

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CODE2BENCH: SCALING SOURCE AND RIGOR FOR DYNAMIC BENCHMARK CONSTRUCTION

Anonymous authors

Paper under double-blind review

ABSTRACT

The evaluation of code-generating Large Language Models (LLMs) is fundamentally constrained by two intertwined challenges: a reliance on static, easily contaminated problem sources and the use of superficial, low-rigor testing. This paper introduces a new benchmark construction philosophy, **Dual Scaling**, designed to systematically address both limitations. Our approach involves continuously **scaling the source** of problems from dynamic, real-world code repositories and systematically **scaling the rigor** of tests via automated, high-coverage Property-Based Testing (PBT). We instantiate this philosophy in CODE2BENCH, an end-to-end framework that leverages Scope Graph analysis for principled dependency classification and a 100% branch coverage quality gate to ensure test suite integrity. Using this framework, we construct CODE2BENCH-2509, a new benchmark suite with native instances in both Python and Java. Our extensive evaluation of 10 state-of-the-art LLMs on CODE2BENCH-2509, powered by a novel "diagnostic fingerprint" visualization, yields three key insights: (1) models exhibit a fundamental performance gap, excelling at API application (Weakly Self-Contained tasks) but struggling with algorithmic synthesis (Self-Contained tasks); (2) a model's performance is profoundly shaped by the target language's ecosystem, a nuance we are the first to systematically quantify; and (3) our rigorous, scaled testing is critical in uncovering an "illusion of correctness" prevalent in simpler benchmarks. Our work presents a robust, scalable, and diagnostic paradigm for the next generation of LLM evaluation in software engineering. The code, data, and results are available at <https://code2bench.github.io/>.

1 INTRODUCTION

As Large Language Models (LLMs) are increasingly integrated into software development workflows Jimenez et al. (2023); Git; cur, the need for accurate and realistic evaluation of their coding capabilities has become paramount. However, the current landscape of code benchmarks is fundamentally constrained by two intertwined challenges: a reliance on **static, easily contaminated problem sources** and the use of **superficial, low-rigor testing**.

First, (1) the *static* nature of canonical benchmarks like HumanEval Chen et al. (2021) and MBPP Austin et al. (2021) leads to an inevitable obsolescence; their problems, having existed for years, are likely part of LLM training corpora, turning evaluation into an exercise in memorization rather than true generalization Carlini et al. (2021); Sainz et al. (2023). While dynamic "live" benchmarks Jain et al. (2024a); Li et al. (2024b) have emerged, they often source problems from competitive programming, which may not reflect the complexity of real-world software engineering. Second, (2) the *superficial testing* common to most benchmarks, often relying on a handful of example-based tests, creates an illusion of correctness. As highlighted by EvalPlus Liu et al. (2023a), this insufficient test rigor fundamentally limits their ability to uncover the subtle, edge-case failures that define the gap between functional code and production-ready software. As summarized in Table 1, existing methods fall short across key dimensions, highlighting the significant limitations remaining and the necessity to design new benchmarks. To break this cycle of obsolescence and superficiality, we argue that a paradigm shift is needed. We propose a new benchmark construction philosophy centered on two core principles: (1) **Scaling the Source**, by dynamically and continuously ingesting a diverse array of problems from the ever-evolving landscape of real-world code repositories; and (2) **Scaling**

054 Table 1: Comparison of CODE2BENCH-2509 with existing code generation benchmarks.
055

Benchmark	Source	Dynamic	Deps Handled	Rigorous Test	Multi-lang Design
HumanEval Chen et al. (2021)	Manual	✗	✗	✗	✗
MBPP Austin et al. (2021)	Manual	✗	✗	✗	✗
EvalPlus Liu et al. (2023a)	Manual	✗	✗	✓	✗
LiveCodeBench Jain et al. (2024a)	Contests	✓	✗	✓	✓
RepoBench Liu et al. (2023b)	Project Codebases	✗	✓	✗	✗
HumanEval-X Zheng et al. (2023b)	Manual	✗	✗	✗	✓
BigCodeBench Zhuo et al. (2024)	Synthetic	✗	✓	✗	✗
DevEval Li et al. (2024c)	Project Codebases	✗	✓	✗	✗
EvoCodeBench Li et al. (2024b)	Project Codebases	✓	✓	✗	✗
CODE2BENCH-2509 (Ours)	Project Codebases	✓	✓	✓	✓

067 **the Rigor**, by systematically generating comprehensive test suites with deep, verifiable coverage
068 through Property-Based Testing (PBT) Claessen & Hughes (2000).
069

070 We instantiate this philosophy in **CODE2BENCH**, a novel, end-to-end framework that automates
071 this dual-scaling process. ① *To Scale the Source*, CODE2BENCH first addresses the challenge of
072 classifying diverse, real-world code. Our analysis of the existing benchmark landscape reveals
073 an implicit bifurcation in evaluation focus, which we formalize into two primary task categories:
074 (1) **Self-Contained (SC)** tasks, which require pure, dependency-free logic, reflecting the focus of
075 benchmarks like HumanEval Chen et al. (2021) on core *algorithmic reasoning*; and (2) **Weakly**
076 **Self-Contained (WSC)** tasks, which require the correct application of common libraries, capturing
077 the focus of benchmarks like BigCodeBench Zhuo et al. (2024) on practical *API application*. This
078 principled classification, enabled by our Scope Graph-based analysis, allows us to systematically
079 generate tasks that target these distinct developer skills. ② *To Scale the Rigor*, CODE2BENCH then
080 employs a powerful Property-Based Testing (PBT) engine and a stringent **100% branch coverage**
081 **quality gate**. This ensures that every problem in our benchmark is not only realistic but also a
082 fully-explorable logical challenge, backed by a test suite capable of deep, diagnostic validation.

083 Using this framework, we construct **CODE2BENCH-2509**, a new, multi-faceted benchmark suite
084 with native instances in Python and Java, curated from recent, real-world repositories. Our extensive
085 evaluation of 10 state-of-the-art LLMs on this suite demonstrates the power of our approach. The
086 synergy of a scaled source and scaled testing enables an unprecedentedly fine-grained diagnostic,
087 revealing: (1) a performance gap between models’ ability in algorithmic synthesis (SC) and API
088 application (WSC); (2) the profound impact of language paradigms on model failure modes, a nuance
089 we are the first to systematically quantify; and (3) the critical role of rigorous testing in uncovering
090 the “illusion of correctness” prevalent in simpler benchmarks.

091 We summarize our **contributions** as follows:

- 092 • We propose **CODE2BENCH**, a novel framework that introduces and operationalizes the **Dual**
093 **Scaling** philosophy for benchmark construction, systematically scaling the source of problems with
094 dynamic acquisition and the rigor of tests with a 100% coverage PBT quality gate.
- 095 • We construct and release **CODE2BENCH-2509**, a high-quality, contamination-resistant benchmark
096 with native tasks in Python and Java, demonstrating significantly higher complexity and test rigor
097 than prior work (Table 1).
- 098 • We provide a deep, **diagnostic analysis** of state-of-the-art LLMs, introducing novel visualizations
099 and uncovering key insights into their strengths and weaknesses in real-world coding scenarios.

102 2 THE CODE2BENCH FRAMEWORK: A DUAL SCALING APPROACH

105 In this section, we detail the architecture and technical components of the CODE2BENCH framework.
106 Our methodology is built upon the core philosophy of Dual Scaling: continuously **scaling the source**
107 of benchmark problems to ensure realism and novelty, and systematically **scaling the rigor of our**
108 **tests** to enable deep, diagnostic evaluation. We organize our discussion around these two principles.

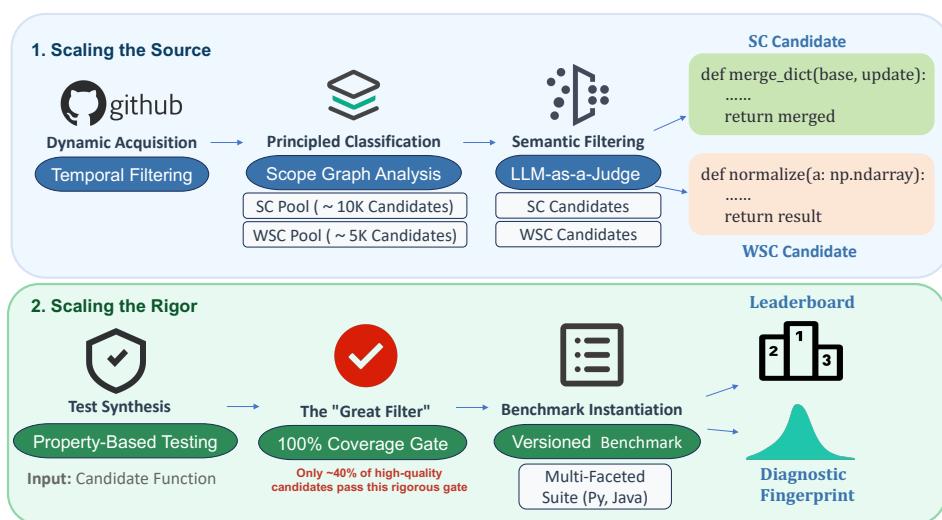


Figure 1: Overview of the CODE2BENCH Framework.

2.1 SCALING THE SOURCE: DYNAMIC ACQUISITION FROM REAL-WORLD CODE

Temporal Filtering for Contamination Resistance. The primary threat to the validity of LLM evaluation is data contamination, where benchmarks become obsolete as their contents are absorbed into training corpora. To combat this inevitable obsolescence, our framework’s first principle is to dynamically source problems that are provably unseen. We achieve this through **Temporal Filtering**, a deterministic strategy grounded in the version control timestamps of real-world code. Our method leverages a simple axiom: a model cannot have been trained on code that did not exist prior to its knowledge cutoff date. For each model under evaluation, we run our acquisition pipeline to extract functions exclusively from GitHub commits created after its official knowledge cutoff.

Scope Graph-based Analysis for Dependency Classification. To impose a meaningful structure on our diverse pool of functions, we automate their classification based on dependencies. We employ a **Scope Graph-based analysis** Néron et al. (2015)—a formal, language-agnostic method that precisely identifies all external dependencies, a task where simpler methods like AST traversal often fail.

Our classification algorithm is a deterministic, two-step process: (1) Dependency Identification, where we use the Scope Graph to compute the set of all *unresolved references* (\mathcal{D}) for each function. (2) Rule-based Classification, where we apply rules based on a predefined allowed libraries, $\mathcal{L}_{\text{allowed}}$:

- If $\mathcal{D} = \emptyset$, it is classified as **Self-Contained (SC)** (pure algorithmic reasoning).
- If \mathcal{D} ’s dependencies resolve entirely within $\mathcal{L}_{\text{allowed}}$, it is **Weakly Self-Contained (WSC)** (API application).
- Otherwise, it is discarded (e.g., Project-Dependent).

This principled, automated process is a cornerstone of our framework, enabling the targeted evaluation of distinct model capabilities.

Program Analysis for Testability and Complexity. Following dependency classification, we apply a final layer of automated program analysis to ensure candidates are both testable and non-trivial. First, to guarantee **testability**, we use Control-Flow Graph (CFG) analysis to discard functions lacking a verifiable, input-dependent output (e.g., no `return` statement). Second, to ensure a meaningful **complexity**, we filter functions based on their Cyclomatic Complexity McCabe (1976), targeting a range (e.g., [2, 10]) that balances challenge with solvability. This dual-filtering stage is crucial for curating a high-quality benchmark of tasks that are both evaluable and diagnostically valuable.

LLM-based Semantic Filtering. While prior analyses ensure structural soundness, they cannot distinguish a meaningful task from a trivial one. To assess for **semantic relevance** and **conceptual challenge**, we therefore employ an LLM-as-a-Judge Zheng et al. (2023a); Li et al. (2024a). This final

162 filtering step, designed for high reliability via deterministic decoding and a structured classification
 163 prompt, ensures our benchmark contains problems of genuine substance. A rigorous validation,
 164 detailed in Appendix D, confirms its near-perfect agreement with human experts (Cohen’s $\kappa = 0.95$).
 165

166 **2.2 SCALING THE RIGOR: AUTOMATED SYNTHESIS VIA PROPERTY-BASED TESTING(PBT)**
 167

168 **Property-Based Testing (PBT) for Comprehensive Input Generation.** Traditional example-
 169 based tests verify a function against a small, fixed set of known inputs. In contrast, Property-Based
 170 Testing (PBT) Claessen & Hughes (2000) explores a much larger input space by generating hundreds
 171 or thousands of random, yet structured, inputs and asserting that a general *property* of the code holds
 172 true for all of them. In our framework, the core property we test is **functional equivalence** with the
 173 ground-truth implementation. For any valid input \mathbf{x} generated by our PBT engine, the output of an
 174 LLM-generated function $f_{\text{LLM}}(\mathbf{x})$ must match the output of the original, real-world ground-truth
 175 function $f_{\text{gt}}(\mathbf{x})$. The ground-truth function thus serves as a perfect **test oracle**.

176 The process of input synthesis is driven by automated **strategy generation**. For each function
 177 candidate, our framework analyzes its signature, including parameter types and type hints, to compose
 178 a set of PBT *strategies*. These strategies are not simple random generators, but intelligent explorers of
 179 the input domain, designed to produce a rich distribution of values—including typical inputs, boundary
 180 cases (e.g., empty lists, zeros, min/max values), and complex nested structures (e.g., variable-shaped
 181 lists of dictionaries). This automated process yields a comprehensive suite of hundreds of input-output
 182 pairs $(\mathbf{x}_i, f_{\text{gt}}(\mathbf{x}_i))$ for each function, forming the foundation for the rigorous validation described
 183 next. The specific PBT libraries used for each language (e.g., Hypothesis for Python, jqwik for Java)
 184 are detailed in Appendix E.

185 **The “Great Filter”: A 100% Coverage Quality Gate.** While Property-Based Testing generates a
 186 high volume of diverse inputs, quantity alone does not guarantee rigor. A test suite, however large,
 187 is only effective if it thoroughly exercises the internal logic of the function under test. To enforce
 188 this level of rigor systematically, we introduce the final and most stringent stage of our pipeline: the
 189 **“Great Filter”**, a quality gate that mandates **100% branch coverage**.

190 The mechanism is as follows: after a PBT suite is synthesized for a ground-truth function f_{gt} , we
 191 execute the entire suite against f_{gt} itself and measure the resulting branch coverage using standard
 192 language-specific tools (e.g., `coverage.py`). A function candidate and its corresponding test
 193 suite are only accepted into the final benchmark if and only if this execution achieves 100% branch
 194 coverage. This seemingly simple requirement has a profound impact on the final benchmark’s quality
 195 and character. It acts as a powerful, dual-purpose filter:

- 196 • **It filters out inadequate tests.** If a PBT suite fails to achieve full coverage, it indicates that the
 197 input generation strategy was not sophisticated enough to explore all logical paths of the function.
 198 Such a test suite would be incapable of providing a truly rigorous evaluation, and is discarded.
- 200 • **It filters out untestable functions.** More importantly, if even a well-designed PBT strategy cannot
 201 trigger all branches, it often signals that the function itself is “untestable” in isolation. This typically
 202 occurs in functions with defensive code for unreachable states, complex error handling coupled to
 203 external systems, or other logic that cannot be exercised through its public API. These functions,
 204 while present in real-world code, are unsuitable for a standalone, functional correctness benchmark.

206 The “Great Filter” is the primary reason for the significant reduction in candidates observed in our
 207 data funnel (as shown in Figure 1). It is a deliberate trade-off, prioritizing **uncompromising rigor**
 208 over **sheer volume**. The result is a smaller, but significantly more potent, benchmark where every
 209 single problem is guaranteed to be a non-trivial, fully-explorable logical puzzle, backed by a test suite
 210 capable of validating every branch of its solution.

