed after May 2025, a date subsequent to
the knowledge cutoff of all evaluated models.

Evaluation Protocol. Our primary metric is Pass@1 Kulal et al. (2019), which measures the
functional correctness of the first-generated solution and closely mirrors a developer’s real-world
experience with coding assistants Jain et al. (2024a). All evaluations were conducted in a zero-shot,
deterministic setting, employing greedy decoding (temperature 0) as is standard practice Zhuo et al.
(2024); Roziere et al. (2023). For each task, the model received a standardized instruction containing
the function signature and a natural language description(See more details in Appendix I.2).

Execution Environment. The generated code for each task was executed in a sandboxed environment
against the full suite of PBT-generated tests (5̃00 per task). A language-specific test runner performed
differential testing, comparing the output of the model-generated code against the ground-truth
implementation. A task is considered passed only if it correctly solves all test cases. Open-source
models were served via vLLM Kwon et al. (2023), while others were accessed through their official
APIs.

4.2 A MULTI-DIMENSIONAL DIAGNOSTIC OF LLM CAPABILITIES

Table 3: Pass@1 performance (%) on the CODE2BENCH-2509 suite.
Model SC-Python WSC-Python SC-Java

(%) [95% CI] (%) [95% CI] (%) [95% CI]

Closed-Source Models

Claude-4-sonnet 40.1 [33.6 – 46.5] 38.7 [32.0 – 45.4] 47.4 [40.9 – 53.4]
Gemini-2.5-Flash 37.8 [30.9 – 44.2] 36.6 [29.4 – 43.3] 45.0 [39.0 – 51.0]

Open-Source Models (Ordered by Scale)

DeepSeek-V3 34.4 [28.4 – 40.4] 37.6 [31.4 – 44.3] 47.8 [41.4 – 54.2]
Qwen3-235b-a22b 34.6 [28.6 – 41.0] 36.6 [29.9 – 43.3] 46.6 [40.9 – 53.0]
Llama-4-scout 25.8 [19.8 – 31.8] 32.5 [26.3 – 39.2] 44.2 [37.8 – 49.8]
Qwen3-32b 31.3 [25.8 – 36.9] 34.5 [27.8 – 41.2] 43.0 [37.4 – 49.4]
Mistral-small-3.1 (24B) 30.4 [24.4 – 36.9] 38.7 [32.5 – 45.9] 43.4 [37.4 – 49.4]
Qwen3-8b 25.1 [19.3 – 31.4] 34.0 [27.8 – 40.7] 39.0 [32.9 – 44.2]
Gemma-3n-e4b-it 22.6 [17.1 – 28.6] 26.3 [19.6 – 32.5] 34.5 [28.5 – 40.2]
Qwen3-1.7b 14.3 [9.7 – 19.4] 16.5 [11.3 – 21.6] 17.7 [12.8 – 22.5]

A primary limitation of existing benchmarks is their inability to provide deep, diagnostic insights.
We argue this stems from two fundamental constraints: a narrow source of problems and superficial
testing. The CODE2BENCH framework overcomes these limitations through two core principles:
scaling the source from dynamic, real-world code, and scaling the rigor of evaluation via Property-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

SyntaxErr

Runtim
eErr

LogicE
rr

Fail (<
20%)

Weak (20-75%)

Good (75-98%)

NearPerf (
98%)

Perfe
ct

Claude-S4

Gemini-F

DeepSeek-V3

Qwen3-235B

Llama4-Scout

Qwen3-32B

Mistral-S

Qwen3-8B

Gemma-3n

Qwen3-1.7B

SyntaxErr

Runtim
eErr

LogicE
rr

Fail (<
20%)

Weak (20-75%)

Good (75-98%)

NearPerf (
98%)

Perfe
ct

SyntaxErr

Runtim
eErr

LogicE
rr

Fail (<
20%)

Weak (20-75%)

Good (75-98%)

NearPerf (
98%)

Perfe
ct

Claude-S4=claude-sonnet-4; Gemini-F=gemini-2.5-flash; DeepSeek-V3=DeepSeek-V3; Qwen3-235B=qwen3-235b-a22b; Llama4-Scout=LLAMA-4-scout
Qwen3-32B=qwen3-32b; Mistral-S=mistral-small-3.1-24b-instruct; Qwen3-8B=qwen3-8b; Gemma-3n=gemma-3n-e4b-it; Qwen3-1.7B=qwen3-1.7b

Figure 3: Fingerprints across the three evaluation tracks—SC-Python (left), WSC-Python (mid-
dle), and SC-Java (right)—shown as ridgeline plots. Each curve captures a model’s outcome
distribution, ranging from SyntaxErr to Perfect, with key pass rates annotated.

Based Testing (PBT). In this section, we demonstrate how this dual-scaling approach enables an
unprecedentedly fine-grained diagnostic of LLM coding capabilities.

Table 3 presents the overall Pass@1 performance, revealing clear capability tiers among models.
The data indicates that performance varies significantly across our three benchmark components,
hinting at the different skills they evaluate. To move beyond these aggregate scores and understand
the underlying reasons for these variations, we now turn to a more fine-grained analysis.

To dissect how and why models succeed or fail, we introduce a granular, multi-stage outcome
spectrum, visualized as a diagnostic fingerprint for each model in Figure 3. Outcome categories are
ordered to reflect a progression from catastrophic failure to complete success: SyntaxErr (code
fails to compile/run), RuntimeErr (code crashes during execution), LogicErr (code runs but
is logically incorrect on all test cases), followed by a four-tier partial success range based on pass
rates—from Fail (<20%) to NearPerf (>=98%)—and culminating in Perfect solutions.
Figure 3 visualizes each model’s distribution across this spectrum. The synergy between the aggregate
scores in the table and these distributional fingerprints reveals two profound insights into the nature
of LLM coding intelligence.

Decoupling Algorithmic Synthesis from API Application. The diagnostic fingerprints (Figure 3,
left vs. middle) show a systematic shift in failure modes: on SC-Python, the dominant failure is
LogicErr, indicating a core challenge in first-principle reasoning. Conversely, on WSC-Python,
this peak vanishes and RuntimeErr emerges as a primary obstacle, suggesting the challenge shifts
to the correct application of external APIs.

Language Paradigms as Performance Scaffolding. The comparison between SC-Python and
SC-Java (Figure 3, left vs. right), reveals the profound impact of language paradigms. In Java,
the prominent LogicErr and RuntimeErr peaks seen in Python are sharply suppressed, while
performance in the Perfect category surges for all models. We hypothesize this is not because
models are inherently "better" at Java, but because its static type system acts as a powerful “perfor-
mance scaffolding”, pruning a vast space of potential errors at compile time. This demonstrates that
an LLM’s coding ability is not an abstract quantity but is fundamentally intertwined with the target
language’s ecosystem, a crucial interaction our framework is the first to systematically quantify.

4.3 THE EFFECTIVENESS OF PBT-GENERATED TESTS

A core tenet of the CODE2BENCH framework is scaling test rigor via Property-Based Testing
(PBT). This section provides quantitative evidence for the necessity of this approach by analyzing the
prevalence of "Near-Perfect" failures—solutions that pass at least 98% of our comprehensive test
suite but fail on a handful of subtle edge cases. These instances represent an “illusion of correctness”
that would likely go undetected by conventional, less rigorous benchmarks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4 quantifies the frequency of these "near-miss" failures, where a solution passes the vast
majority of test cases (>98%) but ultimately fails. The data reveals a significant and consistent pattern:
on average, 6.94% of submissions for SC-Python tasks fall into this treacherous category.

This finding directly underscores the critical necessity of our Property-Based Testing (PBT) method-
ology. Without the exhaustive, edge-case-driven verification enabled by PBT, these nearly 7% of sub-
missions—which are functionally almost correct—would have been falsely classified as successes by
conventional, sparse test suites. This would lead to a significant overestimation of model capabilities.

Table 4: Prevalence of “Near-Perfect” Failures (Pass@
≥98%) in CODE2BENCH.

Model SC-Py WSC-Py SC-Java
(%) (%) (%)

Claude-Sonnet-4 8.76 5.15 2.41
Gemini-2.5-Flash 6.45 5.67 4.02
DeepSeek-V3 7.80 3.61 2.41
Qwen3-235b-a22b 6.45 3.61 2.01
LLAMA-4-scout 8.29 5.15 2.01
Mistral-Small-3.1 6.91 5.67 2.01
Qwen3-32b 7.37 3.61 1.61
Qwen3-8b 6.76 4.64 2.41
Gemma-3n-e4b-it 5.53 5.67 2.81
Qwen3-1.7b 5.07 3.09 0.80

Avg. (%) 6.94 4.57 2.25

Top-performing models are not immune to
this illusion of correctness; “DeepSeek-V3”
and “Claude-4-sonnet”, for example, see
approximately 8% of their submissions fall
into this category. This demonstrates that
even the most capable models consistently
struggle with the final frontier of logical
robustness, a weakness that only a truly
rigorous testing paradigm like PBT can re-
liably expose.

Interestingly, the rate of near-perfect fail-
ures is lower in WSC-Python (4.57%)
and lowest in SC-Java (2.25%). This
aligns with our findings in Section 4.2. In
WSC tasks, the problem is often a binary
choice of the correct API call, leaving less
room for "almost correct" logic. In Java,
the strict type system likely prevents many of these subtle logical errors at the compilation stage.
Therefore, the high rate of near-perfect failures in SC-Python highlights its unique position as the
most challenging testbed for a model’s pure, unaided logical robustness.

Ultimately, this analysis validates the central role of rigorous, scaled testing. By systematically
uncovering these near-perfect failures, CODE2BENCH provides a more accurate measure of a model’s
true capabilities and offers invaluable, fine-grained feedback for identifying and rectifying their most
subtle weaknesses.

4.4 THE IMPACT OF DYNAMIC SOURCING AND REAL-WORLD COMPLEXITY

To situate CODE2BENCH-2509 within the existing landscape, we conduct a direct comparison
against EvalPlus, a state-of-the-art benchmark that enhances HumanEval/MBPP with more rigorous,
mutation-based testing. While EvalPlus represents the pinnacle of evaluation on static, well-known
problem sets, CODE2BENCH-2509 introduces the dimensions of dynamic sourcing and real-world
complexity. This comparison aims to answer a critical question: how does a model’s performance on
canonical programming puzzles translate to its ability to handle fresh, complex code from the wild?

20% 30% 40% 50% 60% 70% 80% 90%
SC-Python-2509 Pass@1

20%

30%

40%

50%

60%

70%

80%

90%

H
um

an
E

va
l P

as
s@

1

Model
y=x (Equal Performance)
Claude-4-Sonnet
Gemini2.5-Flash
DeepSeek-V3
Qwen3-235b-a22b
LLAMA-4-scout
Qwen3-32B
Mistral-Small-3.1-24B
Qwen3-8b
Gemma-3n-e4b-it
qwen3-1.7b

Figure 4: Performance on Evalplus and
CODE2BENCH-2509

The head-to-head comparison is visualized in
Figure 4, which plots the Pass@1 scores of ten
prominent LLMs on our SC-Python-2509
(X-axis) against their performance on Hu-
manEval (Y-axis). The results are stark and
reveal three critical insights:

A Systematically More Challenging Bench-
mark. The most striking observation is
that all models are located deep in the red-
shaded region, far above the y = x di-
agonal of equal performance. This demon-
strates that CODE2BENCH-2509 presents a
systematically higher level of difficulty for
all models, without exception. For instance,
top-performing models like Claude-4-Sonnet,
which achieve a near-perfect score of 97% on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

HumanEval, see their performance plummet to 40.1% on our benchmark—a drop of over 50 percent-
age points. This substantial performance gap suggests that high scores on legacy benchmarks may
create an illusion of capability that does not hold up against the complexity of novel, real-world code.

Probing Generalization Over Memorization. This performance delta is not merely a matter of
difficulty, but of the fundamental capabilities being measured. HumanEval’s problems are years
old and likely part of the training corpora. The lower performance on SC-Python-2509—a
benchmark guaranteed to be unseen—strongly indicates that our evaluation measures a model’s
true generalization ability on novel algorithmic challenges, rather than its capacity for pattern
memorization. This underscores the critical need for dynamic, contamination-resistant benchmarks
to ensure a fair and realistic assessment of an LLM’s problem-solving intelligence.

5 RELATED WORK

Code Generation Benchmarks Evaluating Large Language Models (LLMs) on code generation
tasks is an active research area, with numerous benchmarks proposed. Early benchmarksCassano
et al. (2023); Li et al. (2022) like HumanEval Chen et al. (2021), MBPP Austin et al. (2021), and
APPS Hendrycks et al. (2021) provide static collections of isolated code snippets with tests, proving
valuable for initial model development but facing limitations regarding dataset contamination Carlini
et al. (2021); Sainz et al. (2023); Yang et al. (2023); Team et al. (2024) and the lack of real-world
context and dependencies. Efforts like EvalPlus Liu et al. (2023a) enhance static benchmarks with
more robust tests via mutation. However, these may not fully represent real-world code complexities
or provide automated construction from code repositories. Multilingual benchmarksYan et al. (2023)
like HumanEval-X Zheng et al. (2023b), Aider polyglot benchmark pol and AutoCodeBench Chou
et al. (2025) evaluate cross-language abilities but are at risk of data leakage. Benchmarks focusing
on repository-level context or dependenciesTang et al. (2023); Li et al. (2024b); Yu et al. (2024);
Wang et al. (2024) include RepoBench Liu et al. (2023b), CrossCodeEval Ding et al. (2023), R2E
Jain et al. (2024b), DevEval Li et al. (2024c), BigCodeBench Zhuo et al. (2024), and CODEAGENT
Zhang et al. (2024). WebBench Xu et al. (2025) introduces sequential, real-world web development
tasks. While these capture aspects of real-world interaction, they often lack sufficient testing.
CODE2BENCH stands out by offering an end-to-end pipeline for dynamically generating rigorous
benchmark instances from recent real-world GitHub repositories.

Data Leakage and Live Benchmarks A key limitation of static benchmarks is the risk of test set
contamination, where models may have been trained on the same data used for evaluationCarlini et al.
(2021); Sainz et al. (2023); Yang et al. (2023); Team et al. (2024). This has motivated the development
of "live" benchmarks. DynaBench Kiela et al. (2021) identified these challenges and advocated for
continuously evolving benchmarks. Chatbot Arena Chiang et al. (2024) provides a platform for
dynamic evaluation based on user interactions. LiveBench White et al. (2024) sources new data from
specific, non-code domains like mathematics and news, while LiveCodeBench Jain et al. (2024a)
collects recent problems from competitive programming platforms. Other methods leverage LLMs
for task mutation to generate new problems, such as EvoEval Xia et al. (2024). Evocodebench Li et al.
(2024b) introduces a periodically updated benchmark to mitigate leakage, while DOMAINEVAL
Zhu et al. (2025) employs dynamic data sources with automated updates for the same purpose. Both
efforts currently focus on Python and may lack rigorous test. Arena-Hard-Auto Li et al. (2024d)
filters crowdsourced prompts into benchmarks. While existing initiatives have made progress in
addressing contamination and enabling dynamic evaluation, they often rely on specific data sources,
focus on evaluation platforms, or lack a systematic, automated pipeline for constructing high-quality
benchmarks from real-world code at scale. CODE2BENCH bridges this gap by providing a novel,
automated, end-to-end pipeline that dynamically extracts, filters, and constructs rigorous benchmark.

6 CONCLUSION & FUTURE WORK

We introduced Dual Scaling, a new philosophy for benchmark construction, and presented
CODE2BENCH, a framework that operationalizes it by systematically scaling the source of problems
from real-world code and the rigor of tests via high-coverage PBT. Our evaluation on the result-
ing CODE2BENCH-2509 benchmark provided a deep, diagnostic analysis of modern code LLMs,
revealing a consistent gap between their API application (WSC) and algorithmic synthesis (SC)
capabilities, and quantifying for the first time how language paradigms shape their failure modes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Limitations and Future Work. Our work, while establishing a robust framework for evaluating
functional correctness, opens several avenues for future expansion. We plan to extend our Scaling the
Source principle to repository-level, Project-Dependent (PD)tasks to assess codebase understanding.
Concurrently, we will expand our Scaling the Rigor principle to incorporate non-functional properties
such as code efficiency and security. By evolving along these axes, CODE2BENCH will continue to
provide a challenging and realistic measure of true software engineering competence.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our work. The complete CODE2BENCH-
2509 benchmark suite, including all task instructions, ground-truth solutions, and PBT-generated test
suites scripts, is also included. The project, including all data and results, is also available at our
anonymized repository: https://code2bench.github.io/.

REFERENCES

URL https://en.wikipedia.org/wiki/Cyclomatic_complexity.

URL https://github.com/features/copilot.

URL https://www.cursor.com/.

URL https://github.com/Aider-AI/polyglot-benchmark.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX security symposium (USENIX Security 21), pp.
2633–2650, 2021.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
a scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions on
Software Engineering, 49(7):3675–3691, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
platform for evaluating llms by human preference. In Forty-first International Conference on
Machine Learning, 2024.

Jason Chou, Ao Liu, Yuchi Deng, Zhiying Zeng, Tao Zhang, Haotian Zhu, Jianwei Cai, Yue Mao,
Chenchen Zhang, Lingyun Tan, et al. Autocodebench: Large language models are automatic code
benchmark generators. arXiv preprint arXiv:2508.09101, 2025.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell
programs. In Proceedings of the fifth ACM SIGPLAN international conference on Functional
programming, pp. 268–279, 2000.

Kaustubh D Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood,
Abinaya Mahendiran, Simon Mille, Ashish Shrivastava, Samson Tan, et al. Nl-augmenter: A
framework for task-sensitive natural language augmentation. arXiv preprint arXiv:2112.02721,
2021.

10

https://code2bench.github.io/
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://github.com/features/copilot
https://www.cursor.com/
https://github.com/Aider-AI/polyglot-benchmark

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code completion. Advances in Neural Information
Processing Systems, 36:46701–46723, 2023.

Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin Cheung. Evaluation of llms on syntax-aware
code fill-in-the-middle tasks. arXiv preprint arXiv:2403.04814, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024a.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning any
github repository into a programming agent environment. In Forty-first International Conference
on Machine Learning, 2024b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking bench-
marking in nlp. arXiv preprint arXiv:2104.14337, 2021.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information Processing
Systems, 32, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment:
Opportunities and challenges of llm-as-a-judge. arXiv preprint arXiv:2411.16594, 2024a.

Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, and
Yongbin Li. Evocodebench: An evolving code generation benchmark with domain-specific
evaluations. Advances in Neural Information Processing Systems, 37:57619–57641, 2024b.

Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng
Fang, Lanshen Wang, et al. Deveval: A manually-annotated code generation benchmark aligned
with real-world code repositories. arXiv preprint arXiv:2405.19856, 2024c.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939, 2024d.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023a. Curran Associates Inc.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, (4):308–320,
1976.

Pierre Néron, Andrew Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name resolution.
In Programming Languages and Systems: 24th European Symposium on Programming, ESOP
2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015, Proceedings 24, pp. 205–231. Springer, 2015.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and
Eneko Agirre. Nlp evaluation in trouble: On the need to measure llm data contamination for each
benchmark. arXiv preprint arXiv:2310.18018, 2023.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, et al. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code. arXiv preprint arXiv:2311.09835, 2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

tree sitter. "an incremental parsing system for programming tools", 2024. URL https:
//tree-sitter.github.io/. Accessed: 2024.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code
generation models. arXiv preprint arXiv:2212.10264, 2022.

Shuai Wang, Liang Ding, Li Shen, Yong Luo, Bo Du, and Dacheng Tao. Oop: Object-oriented
programming evaluation benchmark for large language models. arXiv preprint arXiv:2401.06628,
2024.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang. Top leaderboard ranking= top coding profi-
ciency, always? evoeval: Evolving coding benchmarks via llm. arXiv preprint arXiv:2403.19114,
2024.

Kai Xu, YiWei Mao, XinYi Guan, and ZiLong Feng. Web-bench: A llm code benchmark based on
web standards and frameworks, 2025. URL https://arxiv.org/abs/2505.07473.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
Zhao, Li Zhu, Hari Sundaram, et al. Codescope: An execution-based multilingual multitask
multidimensional benchmark for evaluating llms on code understanding and generation. arXiv
preprint arXiv:2311.08588, 2023.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E Gonzalez, and Ion Stoica. Rethinking
benchmark and contamination for language models with rephrased samples. arXiv preprint
arXiv:2311.04850, 2023.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1–12, 2024.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024.

12

https://tree-sitter.github.io/
https://tree-sitter.github.io/
https://arxiv.org/abs/2505.07473

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023a.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi
Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual bench-
marking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 5673–5684, 2023b.

Qiming Zhu, Jialun Cao, Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, and Shing-Chi Cheung.
Domaineval: An auto-constructed benchmark for multi-domain code generation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 26148–26156, 2025.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PREPROCESSING AND DATA STRUCTURING

This appendix details the preprocessing and data structuring steps performed in the Function Filtering
pipeline (Section 2) to transform raw source code into a standardized representation suitable for
subsequent analysis.

A.1 SOURCE CODE PARSING VIA ABSTRACT SYNTAX TREES (ASTS)

Following the initial identification of candidate functions from the source code repositories, the raw
text code of these functions and their surrounding context is processed using Tree-sitter tree sitter
(2024). Tree-sitter is a parser generator tool that produces concrete syntax tree parsers for various
programming languages. Unlike traditional compilers that focus on semantic analysis, Tree-sitter is
specifically designed for source code analysis tools, providing robust, incremental parsing capabilities
and generating detailed, well-structured Concrete Syntax Trees (CSTs), which are closely related to
Abstract Syntax Trees (ASTs).

For each identified function, the corresponding source code snippet is parsed into its AST representa-
tion. The AST is a tree structure that represents the abstract syntactic structure of source code written
in a programming language. Each node in the tree denotes a construct occurring in the source code
(e.g., function definition, variable declaration, expression, statement). Parsing the raw code into an
AST is crucial as it:

• Standardizes the code representation, abstracting away syntactic variations (e.g., whitespace,
comments) and providing a consistent structure regardless of the original formatting.

• Exposes the hierarchical and relational structure of the code, making it amenable to systematic
program analysis techniques.

A.2 EXTRACTION OF RELATIONAL INFORMATION

From the generated ASTs, we extract essential relational information and metadata for each candidate
function. This extracted information is crucial for the subsequent dependency analysis, program
analysis, semantic filtering, and benchmark instance construction stages. Key information extracted
includes:

• Function Signature: The function name, parameters, and their declared types or type hints (if
available). This information is directly used for generating the benchmark instruction.

• Source Code Snippet: The exact lines of code corresponding to the function definition, serving as
the Ground Truth implementation and the basis for program analysis.