211 **Instruction Generation for Task Specification.** To ensure a fair and effective evaluation, each task
 212 is accompanied by a clear, unambiguous instruction. Our framework automates the generation of these
 213 instructions by refining a function’s original source docstring and signature using a powerful LLM
 214 (GPT-4o) with deterministic decoding. To mitigate potential biases, we also employ a back-translation
 215 perturbation technique Zhuo et al. (2024); Wang et al. (2022); Dhole et al. (2021).

Crucially, the instruction style is systematically adapted to the task’s dependency classification, ensuring the model is provided with the precise context needed for the specific challenge:

- **For SC Tasks(e.g., SC-Python, SC-Java):** Instructions use language-native conventions—Python docstrings with types like `list` and `dict` for SC-Python, and Javadoc with Java types like `List<String>` for SC-Java. Though library-free, these tasks assess a model’s proficiency with each language’s core built-in features and data structures.
- **For WSC Tasks:** The instruction is made **library-aware** and **language-native**. It explicitly names the required external libraries (e.g., NumPy) and uses the precise, idiomatic types of the target language’s ecosystem (e.g., `numpy.ndarray`). This targets the evaluation on a model’s practical ability to correctly apply common APIs.

Benchmark Instantiation and Runner Generation. The final step of our framework packages each curated problem into an executable benchmark instance. This instance comprises two key components: a test suite and a test runner. The **test suite**, containing hundreds of input-output pairs, is generated using a **native Property-Based Testing (PBT) engine** (e.g., Hypothesis, jqwik) to ensure high coverage and rigor. To conduct the evaluation, a corresponding **language-native Test Runner** is automatically generated. The runner is responsible for deserializing the test suite, executing the LLM-generated code, and performing a rigorous deep comparison against the ground-truth outputs. To guarantee the runner’s correctness, we perform a **dry run** where the LLM’s function is replaced by the ground-truth function, ensuring the entire test harness passes flawlessly before evaluation. This end-to-end native approach, validated by a dry run, ensures our evaluation is both stringent and reliable. Further details are in Appendix F.

3 THE CODE2BENCH-2509 BENCHMARK SUITE

Table 2: Quantitative characteristics of the CODE2BENCH-2509, compared to prior benchmarks.

Metric / Dimension	SC-Python	WSC-Python	SC-Java	HumanEval	MBPP
I. Scale & Complexity					
# Tasks	217	194	249	164	974
Avg. Lines of Code (LoC)	20.6	18.3	14.1	7.3	6.5
Avg. Cyclomatic Complexity (CC)	5.3	2.6	3.6	2.8	2.3
Difficulty (E:M:H Ratio)	0.30:0.40:0.30	0.28:0.41:0.31	0.27:0.43:0.30	-	-
II. Testing Rigor					
Avg. Test Cases per Task	~500	~500	~500	~7.8	~3.0
Test Coverage Guarantee	100% Branch	100% Branch	100% Branch	Variable	Variable
III. Diversity & Extensibility					
Source Type	Real-World	Real-World	Real-World	Hand-Crafted	Crowd-Sourced
Dependency Scope	Self-Contained	>30 Libraries	Self-Contained	Self-Contained	Self-Contained
Language Extensibility	(Python)	(Python)	Java Native	(Python)	(Python)

CODE2BENCH-2509 is a new benchmark suite, automatically curated from May to September 2025, designed to overcome the limitations of prior benchmarks by systematically expanding evaluation along three key dimensions: **Testing Rigor**, **Dependency Level**, and **Framework Extensibility**. Figure 2 visually situates our benchmark within this landscape, showcasing its significant leap forward compared to predecessors like HumanEval and BigCodeBench. We targeted actively maintained, open-source repositories on GitHub. To minimize noise and bias, we enforced the following criteria: (1) **Community Validation**: Repositories must have ≥ 500 stars; (2) **Active Maintenance**: Commits within the last 3 months; and (3) **Domain Diversity**: We employed stratified sampling across 10 diverse domains (e.g., Web, ML, System) to prevent over-representation of any

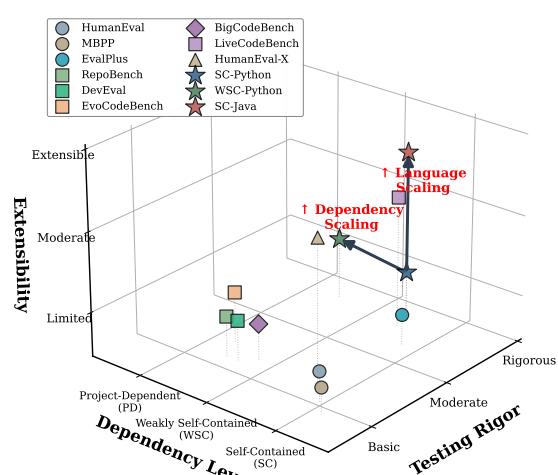


Figure 2: The CODE2BENCH multi-dimensional evaluation landscape.

single field. We actively filtered out homework assignments and tutorials. A detailed disclosure of the selection criteria, sampling strategy, and the full repository list is provided in Appendix H. The quantitative evidence for this advancement is detailed in Table 2. Our instances demonstrate significantly higher structural complexity (e.g., an average Cyclomatic Complexity of 5.3 for SC-Python vs. 2.8 for HumanEval) and an order-of-magnitude increase in testing rigor, featuring ~500 test cases per task with a guaranteed 100% branch coverage. Beyond these metrics, the suite’s high quality is rooted in the rich diversity of its tasks, sourced from 220 Python and 189 Java recent, real-world repositories. This ensures wide topical coverage, while the successful instantiation of a native Java suite provides concrete proof of our framework’s extensibility. This combination of complexity, rigor, diversity, and extensibility provides a more challenging and realistic platform for assessing the true capabilities of modern LLMs. More details can be found in Appendix H.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Evaluated Models. We selected a diverse suite of 10 state-of-the-art Large Language Models, encompassing both leading closed-source APIs and prominent open-source families. A cornerstone of our evaluation integrity is the strict prevention of data contamination. The CODE2BENCH-2509 benchmark was constructed exclusively from code committed after May 2025, a date subsequent to the knowledge cutoff of all evaluated models.

Evaluation Protocol. Our primary metric is **Pass@1** Kulal et al. (2019), which measures the functional correctness of the first-generated solution and closely mirrors a developer’s real-world experience with coding assistants Jain et al. (2024a). All evaluations were conducted in a zero-shot, deterministic setting, employing greedy decoding (temperature 0) as is standard practice Zhuo et al. (2024); Roziere et al. (2023). For each task, the model received a standardized instruction containing the function signature and a natural language description (See more details in Appendix I.2).

Execution Environment. The generated code for each task was executed in a sandboxed environment against the full suite of PBT-generated tests (500 per task). A language-specific test runner performed differential testing, comparing the output of the model-generated code against the ground-truth implementation. A task is considered passed only if it correctly solves all test cases. Open-source models were served via vLLM Kwon et al. (2023), while others were accessed through their official APIs.

4.2 A MULTI-DIMENSIONAL DIAGNOSTIC OF LLM CAPABILITIES

Table 3: Pass@1 performance (%) on the CODE2BENCH-2509 suite.

Model	SC-Python (%) [95% CI]	WSC-Python (%) [95% CI]	SC-Java (%) [95% CI]
<i>Closed-Source Models</i>			
Claude-4-sonnet	40.1 [33.6 – 46.5]	38.7 [32.0 – 45.4]	47.4 [40.9 – 53.4]
Gemini-2.5-Flash	37.8 [30.9 – 44.2]	36.6 [29.4 – 43.3]	45.0 [39.0 – 51.0]
<i>Open-Source Models (Ordered by Scale)</i>			
DeepSeek-V3	34.4 [28.4 – 40.4]	37.6 [31.4 – 44.3]	47.8 [41.4 – 54.2]
Qwen3-235b-a22b	34.6 [28.6 – 41.0]	36.6 [29.9 – 43.3]	46.6 [40.9 – 53.0]
Llama-4-scout	25.8 [19.8 – 31.8]	32.5 [26.3 – 39.2]	44.2 [37.8 – 49.8]
Qwen3-32b	31.3 [25.8 – 36.9]	34.5 [27.8 – 41.2]	43.0 [37.4 – 49.4]
Mistral-small-3.1 (24B)	30.4 [24.4 – 36.9]	38.7 [32.5 – 45.9]	43.4 [37.4 – 49.4]
Qwen3-8b	25.1 [19.3 – 31.4]	34.0 [27.8 – 40.7]	39.0 [32.9 – 44.2]
Gemma-3n-e4b-it	22.6 [17.1 – 28.6]	26.3 [19.6 – 32.5]	34.5 [28.5 – 40.2]
Qwen3-1.7b	14.3 [9.7 – 19.4]	16.5 [11.3 – 21.6]	17.7 [12.8 – 22.5]

A primary limitation of existing benchmarks is their inability to provide deep, diagnostic insights. We argue this stems from two fundamental constraints: a narrow source of problems and superficial testing. The CODE2BENCH framework overcomes these limitations through two core principles: **scaling the source** from dynamic, real-world code, and **scaling the rigor** of evaluation via Property-

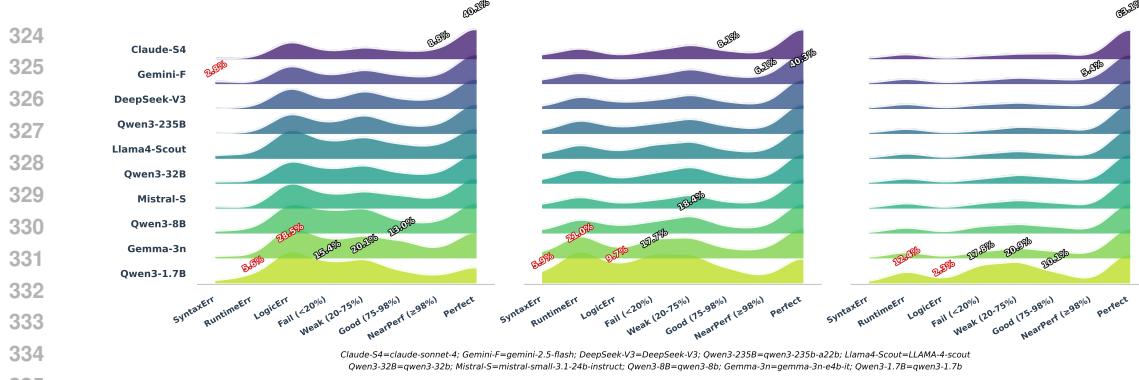


Figure 3: Fingerprints across the three evaluation tracks—SC-Python (left), WSC-Python (middle), and SC-Java (right)—shown as ridgeline plots. Each curve captures a model’s outcome distribution, ranging from SyntaxErr to Perfect, with key pass rates annotated.

Based Testing (PBT). In this section, we demonstrate how this dual-scaling approach enables an unprecedentedly fine-grained diagnostic of LLM coding capabilities.

Table 3 presents the overall Pass@1 performance, revealing clear capability tiers among models. The data indicates that performance varies significantly across our three benchmark components, hinting at the different skills they evaluate. To move beyond these aggregate scores and understand the underlying reasons for these variations, we now turn to a more fine-grained analysis.

To dissect *how* and *why* models succeed or fail, we introduce a granular, multi-stage outcome spectrum, visualized as a diagnostic fingerprint for each model in Figure 3. Outcome categories are ordered to reflect a progression from catastrophic failure to complete success: **SyntaxErr** (code fails to compile/run), **RuntimeErr** (code crashes during execution), **LogicErr** (code runs but is logically incorrect on all test cases), followed by a four-tier partial success range based on pass rates—from **Fail (<20%)** to **NearPerf (>=98%)**—and culminating in **Perfect** solutions. Figure 3 visualizes each model’s distribution across this spectrum. The synergy between the aggregate scores in the table and these distributional fingerprints reveals two profound insights into the nature of LLM coding intelligence.

Decoupling Algorithmic Synthesis from API Application. The diagnostic fingerprints (Figure 3, left vs. middle) show a systematic shift in failure modes: on SC-Python, the dominant failure is LogicErr, indicating a core challenge in first-principle reasoning. Conversely, on WSC-Python, this peak vanishes and RuntimeErr emerges as a primary obstacle, suggesting the challenge shifts to the correct application of external APIs.

Language Paradigms as Performance Scaffolding. The comparison between SC-Python and SC-Java (Figure 3, left vs. right), reveals the profound impact of language paradigms. In Java, the prominent LogicErr and RuntimeErr peaks seen in Python are sharply suppressed, while performance in the Perfect category surges for all models. We hypothesize this is not because models are inherently “better” at Java, but because its static type system acts as a powerful “**performance scaffolding**”, pruning a vast space of potential errors at compile time. This demonstrates that an LLM’s coding ability is not an abstract quantity but is fundamentally intertwined with the target language’s ecosystem, a crucial interaction our framework is the first to systematically quantify.

4.3 THE EFFECTIVENESS OF PBT-GENERATED TESTS

A core tenet of the CODE2BENCH framework is **scaling test rigor** via Property-Based Testing (PBT). This section provides quantitative evidence for the necessity of this approach by analyzing the prevalence of “Near-Perfect” failures—solutions that pass at least 98% of our comprehensive test suite but fail on a handful of subtle edge cases. These instances represent an “illusion of correctness” that would likely go undetected by conventional, less rigorous benchmarks.

378
 379 Table 4 quantifies the frequency of these "near-miss" failures, where a solution passes the vast
 380 majority of test cases ($>98\%$) but ultimately fails. The data reveals a significant and consistent pattern:
on average, 6.94% of submissions for SC-Python tasks fall into this treacherous category.
 381

382 This finding directly underscores the critical necessity of our Property-Based Testing (PBT) method-
 383 ology. Without the exhaustive, edge-case-driven verification enabled by PBT, these nearly 7% of sub-
 384 missions—which are functionally almost correct—would have been falsely classified as successes by
 385 conventional, sparse test suites. This would lead to a significant overestimation of model capabilities.
 386 Top-performing models are not immune to
 387 this illusion of correctness; "DeepSeek-V3"
 388 and "Claude-4-sonnet", for example, see
 389 approximately 8% of their submissions fall
 390 into this category. This demonstrates that
 391 even the most capable models consistently
 392 struggle with the final frontier of logical
 393 robustness, a weakness that only a truly
 394 rigorous testing paradigm like PBT can
 395 reliably expose.

396 Interestingly, the rate of near-perfect fail-
 397 ures is lower in WSC-Python (4.57%)
 398 and lowest in SC-Java (2.25%). This
 399 aligns with our findings in Section 4.2. In
 400 WSC tasks, the problem is often a binary
 401 choice of the correct API call, leaving less
 402 room for "almost correct" logic. In Java,
 403 the strict type system likely prevents many of these subtle logical errors at the compilation stage.
 404 Therefore, the high rate of near-perfect failures in SC-Python highlights its unique position as the
 405 most challenging testbed for a model's pure, unaided logical robustness.

406 Ultimately, this analysis validates the central role of rigorous, scaled testing. By systematically
 407 uncovering these near-perfect failures, CODE2BENCH provides a more accurate measure of a model's
 408 true capabilities and offers invaluable, fine-grained feedback for identifying and rectifying their most
 409 subtle weaknesses.

4.4 THE IMPACT OF DYNAMIC SOURCING AND REAL-WORLD COMPLEXITY

410 To situate CODE2BENCH-2509 within the existing landscape, we conduct a direct comparison
 411 against EvalPlus, a state-of-the-art benchmark that enhances HumanEval/MBPP with more rigorous,
 412 mutation-based testing. While EvalPlus represents the pinnacle of evaluation on static, well-known
 413 problem sets, CODE2BENCH-2509 introduces the dimensions of **dynamic sourcing** and **real-world**
 414 **complexity**. This comparison aims to answer a critical question: how does a model's performance on
 415 canonical programming puzzles translate to its ability to handle fresh, complex code from the wild?