• Import Statements: Identification of modules or names imported within the function’s scope or in
its surrounding file. This is vital for understanding potential external dependencies.

• Metadata: Information such as the original file path and commit hash, aiding in traceability and
ensuring the recency of the code source.

This structured extraction process transforms the raw, unstructured code into a queryable and analyz-
able format, laying the foundation for the automated benchmark construction pipeline.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B SCOPE GRAPH BASED DEPENDENCY ANALYSIS

This appendix provides a formalized technical explanation of the Scope Graph-based dependency
analysis employed in the Function Filtering stage of the CODE2BENCH. This analysis is fundamental
to identifying and controlling external dependencies of candidate functions, enabling the classification
of tasks into Self-Contained (SC) and Weakly Self-Contained (WSC) categories crucial for rigorous
and standardized evaluation.

B.1 SCOPE GRAPH MODEL

After parsing the source code of a project into Abstract Syntax Trees (ASTs) using Tree-sitter, we
construct a Scope Graph G = (V,E). The vertex set V includes:

• Scope nodes S ⊆ V , representing hierarchical scopes like modules, classes, functions, or blocks.
Each scope s ∈ S represents a region of code where identifiers are defined and resolved.

• Definition nodes D ⊆ V , representing the points where identifiers are defined (e.g., variable
declarations, function definitions). Each definition d ∈ D corresponds to a specific identifier name
id(d).

• Reference nodes R ⊆ V , representing the points where identifiers are used (referenced) within the
code. Each reference r ∈ R corresponds to a specific identifier name id(r).

The edge set E includes:

• Scope hierarchy edges Escope ⊆ S × S, representing nested scopes (e.g., a function scope nested
within a class scope).

• Definition edges Edef ⊆ S ×D, representing that a definition d is contained within a scope s.

• Reference edges Eref ⊆ S ×R, representing that a reference r occurs within a scope s.

• Binding edges Ebind ⊆ R×D, representing that a reference r resolves to a definition d according
to the language’s scoping rules. These edges are established during the resolution process.

Thus, V = S ∪D ∪R and E = Escope ∪ Edef ∪ Eref ∪ Ebind.

B.2 DEPENDENCY RESOLUTION PROCESS

For each function candidate F , we identify the set of all identifier references RF ⊆ R occurring
within its body scope sF . For each reference r ∈ RF , the dependency resolution process attempts to
find a corresponding definition d ∈ D such that a binding edge (r, d) ∈ Ebind can be established by
traversing the Scope Graph G outwards from sF according to the language’s lexical scoping rules.

A reference r ∈ RF is classified as an unresolved reference if no definition d ∈ D is found within
the analysis scope of G that r can legally bind to. Let UF ⊆ RF be the set of all unresolved references
for function F . These unresolved references UF represent the external dependencies of function F .

The Scope Graph approach offers conceptual language-agnosticism as the graph structure and
resolution mechanism are based on universal programming concepts (scopes, bindings), abstracted
from specific syntax by the AST input from Tree-sitter. Language-specific scoping rules are encoded
in how the resolution traversal and binding edges Ebind are determined.

B.3 SC/WSC CLASSIFICATION BASED ON DEPENDENCIES

Based on the set of unresolved references UF and the function’s import statements, we classify
function F :

Let Lallowed be the predefined set of allowed common external libraries. For each unresolved
reference r ∈ UF , we attempt to determine its origin based on the function’s import statements and
knowledge of library APIs. A reference r is considered resolved to an allowed library l ∈ Lallowed if
its name id(r) corresponds to an identifier provided by library l, and library l is correctly imported or
accessible within the scope of function F .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Let UF,allowed ⊆ UF be the subset of unresolved references that resolve to identifiers within libraries
in Lallowed.

• Self-Contained (SC): Function F is classified as SC if and only if its set of unresolved references
is empty, i.e., UF = ∅. This means all identifiers are defined locally or are language built-ins.

• Weakly Self-Contained (WSC): Function F is classified as WSC if UF ̸= ∅ and all unresolved
references resolve to allowed libraries, i.e., UF = UF,allowed.

• Discarded: Function F is discarded if UF ̸= ∅ and UF,allowed ⊊ UF . This means there are
unresolved references that are not from allowed libraries.

This systematic, formalized approach, leveraging the Scope Graph representation, provides a precise
and robust method for controlling dependencies and classifying functions, which is essential for the
reliability and scalability of the CODE2BENCH.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C PROGRAM ANALYSIS FOR TESTABILITY AND COMPLEXITY

This appendix provides further details on the program analysis techniques employed in the Function
Filtering stage (Section 2) to ensure candidate functions are functionally testable and represent
non-trivial coding challenges. Our analysis focuses on properties derived from the Control Flow
Graph (CFG) and the structural complexity of the function implementation.

C.1 CONTROL FLOW ANALYSIS FOR TESTABILITY

To identify functions amenable to automated testing and output verification, we perform Control Flow
Graph (CFG) analysis. For a given candidate function f , its CFG represents all possible execution
paths through the function’s code. Nodes in the CFG correspond to basic blocks of code (sequences of
instructions executed sequentially), and directed edges represent potential control transfers between
these blocks (e.g., branches, loops, function calls).

We analyze the structure of the CFG to filter out functions that inherently lack verifiable output.
Specifically, we identify functions where:

• The CFG contains no paths leading to a return statement. Such functions typically perform
actions (e.g., printing to console, modifying global state) without providing a value that can be
easily captured and compared against an expected output in an automated differential testing setup.

• All paths leading to a return statement return only constant values, or values derived solely from
constants without any dependency on input parameters or complex intermediate computations.
While these functions have a return value, their behavior is trivial and does not require probing
with diverse inputs.

Functions matching these criteria are excluded from the candidate pool, as they are either difficult
to test functionally in isolation or do not represent meaningful code generation tasks for evaluating
LLM capabilities beyond simple retrieval.

C.2 COMPLEXITY ASSESSMENT VIA CYCLOMATIC COMPLEXITY

To focus the benchmark on tasks that require models to generate non-trivial code logic, we assess
the structural complexity of each candidate function using Cyclomatic Complexity (CC) Cyc.
Cyclomatic Complexity is a quantitative measure of the number of linearly independent paths through
a program’s source code. It is calculated based on the CFG of the function using the formula:

CC = E −N + 2P

where:

• E is the number of edges in the CFG.
• N is the number of nodes in the CFG.
• P is the number of connected components in the CFG (for a single function, P = 1).

Therefore, for a single function, CC = E −N + 2. CC is strongly correlated with the number of
decision points (e.g., if, while, for, case) in the code, providing an estimation of the code’s
logical complexity.

We employ CC as a filter to select functions that fall within a desirable complexity range, avoiding
tasks that are either too simple to be challenging or excessively complex to be solvable or reliably
testable as isolated benchmark instances. Specifically, we define a range [CCmin, CCmax] (e.g.,
[2, 10]) and include only functions whose calculated CC falls within this range.

• Functions with CC < CCmin (e.g., CC < 2) typically represent very simple linear code or trivial
control flow structures that offer little challenge.

• Functions with CC > CCmax (e.g., CC > 10) may indicate highly complex logic, potentially
involving deep nesting, numerous branches, or intricate loops, which can be challenging for
LLMs to generate correctly and for automated tests to cover exhaustively. Furthermore, such
high complexity in a real-world function might often be coupled with complex, uncontrolled
dependencies.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D SEMANTIC FILTERING AND DIFFICULTY ASSESSMENT

This appendix provides additional technical details regarding the LLM-based Semantic Filtering
process used in the Candidate Filtering stage to refine the candidate function set through semantic
assessment. While the main text outlines the motivation and overall structure, here we present in
detail the prompts employed during this stage of semantic filtering.

To validate the robustness and objectivity of our LLM-based filtering, we conducted two inter-rater
reliability studies. Inter-LLM Agreement. We measured the agreement between three diverse,
state-of-the-art LLM judges (GPT-4o, Claude-4-Sonnet, and a Qwen3-Max) on a random sample of
100 function candidates. For the binary task of semantic filtering (trivial vs. meaningful), the judges
achieved a Fleiss’ Kappa of 0.92, indicating almost perfect agreement. Human-LLM Agreement.
We further compared the judgments of our primary LLM judge (GPT-4o) against a consensus gold
standard established by two human experts with extensive programming experience. On a set of 50
functions, the analysis yielded a Cohen’s Kappa of 0.95.

Table 5: Prompt Template for Self-Contained Ground-Truth Filter in CODE2BENCH

System
Task Description
You are an expert in the field of coding, tasked with determining whether a given Python function
is suitable for generating an instruction (question).
The function will be analyzed based on its characteristics, functionality, and adherence to specific
criteria. If the function meets the criteria, it is deemed suitable; otherwise, it is not.
Criteria for Suitability To determine whether a function is suitable for generating an instruc-
tion, consider the following criteria:
1. Function Parameters
- **Basic Types Only**: The function’s parameters must be basic types (e.g., ‘int‘, ‘float‘, ‘str‘,
‘list‘, ‘dict‘, etc.)...
2. Function Complexity
- **Meaningful Complexity**: The function should provide a meaningful test of the model’s
capabilities...
3. Side Effects and Dependencies
- **No Side Effects**: The function should not have side effects (e.g., modifying global variables,
writing to files, etc.).
- **No External Imports**: The function should not import other modules or depend on external
libraries...
Output Format If the function is **suitable**, return:
“‘json
{
"Suitable": true,
"Reason": "The function meets all criteria for generating an instruction."
}
“‘
If the function is not suitable , return:
...
Examples
...
Note
- Ensure that your analysis is thorough and considers all aspects of the function.
- Provide clear and concise reasoning for your decision. - Only return the Json.

User
Please check the last result:
[Last Result]
Error response:
[Error Response]
[Function Message]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Prompt Template for Weakly Self-Contained Ground-Truth Filter in CODE2BENCH

System
You are an expert in Python coding, tasked with determining whether a given Python function
meets the requirements below for generating a benchmark. The function is weakly self-contained,
meaning it depends only on Python standard libraries or specific external libraries (e.g., numpy,
re, pandas) and no custom modules. You will analyze the function based on its characteristics,
functionality, and adherence to specific criteria. If the function meets the criteria, it is deemed
suitable; otherwise, it is not.
Criteria for Suitability
To determine whether a function is suitable, consider the following criteria:
1. Function Parameters
- **Basic and Library Types**: Parameters must be basic Python types (e.g., ‘int‘, ‘float‘, ‘str‘,
‘list‘, ‘dict‘) or types from standard/external libraries (e.g., ‘numpy.ndarray‘, ‘re.Pattern‘).
- If the parameters’ type is missing, but you can infer it from the code, it is **suitable**.
- If the function relies on methods or attributes of unknown objects, it is **not suitable**. But if
the function uses lib types (e.g., ‘numpy.ndarray‘, ‘pandas.DataFrame‘), it is **suitable**.
2. Function Complexity
- **Meaningful Complexity**: The function should provide a meaningful test of the model’s
capabilities, with clear logic and purpose.
- If the function is overly long but trivial (e.g., repetitive assignments), it is **not suitable**.
- If the function is too simple (e.g., basic getter/setter), it is **not suitable**.
3. Domain Knowledge
- **General Applicability**: The function should not require highly specialized domain knowledge
to understand or implement...
4. Property-Based Testing
- **Constructible Inputs**: The function should allow generating random inputs for property-
based testing to verify its behavior.
Output Format
If the function is **suitable**, return:
“‘json
{
"Suitable": true,
"Reason": "The reason why the function meets all criteria for generating a benchmark."
}
If the function is not suitable, return:
“‘json
{
"Suitable": false,
"Reason": "The reason why the function is not suitable for generating a benchmark."
}
“‘
Examples
...
Note
- Provide clear and concise reasoning for the decision.
- If the function meets our standards but is missing imports, it is still suitable.
- If the function only uses ‘typing‘ for type hints, it is not suitable.
- Only return the JSON output in the specified format.