416 The head-to-head comparison is visualized in
 417 Figure 4, which plots the Pass@1 scores of ten
 418 prominent LLMs on our SC-Python-2509
 419 (X-axis) against their performance on
 420 HumanEval (Y-axis). The results are stark and
 421 reveal three critical insights:

422 **A Systematically More Challenging Bench-
 423 mark.** The most striking observation is
 424 that all models are located deep in the **red-
 425 shaded region**, far above the $y = x$ dia-
 426 gonal of equal performance. This demon-
 427 strates that CODE2BENCH-2509 presents a
 428 systematically higher level of difficulty for
 429 all models, without exception. For instance,
 430 top-performing models like Claude-4-Sonnet,
 431 which achieve a near-perfect score of 97% on

Table 4: Prevalence of "Near-Perfect" Failures (Pass@
 $\geq 98\%$) in CODE2BENCH.

Model	SC-Py (%)	WSC-Py (%)	SC-Java (%)
Claude-Sonnet-4	8.76	5.15	2.41
Gemini-2.5-Flash	6.45	5.67	4.02
DeepSeek-V3	7.80	3.61	2.41
Qwen3-235b-a22b	6.45	3.61	2.01
LLAMA-4-scout	8.29	5.15	2.01
Mistral-Small-3.1	6.91	5.67	2.01
Qwen3-32b	7.37	3.61	1.61
Qwen3-8b	6.76	4.64	2.41
Gemma-3n-e4b-it	5.53	5.67	2.81
Qwen3-1.7b	5.07	3.09	0.80
Avg. (%)	6.94	4.57	2.25

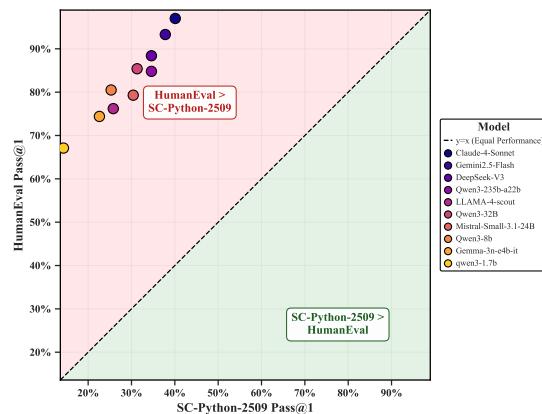


Figure 4: Performance on Evalplus and CODE2BENCH-2509

432 HumanEval, see their performance plummet to **40.1%** on our benchmark—a drop of over 50 percent-
 433 age points. This substantial performance gap suggests that high scores on legacy benchmarks may
 434 create an illusion of capability that does not hold up against the complexity of novel, real-world code.
 435

436 **Probing Generalization Over Memorization.** This performance delta is not merely a matter of
 437 difficulty, but of the fundamental capabilities being measured. HumanEval’s problems are years
 438 old and likely part of the training corpora. The lower performance on SC-Python-2509—a
 439 benchmark guaranteed to be unseen—strongly indicates that our evaluation measures a model’s
 440 true generalization ability on novel algorithmic challenges, rather than its capacity for pattern
 441 memorization. This underscores the critical need for dynamic, contamination-resistant benchmarks
 442 to ensure a fair and realistic assessment of an LLM’s problem-solving intelligence.
 443

5 RELATED WORK

444 **Code Generation Benchmarks** Evaluating Large Language Models (LLMs) on code generation
 445 tasks is an active research area, with numerous benchmarks proposed. Early benchmarksCassano
 446 et al. (2023); Li et al. (2022) like HumanEval Chen et al. (2021), MBPP Austin et al. (2021), and
 447 APPS Hendrycks et al. (2021) provide static collections of isolated code snippets with tests, proving
 448 valuable for initial model development but facing limitations regarding dataset contamination Carlini
 449 et al. (2021); Sainz et al. (2023); Yang et al. (2023); Team et al. (2024) and the lack of real-world
 450 context and dependencies. Efforts like EvalPlus Liu et al. (2023a) enhance static benchmarks with
 451 more robust tests via mutation. However, these may not fully represent real-world code complexities
 452 or provide automated construction from code repositories. Multilingual benchmarksYan et al. (2023)
 453 like HumanEval-X Zheng et al. (2023b), Aider polyglot benchmark pol and AutoCodeBench Chou
 454 et al. (2025) evaluate cross-language abilities but are at risk of data leakage. Benchmarks focusing
 455 on repository-level context or dependenciesTang et al. (2023); Li et al. (2024b); Yu et al. (2024);
 456 Wang et al. (2024) include RepoBench Liu et al. (2023b), CrossCodeEval Ding et al. (2023), R2E
 457 Jain et al. (2024b), DevEval Li et al. (2024c), BigCodeBench Zhuo et al. (2024), and CODEAGENT
 458 Zhang et al. (2024). WebBench Xu et al. (2025) introduces sequential, real-world web development
 459 tasks. While these capture aspects of real-world interaction, they often lack sufficient testing.
 460 CODE2BENCH stands out by offering an end-to-end pipeline for dynamically generating rigorous
 461 benchmark instances from recent real-world GitHub repositories.
 462

462 **Data Leakage and Live Benchmarks** A key limitation of static benchmarks is the risk of test set
 463 contamination, where models may have been trained on the same data used for evaluationCarlini et al.
 464 (2021); Sainz et al. (2023); Yang et al. (2023); Team et al. (2024). This has motivated the development
 465 of "live" benchmarks. DynaBench Kiela et al. (2021) identified these challenges and advocated for
 466 continuously evolving benchmarks. Chatbot Arena Chiang et al. (2024) provides a platform for
 467 dynamic evaluation based on user interactions. LiveBench White et al. (2024) sources new data from
 468 specific, non-code domains like mathematics and news, while LiveCodeBench Jain et al. (2024a)
 469 collects recent problems from competitive programming platforms. Other methods leverage LLMs
 470 for task mutation to generate new problems, such as EvoEval Xia et al. (2024). Evocodebench Li et al.
 471 (2024b) introduces a periodically updated benchmark to mitigate leakage, while DOMAIN-EVAL
 472 Zhu et al. (2025) employs dynamic data sources with automated updates for the same purpose. Both
 473 efforts currently focus on Python and may lack rigorous test. Arena-Hard-Auto Li et al. (2024d)
 474 filters crowdsourced prompts into benchmarks. While existing initiatives have made progress in
 475 addressing contamination and enabling dynamic evaluation, they often rely on specific data sources,
 476 focus on evaluation platforms, or lack a systematic, automated pipeline for constructing high-quality
 477 benchmarks from real-world code at scale. CODE2BENCH bridges this gap by providing a novel,
 478 automated, end-to-end pipeline that dynamically extracts, filters, and constructs rigorous benchmark.
 479

6 CONCLUSION & FUTURE WORK

480 We introduced **Dual Scaling**, a new philosophy for benchmark construction, and presented
 481 **CODE2BENCH**, a framework that operationalizes it by systematically scaling the source of problems
 482 from real-world code and the rigor of tests via high-coverage PBT. Our evaluation on the result-
 483 ing CODE2BENCH-2509 benchmark provided a deep, diagnostic analysis of modern code LLMs,
 484 revealing a consistent gap between their API application (WSC) and algorithmic synthesis (SC)
 485 capabilities, and quantifying for the first time how language paradigms shape their failure modes.
 486

486 **Limitations and Future Work.** Our work, while establishing a robust framework for evaluating
 487 functional correctness, opens several avenues for future expansion. We plan to extend our **Scaling the**
 488 **Source** principle to repository-level, Project-Dependent (PD) tasks to assess codebase understanding.
 489 Concurrently, we will expand our **Scaling the Rigor** principle to incorporate non-functional properties
 490 such as code efficiency and security. By evolving along these axes, CODE2BENCH will continue to
 491 provide a challenging and realistic measure of true software engineering competence.

493 REPRODUCIBILITY STATEMENT

495 We are committed to ensuring the full reproducibility of our work. The complete CODE2BENCH-
 496 2509 benchmark suite, including all task instructions, ground-truth solutions, and PBT-generated test
 497 suites scripts, is also included. The project, including all data and results, is also available at our
 498 anonymized repository: <https://code2bench.github.io/>.

500 REFERENCES

502 URL https://en.wikipedia.org/wiki/Cyclomatic_complexity.

504 URL <https://github.com/features/copilot>.

505 URL <https://www.cursor.com/>.

507 URL <https://github.com/Aider-AI/polyglot-benchmark>.

509 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 510 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 511 models. *arXiv preprint arXiv:2108.07732*, 2021.

513 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
 514 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
 515 from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp.
 516 2633–2650, 2021.

517 Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
 518 Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
 519 a scalable and polyglot approach to benchmarking neural code generation. *IEEE Transactions on*
 520 *Software Engineering*, 49(7):3675–3691, 2023.

522 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 523 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 524 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

525 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
 526 Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
 527 platform for evaluating llms by human preference. In *Forty-first International Conference on*
 528 *Machine Learning*, 2024.

530 Jason Chou, Ao Liu, Yuchi Deng, Zhiying Zeng, Tao Zhang, Haotian Zhu, Jianwei Cai, Yue Mao,
 531 Chenchen Zhang, Lingyun Tan, et al. Autocodebench: Large language models are automatic code
 532 benchmark generators. *arXiv preprint arXiv:2508.09101*, 2025.

533 Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell
 534 programs. In *Proceedings of the fifth ACM SIGPLAN international conference on Functional*
 535 *programming*, pp. 268–279, 2000.

537 Kaustubh D Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood,
 538 Abinaya Mahendiran, Simon Mille, Ashish Shrivastava, Samson Tan, et al. NI-augmenter: A
 539 framework for task-sensitive natural language augmentation. *arXiv preprint arXiv:2112.02721*,
 2021.

540 Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
 541 Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse
 542 and multilingual benchmark for cross-file code completion. *Advances in Neural Information
 543 Processing Systems*, 36:46701–46723, 2023.

544 Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin Cheung. Evaluation of llms on syntax-aware
 545 code fill-in-the-middle tasks. *arXiv preprint arXiv:2403.04814*, 2024.

546 Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
 547 Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
 548 with apps. *arXiv preprint arXiv:2105.09938*, 2021.

549 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 550 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 551 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024a.

552 Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning any
 553 github repository into a programming agent environment. In *Forty-first International Conference
 554 on Machine Learning*, 2024b.

555 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 556 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint
 557 arXiv:2310.06770*, 2023.

558 Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
 559 Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking bench-
 560 marking in nlp. *arXiv preprint arXiv:2104.14337*, 2021.

561 Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy S
 562 Liang. Spoc: Search-based pseudocode to code. *Advances in Neural Information Processing
 563 Systems*, 32, 2019.

564 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 565 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 566 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 567 Systems Principles*, 2023.

568 Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
 569 Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment:
 570 Opportunities and challenges of llm-as-a-judge. *arXiv preprint arXiv:2411.16594*, 2024a.

571 Jia Li, Ge Li, Xuanming Zhang, Yunfei Zhao, Yihong Dong, Zhi Jin, Binhua Li, Fei Huang, and
 572 Yongbin Li. Evocodebench: An evolving code generation benchmark with domain-specific
 573 evaluations. *Advances in Neural Information Processing Systems*, 37:57619–57641, 2024b.

574 Jia Li, Ge Li, Yunfei Zhao, Yongmin Li, Huanyu Liu, Hao Zhu, Lecheng Wang, Kaibo Liu, Zheng
 575 Fang, Lanshen Wang, et al. Deveval: A manually-annotated code generation benchmark aligned
 576 with real-world code repositories. *arXiv preprint arXiv:2405.19856*, 2024c.

577 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
 578 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
 579 pipeline. *arXiv preprint arXiv:2406.11939*, 2024d.

580 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittweis, Rémi Leblond, Tom
 581 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
 582 with alphacode. *Science*, 378(6624):1092–1097, 2022.

583 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 584 chatgpt really correct? rigorous evaluation of large language models for code generation. In
 585 *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 586 NIPS ’23, Red Hook, NY, USA, 2023a. Curran Associates Inc.

587 Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
 588 auto-completion systems. *arXiv preprint arXiv:2306.03091*, 2023b.

594 Thomas J McCabe. A complexity measure. *IEEE Transactions on software Engineering*, (4):308–320,
 595 1976.

596

597 Pierre Néron, Andrew Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name resolution.
 598 In *Programming Languages and Systems: 24th European Symposium on Programming, ESOP
 599 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
 600 2015, London, UK, April 11–18, 2015, Proceedings 24*, pp. 205–231. Springer, 2015.

601 Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 602 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
 603 code. *arXiv preprint arXiv:2308.12950*, 2023.

604

605 Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and
 606 Eneko Agirre. Nlp evaluation in trouble: On the need to measure llm data contamination for each
 607 benchmark. *arXiv preprint arXiv:2310.18018*, 2023.

608

609 Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
 610 Hu, Kaikai An, Ruijun Huang, et al. Mi-bench: Evaluating large language models and agents for
 machine learning tasks on repository-level code. *arXiv preprint arXiv:2311.09835*, 2023.

611

612 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 613 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 614 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

615 tree sitter. "an incremental parsing system for programming tools", 2024. URL <https://tree-sitter.github.io/>. Accessed: 2024.

616

617 Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
 618 Samson Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code
 619 generation models. *arXiv preprint arXiv:2212.10264*, 2022.

620

621 Shuai Wang, Liang Ding, Li Shen, Yong Luo, Bo Du, and Dacheng Tao. Oop: Object-oriented
 622 programming evaluation benchmark for large language models. *arXiv preprint arXiv:2401.06628*,
 623 2024.

624

625 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
 626 Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
 627 free llm benchmark. *arXiv preprint arXiv:2406.19314*, 2024.

628

629 Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang. Top leaderboard ranking= top coding profi-
 630 ciency, always? evoeval: Evolving coding benchmarks via llm. *arXiv preprint arXiv:2403.19114*,
 631 2024.

632

633 Kai Xu, YiWei Mao, XinYi Guan, and ZiLong Feng. Web-bench: A llm code benchmark based on
 web standards and frameworks, 2025. URL <https://arxiv.org/abs/2505.07473>.

634

635 Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
 636 Zhao, Li Zhu, Hari Sundaram, et al. Codescope: An execution-based multilingual multitask
 637 multidimensional benchmark for evaluating llms on code understanding and generation. *arXiv
 preprint arXiv:2311.08588*, 2023.

638

639 Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E Gonzalez, and Ion Stoica. Rethinking
 640 benchmark and contamination for language models with rephrased samples. *arXiv preprint
 arXiv:2311.04850*, 2023.

641

642 Hao Yu, Bo Shen, Dezhong Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
 643 Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-
 644 trained models. In *Proceedings of the 46th IEEE/ACM International Conference on Software
 645 Engineering*, pp. 1–12, 2024.

646

647 Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
 with tool-integrated agent systems for real-world repo-level coding challenges. *arXiv preprint
 arXiv:2401.07339*, 2024.