User
Please check the last result:
[Last Result]
Error response:
[Error Response]
[Function Message]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Prompt Template for Weakly Self-Contained Difficulty Assessment in CODE2BENCH

System
Task Description
You are an expert code analyst tasked with assessing the difficulty level of a weakly self-contained
Python function. A weakly self-contained function depends only on Python standard libraries or
specific external libraries (e.g., NumPy, pandas, re) and no custom modules. Assume the function
is valid and suitable for analysis. Assign a difficulty level of "Easy", "Medium", or "Hard" based
on the complexity of its logic, structure, required concepts, and cognitive load to understand.
Criteria for Difficulty Assessment
Easy Difficulty - **Logic**: Very simple, minimal or no branching, single loop or direct
parameter use.
- **Structure**: Short, linear, immediately clear control flow.
- **Concepts**: Basic Python constructs (variables, operators, lists, strings) or simple library
calls (e.g., Counter from collections, basic re matching, pandas filtering).
- **Cognitive Load**: Minimal; purpose and execution are obvious at a glance.
- **Example**:
“‘python
from collections import Counter
def count_word_frequencies(text: str) -> dict[str, int]:
"""Count the frequency of each word in a text string.
Args:
text: Input string containing words.
Returns:
Dictionary mapping words to their frequency.
"""
words = text.lower().split()
return dict(Counter(words))
“‘
...
Medium Difficulty - Logic: Moderate complexity, with loops, conditions, or data transforma-
tions (e.g., - filtering, sorting, deduplication).
- Structure: Traceable control flow, possibly nested loops or multiple steps, moderate length.
- Example:
...
Hard Difficulty
- Logic: Complex, with nested loops, intricate transformations, non-trivial algorithms (e.g., multi-
dim aggregation, complex grouping), or subtle edge cases.
- Structure: Dense or multi-step control flow, significant state management.
Example:
...
Output Format Return ONLY a JSON object containing the assessed difficulty level:
“‘json
{
"Difficulty": "Easy/Medium/Hard"
}
“‘
Note
- weakly self-contained function depends only on Python standard libraries or specific external
libraries (e.g., NumPy, pandas, re) and no custom modules.
- Focus on logic and structure, not the library’s complexity (e.g., simple Counter usage is Easy,
complex NumPy array ops are Hard).
- Analyze the function’s code, docstring, and logic thoroughly.
- Only return the JSON output in the specified format.

User
[Function Message]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 8: Prompt Template for Self-Contained Difficulty Assessment in CODE2BENCH

System
Task Description
You are an expert code analyst. Your task is to assess the difficulty level of the provided Python
function. Assume the function is generally valid and suitable for analysis. Assign a difficulty level
of "Easy", "Medium", or "Hard" based on the complexity of its logic, structure, required concepts,
and cognitive load to understand.
Criteria for Difficulty Assessment
Easy Difficulty
- Logic: Straightforward, minimal branching (simple if/else), possibly a single simple loop. Direct
use of parameters.
- Structure: Typically short, linear control flow. Easy to follow step-by-step.
- Concepts: Relies on fundamental programming constructs (variables, basic operators, standard
data types, simple function calls).
- Cognitive Load: Low; the function’s purpose and execution are immediately apparent.
- Example:
“‘python
def parse_message(message: str) -> str:
if message is None:
return ""
message = message.strip().lower()
Simple string checks and manipulations
if not message.startswith(("run-slow", "run_slow", "run slow")):
return ""
message = message[len("run slow") :]
while message.strip().startswith(":"):
message = message.strip()[1:]
return message
“‘
...
Hard Difficulty
- Logic: Moderate complexity. May involve nested loops, multiple non-trivial conditions, manipu-
lation of data structures (e.g., iterating through lists/dicts with transformations), implementing a
common simple algorithm, or tracking state across iterations.
- Structure: Control flow is more involved but still reasonably traceable. Function length might be
moderate.
- Example:
...
Hard Difficulty
- Logic: Complex logic. Might involve recursion, implementing non-trivial algorithms.
- Structure: Can have nested structures, complex control flow, significant state management, or
rely on clever interactions between code parts. May not be long but could be dense.
- Example:
...
Output Format
Return ONLY a JSON object containing the assessed difficulty level:
{
"Difficulty": "Easy/Medium/Hard"
}

User
[Function Message]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E PROPERTY-BASED TESTING

This appendix provides additional technical details regarding the Property-Based Testing (PBT)
process to generate rigorous test cases for CODE2BENCH. While it describes the core principles,
here we elaborate on the technical implementation.

Our PBT approach is centered around defining strategies for generating diverse, valid inputs for a
given function and verifying a core property against the ground truth implementation.

E.1 STRATEGY BUILDING AND INPUT SYNTHESIS

The Strategy Builder component analyzes the function’s signature, parameter types, and inferred
constraints from type hints, docstrings, and static analysis of the ground truth code. It then leverages
a PBT library (e.g., Hypothesis for Python) to compose generation strategies for each function
parameter. These strategies are designed to explore a wide range of valid inputs, including typical
values, edge cases (e.g., empty lists, zero, maximum/minimum values), and combinations of different
input types within complex structures (e.g., lists of dictionaries, tuples of specific types). The process
is constraint-aware, ensuring generated inputs adhere to inferred conditions.

For example, for a function taking a list of integers ‘def process(data: list[int])‘, the strategy might
generate lists of varying lengths, containing both positive and negative integers, zeros, and potentially
boundary values like ‘sys.maxint‘. For a function taking a string with specific format requirements,
the strategy would be built to generate strings adhering to that format.

E.2 PROPERTY DEFINITION AND VERIFICATION

The core property we verify for generated code is functional equivalence with the ground truth
implementation. For every input xi generated by the strategies, we compute the expected output
yi = fGT (xi), where fGT is the ground truth function. The PBT framework then requires that for
any generated input xi, the output of the generated code fLLM (xi) must equal yi. Any input xi

where fLLM (xi) ̸= yi constitutes a test case failure, and the PBT framework can then attempt to
"shrink" xi to find a minimal failing input.

E.3 ENSURING TEST RIGOR AND COVERAGE

To ensure the generated test suites are truly rigorous, we incorporate a quality control step based on
test coverage. After generating a suite of (xi, yi) pairs using PBT strategies, we execute these test
cases against the ground truth implementation itself. We use code coverage tools (e.g., “coverage.py”
for Python) to measure the branch coverage achieved by the generated test suite on the ground truth
code. Only test suites that achieve a high coverage threshold (e.g., 100% average branch coverage)
are accepted and included in the final benchmark instance. This filtering step is crucial: even if a
strategy can generate many inputs, if those inputs don’t exercise the complex branching logic of the
function, the resulting test suite is not rigorous enough to effectively verify model implementations.

E.4 CODE EXAMPLE (PYTHON/HYPOTHESIS)

Below is a simplified illustrative example using the Python Hypothesis library to demonstrate how
strategies and properties are defined.

import hypothesis.strategies as st
from hypothesis import given, settings, Verbosity

1. Define strategies for input generation
Strategy for generating arbitrary strings
string_strategy = st.text()

def ground_truth_reverse(s: str) -> str:
return s[::-1]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

def llm_generated_reverse(s: str) -> str:
Hypothetical LLM output, might have bugs
return "".join(reversed(s))

Define a property using @given decorator
@given(s=string_strategy) # Use the defined strategy to generate input

's'↪→
@settings(max_examples=1000) # Example settings for testing
def test_reverse_property(s):

Property: Reversing twice returns the original string
assert reverse_string(reverse_string(s)) == s # This property tests

the function against itself↪→

Property: LLM output matches Ground Truth output
expected_output = ground_truth_reverse(s)
actual_output = llm_generated_reverse(s)
assert actual_output == expected_output # This property tests LLM

output against GT↪→

This example illustrates the basic concept of defining strategies for input generation and asserting
properties about the function’s behavior for these inputs. In the CODE2BENCH pipeline, these
principles are automated and scaled to generate comprehensive test suites for a wide variety of
functions extracted from real-world code.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F TESTCASE RUNNER GENERATION

This appendix provides a detailed presentation of the prompts used for generating test runners
(Section 2). Since test runners are inherently language-specific, we designed tailored prompts for
each programming language. The corresponding prompts are listed in Tables 9 through 10.

Table 9: Prompt Template for SC-Java Testcase Runner Generation in CODE2BENCH

System
Task Description
As an expert Java developer specializing in test case generation and function signature translation,
your task is to generate a Java test file and function signature based on a Python function and its
test cases. The test file will load test cases from a JSON file and execute tests using a provided
‘Helper.deepCompare‘ method.
Requirements
1. **Java Test File**:
- Generate a complete, executable Java test file in the ‘p0‘ package.
...
2. **Function Signature**:
- Provide only the function signature in the ‘p0.Tested‘ class.
...
3. **Special Considerations**:
- **Type Safety**:
- Ensure ‘TestCase‘ fields exactly match JSON keys and types (e.g., ‘lines‘ → ‘List<String>‘,
‘line_index‘ → ‘int‘).
...
4. **Type Definition Rules**
- Follow these rules to determine where to define types:
| Usage Scenario | Location | Example
| |——————————-|——————|————————–|
| Used in function signature | ‘tested.java‘ | ‘public static class TagInfo {}‘ |
| Used in both | ‘tested.java‘ | Shared types always in implementation |
Input Format
- **Test Cases JSON**: A JSON array of test cases, provided as ‘{testcases_str}‘.
- **Python Function**: A Python function to be tested, including its signature and implementation,
provided as code.
Output Format
“‘plaintext
<code>
[Java test file]
</code>
<signature>
[Java function signature]
</signature>
Examples
...
Note
- Ensure the generated Java test file is complete and executable.
- The function signature should be a valid Java function signature that matches the Python
function’s behavior.
- Only return the Java test file in ‘<code>‘ and the function signature in ‘<signature>‘ tags.