648 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
649 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
650 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023a.
651

652 Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi
653 Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual bench-
654 marking on humaneval-x. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining*, pp. 5673–5684, 2023b.
655

656 Qiming Zhu, Jialun Cao, Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, and Shing-Chi Cheung.
657 Domaineval: An auto-constructed benchmark for multi-domain code generation. In *Proceedings
of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 26148–26156, 2025.
658

659 Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
660 Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
661 generation with diverse function calls and complex instructions. *arXiv preprint arXiv:2406.15877*,
662 2024.
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A PREPROCESSING AND DATA STRUCTURING
703704 This appendix details the preprocessing and data structuring steps performed in the Function Filtering
705 pipeline (Section 2) to transform raw source code into a standardized representation suitable for
706 subsequent analysis.
707708 A.1 SOURCE CODE PARSING VIA ABSTRACT SYNTAX TREES (ASTs)
709710 Following the initial identification of candidate functions from the source code repositories, the raw
711 text code of these functions and their surrounding context is processed using Tree-sitter tree sitter
712 (2024). Tree-sitter is a parser generator tool that produces concrete syntax tree parsers for various
713 programming languages. Unlike traditional compilers that focus on semantic analysis, Tree-sitter is
714 specifically designed for source code analysis tools, providing robust, incremental parsing capabilities
715 and generating detailed, well-structured Concrete Syntax Trees (CSTs), which are closely related to
716 Abstract Syntax Trees (ASTs).
717718 For each identified function, the corresponding source code snippet is parsed into its AST representa-
719 tion. The AST is a tree structure that represents the abstract syntactic structure of source code written
720 in a programming language. Each node in the tree denotes a construct occurring in the source code
721 (e.g., function definition, variable declaration, expression, statement). Parsing the raw code into an
722 AST is crucial as it:
723724

- 725 • Standardizes the code representation, abstracting away syntactic variations (e.g., whitespace,
726 comments) and providing a consistent structure regardless of the original formatting.
- 727 • Exposes the hierarchical and relational structure of the code, making it amenable to systematic
728 program analysis techniques.

729 A.2 EXTRACTION OF RELATIONAL INFORMATION
730731 From the generated ASTs, we extract essential relational information and metadata for each candidate
732 function. This extracted information is crucial for the subsequent dependency analysis, program
733 analysis, semantic filtering, and benchmark instance construction stages. Key information extracted
734 includes:
735736

- 737 • Function Signature: The function name, parameters, and their declared types or type hints (if
738 available). This information is directly used for generating the benchmark instruction.
- 739 • Source Code Snippet: The exact lines of code corresponding to the function definition, serving as
740 the Ground Truth implementation and the basis for program analysis.
- 741 • Import Statements: Identification of modules or names imported within the function’s scope or in
742 its surrounding file. This is vital for understanding potential external dependencies.
- 743 • Metadata: Information such as the original file path and commit hash, aiding in traceability and
744 ensuring the recency of the code source.

745 This structured extraction process transforms the raw, unstructured code into a queryable and analyz-
746 able format, laying the foundation for the automated benchmark construction pipeline.
747
748
749
750
751
752
753
754
755

756 B SCOPE GRAPH BASED DEPENDENCY ANALYSIS

758 This appendix provides a formalized technical explanation of the Scope Graph-based dependency
 759 analysis employed in the Function Filtering stage of the CODE2BENCH. This analysis is fundamental
 760 to identifying and controlling external dependencies of candidate functions, enabling the classification
 761 of tasks into Self-Contained (SC) and Weakly Self-Contained (WSC) categories crucial for rigorous
 762 and standardized evaluation.

764 B.1 SCOPE GRAPH MODEL

766 After parsing the source code of a project into Abstract Syntax Trees (ASTs) using Tree-sitter, we
 767 construct a Scope Graph $G = (V, E)$. The vertex set V includes:

- 768 • Scope nodes $S \subseteq V$, representing hierarchical scopes like modules, classes, functions, or blocks.
 769 Each scope $s \in S$ represents a region of code where identifiers are defined and resolved.
- 771 • Definition nodes $D \subseteq V$, representing the points where identifiers are defined (e.g., variable
 772 declarations, function definitions). Each definition $d \in D$ corresponds to a specific identifier name
 773 $id(d)$.
- 774 • Reference nodes $R \subseteq V$, representing the points where identifiers are used (referenced) within the
 775 code. Each reference $r \in R$ corresponds to a specific identifier name $id(r)$.

776 The edge set E includes:

- 778 • Scope hierarchy edges $E_{scope} \subseteq S \times S$, representing nested scopes (e.g., a function scope nested
 779 within a class scope).
- 780 • Definition edges $E_{def} \subseteq S \times D$, representing that a definition d is contained within a scope s .
- 782 • Reference edges $E_{ref} \subseteq S \times R$, representing that a reference r occurs within a scope s .
- 783 • Binding edges $E_{bind} \subseteq R \times D$, representing that a reference r resolves to a definition d according
 784 to the language's scoping rules. These edges are established during the resolution process.

786 Thus, $V = S \cup D \cup R$ and $E = E_{scope} \cup E_{def} \cup E_{ref} \cup E_{bind}$.

788 B.2 DEPENDENCY RESOLUTION PROCESS

790 For each function candidate F , we identify the set of all identifier references $R_F \subseteq R$ occurring
 791 within its body scope s_F . For each reference $r \in R_F$, the dependency resolution process attempts to
 792 find a corresponding definition $d \in D$ such that a binding edge $(r, d) \in E_{bind}$ can be established by
 793 traversing the Scope Graph G outwards from s_F according to the language's lexical scoping rules.

794 A reference $r \in R_F$ is classified as an **unresolved reference** if no definition $d \in D$ is found within
 795 the analysis scope of G that r can legally bind to. Let $U_F \subseteq R_F$ be the set of all unresolved references
 796 for function F . These unresolved references U_F represent the external dependencies of function F .

797 The Scope Graph approach offers conceptual language-agnosticism as the graph structure and
 798 resolution mechanism are based on universal programming concepts (scopes, bindings), abstracted
 799 from specific syntax by the AST input from Tree-sitter. Language-specific scoping rules are encoded
 800 in how the resolution traversal and binding edges E_{bind} are determined.

802 B.3 SC/WSC CLASSIFICATION BASED ON DEPENDENCIES

804 Based on the set of unresolved references U_F and the function's import statements, we classify
 805 function F :

806 Let $L_{allowed}$ be the predefined set of allowed common external libraries. For each unresolved
 807 reference $r \in U_F$, we attempt to determine its origin based on the function's import statements and
 808 knowledge of library APIs. A reference r is considered resolved to an allowed library $l \in L_{allowed}$ if
 809 its name $id(r)$ corresponds to an identifier provided by library l , and library l is correctly imported or
 accessible within the scope of function F .

810 Let $U_{F,allowed} \subseteq U_F$ be the subset of unresolved references that resolve to identifiers within libraries
 811 in $L_{allowed}$.
 812

- 813 • **Self-Contained (SC):** Function F is classified as SC if and only if its set of unresolved references
 814 is empty, i.e., $U_F = \emptyset$. This means all identifiers are defined locally or are language built-ins.
- 815 • **Weakly Self-Contained (WSC):** Function F is classified as WSC if $U_F \neq \emptyset$ and all unresolved
 816 references resolve to allowed libraries, i.e., $U_F = U_{F,allowed}$.
- 817 • **Discarded:** Function F is discarded if $U_F \neq \emptyset$ and $U_{F,allowed} \subsetneq U_F$. This means there are
 818 unresolved references that are not from allowed libraries.
 819

820 This systematic, formalized approach, leveraging the Scope Graph representation, provides a precise
 821 and robust method for controlling dependencies and classifying functions, which is essential for the
 822 reliability and scalability of the CODE2BENCH.

823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 C PROGRAM ANALYSIS FOR TESTABILITY AND COMPLEXITY
865866 This appendix provides further details on the program analysis techniques employed in the Function
867 Filtering stage (Section 2) to ensure candidate functions are functionally testable and represent
868 non-trivial coding challenges. Our analysis focuses on properties derived from the Control Flow
869 Graph (CFG) and the structural complexity of the function implementation.
870871 C.1 CONTROL FLOW ANALYSIS FOR TESTABILITY
872873 To identify functions amenable to automated testing and output verification, we perform Control Flow
874 Graph (CFG) analysis. For a given candidate function f , its CFG represents all possible execution
875 paths through the function’s code. Nodes in the CFG correspond to basic blocks of code (sequences of
876 instructions executed sequentially), and directed edges represent potential control transfers between
877 these blocks (e.g., branches, loops, function calls).
878879 We analyze the structure of the CFG to filter out functions that inherently lack verifiable output.
880 Specifically, we identify functions where:
881882 • The CFG contains no paths leading to a `return` statement. Such functions typically perform
883 actions (e.g., printing to console, modifying global state) without providing a value that can be
884 easily captured and compared against an expected output in an automated differential testing setup.
885 • All paths leading to a `return` statement return only constant values, or values derived solely from
886 constants without any dependency on input parameters or complex intermediate computations.
887 While these functions have a return value, their behavior is trivial and does not require probing
888 with diverse inputs.
889890 Functions matching these criteria are excluded from the candidate pool, as they are either difficult
891 to test functionally in isolation or do not represent meaningful code generation tasks for evaluating
892 LLM capabilities beyond simple retrieval.
893894 C.2 COMPLEXITY ASSESSMENT VIA CYCLOMATIC COMPLEXITY
895896 To focus the benchmark on tasks that require models to generate non-trivial code logic, we assess
897 the structural complexity of each candidate function using Cyclomatic Complexity (CC) Cyc.
898 Cyclomatic Complexity is a quantitative measure of the number of linearly independent paths through
899 a program’s source code. It is calculated based on the CFG of the function using the formula:
900

901
$$CC = E - N + 2P$$

902 where:
903904 • E is the number of edges in the CFG.
905 • N is the number of nodes in the CFG.
906 • P is the number of connected components in the CFG (for a single function, $P = 1$).
907908 Therefore, for a single function, $CC = E - N + 2$. CC is strongly correlated with the number of
909 decision points (e.g., `if`, `while`, `for`, `case`) in the code, providing an estimation of the code’s
910 logical complexity.
911912 We employ CC as a filter to select functions that fall within a desirable complexity range, avoiding
913 tasks that are either too simple to be challenging or excessively complex to be solvable or reliably
914 testable as isolated benchmark instances. Specifically, we define a range $[CC_{min}, CC_{max}]$ (e.g.,
915 $[2, 10]$) and include only functions whose calculated CC falls within this range.
916917 • Functions with $CC < CC_{min}$ (e.g., $CC < 2$) typically represent very simple linear code or trivial
918 control flow structures that offer little challenge.
919 • Functions with $CC > CC_{max}$ (e.g., $CC > 10$) may indicate highly complex logic, potentially
920 involving deep nesting, numerous branches, or intricate loops, which can be challenging for
921 LLMs to generate correctly and for automated tests to cover exhaustively. Furthermore, such
922 high complexity in a real-world function might often be coupled with complex, uncontrolled
923 dependencies.
924

918 **D SEMANTIC FILTERING AND DIFFICULTY ASSESSMENT**
919

920 This appendix provides additional technical details regarding the LLM-based Semantic Filtering
921 process used in the Candidate Filtering stage to refine the candidate function set through semantic
922 assessment. While the main text outlines the motivation and overall structure, here we present in
923 detail the prompts employed during this stage of semantic filtering.

924 To validate the robustness and objectivity of our LLM-based filtering, we conducted two inter-rater
925 reliability studies. **Inter-LLM Agreement.** We measured the agreement between three diverse,
926 state-of-the-art LLM judges (GPT-4o, Claude-4-Sonnet, and a Qwen3-Max) on a random sample of
927 100 function candidates. For the binary task of semantic filtering (trivial vs. meaningful), the judges
928 achieved a Fleiss' Kappa of 0.92, indicating almost perfect agreement. **Human-LLM Agreement.**
929 We further compared the judgments of our primary LLM judge (GPT-4o) against a consensus gold
930 standard established by two human experts with extensive programming experience. On a set of 50
931 functions, the analysis yielded a Cohen's Kappa of 0.95.

932

933 Table 5: Prompt Template for Self-Contained Ground-Truth Filter in CODE2BENCH

934

935 **# System**
936 **## Task Description**
937 You are an expert in the field of coding, tasked with determining whether a given Python function
938 is suitable for generating an instruction (question).
939 The function will be analyzed based on its characteristics, functionality, and adherence to specific
940 criteria. If the function meets the criteria, it is deemed suitable; otherwise, it is not.
941 **## Criteria for Suitability** To determine whether a function is suitable for generating an instruc-
942 tion, consider the following criteria:
943 **### 1. Function Parameters**
944 - **Basic Types Only**: The function's parameters must be basic types (e.g., 'int', 'float', 'str',
945 'list', 'dict', etc.)...
946 **### 2. Function Complexity**
947 - **Meaningful Complexity**: The function should provide a meaningful test of the model's
948 capabilities...
949 **### 3. Side Effects and Dependencies**
950 - **No Side Effects**: The function should not have side effects (e.g., modifying global variables,
951 writing to files, etc.).
952 - **No External Imports**: The function should not import other modules or depend on external
953 libraries...
954 **## Output Format** If the function is **suitable**, return:
955

```
““json
956 {
957 "Suitable": true,
958 "Reason": "The function meets all criteria for generating an instruction."
959 }
960 ““
```


961 If the function is not suitable , return:
962

```
...““
```


963 **## Examples**
964

```
...““
```


965 **## Note**
966 - Ensure that your analysis is thorough and considers all aspects of the function.
967 - Provide clear and concise reasoning for your decision. - Only return the Json.

968 **# User**
969 Please check the last result:
970 **[Last Result]**
971 Error response:
972 **[Error Response]**
973 **[Function Message]**

974

972
973
974

Table 6: Prompt Template for Weakly Self-Contained Ground-Truth Filter in CODE2BENCH

975

System

976 You are an expert in Python coding, tasked with determining whether a given Python function
 977 meets the requirements below for generating a benchmark. The function is weakly self-contained,
 978 meaning it depends only on Python standard libraries or specific external libraries (e.g., numpy,
 979 re, pandas) and no custom modules. You will analyze the function based on its characteristics,
 980 functionality, and adherence to specific criteria. If the function meets the criteria, it is deemed
 981 suitable; otherwise, it is not.

Criteria for Suitability

982 To determine whether a function is suitable, consider the following criteria:

1. Function Parameters

- 983 - **Basic and Library Types**: Parameters must be basic Python types (e.g., 'int', 'float', 'str',
 984 'list', 'dict') or types from standard/external libraries (e.g., 'numpy.ndarray', 're.Pattern').
- 985 - If the parameters' type is missing, but you can infer it from the code, it is **suitable**.
- 986 - If the function relies on methods or attributes of unknown objects, it is **not suitable**. But if
 987 the function uses lib types (e.g., 'numpy.ndarray', 'pandas.DataFrame'), it is **suitable**.

2. Function Complexity

- 988 - **Meaningful Complexity**: The function should provide a meaningful test of the model's
 989 capabilities, with clear logic and purpose.
- 990 - If the function is overly long but trivial (e.g., repetitive assignments), it is **not suitable**.
- 991 - If the function is too simple (e.g., basic getter/setter), it is **not suitable**.

3. Domain Knowledge

- 992 - **General Applicability**: The function should not require highly specialized domain knowledge
 993 to understand or implement...

4. Property-Based Testing

- 994 - **Constructible Inputs**: The function should allow generating random inputs for property-
 995 based testing to verify its behavior.

Output Format

1000 If the function is **suitable**, return:

```
1001     {"json"
1002      {
1003        "Suitable": true,
1004        "Reason": "The reason why the function meets all criteria for generating a benchmark."
1005      }
1006    }
```

1007 If the function is not suitable, return:

```
1008     {"json"
1009      {
1010        "Suitable": false,
1011        "Reason": "The reason why the function is not suitable for generating a benchmark."
1012      }
1013    }
```

Examples

1014 ...

Note

- 1015 - Provide clear and concise reasoning for the decision.
- 1016 - If the function meets our standards but is missing imports, it is still suitable.
- 1017 - If the function only uses 'typing' for type hints, it is not suitable.
- 1018 - Only return the JSON output in the specified format.