User
The previously generated runner code:
[Runner Code]
The previously generated runner code resulted in the following error during execution:
[Error Message]
[Function Message]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Prompt Template for WSC-Python Testcase Runner Generation in CODE2BENCH

System
Task Description
You are an expert Python developer specializing in property-based testing and test case execution.
Your task is to generate a **complete and executable Python script** that loads test cases from
a JSON file generated by a Hypothesis-based Testcase Generator and re-runs the test logic to
verify the behavior of a function under test (‘func1‘) against a ground truth function (‘func0‘).
The functions depend only on standard libraries or specific external libraries (e.g., NumPy, re) and
no other custom modules. The script will:
1. Load test cases from the JSON file (‘test_cases.json‘) containing 500 test cases, each with a
‘"Inputs"‘ dictionary mapping ‘func0‘’s argument names to JSON-serializable values.
2. Re-run the test logic by calling ‘func0‘ (ground truth) and ‘func1‘ (under test) with the loaded
inputs, comparing their outputs via differential testing.
3. Compare outputs using:
- For basic types and their combinations (‘int‘, ‘float‘, ‘str‘, ‘list‘, ‘dict‘, etc.), use ‘deep_compare‘
from the ‘helper‘ module.
- For third-party library types (e.g., ‘numpy.ndarray‘, ‘tuple‘ of ‘numpy.ndarray‘), use library-
provided comparison functions (e.g., ‘np.allclose‘) or custom logic if none is provided.
4. Report test results, indicating whether each test case passes or fails, with detailed failure
information (inputs, expected output, actual output).
Input The input is a Python Testcase Generator script that includes:
1. The ground truth function ‘func0‘, its dependencies (e.g., ‘numpy‘, ‘re‘), and implementation.
2. Hypothesis strategies and ‘@example‘ decorators defining input generation logic.
3. A test function (‘test_<function_name>‘) that generates and saves 500 test cases to
‘test_cases.json‘, each containing only ‘"Inputs"‘.
Provided in ‘<Testcase Generator>‘ tags.
Output Generate a complete, executable Python script that:
...
Example
...
Note - Focus on Loading and Re-testing: Load test cases from test_cases.json and verify func1
against func0 using differential testing.
- Preserve Input Format: Ensure inputs match func0’s signature, converting JSON-serialized inputs
(e.g., list to np.ndarray) as needed.
- Output Comparison:
- Use deep_compare from helper for basic types and combinations (int, float, str, list, dict, etc.).
- Use library-provided comparisons (e.g., np.allclose for numpy.ndarray) for third-party library
types, or custom logic if none is provided.
- Executable Code: The script must be complete, self-contained, and executable.
- Differential Testing: Since test cases contain only inputs, compute expected outputs by calling
func0 and compare with func1’s outputs.
- External Libraries: Include imports for func0’s dependencies (e.g., numpy, re) and handle their
data types (e.g., np.ndarray).

User
The previously generated runner code:
[Runner Code]
The previously generated runner code resulted in the following error during execution:
[Error Message]
[Function Message]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G INSTRUCTION GENERATION

Table 11: Prompt Template for WSC-Python Instruction Generation in CODE2BENCH

System
You are a python programming expert who is refining docstrings in existing programs. You will
be given a python function in a python file with an existing (possibly underspecified) docstring
with corresponding some input-output examples extracted.
Your goal is to refine the associated docstring by making it more informative, precise and complete
without adding verbosity or detailed programming logic to the docstring. When there is a docstring,
the docstring is used to evaluate the code generation capabilities of a model.
The docstring should particularly describe the format and types of the expected inputs and output
as well as the behavior of the function. Do not guess outputs for functions. Finally, do not throw
away existing details from the docstrings and only insert content you are sure about. Do NOT have
repeated content in the docstring and ONLY describe the high-level function behavior without
going into implementation details.
Requirements
1. **Core Description Fidelity**: The docstring must accurately reflect the function’s behavior
and describes the task this function solves. **Pay close attention to the sequence of checks,
conditions, and resulting actions within the code.
2. ** Highlight any **special rules** that affect the model’s correct understanding of the function’s
behavior, such as:
- Recursive behavior
- Merging, flattening, filtering, transformation logic
- Edge cases or type-specific handling
- Magic numbers or constants
3. **Docstring Refinement**: If the function already has a docstring, integrate and refine its
content to meet these requirements. Do not discard existing accurate information.
4. **Conditional Example Handling**:
You should judge whether to include examples based on the original docstring’s content:
- **If the original docstring contains an ‘Examples‘ section**:
- Preserve all original examples **verbatim** in the final docstring’s ‘Examples‘ section.
- Format them clearly in Language-Agnostic(e.g., showing input and expected output).
- Do **not** add or modify examples from the ‘Example Usages‘ data.
Input “‘python
{ground_truth_function_code}
“‘
Output Format
- Return the docstring in <docstring> tags following the Google-style format.
- Include the function signature in <signature> tags, with a TODO placeholder for the implementa-
tion.
Example output:
...
Note
- Only add examples in Docstring when the function already has an ‘Examples‘ section in the
docstring. Do not add examples from the ‘Example Usages‘ data if the original docstring does not
contain ‘Examples‘.
- If the signature has type hints, import nessesary types from the standard library (e.g., ‘from
typing import List, Dict‘) in signature.

User
<function>
[Function Code]
</function>
<example usages>
[Example Usage]
</example usages>

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 12: Prompt Template for SC-Python Instruction Generation in CODE2BENCH

System
You are a programming documentation architect specializing in creating precise, implementation-
agnostic specifications. Generate a docstring that enables accurate reimplementation in any
programming language. When there is a docstring, the docstring is used to evaluate the code
generation capabilities of a model.
Requirements
1. **Core Description Fidelity**: The docstring must accurately reflect the function’s behavior
and describes the task this function solves. **Pay close attention to the sequence of checks,
conditions, and resulting actions within the code.
2. Highlight any **special rules** that affect the model’s correct understanding of the function’s
behavior, such as:
- Recursive behavior
- Edge cases or type-specific handling
- Magic numbers or constants
- Special settings that may affect the difficulty for others to correctly implement functions based
on docstrings. e.g., the Ground Truth function may add some special string at the end of the result,
so the docstring should mention this case, otherwise, the model may not be able to implement the
function correctly.
2. **Language-Agnostic Terminology**: Use universal concepts for types and logic.
- Describe parameters and return values using **conceptual types** (e.g., "an integer", "a boolean
value", "a sequence of numbers", "a text string") instead of language-specific type hints (‘int‘,
‘bool‘, ‘list‘, ‘str‘).
- Describe operations conceptually (e.g., "checks if X contains Y", "iterates over the elements",
"applies a function to each element") rather than Python built-ins (‘s1.find("’")‘, ‘s1.replace‘).
3. **Docstring Refinement**: If the function already has a docstring, integrate and refine its
content to meet these requirements. Do not discard existing accurate information.
4. **Conditional Example Handling**:
- **If the original docstring contains an ‘Examples‘ section**:
- Preserve all original examples **verbatim** in the final docstring’s ‘Examples‘ section...
Input Structure
“‘python
{ground_truth_function_code}
“‘
Example Usages:
{example_usage_data}
(Note: Example Usages will be provided in a format like input/output pairs.)
Output:
Only return the docstring content in <docstring> tags and the function signature in the <signature>
tags. The docstring should be enclosed in triple double quotes (‘"""Docstring goes here"""‘). The
function signature should be formatted in “‘python‘ code block with the function name and a
TODO comment indicating where the implementation should go.
Note:
- Only add examples in Docstring when the function already has an ‘Examples‘ section in the
docstring. Do not add examples from the ‘Example Usages‘ data if the original docstring does not
contain ‘Examples‘.
- If the signature has type hints, import nessesary types from the standard library (e.g., ‘from
typing import List, Dict‘) in signature.

User
<function>
[Function Code]
</function>
<example usages>
[Example Usage]
</example usages>

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 13: Prompt Template for SC-Java Instruction Generation in CODE2BENCH

System
You are an expert Java architect and technical writer, specializing in creating high-quality, profes-
sional Javadoc documentation. Your task is to generate a precise and informative Javadoc for a
given Java method, enabling another senior Java developer to re-implement it accurately within a
complete, self-contained ‘Tested.java‘ file.
Core Objective
The generated Javadoc and method signature must serve as a perfect "specification" for the
provided ground-truth method.
Requirements
1. Core Description Fidelity: The Javadoc must accurately reflect the method’s behavior, including
the precise sequence of checks, conditions, and resulting actions within the code.
2. Edge Cases: Detail how the method handles edge cases, such as null, empty, or special/magic
values.
3. Data Structures: Accurately describe parameters and return values using standard Java types.
4. Javadoc Refinement: If the method already has a Javadoc, your primary goal is to refine and
enhance it to meet these high standards. Integrate existing accurate information with your new
insights. Do not discard valuable details from the original author.
5. Example Handling:
* If the original Javadoc contains an example (e.g., in a ‘<pre>@code ...</pre>‘ block): Preserve
the original example verbatim.
* If not: Omit any example section entirely.
Input Structure
“‘java
{ground_truth_java_method_code}
“‘
Output Structure
Return a single ‘<signature>‘ tag containing a complete, self-contained, and runnable ‘Tested.java‘
file content. The content must be enclosed in a “‘java‘ code block and include all necessary
imports, the generated Javadoc, the ‘public class Tested‘, and the public static method signature
with a ‘// TODO: implement this method‘ comment.
<signature>
“‘java
// All necessary imports (e.g., java.util.*) should be here.
import java.util.List;
import java.util.Map;
public class Tested {
/**
* High-quality, Google-style Javadoc goes here. ...
*/
public static ReturnType methodName(ParameterType parameterName) {
// TODO: implement this method
}
}
“‘
</signature>
Final Instructions
- Ensure the method signature in the ‘<signature>‘ tag perfectly matches the ground truth, including
visibility (‘public static‘), return type, method name, and parameter types.
- Don’t add implementation details.
- Include all necessary imports based on the types used in the signature.

User
<function>
[Function Code]
</function>

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

H BENCHMARK

H.1 BENCHMARK DETAILS

This appendix provides a detailed breakdown of the construction process and diversity analysis for
the CODE2BENCH-2509 suite. All data was sourced from public GitHub repositories with commits
made between May 2025 and September 2025.

To ensure the diversity, quality, and representativeness of the source code used in CODE2BENCH, we
adhered to a strict, multi-stage data selection protocol. This appendix details the criteria and sampling
strategies employed during the “Scaling the Source” phase.

We targeted high-quality, actively maintained, and well-tested open-source repositories hosted on
GitHub. To be included in our initial candidate pool, a repository must meet the following quantitative
thresholds:

• Community Validation: ≥ 500 Stars. This threshold filters out personal experiments and
ensures a baseline of community scrutiny and adoption.

• Active Maintenance: At least one commit within the 3 months prior to our data collection
cutoff (May 2025). This ensures the code reflects modern coding practices and library
versions.

• Test Availability: Must contain an identifiable test suite (e.g., presence of tests/ directory,
usage of pytest/junit). This is crucial for verifying our ground truth extraction.

• License Permissibility: Must be under permissive licenses (e.g., MIT, Apache 2.0, BSD) to
allow for redistribution and modification.

To mitigate noise and bias, we applied semantic filters to exclude repositories that do not represent
real-world software engineering contexts:

• Homework & Tutorials: Repositories with keywords like “assignment”, “course”, “tuto-
rial”, “learn-python/java”, or “leetcode” in their description or README were excluded.
These typically contain toy problems distinct from production-grade code.

• Aggregators & Forks: We excluded repositories identified as mere collections of other
projects (e.g., “awesome-xxx”) or direct forks without significant divergence, ensuring
unique data sources.

To prevent domain bias (e.g., over-representation of web frameworks), we employed a stratified
sampling strategy based on GitHub topics and repository tags. We categorized candidates into 10
primary domains covering the spectrum of software development:

1. Web Development (e.g., frameworks, clients)
2. Data Science & Machine Learning (e.g., analytics, pipelines)
3. System Utilities (e.g., cli tools, file manipulation)
4. Network & Protocol (e.g., async io, sockets)
5. Security & Cryptography
6. Database & Storage
7. Text Processing & NLP
8. Media & Graphics (e.g., image processing)
9. Scientific Computing

10. Development Tools (e.g., linters, parsers)

We performed random sampling within each stratum to build our final source list of Python and Java
repositories.

To fully support reproducibility and auditability, the complete list of source repositories is available
on our open-source project page: https://code2bench.github.io/.