User

1019 Please check the last result:

1020 **[Last Result]**

1021 Error response:

1022 **[Error Response]**

1023 **[Function Message]**

1024
1025

1026	
1027	Table 7: Prompt Template for Weakly Self-Contained Difficulty Assessment in CODE2BENCH
1028	
1029	# System
1030	## Task Description
1031	You are an expert code analyst tasked with assessing the difficulty level of a weakly self-contained
1032	Python function. A weakly self-contained function depends only on Python standard libraries or
1033	specific external libraries (e.g., NumPy, pandas, re) and no custom modules. Assume the function
1034	is valid and suitable for analysis. Assign a difficulty level of "Easy", "Medium", or "Hard" based
1035	on the complexity of its logic, structure, required concepts, and cognitive load to understand.
1036	## Criteria for Difficulty Assessment
1037	### Easy Difficulty - <i>**Logic**</i> : Very simple, minimal or no branching, single loop or direct
1038	parameter use.
1039	- <i>**Structure**</i> : Short, linear, immediately clear control flow.
1040	- <i>**Concepts**</i> : Basic Python constructs (variables, operators, lists, strings) or simple library
1041	calls (e.g., Counter from collections, basic re matching, pandas filtering).
1042	- <i>**Cognitive Load**</i> : Minimal; purpose and execution are obvious at a glance.
1043	- <i>**Example**</i> :
1044	```python
1045	from collections import Counter
1046	def count_word_frequencies(text: str) -> dict[str, int]:
1047	"""Count the frequency of each word in a text string.
1048	Args:
1049	text: Input string containing words.
1050	Returns:
1051	Dictionary mapping words to their frequency.
1052	"""
1053	words = text.lower().split()
1054	return dict(Counter(words))
1055	"""
1056	...
1057	### Medium Difficulty - Logic: Moderate complexity, with loops, conditions, or data transformations (e.g., - filtering, sorting, deduplication).
1058	- Structure: Traceable control flow, possibly nested loops or multiple steps, moderate length.
1059	- Example:
1060	...
1061	Hard Difficulty
1062	- Logic: Complex, with nested loops, intricate transformations, non-trivial algorithms (e.g., multi-dim aggregation, complex grouping), or subtle edge cases.
1063	- Structure: Dense or multi-step control flow, significant state management.
1064	Example:
1065	...
1066	## Output Format Return ONLY a JSON object containing the assessed difficulty level:
1067	```json
1068	{
1069	"Difficulty": "Easy/Medium/Hard"
1070	}
1071	```
1072	## Note
1073	- weakly self-contained function depends only on Python standard libraries or specific external
1074	libraries (e.g., NumPy, pandas, re) and no custom modules.
1075	- Focus on logic and structure, not the library's complexity (e.g., simple Counter usage is Easy, complex NumPy array ops are Hard).
1076	- Analyze the function's code, docstring, and logic thoroughly.
1077	- Only return the JSON output in the specified format.
1078	# User
1079	[Function Message]

1080
1081
1082
1083
1084

Table 8: Prompt Template for Self-Contained Difficulty Assessment in CODE2BENCH

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

System**## Task Description**

You are an expert code analyst. Your task is to assess the difficulty level of the provided Python function. Assume the function is generally valid and suitable for analysis. Assign a difficulty level of "Easy", "Medium", or "Hard" based on the complexity of its logic, structure, required concepts, and cognitive load to understand.

Criteria for Difficulty Assessment**### Easy Difficulty**

- Logic: Straightforward, minimal branching (simple if/else), possibly a single simple loop. Direct use of parameters.
- Structure: Typically short, linear control flow. Easy to follow step-by-step.
- Concepts: Relies on fundamental programming constructs (variables, basic operators, standard data types, simple function calls).
- Cognitive Load: Low; the function's purpose and execution are immediately apparent.

- Example:

““python

```
def parse_message(message: str) -> str:
    if message is None:
        return ""
    message = message.strip().lower()
    # Simple string checks and manipulations
    if not message.startswith(("run-slow", "run_slow", "run slow")):
        return ""
    message = message[len("run slow") :]
    while message.strip().startswith(":"):
        message = message.strip()[1:]
    return message
““
```

...**### Hard Difficulty**

- Logic: Moderate complexity. May involve nested loops, multiple non-trivial conditions, manipulation of data structures (e.g., iterating through lists/dicts with transformations), implementing a common simple algorithm, or tracking state across iterations.

- Structure: Control flow is more involved but still reasonably traceable. Function length might be moderate.

- Example:

...

Hard Difficulty

- Logic: Complex logic. Might involve recursion, implementing non-trivial algorithms.

- Structure: Can have nested structures, complex control flow, significant state management, or rely on clever interactions between code parts. May not be long but could be dense.

- Example:

...

Output Format

Return ONLY a JSON object containing the assessed difficulty level:

```
{
    "Difficulty": "Easy/Medium/Hard"
}
```

User**[Function Message]**

1134 E PROPERTY-BASED TESTING
11351136 This appendix provides additional technical details regarding the Property-Based Testing (PBT)
1137 process to generate rigorous test cases for CODE2BENCH. While it describes the core principles,
1138 here we elaborate on the technical implementation.1139 Our PBT approach is centered around defining strategies for generating diverse, valid inputs for a
1140 given function and verifying a core property against the ground truth implementation.1142 E.1 STRATEGY BUILDING AND INPUT SYNTHESIS
11431144 The Strategy Builder component analyzes the function’s signature, parameter types, and inferred
1145 constraints from type hints, docstrings, and static analysis of the ground truth code. It then leverages
1146 a PBT library (e.g., Hypothesis for Python) to compose generation **strategies** for each function
1147 parameter. These strategies are designed to explore a wide range of valid inputs, including typical
1148 values, edge cases (e.g., empty lists, zero, maximum/minimum values), and combinations of different
1149 input types within complex structures (e.g., lists of dictionaries, tuples of specific types). The process
1150 is constraint-aware, ensuring generated inputs adhere to inferred conditions.1151 For example, for a function taking a list of integers ‘def process(data: list[int])’, the strategy might
1152 generate lists of varying lengths, containing both positive and negative integers, zeros, and potentially
1153 boundary values like ‘sys.maxint’. For a function taking a string with specific format requirements,
1154 the strategy would be built to generate strings adhering to that format.1156 E.2 PROPERTY DEFINITION AND VERIFICATION
11571158 The core **property** we verify for generated code is **functional equivalence** with the ground truth
1159 implementation. For every input x_i generated by the strategies, we compute the expected output
1160 $y_i = f_{GT}(x_i)$, where f_{GT} is the ground truth function. The PBT framework then requires that for
1161 any generated input x_i , the output of the generated code $f_{LLM}(x_i)$ must equal y_i . Any input x_i
1162 where $f_{LLM}(x_i) \neq y_i$ constitutes a test case failure, and the PBT framework can then attempt to
1163 “shrink” x_i to find a minimal failing input.1164 E.3 ENSURING TEST RIGOR AND COVERAGE
11651166 To ensure the generated test suites are truly rigorous, we incorporate a quality control step based on
1167 test coverage. After generating a suite of (x_i, y_i) pairs using PBT strategies, we execute these test
1168 cases against the ground truth implementation itself. We use code coverage tools (e.g., “coverage.py”
1169 for Python) to measure the branch coverage achieved by the generated test suite on the ground truth
1170 code. Only test suites that achieve a high coverage threshold (e.g., 100% average branch coverage)
1171 are accepted and included in the final benchmark instance. This filtering step is crucial: even if a
1172 strategy can generate many inputs, if those inputs don’t exercise the complex branching logic of the
1173 function, the resulting test suite is not rigorous enough to effectively verify model implementations.1174 E.4 CODE EXAMPLE (PYTHON/HYPOTHESIS)
11751176 Below is a simplified illustrative example using the Python Hypothesis library to demonstrate how
1177 strategies and properties are defined.1180

```
import hypothesis.strategies as st
1181 from hypothesis import given, settings, Verbosity
1182
1183 # 1. Define strategies for input generation
1184 # Strategy for generating arbitrary strings
1185 string_strategy = st.text()
1186
1187 def ground_truth_reverse(s: str) -> str:
1188     return s[::-1]
```

```

1188 def llm_generated_reverse(s: str) -> str:
1189     # Hypothetical LLM output, might have bugs
1190     return "".join(reversed(s))
1191
1192     # Define a property using @given decorator
1193     @given(s=string_strategy) # Use the defined strategy to generate input
1194     ↳ 's'
1195     @settings(max_examples=1000) # Example settings for testing
1196     def test_reverse_property(s):
1197         # Property: Reversing twice returns the original string
1198         assert reverse_string(reverse_string(s)) == s # This property tests
1199         ↳ the function against itself
1200
1201         # Property: LLM output matches Ground Truth output
1202         expected_output = ground_truth_reverse(s)
1203         actual_output = llm_generated_reverse(s)
1204         assert actual_output == expected_output # This property tests LLM
1205         ↳ output against GT
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

1205 This example illustrates the basic concept of defining strategies for input generation and asserting
 1206 properties about the function's behavior for these inputs. In the CODE2BENCH pipeline, these
 1207 principles are automated and scaled to generate comprehensive test suites for a wide variety of
 1208 functions extracted from real-world code.

1242 F TESTCASE RUNNER GENERATION

1244 This appendix provides a detailed presentation of the prompts used for generating test runners
 1245 (Section 2). Since test runners are inherently language-specific, we designed tailored prompts for
 1246 each programming language. The corresponding prompts are listed in Tables 9 through 10.

1248 Table 9: Prompt Template for SC-Java Testcase Runner Generation in CODE2BENCH

1250 **# System**
 1251 **## Task Description**
 1252 As an expert Java developer specializing in test case generation and function signature translation,
 1253 your task is to generate a Java test file and function signature based on a Python function and its
 1254 test cases. The test file will load test cases from a JSON file and execute tests using a provided
 1255 ‘Helper.deepCompare’ method.
 1256 **### Requirements**
 1257 1. ****Java Test File**:**
 1258 - Generate a complete, executable Java test file in the ‘p0’ package.
 1259 ...
 1260 2. ****Function Signature**:**
 1261 - Provide only the function signature in the ‘p0.Tested’ class.
 1262 ...
 1263 3. ****Special Considerations**:**
 1264 - ****Type Safety**:**
 1265 - Ensure ‘TestCase’ fields exactly match JSON keys and types (e.g., ‘lines’ → ‘List<String>’,
 1266 ‘line_index’ → ‘int’).
 1267 ...
 1268 4. ****Type Definition Rules****
 1269 - Follow these rules to determine where to define types:
 1270 | Usage Scenario | Location | Example
 1271 |-----|-----|-----|
 1272 | Used in function signature | ‘tested.java’ | ‘public static class TagInfo {}’ |
 1273 | Used in both | ‘tested.java’ | Shared types always in implementation |
 1274 **## Input Format**
 1275 - ****Test Cases JSON**:** A JSON array of test cases, provided as ‘{testcases_str}’.
 1276 - ****Python Function**:** A Python function to be tested, including its signature and implementation,
 1277 provided as code.
 1278 **## Output Format**
 1279 ““plaintext
 1280 <code>
 1281 **[Java test file]**
 1282 </code>
 1283 <signature>
 1284 **[Java function signature]**
 1285 </signature>
 1286 **## Examples**
 1287 ...
 1288 **## Note**
 1289 - Ensure the generated Java test file is complete and executable.
 - The function signature should be a valid Java function signature that matches the Python
 1290 function’s behavior.
 - Only return the Java test file in ‘<code>’ and the function signature in ‘<signature>’ tags.

 1291 **# User**
 1292 The previously generated runner code:
 1293 **[Runner Code]**
 1294 The previously generated runner code resulted in the following error during execution:
 1295 **[Error Message]**
[Function Message]

1296
1297
1298
1299

Table 10: Prompt Template for WSC-Python Testcase Runner Generation in CODE2BENCH

1300
1301

System**## Task Description**

You are an expert Python developer specializing in property-based testing and test case execution. Your task is to generate a **complete and executable Python script** that loads test cases from a JSON file generated by a Hypothesis-based Testcase Generator and re-runs the test logic to verify the behavior of a function under test ('func1') against a ground truth function ('func0'). The functions depend only on standard libraries or specific external libraries (e.g., NumPy, re) and no other custom modules. The script will:

1. Load test cases from the JSON file ('test_cases.json') containing 500 test cases, each with a "Inputs" dictionary mapping 'func0' s argument names to JSON-serializable values.
2. Re-run the test logic by calling 'func0' (ground truth) and 'func1' (under test) with the loaded inputs, comparing their outputs via differential testing.
3. Compare outputs using:
 - For basic types and their combinations ('int', 'float', 'str', 'list', 'dict', etc.), use 'deep_compare' from the 'helper' module.
 - For third-party library types (e.g., 'numpy.ndarray', 'tuple' of 'numpy.ndarray'), use library-provided comparison functions (e.g., 'np.allclose') or custom logic if none is provided.
4. Report test results, indicating whether each test case passes or fails, with detailed failure information (inputs, expected output, actual output).

Input The input is a Python Testcase Generator script that includes:

1. The ground truth function 'func0', its dependencies (e.g., 'numpy', 're'), and implementation.
2. Hypothesis strategies and '@example' decorators defining input generation logic.
3. A test function ('test_<function_name>') that generates and saves 500 test cases to 'test_cases.json', each containing only "Inputs".

Provided in '<Testcase Generator>' tags.

Output Generate a complete, executable Python script that:

...

Example

Note - Focus on Loading and Re-testing: Load test cases from test_cases.json and verify func1 against func0 using differential testing.

- Preserve Input Format: Ensure inputs match func0's signature, converting JSON-serialized inputs (e.g., list to np.ndarray) as needed.
- Output Comparison:
 - Use deep_compare from helper for basic types and combinations (int, float, str, list, dict, etc.).
 - Use library-provided comparisons (e.g., np.allclose for numpy.ndarray) for third-party library types, or custom logic if none is provided.
- Executable Code: The script must be complete, self-contained, and executable.
- Differential Testing: Since test cases contain only inputs, compute expected outputs by calling func0 and compare with func1's outputs.
- External Libraries: Include imports for func0's dependencies (e.g., numpy, re) and handle their data types (e.g., np.ndarray).

User

The previously generated runner code:

[Runner Code]

The previously generated runner code resulted in the following error during execution:

[Error Message]**[Function Message]**

1346
1347
1348
1349

1350 **G INSTRUCTION GENERATION**
13511352 Table 11: Prompt Template for WSC-Python Instruction Generation in CODE2BENCH
13531354 **# System**
1355

1356 You are a python programming expert who is refining docstrings in existing programs. You will
1357 be given a python function in a python file with an existing (possibly underspecified) docstring
1358 with corresponding some input-output examples extracted.

1359 Your goal is to refine the associated docstring by making it more informative, precise and complete
1360 without adding verbosity or detailed programming logic to the docstring. When there is a docstring,
1361 the docstring is used to evaluate the code generation capabilities of a model.

1362 The docstring should particularly describe the format and types of the expected inputs and output
1363 as well as the behavior of the function. Do not guess outputs for functions. Finally, do not throw
1364 away existing details from the docstrings and only insert content you are sure about. Do NOT have
1365 repeated content in the docstring and ONLY describe the high-level function behavior without
1366 going into implementation details.

1367 **## Requirements**
1368

1369 1. ****Core Description Fidelity****: The docstring must accurately reflect the function’s behavior
1370 and describes the task this function solves. ****Pay close attention to the sequence of checks,**
1371 **conditions, and resulting actions within the code.**

1372 2. ****Highlight any **special rules**** that affect the model’s correct understanding of the function’s
1373 behavior, such as:

- 1374 - Recursive behavior
- 1375 - Merging, flattening, filtering, transformation logic
- 1376 - Edge cases or type-specific handling
- 1377 - Magic numbers or constants

1378 3. ****Docstring Refinement****: If the function already has a docstring, integrate and refine its
1379 content to meet these requirements. Do not discard existing accurate information.

1380 4. ****Conditional Example Handling****:

1381 You should judge whether to include examples based on the original docstring’s content:

- 1382 - ****If the original docstring contains an ‘Examples’ section****:
- 1383 - Preserve all original examples ****verbatim**** in the final docstring’s ‘Examples’ section.
- 1384 - Format them clearly in Language-Agnostic(e.g., showing input and expected output).
- 1385 - Do ****not**** add or modify examples from the ‘Example Usages’ data.

1386 **## Input** “python

1387 {ground_truth_function_code}

1388 “

1389 **### Output Format**

- 1390 - Return the docstring in `<docstring>` tags following the Google-style format.
- 1391 - Include the function signature in `<signature>` tags, with a TODO placeholder for the implementa-
1392 tion.

1393 **#### Example output:**

1394 ...

1395 **## Note**

- 1396 - Only add examples in Docstring when the function already has an ‘Examples’ section in the
1397 docstring. Do not add examples from the ‘Example Usages’ data if the original docstring does not
1398 contain ‘Examples’.
- 1399 - If the signature has type hints, import nessesaray types from the standard library (e.g., ‘from
1400 typing import List, Dict’) in signature.

1401 **# User**

1402 <function>

1403 **[Function Code]**

1404 </function>

1405 <example usages>

1406 **[Example Usage]**

1407 </example usages>

1408

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Table 12: Prompt Template for SC-Python Instruction Generation in CODE2BENCH

System

You are a programming documentation architect specializing in creating precise, implementation-agnostic specifications. Generate a docstring that enables accurate reimplementation in any programming language. When there is a docstring, the docstring is used to evaluate the code generation capabilities of a model.

Requirements

1. **Core Description Fidelity**: The docstring must accurately reflect the function's behavior and describes the task this function solves. **Pay close attention to the sequence of checks, conditions, and resulting actions within the code.**
2. **Highlight any special rules** that affect the model's correct understanding of the function's behavior, such as:
 - Recursive behavior
 - Edge cases or type-specific handling
 - Magic numbers or constants
 - Special settings that may affect the difficulty for others to correctly implement functions based on docstrings. e.g., the Ground Truth function may add some special string at the end of the result, so the docstring should mention this case, otherwise, the model may not be able to implement the function correctly.
2. **Language-Agnostic Terminology**: Use universal concepts for types and logic.
 - Describe parameters and return values using **conceptual types** (e.g., "an integer", "a boolean value", "a sequence of numbers", "a text string") instead of language-specific type hints ('int', 'bool', 'list', 'str').
 - Describe operations conceptually (e.g., "checks if X contains Y", "iterates over the elements", "applies a function to each element") rather than Python built-ins ('s1.find("")', 's1.replace').
3. **Docstring Refinement**: If the function already has a docstring, integrate and refine its content to meet these requirements. Do not discard existing accurate information.
4. **Conditional Example Handling**:
 - **If the original docstring contains an 'Examples' section**:
 - Preserve all original examples **verbatim** in the final docstring's 'Examples' section...

Input Structure