29

https://code2bench.github.io/

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

H.2 THE DATA FUNNEL: FROM RAW FUNCTIONS TO A GOLD STANDARD

The final size of our benchmark is a direct result of a stringent, multi-stage filtering pipeline designed
to prioritize quality, realism, and rigor. Table 14 illustrates this "Great Filter" process for the Python
components, starting from over one million recently updated functions identified in 220 repositories.
This rigorous process ensures that only the most suitable and high-quality candidates become part of
the final benchmark.

Table 14: The Data Funnel for CODE2BENCH-2509 Python components, illustrating the multi-stage
filtering process that prioritizes quality and rigor.

Stage Filtering Action & Criteria SC Candidates WSC Candidates
1. Initial Pool Functions parsed from recent commits ~1.17 Million
2. Dependency Filter Scope Graph: Strictly SC / WSC compliant 27,649 12,335
3. Testability/Complexity Testable outputs & Cyclomatic Complexity [2,10] 7,102 3,278
4. Sub-sampling Breadth-first sampling for diversity 901 432
5. Semantic Filter LLM-as-a-judge removes trivial tasks 479 315

6. The Great Filter PBT: 100% Branch Coverage Guarantee 217 194

H.3 TASK DIVERSITY ANALYSIS

The high quality of CODE2BENCH-2509 is rooted in its rich diversity of tasks and application
domains.

H.3.1 SC-PYTHON: ALGORITHMIC AND REAL-WORLD LOGIC

The 217 tasks in the SC-Python component cover a wide spectrum of real-world programming
challenges beyond simple puzzles. Key functional categories include:

• Text Processing & Formatting: Ranging from LaTeX sanitization (strip_latex) to complex
wrapping for SVG elements (wrap_text_for_svg).

• Classic & Modern Algorithms: Includes fundamental algorithms like levenshtein and
binary_search, as well as logic relevant to modern development tools like parsing LCOV
reports (parse_lcov).

• Parsing & Extraction: Challenges models to parse structured data from unstructured text, such as
extracting JSON from noisy strings (_extract_balanced_json) or parsing version numbers
(parse_version).

• AI/LLM-Specific Logic: A unique feature is the inclusion of tasks from the AI ecosystem, such as
formatting LLM error messages (format_llm_error_message) and parsing model outputs
(extract_weave_refs_from_value).

• Complex Data Structure Manipulation: Requires deep understanding of nested structures (e.g.,
flatten_state_dict, deep_merge).

H.3.2 WSC-PYTHON: A BROAD AND REALISTIC API ECOSYSTEM

The 194 tasks in the WSC-Python component require the use of over 35 distinct libraries and
modules1, ensuring a faithful evaluation of a model’s practical API fluency. The distribution is
representative of real-world Python development, covering a wide and diverse ecosystem rather than
focusing on a narrow set of APIs. The required libraries span multiple key domains of software
engineering:

• Data Processing & Text Manipulation: A significant portion of tasks involve core data han-
dling using standard libraries like re, json, ast, datetime, urllib, unicodedata, and
base64.

1This count is based on unique top-level import statements, e.g., re, numpy, scipy.spatial.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

• Scientific Computing & Data Science: The benchmark probes capabilities in specialized numeri-
cal and data-centric domains, requiring libraries such as numpy, scipy (including submodules
like scipy.spatial.transform), and pandas.

• Machine Learning: Uniquely, our suite includes tasks that interact with the machine learn-
ing ecosystem, leveraging modules from scikit-learn like TfidfVectorizer and
cosine_similarity.

• Advanced Standard Library Proficiency: Beyond common utilities, the tasks require a deep
knowledge of Python’s standard library, including advanced modules such as itertools,
collections (e.g., Counter, defaultdict), difflib, bisect, and struct.

This broad and realistic library coverage ensures that WSC-Python provides a holistic assessment of
a model’s ability to function as a practical coding assistant in a diverse range of real-world scenarios.

H.3.3 SC-JAVA: VALIDATING EXTENSIBILITY WITH DIVERSE TASKS

The successful generation of the 249-task SC-Java suite provides concrete evidence of our frame-
work’s extensibility. The quality of this component is validated by its high diversity, which mirrors
the real-world complexity found in its Python counterpart. The tasks span a wide array of application
domains:

• String Manipulation & Parsing: A large portion of tasks involve complex string operations,
such as format conversion (convertToCamelCase), cleaning (cleanText), and escaping for
different contexts (escapeJsonString, escapeCsvField).

• Encoding & Data Conversion: Numerous tasks focus on byte-level manipulation, primarily
converting between byte arrays and hexadecimal strings (e.g., bytesToHex), a common task in
systems programming and networking.

• Mathematics & Algorithms: The suite includes non-trivial algorithms like checksum validation
(luhnBankCardVerify) and edit distance calculation (levenshteinDistance).

• Domain-Specific Logic: Crucially, the tasks are not generic puzzles but are rooted in spe-
cific application domains, including game development (e.g., Minecraft metadata transforma-
tion, transformMetaDecoModel) and systems utilities (e.g., calculating CPU affinity masks,
maskToCpuAffinity).

This demonstrates our framework’s ability to extract meaningful and realistic algorithmic challenges
from any complex, real-world codebase, regardless of the programming language.

H.4 BENCHMARK TASK EXAMPLES

This appendix provides examples of representative benchmark instances from CODE2BENCH-2509.
Each example showcases a complete task, including the instruction provided to the Large Language
Model (LLM), the ground truth implementation from which the task was derived, the Property-Based
Testing (PBT) script used for generating comprehensive test cases, and the test runner script for
evaluating the LLM’s generated code.

H.4.1 SC PYTHON EXAMPLE: MERGE_JSON_RECURSIVE

This example demonstrates a Self-Contained (SC) task in Python, requiring the recursive merging of
JSON-like objects without external dependencies beyond standard library features.

Task Instruction

def merge_json_recursive(base, update):
"""Recursively merge two JSON-like objects.

The function merges nested structures with the following rules:
- If both inputs are dictionaries, recursively merge them.
- If both inputs are lists, concatenate them.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

- For all other cases, the update value overwrites the base value.
- The base object is left unmodified; a new merged object is

returned.↪→

Args:
base: Base JSON-like object (dictionary, list, or primitive

value).↪→
update: Update JSON-like object to merge into base.

Returns:
A new JSON-like object containing merged content from base and

update.↪→

Examples:
Input: base = {"a": 1}, update = {"a": 2}
Output: {"a": 2}

Input: base = [1, 2], update = [3, 4]
Output: [1, 2, 3, 4]

Input: base = {"a": {"b": 1}}, update = {"a": {"c": 2}}
Output: {"a": {"b": 1, "c": 2}}

"""
TODO: Implement this function
pass

Testcase Generator

from hypothesis import settings, given, Verbosity, example
from hypothesis import strategies as st
import json
import os
import atexit
import copy

Configuration
TEST_CASE_DIR = os.path.abspath("test_cases")
os.makedirs(TEST_CASE_DIR, exist_ok=True)
TEST_CASE_FILE = os.path.join(TEST_CASE_DIR, "test_cases.json")
generated_cases = []
stop_collecting = False # Global flag to control case collection

Ground truth function
def merge_json_recursive(base, update):

if not isinstance(base, dict) or not isinstance(update, dict):
if isinstance(base, list) and isinstance(update, list):

return base + update
return update

merged = base.copy()
for key, value in update.items():

if key in merged:
merged[key] = merge_json_recursive(merged[key], value)

else:
merged[key] = value

return merged

Strategy for JSON-like objects
json_strategy = st.recursive(

st.one_of([
st.integers(),
st.floats(allow_nan=False, allow_infinity=False),

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

st.text(st.characters(whitelist_categories=('L', 'N', 'P', 'S',
'Z'))),↪→

st.booleans()
]),
lambda children: st.one_of(

st.lists(children, max_size=5),
st.dictionaries(st.text(st.characters(whitelist_categories=('L',

'N')), max_size=5), children, max_size=5)↪→
),
max_leaves=5

)

Hypothesis test configuration
@settings(max_examples=10000, verbosity=Verbosity.verbose,

print_blob=True)↪→
@given(base=json_strategy, update=json_strategy)
def test_merge_json_recursive(base, update):

global stop_collecting
if stop_collecting:

return

base_copy = copy.deepcopy(base)
update_copy = copy.deepcopy(update)
expected = merge_json_recursive(base_copy, update_copy)

if isinstance(base, (dict, list)) or isinstance(update, (dict,
list)):↪→
generated_cases.append({

"Inputs": {"base": base, "update": update},
"Expected": expected

})
if len(generated_cases) >= 500:

stop_collecting = True

Save test cases
def save_test_cases():

with open(TEST_CASE_FILE, "w") as f:
json.dump(generated_cases, f, indent=2, ensure_ascii=False)

print(f"✓ Saved {len(generated_cases)} test cases to
{TEST_CASE_FILE}")↪→

atexit.register(save_test_cases)

Testcase Runner

import json
import os
from tested import merge_json_recursive as func1
from helper import deep_compare

Configure save path
TEST_CASE_DIR = os.path.abspath("test_cases")
TEST_CASE_JSON_PATH = os.path.join(TEST_CASE_DIR, "test_cases.json")

def load_test_cases_from_json():
if not os.path.exists(TEST_CASE_JSON_PATH):

print(f"JSON file not found: {TEST_CASE_JSON_PATH}")
return []

Read JSON file
with open(TEST_CASE_JSON_PATH, "r") as f:

test_cases = json.load(f)

return test_cases

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

def run_tests_with_loaded_cases(test_cases):
for i, case in enumerate(test_cases):

inputs = case["Inputs"]
expected_output = case["Expected"]

Run function under test
actual_output = func1(**inputs) # Copy matrix to avoid in-place

modification↪→

Check if results match using deep_compare
if not deep_compare(actual_output, expected_output,

tolerance=1e-6):↪→
print(f"Test case {i + 1} failed:")
print(f" Inputs: {inputs}")
print(f" Expected: {expected_output}")
print(f" Actual: {actual_output}")

else:
print(f"Test case {i + 1} passed.")

if __name__ == "__main__":
test_cases = load_test_cases_from_json()
run_tests_with_loaded_cases(test_cases)

H.5 WSC PYTHON EXAMPLE: CALCULATE_NGRAM_REPETITION

This example demonstrates a Weakly Self-Contained (WSC) task in Python. It requires interacting
with a function from the standard library (“collections.Counter”) to calculate n-gram repetition in
text.

Task Instruction

from collections import Counter

def calculate_ngram_repetition(text: str, n: int) -> float:
"""
Calculates the proportion of repeated n-grams in a given text.

This function splits the input text into words and generates n-grams
of the specified size `n`. It then computes the frequency of each
n-gram and determines the proportion of n-grams that appear more
than once. If there are no n-grams (e.g., when the text is empty
or `n` is larger than the number of words in the text), the
function returns 0.

↪→
↪→
↪→
↪→
↪→

Args:
text (str): The input text to analyze, consisting of words

separated by spaces.↪→
n (int): The size of the n-grams to generate (e.g., 2 for bigrams,

3 for trigrams).↪→

Returns:
float: The proportion of n-grams that are repeated in the text.

Returns 0 if no n-grams can be generated.↪→

Raises:
ValueError: If `n` is less than or equal to 0.

"""
TODO: Implement this function
pass

Testcase Generator

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

from hypothesis import settings, given, Verbosity, example
from hypothesis import strategies as st
import json
import os
import atexit
import copy
from collections import Counter

Configuration
TEST_CASE_DIR = os.path.abspath("test_cases")
os.makedirs(TEST_CASE_DIR, exist_ok=True)
TEST_CASE_FILE = os.path.join(TEST_CASE_DIR, "test_cases.json")
generated_cases = []
stop_collecting = False # Global flag to control case collection

Ground truth function
def calculate_ngram_repetition(text, n):

words = text.split()
ngrams = [tuple(words[i : i + n]) for i in range(len(words) - n + 1)]
ngram_counts = Counter(ngrams)
total_ngrams = len(ngrams)
repeated_ngrams = sum(1 for count in ngram_counts.values() if count >

1)↪→
return repeated_ngrams / total_ngrams if total_ngrams > 0 else 0

Strategies for generating inputs
def text_strategy():

return st.text(
alphabet=st.characters(whitelist_categories=('L', 'N', 'Z'),

min_codepoint=32, max_codepoint=126),↪→
min_size=0, max_size=100

)

def n_strategy():
return st.integers(min_value=1, max_value=5)

Hypothesis test configuration
@settings(max_examples=10000, verbosity=Verbosity.verbose,

print_blob=True)↪→
@given(text=text_strategy(), n=n_strategy())
@example(text="", n=1)
@example(text="a", n=1)
@example(text="a b c", n=2)
@example(text="a a b b c c", n=2)
@example(text="a b c d e f", n=3)
@example(text="a a a a a a", n=3)
def test_calculate_ngram_repetition(text, n):

global stop_collecting
if stop_collecting:

return

Deep copy inputs to avoid modification
text_copy = copy.deepcopy(text)
n_copy = copy.deepcopy(n)

Call func0 to verify input validity
try:

expected = calculate_ngram_repetition(text_copy, n_copy)
except Exception:

return # Skip inputs that cause exceptions

Store inputs only
generated_cases.append({

"Inputs": {
"text": text_copy,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

"n": n_copy
}

})

Stop collecting after 500 cases
if len(generated_cases) >= 500:

stop_collecting = True

Save test cases
def save_test_cases():

with open(TEST_CASE_FILE, "w") as f:
json.dump(generated_cases, f, indent=2, ensure_ascii=False)

print(f"✓ Saved {len(generated_cases)} test cases to
{TEST_CASE_FILE}")↪→

atexit.register(save_test_cases)

Testcase Runner

import json
import os
import copy
from collections import Counter
from helper import deep_compare
from tested import calculate_ngram_repetition as func1

Configure save path
TEST_CASE_DIR = os.path.abspath("test_cases")
TEST_CASE_JSON_PATH = os.path.join(TEST_CASE_DIR, "test_cases.json")

Ground truth function
def calculate_ngram_repetition(text, n):

words = text.split()
ngrams = [tuple(words[i : i + n]) for i in range(len(words) - n + 1)]
ngram_counts = Counter(ngrams)
total_ngrams = len(ngrams)
repeated_ngrams = sum(1 for count in ngram_counts.values() if count >

1)↪→
return repeated_ngrams / total_ngrams if total_ngrams > 0 else 0

def load_test_cases_from_json():
if not os.path.exists(TEST_CASE_JSON_PATH):

print(f"JSON file not found: {TEST_CASE_JSON_PATH}")
return []

with open(TEST_CASE_JSON_PATH, "r") as f:
test_cases = json.load(f)

return test_cases

def compare_outputs(expected, actual):
Use deep_compare for basic types (int, float, str, etc.)
return deep_compare(expected, actual, tolerance=1e-6)

def run_tests_with_loaded_cases(test_cases):
for i, case in enumerate(test_cases):

inputs = copy.deepcopy(case["Inputs"])
text = inputs["text"]
n = inputs["n"]

Run ground truth and function under test
expected_output = calculate_ngram_repetition(text, n)
actual_output = func1(text, n)

Compare outputs
if compare_outputs(expected_output, actual_output):

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

print(f"Test case {i + 1} passed.")
else:

print(f"Test case {i + 1} failed:")
print(f" Inputs: {inputs}")
print(f" Expected: {expected_output}")
print(f" Actual: {actual_output}")

if __name__ == "__main__":
test_cases = load_test_cases_from_json()
run_tests_with_loaded_cases(test_cases)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

I DETAILED EVALUATION

I.1 COMPUTE RESOURCES

we detail the compute resources utilized for evaluating the Large Language Models on the
CODE2BENCH-2509 benchmark. The evaluation was conducted on an infrastructure consisting
of server-grade machines. Open-source models with fewer than 32B parameters (as listed in Table
2) were served using vLLM on a cluster equipped with NVIDIA GPUs. Specifically, these models
were evaluated on machines featuring NVIDIA A100 80GB GPUs. The evaluation environment for
these models was containerized to maintain isolation and consistency. For larger open-source models
(>= 32B parameters) and all closed-source models, evaluation was performed by accessing their
respective official APIs. The compute resources for these API-based evaluations are managed by the
model providers and are not under our direct control or knowledge. Therefore, we cannot provide
specific details on the underlying hardware, memory, or parallelization used by these providers. The
Testcase Runner execution for each task (which involves loading test cases, running the generated
code and ground truth, and performing differential testing) was primarily CPU-bound and ran on
standard server CPUs, such as Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz, featuring 64 logical
cores. These machines were equipped with 125 GiB of RAM and SSD storage for the benchmark
data and test cases. The total compute time required for the comprehensive evaluation of all 16
models across the 1163 tasks in CODE2BENCH-2509 was substantial. While precise timing varies
per model and task, we estimate the total GPU-hours consumed for the open-source model inferences
to be approximately 200 GPU-hours. The total CPU-hours consumed for Testcase Runner execution
across all models (including running the generated code and ground truth against approximately 500
tests per task per model) is estimated to be approximately 200 CPU-hours.

Benchmark Construction Cost. The construction of the CODE2BENCH-2509 suite is a compu-
tationally intensive but one-time investment. Generating a rigorous Property-Based Testing (PBT)
suite with a guaranteed 100% branch coverage takes approximately 5 CPU-minutes per task. This
process includes the iterative generation of PBT driver code by the LLM, execution of test cases, and
coverage verification. Constructing the entire suite required approximately 83 CPU-hours. Crucially,
this pipeline is embarrassingly parallelizable, allowing the entire benchmark to be regenerated in
under one hour on a standard high-performance computing cluster, making continuous dynamic
updates highly practical.

Lightweight Mode via Test Suite Minimization. To facilitate rapid model iteration and reduce
evaluation overhead, we introduce a “Lightweight Mode.” We frame the test suite reduction as a Set
Cover Problem and employ a greedy algorithm to select a minimal subset of test cases that maintains
the original 100% branch coverage of the ground truth. This optimization typically reduces the test
volume from ∼500 to 30–50 test cases per task (a ∼10× reduction), significantly lowering the
evaluation cost while preserving the diagnostic integrity regarding logical correctness.

I.2 EVALUATION INSTRUCTION

Table 15: Prompt Template for SC-Python Benchmark Runner in CODE2BENCH

System
You are an expert in the field of coding, helping users write Python code.
Input
The user provides you with an function signature and docstring, you should generate a Python
function based on them.
Output
“‘python The generated Python code. “‘
Note
- Only output Python code with possible type import statements but without docstring and any
additional information.

User
[Instruction]

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 16: Prompt Template for WSC-Python Benchmark Runner in CODE2BENCH

System
You are a highly skilled Python programming expert tasked with implementing a function based
on its specification, using the allowed libraries.
Implement the Python function described below. Your implementation should strictly adhere to
the behavior specified in the docstring and utilize only the explicitly allowed external libraries.
Output Format
“‘python The generated Python code. “‘
Provide ONLY the Python code for the function implementation with corrsponding libraries
imported. Do not include any additional information or explanations.

User
[Instruction]

Table 17: Prompt Template for SC-Java Benchmark Runner in CODE2BENCH

System
You are an expert in the field of coding, helping users write Java code.
Input
The user provides you with an function signature and docstring, you should generate a Java
function based on them.
Output
“‘java
The generated Java code.
“‘
Note
- Provide only Java code within a “‘java“‘ code block. Include a complete public class named
Tested with package name and necessary imports. Do not add a main method or repeat the
docstring.

User
[Instruction]

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

J CASE STUDY: UNCOVERING THE ILLUSION OF CORRECTNESS

Our diagnostic approach, combining a scaled source of real-world problems with the scaled rigor
of Property-Based Testing, allows us to move beyond simple pass/fail metrics and uncover nuanced
failure modes. This case study on a Weakly Self-Contained (WSC) task from CODE2BENCH-2509
illustrates how our framework reveals the critical gap between functional plausibility and engineering
robustness.

J.1 THE TASK: A NUMERICALLY SENSITIVE PROBLEM

WSC Task #81 requires the implementation of a _first_divided_difference function, a
common operation in numerical analysis. The ground-truth implementation, sourced from a mature
scientific Python library, is a highly efficient and numerically stable vectorized solution using NumPy:

1 # Ground Truth (Vectorized, Numerically-Stable)
2 def _first_divided_difference(d, fct, fctder, atol=1e-12, rtol=1e-12):
3 dif = np.repeat(d[None, :], len(d), axis=0)
4 close_ = np.isclose(dif, dif.T, atol=atol, rtol=rtol)
5 dif[close_] = fctder(dif[close_])
6 dif[~close_] = (fct(dif[~close_]) - fct(dif.T[~close_])) / \
7 (dif[~close_] - dif.T[~close_])
8 return dif

J.2 THE “NEAR-PERFECT” BUT FLAWED LLM SOLUTION

Remarkably, nearly all 10 evaluated models failed this task in the exact same way. They did not
produce syntax errors or obvious logical flaws. Instead, they generated a functionally plausible
solution that mimics a textbook implementation using scalar Python loops:

1 # Typical LLM-Generated Solution (Scalar, Naive)
2 def _first_divided_difference(d, fct, fctder, atol=1e-12, rtol=1e-12):
3 n = len(d)
4 fdd = np.zeros((n, n))
5 for i in range(n):
6 for j in range(n):
7 if np.isclose(d[i], d[j], atol=atol, rtol=rtol):
8 fdd[i, j] = fctder(d[i])
9 else:

10 fdd[i, j] = (fct(d[i]) - fct(d[j])) / (d[i] - d[j])
11 return fdd

The diagnostic power of our benchmark is revealed in how this seemingly correct solution failed. The
code generated by DeepSeek-V3 for this task passed an astonishing 98.8% of our PBT-generated
test cases (494 out of 500). It only failed on a few specific, numerically challenging inputs where
the different order of floating-point operations between the vectorized and scalar approaches led to
minute rounding errors. These tiny discrepancies, while functionally insignificant in many contexts,
were caught by our strict-tolerance deep comparison function. For example, one failing test case
reported:

> Mismatch found. Expected: ...219e-08, Actual: ...224e-08

J.3 ACTIONABLE INSIGHTS FROM A “NEAR-MISS” FAILURE

This single “near-miss” failure pattern, consistent across the entire model spectrum, provides several
highly actionable insights that would be invisible to conventional benchmarks:

• For LLM Developers: This reveals that models learn to be academically correct, but
not industrially robust. They successfully reproduce textbook patterns but lack essential
engineering knowledge regarding idiomatic code (vectorization), performance optimization,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

and numerical stability. To close this gap, training data should be augmented to explicitly
reward these non-functional properties. Our benchmark, with its real-world ground truths
and precision-sensitive tests, provides ideal data for such targeted fine-tuning.