```
““python
{ground_truth_function_code}
““
```

Example Usages:

```
{example_usage_data}
```

(Note: Example Usages will be provided in a format like input/output pairs.)

Output:

Only return the docstring content in `<docstring>` tags and the function signature in the `<signature>` tags. The docstring should be enclosed in triple double quotes ("““Docstring goes here“““"). The function signature should be formatted in ““python‘ code block with the function name and a TODO comment indicating where the implementation should go.

Note:

- Only add examples in Docstring when the function already has an 'Examples' section in the docstring. Do not add examples from the 'Example Usages' data if the original docstring does not contain 'Examples'.
- If the signature has type hints, import necessary types from the standard library (e.g., 'from typing import List, Dict') in signature.

User

```
<function>
```

[Function Code]

```
</function>
```

```
<example usages>
```

[Example Usage]

```
</example usages>
```

1458
1459
1460

Table 13: Prompt Template for SC-Java Instruction Generation in CODE2BENCH

1461 **# System**
 1462 You are an expert Java architect and technical writer, specializing in creating high-quality, profes-
 1463 sional Javadoc documentation. Your task is to generate a precise and informative Javadoc for a
 1464 given Java method, enabling another senior Java developer to re-implement it accurately within a
 1465 complete, self-contained 'Tested.java' file.

1466 **## Core Objective**
 1467 The generated Javadoc and method signature must serve as a perfect "specification" for the
 1468 provided ground-truth method.

1469 **## Requirements**
 1470 1. Core Description Fidelity: The Javadoc must accurately reflect the method's behavior, including
 1471 the precise sequence of checks, conditions, and resulting actions within the code.
 1472 2. Edge Cases: Detail how the method handles edge cases, such as null, empty, or special/magic
 1473 values.
 1474 3. Data Structures: Accurately describe parameters and return values using standard Java types.
 1475 4. Javadoc Refinement: If the method already has a Javadoc, your primary goal is to refine and
 1476 enhance it to meet these high standards. Integrate existing accurate information with your new
 1477 insights. Do not discard valuable details from the original author.
 1478 5. Example Handling:
 * If the original Javadoc contains an example (e.g., in a '<pre>@code ...</pre>' block): Preserve
 1479 the original example verbatim.
 * If not: Omit any example section entirely.

1480 **## **Input Structure****
 1481 `'''java
 {ground_truth_java_method_code}
 '''`

1482 **## Output Structure**
 1483 Return a single '<signature>' tag containing a complete, self-contained, and runnable 'Tested.java'
 1484 file content. The content must be enclosed in a "java" code block and include all necessary
 1485 imports, the generated Javadoc, the 'public class Tested', and the public static method signature
 1486 with a '// TODO: implement this method' comment.

1487 `<signature>
 '''java
 // All necessary imports (e.g., java.util.*) should be here.
 import java.util.List;
 import java.util.Map;
 public class Tested {
 /**
 * High-quality, Google-style Javadoc goes here. ...
 */
 public static ReturnType methodName(ParameterType parameterName) {
 // TODO: implement this method
 }
 }
 '''`

1488 `</signature>`

1489 **## Final Instructions**
 1490 - Ensure the method signature in the '<signature>' tag perfectly matches the ground truth, including
 1491 visibility ('public static'), return type, method name, and parameter types.
 1492 - Don't add implementation details.
 1493 - Include all necessary imports based on the types used in the signature.

1494 **# User**
 1495 `<function>`

1496 **[Function Code]**
 1497 `</function>`

1512 **H BENCHMARK**
 1513

1514 **H.1 BENCHMARK DETAILS**
 1515

1516 This appendix provides a detailed breakdown of the construction process and diversity analysis for
 1517 the CODE2BENCH-2509 suite. All data was sourced from public GitHub repositories with commits
 1518 made between May 2025 and September 2025.

1519 To ensure the diversity, quality, and representativeness of the source code used in CODE2BENCH, we
 1520 adhered to a strict, multi-stage data selection protocol. This appendix details the criteria and sampling
 1521 strategies employed during the “Scaling the Source” phase.

1522 We targeted high-quality, actively maintained, and well-tested open-source repositories hosted on
 1523 GitHub. To be included in our initial candidate pool, a repository must meet the following quantitative
 1524 thresholds:

- 1526 • **Community Validation:** ≥ 500 Stars. This threshold filters out personal experiments and
 1527 ensures a baseline of community scrutiny and adoption.
- 1528 • **Active Maintenance:** At least one commit within the 3 months prior to our data collection
 1529 cutoff (May 2025). This ensures the code reflects modern coding practices and library
 1530 versions.
- 1531 • **Test Availability:** Must contain an identifiable test suite (e.g., presence of `tests/` directory,
 1532 usage of `pytest/junit`). This is crucial for verifying our ground truth extraction.
- 1533 • **License Permissibility:** Must be under permissive licenses (e.g., MIT, Apache 2.0, BSD) to
 1534 allow for redistribution and modification.

1536 To mitigate noise and bias, we applied semantic filters to exclude repositories that do not represent
 1537 real-world software engineering contexts:

- 1539 • **Homework & Tutorials:** Repositories with keywords like “assignment”, “course”, “tutor-
 1540 rial”, “learn-python/java”, or “leetcode” in their description or README were excluded.
 1541 These typically contain toy problems distinct from production-grade code.
- 1542 • **Aggregators & Forks:** We excluded repositories identified as mere collections of other
 1543 projects (e.g., “awesome-xxx”) or direct forks without significant divergence, ensuring
 1544 unique data sources.

1545 To prevent domain bias (e.g., over-representation of web frameworks), we employed a stratified
 1546 sampling strategy based on GitHub topics and repository tags. We categorized candidates into 10
 1547 primary domains covering the spectrum of software development:

- 1549 1. **Web Development** (e.g., frameworks, clients)
- 1550 2. **Data Science & Machine Learning** (e.g., analytics, pipelines)
- 1551 3. **System Utilities** (e.g., cli tools, file manipulation)
- 1552 4. **Network & Protocol** (e.g., async io, sockets)
- 1553 5. **Security & Cryptography**
- 1554 6. **Database & Storage**
- 1555 7. **Text Processing & NLP**
- 1556 8. **Media & Graphics** (e.g., image processing)
- 1557 9. **Scientific Computing**
- 1558 10. **Development Tools** (e.g., linters, parsers)

1562 We performed random sampling within each stratum to build our final source list of Python and Java
 1563 repositories.

1564 To fully support reproducibility and auditability, the complete list of source repositories is available
 1565 on our open-source project page: <https://code2bench.github.io/>.

1566 **H.2 THE DATA FUNNEL: FROM RAW FUNCTIONS TO A GOLD STANDARD**
15671568 The final size of our benchmark is a direct result of a stringent, multi-stage filtering pipeline designed
1569 to prioritize quality, realism, and rigor. Table 14 illustrates this "Great Filter" process for the Python
1570 components, starting from over one million recently updated functions identified in 220 repositories.
1571 This rigorous process ensures that only the most suitable and high-quality candidates become part of
1572 the final benchmark.1573 Table 14: The Data Funnel for CODE2BENCH-2509 Python components, illustrating the multi-stage
1574 filtering process that prioritizes quality and rigor.
1575

1576 Stage	1577 Filtering Action & Criteria	1578 SC Candidates	1579 WSC Candidates
1578 1. Initial Pool	1579 Functions parsed from recent commits	1580 ~1.17 Million	1581
1580 2. Dependency Filter	1581 Scope Graph: Strictly SC / WSC compliant	1582 27,649	1583 12,335
1582 3. Testability/Complexity	1583 Testable outputs & Cyclomatic Complexity [2,10]	1584 7,102	1585 3,278
1584 4. Sub-sampling	1585 Breadth-first sampling for diversity	1586 901	1587 432
1586 5. Semantic Filter	1587 LLM-as-a-judge removes trivial tasks	1588 479	1589 315
1588 6. The Great Filter	1589 PBT: 100% Branch Coverage Guarantee	1590 217	1591 194

1583 **H.3 TASK DIVERSITY ANALYSIS**
15841585 The high quality of CODE2BENCH-2509 is rooted in its rich diversity of tasks and application
1586 domains.
15871589 **H.3.1 SC-PYTHON: ALGORITHMIC AND REAL-WORLD LOGIC**
15901591 The 217 tasks in the SC-Python component cover a wide spectrum of real-world programming
1592 challenges beyond simple puzzles. Key functional categories include:
1593

- 1594 • **Text Processing & Formatting:** Ranging from LaTeX sanitization (`strip_latex`) to complex
1595 wrapping for SVG elements (`wrap_text_for_svg`).
- 1596 • **Classic & Modern Algorithms:** Includes fundamental algorithms like `levenshtein` and
1597 `binary_search`, as well as logic relevant to modern development tools like parsing LCOV
1598 reports (`parse_lcov`).
- 1599 • **Parsing & Extraction:** Challenges models to parse structured data from unstructured text, such as
1600 extracting JSON from noisy strings (`_extract_balanced_json`) or parsing version numbers
1601 (`parse_version`).
- 1602 • **AI/LLM-Specific Logic:** A unique feature is the inclusion of tasks from the AI ecosystem, such as
1603 formatting LLM error messages (`format_llm_error_message`) and parsing model outputs
1604 (`extract_weave_refs_from_value`).
- 1605 • **Complex Data Structure Manipulation:** Requires deep understanding of nested structures (e.g.,
1606 `flatten_state_dict`, `deep_merge`).

1608 **H.3.2 WSC-PYTHON: A BROAD AND REALISTIC API ECOSYSTEM**
16091610 The 194 tasks in the WSC-Python component require the use of over **35 distinct libraries and**
1611 **modules**¹, ensuring a faithful evaluation of a model's practical API fluency. The distribution is
1612 representative of real-world Python development, covering a wide and diverse ecosystem rather than
1613 focusing on a narrow set of APIs. The required libraries span multiple key domains of software
1614 engineering:
1615

- 1616 • **Data Processing & Text Manipulation:** A significant portion of tasks involve core data han-
1617 dling using standard libraries like `re`, `json`, `ast`, `datetime`, `urllib`, `unicodedata`, and
1618 `base64`.

1619 ¹This count is based on unique top-level import statements, e.g., `re`, `numpy`, `scipy.spatial`.

- **Scientific Computing & Data Science:** The benchmark probes capabilities in specialized numerical and data-centric domains, requiring libraries such as `numpy`, `scipy` (including submodules like `scipy.spatial.transform`), and `pandas`.
- **Machine Learning:** Uniquely, our suite includes tasks that interact with the machine learning ecosystem, leveraging modules from `scikit-learn` like `TfidfVectorizer` and `cosine_similarity`.
- **Advanced Standard Library Proficiency:** Beyond common utilities, the tasks require a deep knowledge of Python’s standard library, including advanced modules such as `itertools`, `collections` (e.g., `Counter`, `defaultdict`), `difflib`, `bisect`, and `struct`.

This broad and realistic library coverage ensures that WSC-Python provides a holistic assessment of a model’s ability to function as a practical coding assistant in a diverse range of real-world scenarios.

H.3.3 SC-JAVA: VALIDATING EXTENSIBILITY WITH DIVERSE TASKS

The successful generation of the 249-task SC-Java suite provides concrete evidence of our framework’s extensibility. The quality of this component is validated by its high diversity, which mirrors the real-world complexity found in its Python counterpart. The tasks span a wide array of application domains:

- **String Manipulation & Parsing:** A large portion of tasks involve complex string operations, such as format conversion (`convertToCamelCase`), cleaning (`cleanText`), and escaping for different contexts (`escapeJsonString`, `escapeCsvField`).
- **Encoding & Data Conversion:** Numerous tasks focus on byte-level manipulation, primarily converting between byte arrays and hexadecimal strings (e.g., `bytesToHex`), a common task in systems programming and networking.
- **Mathematics & Algorithms:** The suite includes non-trivial algorithms like checksum validation (`luhnBankCardVerify`) and edit distance calculation (`levenshteinDistance`).
- **Domain-Specific Logic:** Crucially, the tasks are not generic puzzles but are rooted in specific application domains, including game development (e.g., Minecraft metadata transformation, `transformMetaDecoModel`) and systems utilities (e.g., calculating CPU affinity masks, `maskToCpuAffinity`).

This demonstrates our framework’s ability to extract meaningful and realistic algorithmic challenges from any complex, real-world codebase, regardless of the programming language.

H.4 BENCHMARK TASK EXAMPLES

This appendix provides examples of representative benchmark instances from CODE2BENCH-2509. Each example showcases a complete task, including the instruction provided to the Large Language Model (LLM), the ground truth implementation from which the task was derived, the Property-Based Testing (PBT) script used for generating comprehensive test cases, and the test runner script for evaluating the LLM’s generated code.

H.4.1 SC PYTHON EXAMPLE: MERGE_JSON_RECURSIVE

This example demonstrates a Self-Contained (SC) task in Python, requiring the recursive merging of JSON-like objects without external dependencies beyond standard library features.

Task Instruction

```
def merge_json_recursive(base, update):
    """Recursively merge two JSON-like objects.

    The function merges nested structures with the following rules:
    - If both inputs are dictionaries, recursively merge them.
    - If both inputs are lists, concatenate them.
```

```

1674     - For all other cases, the update value overwrites the base value.
1675     - The base object is left unmodified; a new merged object is
1676     ↪ returned.
1677
1678     Args:
1679         base: Base JSON-like object (dictionary, list, or primitive
1680             ↪ value).
1681         update: Update JSON-like object to merge into base.
1682
1683     Returns:
1684         A new JSON-like object containing merged content from base and
1685             ↪ update.
1686
1687     Examples:
1688         Input: base = {"a": 1}, update = {"a": 2}
1689         Output: {"a": 2}
1690
1691         Input: base = [1, 2], update = [3, 4]
1692         Output: [1, 2, 3, 4]
1693
1694         Input: base = {"a": {"b": 1}}, update = {"a": {"c": 2}}
1695         Output: {"a": {"b": 1, "c": 2}}
1696
1697     """
1698     # TODO: Implement this function
1699     pass

```

Testcase Generator

```

1699
1700     from hypothesis import settings, given, Verbosity, example
1701     from hypothesis import strategies as st
1702     import json
1703     import os
1704     import atexit
1705     import copy
1706
1707     # Configuration
1708     TEST_CASE_DIR = os.path.abspath("test_cases")
1709     os.makedirs(TEST_CASE_DIR, exist_ok=True)
1710     TEST_CASE_FILE = os.path.join(TEST_CASE_DIR, "test_cases.json")
1711     generated_cases = []
1712     stop_collecting = False # Global flag to control case collection
1713
1714     # Ground truth function
1715     def merge_json_recursive(base, update):
1716         if not isinstance(base, dict) or not isinstance(update, dict):
1717             if isinstance(base, list) and isinstance(update, list):
1718                 return base + update
1719             return update
1720
1721         merged = base.copy()
1722         for key, value in update.items():
1723             if key in merged:
1724                 merged[key] = merge_json_recursive(merged[key], value)
1725             else:
1726                 merged[key] = value
1727
1728         return merged
1729
1730     # Strategy for JSON-like objects
1731     json_strategy = st.recursive(
1732         st.one_of([
1733             st.integers(),
1734             st.floats(allow_nan=False, allow_infinity=False),

```

```

1728         st.text(st.characters(whitelist_categories=('L', 'N', 'P', 'S',
1729             ↪ 'Z'))),
1730         st.booleans()
1731     ],
1732     lambda children: st.one_of(
1733         st.lists(children, max_size=5),
1734         st.dictionaries(st.text(st.characters(whitelist_categories=('L',
1735             ↪ 'N'))), max_size=5), children, max_size=5)
1736     ),
1737     max_leaves=5
1738 )
1739
1740 # Hypothesis test configuration
1741 @settings(max_examples=10000, verbosity=Verbosity.verbose,
1742 ↪ print_blob=True)
1743 @given(base=json_strategy, update=json_strategy)
1744 def test_merge_json_recursive(base, update):
1745     global stop_collecting
1746     if stop_collecting:
1747         return
1748
1749     base_copy = copy.deepcopy(base)
1750     update_copy = copy.deepcopy(update)
1751     expected = merge_json_recursive(base_copy, update_copy)
1752
1753     if isinstance(base, (dict, list)) or isinstance(update, (dict,
1754         ↪ list)):
1755         generated_cases.append({
1756             "Inputs": {"base": base, "update": update},
1757             "Expected": expected
1758         })
1759     if len(generated_cases) >= 500:
1760         stop_collecting = True
1761
1762     # Save test cases
1763     def save_test_cases():
1764         with open(TEST_CASE_FILE, "w") as f:
1765             json.dump(generated_cases, f, indent=2, ensure_ascii=False)
1766             print(f"✓ Saved {len(generated_cases)} test cases to"
1767             ↪ {TEST_CASE_FILE}")
1768
1769     atexit.register(save_test_cases)

```

Testcase Runner

```

1767
1768     import json
1769     import os
1770     from tested import merge_json_recursive as func1
1771     from helper import deep_compare
1772
1773     # Configure save path
1774     TEST_CASE_DIR = os.path.abspath("test_cases")
1775     TEST_CASE_JSON_PATH = os.path.join(TEST_CASE_DIR, "test_cases.json")
1776
1777     def load_test_cases_from_json():
1778         if not os.path.exists(TEST_CASE_JSON_PATH):
1779             print(f"JSON file not found: {TEST_CASE_JSON_PATH}")
1780             return []
1781
1782         # Read JSON file
1783         with open(TEST_CASE_JSON_PATH, "r") as f:
1784             test_cases = json.load(f)
1785
1786         return test_cases

```

```

1782
1783 def run_tests_with_loaded_cases(test_cases):
1784     for i, case in enumerate(test_cases):
1785         inputs = case["Inputs"]
1786         expected_output = case["Expected"]
1787
1788         # Run function under test
1789         actual_output = func1(**inputs) # Copy matrix to avoid in-place
1790         → modification
1791
1792         # Check if results match using deep_compare
1793         if not deep_compare(actual_output, expected_output,
1794             → tolerance=1e-6):
1795             print(f"Test case {i + 1} failed:")
1796             print(f"  Inputs: {inputs}")
1797             print(f"  Expected: {expected_output}")
1798             print(f"  Actual: {actual_output}")
1799         else:
1800             print(f"Test case {i + 1} passed.")
1801
1802
1803 if __name__ == "__main__":
1804     test_cases = load_test_cases_from_json()
1805     run_tests_with_loaded_cases(test_cases)
1806
1807
1808
1809
1810

```

H.5 WSC PYTHON EXAMPLE: CALCULATE_NGRAM_REPEATITION

This example demonstrates a Weakly Self-Contained (WSC) task in Python. It requires interacting with a function from the standard library (“collections.Counter”) to calculate n-gram repetition in text.

Task Instruction

```

1811 from collections import Counter
1812
1813 def calculate_ngram_repetition(text: str, n: int) -> float:
1814     """
1815     Calculates the proportion of repeated n-grams in a given text.
1816
1817     This function splits the input text into words and generates n-grams
1818     → of the specified size `n`. It then computes the frequency of each
1819     → n-gram and determines the proportion of n-grams that appear more
1820     → than once. If there are no n-grams (e.g., when the text is empty
1821     → or `n` is larger than the number of words in the text), the
1822     → function returns 0.
1823
1824     Args:
1825         text (str): The input text to analyze, consisting of words
1826         → separated by spaces.
1827         n (int): The size of the n-grams to generate (e.g., 2 for bigrams,
1828         → 3 for trigrams).
1829
1830     Returns:
1831         float: The proportion of n-grams that are repeated in the text.
1832         → Returns 0 if no n-grams can be generated.
1833
1834     Raises:
1835         ValueError: If `n` is less than or equal to 0.
1836     """
1837     # TODO: Implement this function
1838     pass
1839
1840
1841
1842
1843

```

Testcase Generator

```

1836
1837 from hypothesis import settings, given, Verbosity, example
1838 from hypothesis import strategies as st
1839 import json
1840 import os
1841 import atexit
1842 import copy
1843 from collections import Counter
1844
1845 # Configuration
1846 TEST_CASE_DIR = os.path.abspath("test_cases")
1847 os.makedirs(TEST_CASE_DIR, exist_ok=True)
1848 TEST_CASE_FILE = os.path.join(TEST_CASE_DIR, "test_cases.json")
1849 generated_cases = []
1850 stop_collecting = False # Global flag to control case collection
1851
1852 # Ground truth function
1853 def calculate_ngram_repetition(text, n):
1854     words = text.split()
1855     ngrams = [tuple(words[i : i + n]) for i in range(len(words) - n + 1)]
1856     ngram_counts = Counter(ngrams)
1857     total_ngrams = len(ngrams)
1858     repeated_ngrams = sum(1 for count in ngram_counts.values() if count >
1859     ↪ 1)
1860     return repeated_ngrams / total_ngrams if total_ngrams > 0 else 0
1861
1862 # Strategies for generating inputs
1863 def text_strategy():
1864     return st.text(
1865         alphabet=st.characters(whitelist_categories='L', 'N', 'Z'),
1866         ↪ min_codepoint=32, max_codepoint=126),
1867         min_size=0, max_size=100
1868     )
1869
1870 def n_strategy():
1871     return st.integers(min_value=1, max_value=5)
1872
1873 # Hypothesis test configuration
1874 @settings(max_examples=10000, verbosity=Verbosity.verbose,
1875 ↪ print_blob=True)
1876 @given(text=text_strategy(), n=n_strategy())
1877 @example(text="", n=1)
1878 @example(text="a", n=1)
1879 @example(text="a b c", n=2)
1880 @example(text="a a b b c c", n=2)
1881 @example(text="a b c d e f", n=3)
1882 @example(text="a a a a a a", n=3)
1883 def test_calculate_ngram_repetition(text, n):
1884     global stop_collecting
1885     if stop_collecting:
1886         return
1887
1888     # Deep copy inputs to avoid modification
1889     text_copy = copy.deepcopy(text)
1890     n_copy = copy.deepcopy(n)
1891
1892     # Call func0 to verify input validity
1893     try:
1894         expected = calculate_ngram_repetition(text_copy, n_copy)
1895     except Exception:
1896         return # Skip inputs that cause exceptions
1897
1898     # Store inputs only
1899     generated_cases.append({
1900         "Inputs": {
1901             "text": text_copy,

```

```

1890             "n": n_copy
1891         }
1892     })
1893
1894     # Stop collecting after 500 cases
1895     if len(generated_cases) >= 500:
1896         stop_collecting = True
1897
1898     # Save test cases
1899     def save_test_cases():
1900         with open(TEST_CASE_FILE, "w") as f:
1901             json.dump(generated_cases, f, indent=2, ensure_ascii=False)
1902             print(f"✓ Saved {len(generated_cases)} test cases to"
1903             f" {TEST_CASE_FILE}")
1904
1905     atexit.register(save_test_cases)

```

Testcase Runner

```

1907
1908 import json
1909 import os
1910 import copy
1911 from collections import Counter
1912 from helper import deep_compare
1913 from tested import calculate_ngram_repetition as func1
1914
1915 # Configure save path
1916 TEST_CASE_DIR = os.path.abspath("test_cases")
1917 TEST_CASE_JSON_PATH = os.path.join(TEST_CASE_DIR, "test_cases.json")
1918
1919 # Ground truth function
1920 def calculate_ngram_repetition(text, n):
1921     words = text.split()
1922     ngrams = [tuple(words[i : i + n]) for i in range(len(words) - n + 1)]
1923     ngram_counts = Counter(ngrams)
1924     total_ngrams = len(ngrams)
1925     repeated_ngrams = sum(1 for count in ngram_counts.values() if count >
1926                           1)
1927     return repeated_ngrams / total_ngrams if total_ngrams > 0 else 0
1928
1929 def load_test_cases_from_json():
1930     if not os.path.exists(TEST_CASE_JSON_PATH):
1931         print(f"JSON file not found: {TEST_CASE_JSON_PATH}")
1932         return []
1933     with open(TEST_CASE_JSON_PATH, "r") as f:
1934         test_cases = json.load(f)
1935     return test_cases
1936
1937 def compare_outputs(expected, actual):
1938     # Use deep_compare for basic types (int, float, str, etc.)
1939     return deep_compare(expected, actual, tolerance=1e-6)
1940
1941 def run_tests_with_loaded_cases(test_cases):
1942     for i, case in enumerate(test_cases):
1943         inputs = copy.deepcopy(case["Inputs"])
1944         text = inputs["text"]
1945         n = inputs["n"]
1946
1947         # Run ground truth and function under test
1948         expected_output = calculate_ngram_repetition(text, n)
1949         actual_output = func1(text, n)
1950
1951         # Compare outputs
1952         if compare_outputs(expected_output, actual_output):

```

```
1944         print(f"Test case {i + 1} passed.")
1945     else:
1946         print(f"Test case {i + 1} failed:")
1947         print(f"  Inputs: {inputs}")
1948         print(f"  Expected: {expected_output}")
1949         print(f"  Actual: {actual_output}")
1950
1951 if __name__ == "__main__":
1952     test_cases = load_test_cases_from_json()
1953     run_tests_with_loaded_cases(test_cases)
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
```

1998
1999

I DETAILED EVALUATION

2000
2001

I.1 COMPUTE RESOURCES

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020

we detail the compute resources utilized for evaluating the Large Language Models on the CODE2BENCH-2509 benchmark. The evaluation was conducted on an infrastructure consisting of server-grade machines. Open-source models with fewer than 32B parameters (as listed in Table 2) were served using vLLM on a cluster equipped with NVIDIA GPUs. Specifically, these models were evaluated on machines featuring NVIDIA A100 80GB GPUs. The evaluation environment for these models was containerized to maintain isolation and consistency. For larger open-source models ($\geq 32B$ parameters) and all closed-source models, evaluation was performed by accessing their respective official APIs. The compute resources for these API-based evaluations are managed by the model providers and are not under our direct control or knowledge. Therefore, we cannot provide specific details on the underlying hardware, memory, or parallelization used by these providers. The Testcase Runner execution for each task (which involves loading test cases, running the generated code and ground truth, and performing differential testing) was primarily CPU-bound and ran on standard server CPUs, such as Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz, featuring 64 logical cores. These machines were equipped with 125 GiB of RAM and SSD storage for the benchmark data and test cases. The total compute time required for the comprehensive evaluation of all 16 models across the 1163 tasks in CODE2BENCH-2509 was substantial. While precise timing varies per model and task, we estimate the total GPU-hours consumed for the open-source model inferences to be approximately 200 GPU-hours. The total CPU-hours consumed for Testcase Runner execution across all models (including running the generated code and ground truth against approximately 500 tests per task per model) is estimated to be approximately 200 CPU-hours.

2021
2022
2023
2024
2025
2026
2027
2028

Benchmark Construction Cost. The construction of the CODE2BENCH-2509 suite is a computationally intensive but one-time investment. Generating a rigorous Property-Based Testing (PBT) suite with a guaranteed 100% branch coverage takes approximately **5 CPU-minutes per task**. This process includes the iterative generation of PBT driver code by the LLM, execution of test cases, and coverage verification. Constructing the entire suite required approximately **83 CPU-hours**. Crucially, this pipeline is embarrassingly parallelizable, allowing the entire benchmark to be regenerated in under one hour on a standard high-performance computing cluster, making continuous dynamic updates highly practical.

2029
2030
2031
2032
2033
2034

Lightweight Mode via Test Suite Minimization. To facilitate rapid model iteration and reduce evaluation overhead, we introduce a “Lightweight Mode.” We frame the test suite reduction as a Set Cover Problem and employ a greedy algorithm to select a minimal subset of test cases that maintains the original 100% branch coverage of the ground truth. This optimization typically reduces the test volume from ~ 500 to **30–50 test cases per task** (a $\sim 10\times$ reduction), significantly lowering the evaluation cost while preserving the diagnostic integrity regarding logical correctness.

2035
2036
2037

I.2 EVALUATION INSTRUCTION

2038
2039

Table 15: Prompt Template for SC-Python Benchmark Runner in CODE2BENCH

2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051**# System**

You are an expert in the field of coding, helping users write Python code.

Input

The user provides you with a function signature and docstring, you should generate a Python function based on them.

Output

““python The generated Python code. ““

Note

- Only output Python code with possible type import statements but without docstring and any additional information.

User

[Instruction]

2052 Table 16: Prompt Template for WSC-Python Benchmark Runner in CODE2BENCH
2053

2054	# System
2055	You are a highly skilled Python programming expert tasked with implementing a function based
2056	on its specification, using the allowed libraries.
2057	Implement the Python function described below. Your implementation should strictly adhere to
2058	the behavior specified in the docstring and utilize only the explicitly allowed external libraries.
2059	## Output Format
2060	““python The generated Python code. ““
2061	Provide ONLY the Python code for the function implementation with corrsponding libraries
2062	imported. Do not include any additional information or explanations.
2063	# User
2064	[Instruction]

2065 Table 17: Prompt Template for SC-Java Benchmark Runner in CODE2BENCH
2066

2068	# System
2069	You are an expert in the field of coding, helping users write Java code.
2070	## Input
2071	The user provides you with an function signature and docstring, you should generate a Java
2072	function based on them.
2073	## Output
2074	““java
2075	The generated Java code.
2076	““
2077	## Note
2078	- Provide only Java code within a ““java““ code block. Include a complete public class named
2079	Tested with package name and necessary imports. Do not add a main method or repeat the
2080	docstring.
2081	# User
2082	[Instruction]

2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106 J CASE STUDY: UNCOVERING THE ILLUSION OF CORRECTNESS

2108 Our diagnostic approach, combining a scaled source of real-world problems with the scaled rigor
 2109 of Property-Based Testing, allows us to move beyond simple pass/fail metrics and uncover nuanced
 2110 failure modes. This case study on a Weakly Self-Contained (WSC) task from CODE2BENCH-2509
 2111 illustrates how our framework reveals the critical gap between functional plausibility and engineering
 2112 robustness.

2114 J.1 THE TASK: A NUMERICALLY SENSITIVE PROBLEM

2116 WSC Task #81 requires the implementation of a `_first_divided_difference` function, a
 2117 common operation in numerical analysis. The ground-truth implementation, sourced from a mature
 2118 scientific Python library, is a highly efficient and numerically stable vectorized solution using NumPy:

```
2120 1 # Ground Truth (Vectorized, Numerically-Stable)
2121 2 def _first_divided_difference(d, fct, fctder, atol=1e-12, rtol=1e-12):
2122 3     dif = np.repeat(d[None, :], len(d), axis=0)
2123 4     close_ = np.isclose(dif, dif.T, atol=atol, rtol=rtol)
2124 5     dif[close_] = fctder(dif[close_])
2125 6     dif[~close_] = (fct(dif[~close_]) - fct(dif.T[~close_])) / \
2126 7         (dif[~close_] - dif.T[~close_])
2127 8     return dif
```

2128 J.2 THE “NEAR-PERFECT” BUT FLAWED LLM SOLUTION

2130 Remarkably, nearly all 10 evaluated models failed this task in the exact same way. They did not
 2131 produce syntax errors or obvious logical flaws. Instead, they generated a functionally plausible
 2132 solution that mimics a textbook implementation using scalar Python loops:

```
2134 1 # Typical LLM-Generated Solution (Scalar, Naive)
2135 2 def _first_divided_difference(d, fct, fctder, atol=1e-12, rtol=1e-12):
2136 3     n = len(d)
2137 4     fdd = np.zeros((n, n))
2138 5     for i in range(n):
2139 6         for j in range(n):
2140 7             if np.isclose(d[i], d[j], atol=atol, rtol=rtol):
2141 8                 fdd[i, j] = fctder(d[i])
2142 9             else:
2143 10                 fdd[i, j] = (fct(d[i]) - fct(d[j])) / (d[i] - d[j])
2144 11     return fdd
```

2144 The diagnostic power of our benchmark is revealed in how this seemingly correct solution failed. The
 2145 code generated by DeepSeek-V3 for this task passed an astonishing **98.8%** of our PBT-generated
 2146 test cases (494 out of 500). It only failed on a few specific, numerically challenging inputs where
 2147 the different order of floating-point operations between the vectorized and scalar approaches led to
 2148 minute rounding errors. These tiny discrepancies, while functionally insignificant in many contexts,
 2149 were caught by our strict-tolerance deep comparison function. For example, one failing test case
 2150 reported:

2151 > Mismatch found. Expected: ...219e-08, Actual: ...224e-08

2153 J.3 ACTIONABLE INSIGHTS FROM A “NEAR-MISS” FAILURE

2155 This single “near-miss” failure pattern, consistent across the entire model spectrum, provides several
 2156 highly actionable insights that would be invisible to conventional benchmarks:

2157

- 2158 • **For LLM Developers:** This reveals that models learn to be *academically correct*, but
 2159 not *industrially robust*. They successfully reproduce textbook patterns but lack essential
 engineering knowledge regarding idiomatic code (vectorization), performance optimization,

2160 and numerical stability. To close this gap, training data should be augmented to explicitly
2161 reward these non-functional properties. Our benchmark, with its real-world ground truths
2162 and precision-sensitive tests, provides ideal data for such targeted fine-tuning.

2163

- 2164 • **For Benchmark Designers:** This case powerfully validates our deep testing approach and
2165 exposes the limitations of shallow test suites. A typical benchmark, likely using only a few
2166 simple integer-based test cases, would have falsely labeled this numerically unstable solution
2167 as a success. Only through the exhaustive, edge-case-driven nature of our PBT methodology
2168 is the critical difference between a “toy” solution and a robust one revealed—penalizing
2169 brittle, “good-enough” outputs and rewarding true engineering rigor.

2170 This example epitomizes the diagnostic philosophy of CODE2BENCH: to not just reveal *what* fails,
2171 but to provide deep insights into *why* it fails and *how* future models can be improved.

2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

2214 **K SCALABILITY**
 2215

2216 **K.1 ADVANCED EXTENSIBILITY: HIERARCHICAL DEPENDENCY RESOLUTION**
 2217

2218 The dependency classification into SC and WSC, as described in the main paper, provides a robust
 2219 foundation for benchmark curation. However, a significant portion of real-world code involves
 2220 functions that call other project-internal functions. While these are classified as Project-Dependent
 2221 (PD) and typically discarded, a substantial subset of them are, in fact, hierarchically testable. This
 2222 observation opens a powerful new avenue for *Scaling the Source* even further.

2223 **K.1.1 THE CONCEPT OF LAYERED SELF-CONTAINED (LSC) TASKS**
 2224

2225 We define a **Layered Self-Contained (LSC)** function as a function that is not strictly SC or WSC
 2226 itself, but whose entire set of project-internal dependencies recursively resolves to a set of functions
 2227 that are all either SC or WSC.

2228 Consider a function f_A that calls another internal function f_B .
 2229

- 2230 • If f_B is Self-Contained (SC), then the functional behavior of f_A is fully determined by its
 2231 own logic and the well-defined, dependency-free logic of f_B .
- 2232 • Similarly, if f_B is Weakly Self-Contained (WSC), the behavior of f_A is determined by its
 2233 logic and the behavior of f_B , which itself is only dependent on a set of allowed public
 2234 libraries.

2235 In both cases, the complete functional behavior of the top-level function f_A can be fully specified
 2236 and is not reliant on any un-testable, opaque, or proprietary internal state. Therefore, it is a suitable
 2237 candidate for a rigorous, standalone benchmark task.

2238 **K.1.2 METHODOLOGY FOR LSC TASK GENERATION AND VERIFICATION**
 2239

2240 Our CODE2BENCH framework can be extended to identify and generate these LSC tasks through a
 2241 recursive dependency analysis powered by our Scope Graph:
 2242

- 2243 1. **Recursive Dependency Resolution:** When a function f_A is initially classified as PD
 2244 due to a call to an internal function f_B , our framework does not immediately discard it.
 2245 Instead, it recursively runs the dependency analysis on f_B . This process continues until all
 2246 dependencies are either resolved to primitives, allowed libraries, or the dependency chain
 2247 terminates.
- 2248 2. **Hierarchical Test Oracle Construction:** To create a test oracle for an LSC function like f_A ,
 2249 we provide not only its own source code but also the source code of its entire dependency tree
 2250 of SC/WSC functions (e.g., f_B , and any functions f_B calls). This complete, self-contained
 2251 bundle of functions serves as the ground-truth implementation.
- 2252 3. **PBT-based Verification:** Property-Based Testing is then applied to the top-level function
 2253 f_A . The PBT engine generates inputs for f_A , and the complete, bundled ground-truth
 2254 implementation is executed to generate the expected outputs. The 100% branch coverage
 2255 quality gate is applied to this entire bundle, ensuring that the tests thoroughly exercise not
 2256 only the logic of f_A but also the interactions with its internal dependencies.

2257 This extension to handle LSC tasks dramatically increases the pool of high-quality, testable functions
 2258 that can be extracted from real-world repositories. It allows our framework to capture more complex,
 2259 multi-function interactions that are representative of real-world software design, while still maintain-
 2260 ing the rigorous, deterministic verifiability that is the hallmark of our approach. This represents a
 2261 significant future direction for scaling the realism and complexity of the CODE2BENCH suite.

2262 **K.2 GENERATING SYNTAX-AWARE CODE COMPLETION TASKS**
 2263

2264 A key design principle of the CODE2BENCH framework is its extensibility beyond single-function
 2265 generation. The true assets curated by our pipeline are the large collection of high-quality, real-world
 2266 ground-truth functions, each paired with a comprehensive suite of high-coverage Property-Based

2268 Tests. This powerful combination of a "solution" (f_{gt}) and a rigorous "verification" mechanism
 2269 (the PBT suite) provides a uniquely powerful foundation for generating a wide array of challenging
 2270 and realistic software engineering tasks. In this section, we detail how our framework can be
 2271 systematically extended to **Code Completion**.

2272 Our framework can automatically generate high-quality, syntax-aware "fill-in-the-middle" code
 2273 completion tasks. Inspired by prior work on structured code completion Gong et al. (2024), we can
 2274 leverage our curated SC and WSC function pools to create distinct types of completion challenges:
 2275

- 2276 • **Completion-SC (Algorithmic Logic Completion):** For our Self-Contained (SC) tasks,
 2277 which are rich in algorithmic logic, we can create completion benchmarks by masking entire
 2278 logical blocks.
- 2279 • **Completion-WSC (API Call Completion):** For our Weakly Self-Contained (WSC) tasks,
 2280 which are centered on library usage, we can create completion benchmarks by masking
 2281 specific API calls.

2283 K.3 RIGOROUS VERIFICATION VIA PBT

2284 The most significant advantage of deriving completion tasks from CODE2BENCH is the automatic
 2285 inheritance of our rigorous verification mechanism. Unlike many completion benchmarks that rely
 2286 on simple syntactic checks (e.g., exact match or BLEU score), we can evaluate the **functional**
 2287 **correctness** of the completed code.

2289 K.4 FUNCTIONAL CORRECTNESS VS. ROBUSTNESS TRADE-OFF.

2290 As highlighted by reviewers, our stringent 100% branch coverage gate effectively filters out complex
 2291 defensive logic (e.g., unreachable error handling branches) that is difficult to trigger via random inputs.
 2292 This represents a deliberate strategic choice: we prioritized establishing an unimpeachable "gold
 2293 standard" for core algorithmic and logical correctness over the coverage of defensive programming
 2294 constructs. While this ensures absolute verifiability, it temporarily de-emphasizes the evaluation of
 2295 code robustness. However, our framework is designed to retrieve this filtered data. In future work,
 2296 we plan to construct a dedicated "Robustness Benchmark" by tasking models to add comprehensive
 2297 error handling (e.g., `try-catch`, input validation) to the verifiable "happy path" implementations
 2298 curated in this work.

2300 K.5 BEYOND FUNCTION-LEVEL ISOLATION.

2301 The current iteration focuses on function-level tasks to ensure unit-testable rigor. We acknowledge
 2302 that real-world software engineering involves complex, project-level dependencies. Crucially, our
 2303 framework is methodologically ready for this expansion. Our Scope Graph analysis (§??) natively
 2304 supports resolving cross-file dependencies and class hierarchies. By combining this with Stateful
 2305 Property-Based Testing (Stateful PBT), which can generate sequences of API calls rather than static
 2306 data, we envision scaling our rigorous verification pipeline to *Project-Dependent (PD)* tasks that
 2307 assess multi-function interactions and state management.

2310 K.6 MULTI-DIMENSIONAL EVALUATION.

2311 Our primary metric is Pass@1 based on functional correctness. While fundamental, this does not
 2312 directly measure other code quality attributes such as efficiency, security, or readability. However,
 2313 our massive suite of ground-truth functions and generated test cases serves as a versatile asset. Future
 2314 iterations can leverage these assets to benchmark execution time (efficiency), check against secure
 2315 coding standards (security), or serve as references for style compliance (readability), providing a
 2316 more holistic assessment of LLM coding capabilities.

2322 **L LIMITATIONS**

2323

2324 Despite its strengths in generating dynamic, rigorously tested, and realistic tasks focusing on func-
 2325 tional correctness, CODE2BENCH-2509, like many benchmarks, has limitations in its evaluation
 2326 scope. Our primary focus is on assessing the **functional correctness** of generated code, measured
 2327 through Pass@1 against comprehensive PBT-generated test suites. While functional correctness is
 2328 paramount, real-world software development necessitates evaluating other crucial aspects of code
 2329 quality, such as efficiency, readability, style, security, robustness to invalid inputs, and the ability to
 2330 generate accompanying documentation or tests. CODE2BENCH-2509 currently does not directly
 2331 evaluate these important dimensions.

2332 Furthermore, the current iteration of CODE2BENCH-2509 primarily focuses on code generation tasks,
 2333 where models are required to generate a complete function implementation based on a natural language
 2334 instruction and function signature. However, the underlying structure of the benchmark, including the
 2335 availability of ground truth implementations and the rigorous, diverse test cases generated via PBT,
 2336 offers significant potential for evaluating LLM capabilities beyond simple generation. By leveraging
 2337 the ground truth and PBT-generated test suites, the framework could be extended to support other
 2338 task types crucial for software development workflows, such as code completion (filling in missing
 2339 parts of code), code editing/repair (modifying existing code to meet new requirements or fix bugs),
 2340 and assessing code reasoning abilities through execution prediction or debugging tasks. Expanding to
 2341 these diverse task types would provide a more comprehensive evaluation of LLMs' understanding
 2342 and manipulation of code, moving beyond pure synthesis.

2343 Future work could explore extending the benchmark to incorporate metrics and testing methodologies
 2344 for some of these additional code quality attributes and diverse task types, providing a more holistic
 2345 assessment of LLM capabilities in a full software development context.

2346 Our evaluation focuses on a diverse suite of state-of-the-art, instruction-following code generation
 2347 models. We acknowledge that our study does not include models specifically designed or fine-tuned
 2348 for multi-step, competitive-programming-style reasoning (e.g., models employing complex search
 2349 algorithms or Chain-of-Thought prompting for code). This exclusion was a deliberate choice based
 2350 on two primary considerations. First, our preliminary explorations indicated that the verbose, multi-
 2351 step reasoning outputs of such models often exceeded practical token limits for our large-scale,
 2352 automated evaluation harness, presenting significant computational and financial costs. Second, and
 2353 more critically, the primary goal of CODE2BENCH is to evaluate a model's ability to generate direct,
 2354 production-style code from real-world specifications, a task for which current instruction-following
 2355 models are the most direct fit. While evaluating deep reasoning capabilities is an important research
 2356 direction, it represents a different evaluation paradigm that is beyond the scope of our current study.

2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375