• For Benchmark Designers: This case powerfully validates our deep testing approach and
exposes the limitations of shallow test suites. A typical benchmark, likely using only a few
simple integer-based test cases, would have falsely labeled this numerically unstable solution
as a success. Only through the exhaustive, edge-case-driven nature of our PBT methodology
is the critical difference between a “toy” solution and a robust one revealed—penalizing
brittle, “good-enough” outputs and rewarding true engineering rigor.

This example epitomizes the diagnostic philosophy of CODE2BENCH: to not just reveal what fails,
but to provide deep insights into why it fails and how future models can be improved.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

K SCALABILITY

K.1 ADVANCED EXTENSIBILITY: HIERARCHICAL DEPENDENCY RESOLUTION

The dependency classification into SC and WSC, as described in the main paper, provides a robust
foundation for benchmark curation. However, a significant portion of real-world code involves
functions that call other project-internal functions. While these are classified as Project-Dependent
(PD) and typically discarded, a substantial subset of them are, in fact, hierarchically testable. This
observation opens a powerful new avenue for Scaling the Source even further.

K.1.1 THE CONCEPT OF LAYERED SELF-CONTAINED (LSC) TASKS

We define a Layered Self-Contained (LSC) function as a function that is not strictly SC or WSC
itself, but whose entire set of project-internal dependencies recursively resolves to a set of functions
that are all either SC or WSC.

Consider a function fA that calls another internal function fB .

• If fB is Self-Contained (SC), then the functional behavior of fA is fully determined by its
own logic and the well-defined, dependency-free logic of fB .

• Similarly, if fB is Weakly Self-Contained (WSC), the behavior of fA is determined by its
logic and the behavior of fB , which itself is only dependent on a set of allowed public
libraries.

In both cases, the complete functional behavior of the top-level function fA can be fully specified
and is not reliant on any un-testable, opaque, or proprietary internal state. Therefore, it is a suitable
candidate for a rigorous, standalone benchmark task.

K.1.2 METHODOLOGY FOR LSC TASK GENERATION AND VERIFICATION

Our CODE2BENCH framework can be extended to identify and generate these LSC tasks through a
recursive dependency analysis powered by our Scope Graph:

1. Recursive Dependency Resolution: When a function fA is initially classified as PD
due to a call to an internal function fB , our framework does not immediately discard it.
Instead, it recursively runs the dependency analysis on fB . This process continues until all
dependencies are either resolved to primitives, allowed libraries, or the dependency chain
terminates.

2. Hierarchical Test Oracle Construction: To create a test oracle for an LSC function like fA,
we provide not only its own source code but also the source code of its entire dependency tree
of SC/WSC functions (e.g., fB , and any functions fB calls). This complete, self-contained
bundle of functions serves as the ground-truth implementation.

3. PBT-based Verification: Property-Based Testing is then applied to the top-level function
fA. The PBT engine generates inputs for fA, and the complete, bundled ground-truth
implementation is executed to generate the expected outputs. The 100% branch coverage
quality gate is applied to this entire bundle, ensuring that the tests thoroughly exercise not
only the logic of fA but also the interactions with its internal dependencies.

This extension to handle LSC tasks dramatically increases the pool of high-quality, testable functions
that can be extracted from real-world repositories. It allows our framework to capture more complex,
multi-function interactions that are representative of real-world software design, while still maintain-
ing the rigorous, deterministic verifiability that is the hallmark of our approach. This represents a
significant future direction for scaling the realism and complexity of the CODE2BENCH suite.

K.2 GENERATING SYNTAX-AWARE CODE COMPLETION TASKS

A key design principle of the CODE2BENCH framework is its extensibility beyond single-function
generation. The true assets curated by our pipeline are the large collection of high-quality, real-world
ground-truth functions, each paired with a comprehensive suite of high-coverage Property-Based

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Tests. This powerful combination of a "solution" (fgt) and a rigorous "verification" mechanism
(the PBT suite) provides a uniquely powerful foundation for generating a wide array of challenging
and realistic software engineering tasks. In this section, we detail how our framework can be
systematically extended to Code Completion.

Our framework can automatically generate high-quality, syntax-aware "fill-in-the-middle" code
completion tasks. Inspired by prior work on structured code completion Gong et al. (2024), we can
leverage our curated SC and WSC function pools to create distinct types of completion challenges:

• Completion-SC (Algorithmic Logic Completion): For our Self-Contained (SC) tasks,
which are rich in algorithmic logic, we can create completion benchmarks by masking entire
logical blocks.

• Completion-WSC (API Call Completion): For our Weakly Self-Contained (WSC) tasks,
which are centered on library usage, we can create completion benchmarks by masking
specific API calls.

K.3 RIGOROUS VERIFICATION VIA PBT

The most significant advantage of deriving completion tasks from CODE2BENCH is the automatic
inheritance of our rigorous verification mechanism. Unlike many completion benchmarks that rely
on simple syntactic checks (e.g., exact match or BLEU score), we can evaluate the functional
correctness of the completed code.

K.4 FUNCTIONAL CORRECTNESS VS. ROBUSTNESS TRADE-OFF.

As highlighted by reviewers, our stringent 100% branch coverage gate effectively filters out complex
defensive logic (e.g., unreachable error handling branches) that is difficult to trigger via random inputs.
This represents a deliberate strategic choice: we prioritized establishing an unimpeachable “gold
standard” for core algorithmic and logical correctness over the coverage of defensive programming
constructs. While this ensures absolute verifiability, it temporarily de-emphasizes the evaluation of
code robustness. However, our framework is designed to retrieve this filtered data. In future work,
we plan to construct a dedicated “Robustness Benchmark” by tasking models to add comprehensive
error handling (e.g., try-catch, input validation) to the verifiable “happy path” implementations
curated in this work.

K.5 BEYOND FUNCTION-LEVEL ISOLATION.

The current iteration focuses on function-level tasks to ensure unit-testable rigor. We acknowledge
that real-world software engineering involves complex, project-level dependencies. Crucially, our
framework is methodologically ready for this expansion. Our Scope Graph analysis (§??) natively
supports resolving cross-file dependencies and class hierarchies. By combining this with Stateful
Property-Based Testing (Stateful PBT), which can generate sequences of API calls rather than static
data, we envision scaling our rigorous verification pipeline to Project-Dependent (PD) tasks that
assess multi-function interactions and state management.

K.6 MULTI-DIMENSIONAL EVALUATION.

Our primary metric is Pass@1 based on functional correctness. While fundamental, this does not
directly measure other code quality attributes such as efficiency, security, or readability. However,
our massive suite of ground-truth functions and generated test cases serves as a versatile asset. Future
iterations can leverage these assets to benchmark execution time (efficiency), check against secure
coding standards (security), or serve as references for style compliance (readability), providing a
more holistic assessment of LLM coding capabilities.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

L LIMITATIONS

Despite its strengths in generating dynamic, rigorously tested, and realistic tasks focusing on func-
tional correctness, CODE2BENCH-2509, like many benchmarks, has limitations in its evaluation
scope. Our primary focus is on assessing the functional correctness of generated code, measured
through Pass@1 against comprehensive PBT-generated test suites. While functional correctness is
paramount, real-world software development necessitates evaluating other crucial aspects of code
quality, such as efficiency, readability, style, security, robustness to invalid inputs, and the ability to
generate accompanying documentation or tests. CODE2BENCH-2509 currently does not directly
evaluate these important dimensions.

Furthermore, the current iteration of CODE2BENCH-2509 primarily focuses on code generation tasks,
where models are required to generate a complete function implementation based on a natural language
instruction and function signature. However, the underlying structure of the benchmark, including the
availability of ground truth implementations and the rigorous, diverse test cases generated via PBT,
offers significant potential for evaluating LLM capabilities beyond simple generation. By leveraging
the ground truth and PBT-generated test suites, the framework could be extended to support other
task types crucial for software development workflows, such as code completion (filling in missing
parts of code), code editing/repair (modifying existing code to meet new requirements or fix bugs),
and assessing code reasoning abilities through execution prediction or debugging tasks. Expanding to
these diverse task types would provide a more comprehensive evaluation of LLMs’ understanding
and manipulation of code, moving beyond pure synthesis.

Future work could explore extending the benchmark to incorporate metrics and testing methodologies
for some of these additional code quality attributes and diverse task types, providing a more holistic
assessment of LLM capabilities in a full software development context.

Our evaluation focuses on a diverse suite of state-of-the-art, instruction-following code generation
models. We acknowledge that our study does not include models specifically designed or fine-tuned
for multi-step, competitive-programming-style reasoning (e.g., models employing complex search
algorithms or Chain-of-Thought prompting for code). This exclusion was a deliberate choice based
on two primary considerations. First, our preliminary explorations indicated that the verbose, multi-
step reasoning outputs of such models often exceeded practical token limits for our large-scale,
automated evaluation harness, presenting significant computational and financial costs. Second, and
more critically, the primary goal of CODE2BENCH is to evaluate a model’s ability to generate direct,
production-style code from real-world specifications, a task for which current instruction-following
models are the most direct fit. While evaluating deep reasoning capabilities is an important research
direction, it represents a different evaluation paradigm that is beyond the scope of our current study.

44

	Introduction
	The Code2Bench Framework: A Dual Scaling Approach
	Scaling the Source: Dynamic Acquisition from Real-World Code
	Scaling the Rigor: Automated Synthesis via Property-Based Testing(PBT)

	The Code2Bench-2509 Benchmark Suite
	Evaluation
	Experimental Setup
	A Multi-Dimensional Diagnostic of LLM Capabilities
	The Effectiveness of PBT-Generated Tests
	The Impact of Dynamic Sourcing and Real-World Complexity

	Related Work
	CONCLUSION & FUTURE WORK
	Preprocessing and Data Structuring
	Source Code Parsing via Abstract Syntax Trees (ASTs)
	Extraction of Relational Information

	Scope Graph Based Dependency Analysis
	Scope Graph Model
	Dependency Resolution Process
	SC/WSC Classification based on Dependencies

	Program Analysis for Testability and Complexity
	Control Flow Analysis for Testability
	Complexity Assessment via Cyclomatic Complexity

	Semantic Filtering and Difficulty Assessment
	Property-Based Testing
	Strategy Building and Input Synthesis
	Property Definition and Verification
	Ensuring Test Rigor and Coverage
	Code Example (Python/Hypothesis)

	Testcase Runner Generation
	Instruction Generation
	Benchmark
	Benchmark Details
	The Data Funnel: From Raw Functions to a Gold Standard
	Task Diversity Analysis
	SC-Python: Algorithmic and Real-World Logic
	WSC-Python: A Broad and Realistic API Ecosystem
	SC-Java: Validating Extensibility with Diverse Tasks

	Benchmark Task Examples
	SC Python Example: merge_json_recursive

	WSC Python Example: calculate_ngram_repetition

	Detailed Evaluation
	Compute Resources
	Evaluation Instruction

	Case Study: Uncovering the Illusion of Correctness
	The Task: A Numerically Sensitive Problem
	The ``Near-Perfect'' but Flawed LLM Solution
	Actionable Insights from a ``Near-Miss'' Failure

	Scalability
	Advanced Extensibility: Hierarchical Dependency Resolution
	The Concept of Layered Self-Contained (LSC) Tasks
	Methodology for LSC Task Generation and Verification

	Generating Syntax-Aware Code Completion Tasks
	Rigorous Verification via PBT
	Functional Correctness vs. Robustness Trade-off.
	Beyond Function-Level Isolation.
	Multi-Dimensional Evaluation.

	Limitations

