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Abstract

The combination of the Bayesian game and learning has a rich history, with the
idea of controlling a single agent in a system composed of multiple agents with
unknown behaviors given a set of types, each specifying a possible behavior for
the other agents. The idea is to plan an agent’s own actions with respect to those
types which it believes are most likely to maximize the payoff. However, the
type beliefs are often learned from past actions and likely to be incorrect. With
this perspective in mind, we consider an agent in a game with type predictions of
other components, and investigate the impact of incorrect beliefs to the agent’s
payoff. In particular, we formally define a tradeoff between risk and opportunity
by comparing the payoff obtained against the optimal payoff, which is represented
by a gap caused by trusting or distrusting the learned beliefs. Our main results
characterize the tradeoff by establishing upper and lower bounds on the Pareto
front for both normal-form and stochastic Bayesian games, with numerical results
provided.

1 Introduction
“When written in Chinese, the word ‘crisis’ is composed of two characters. One
represents danger and the other represents opportunity.” — John F. Kennedy

The famous quote above from John F. Kennedy, that the word ‘crisis’ (known as危機 in Chinese)
captures the dual nature of danger and opportunity, provides an interesting metaphor for the inherent
complexities within real-world multi-agent systems. These systems, where risk and opportunity
are often inextricably linked, play a pivotal role across diverse domains, ranging from human-AI
collaboration [1] and cyber-physical systems [2], to highly competitive environments like real-time
strategy games [3] and poker [4].

In conventional applied and theoretical frameworks, it is typically assumed that all agents either
cooperate or adhere to pre-defined policies [5, 6, 7, 8]. However, real-world scenarios often defy these
simplifications, presenting agents that display a spectrum of behaviors ranging from cooperative, to
heterogeneous, irrational, or even adversarial [9]. This deviation from expected behavior patterns
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complicates the dynamics of multi-agent systems, as agents cannot reliably predict the actions of
their counterparts. The uncertainty regarding whether to trust or distrust predictions naturally leads to
a critical tradeoff between the coexisted risk and opportunity, reflecting the dual aspects highlighted
in Kennedy’s remark.

As critical examples, Bayesian games [10, 11] provide an approach for modeling differing types
of agents in strategic environments. In these games, players form beliefs about others’ types and
update beliefs in response to observed actions and choose their actions accordingly. For example, in
competitive settings like poker or even in simple games like matching pennies, deviating from the
game theoretic optimal (GTO) strategy [12, 13] to exploit weaker opponents can be beneficial, but this
approach also relies on potentially flawed type beliefs [6], making it risky to take advantage of such
side-information. Similarly, in real-world problems like security games, having a prior distribution
of attackers’ behavioral types in a Bayesian game setting leads to advantages. However, exploiting
incorrect types can be risky compared to just using minimax strategies. Despite the ubiquity of
incorrect type beliefs in practical scenarios, limited attention has been paid to explore such a tradeoff,
with exceptions in designing heuristically safe and exploitative strategies in specific contexts, such as
with Byzantine adversaries [9] and sequential games [14].

Inaccuracies in beliefs about others’ types may arise from factors such as using out-of-distribution
data to generate priors, changes in opponents’ behaviors, or mismatches between hypothesized types
and the optimal type space, etc. As noted in [15], it is evident that prior beliefs significantly affect
the long-term performance of type-based learning algorithms like the Harsanyi-Bellman Ad Hoc
Coordination (HBA). Although algorithms like HBA demonstrate asymptotic convergence to correct
predictions or type distributions through various methods of estimating posterior beliefs, and methods
exist for detecting inaccuracies in type beliefs using empirical behavioral hypothesis testing [15], the
theoretical capabilities of general algorithms remain uncertain.

In general, relying on learned beliefs presents a fundamental tradeoff between the potential payoffs
from exploitative play and the risk of incorrect type beliefs. Given the potential inaccuracies in these
type beliefs, relying on them to exploit opponents could lead to high-risk strategies. Conversely, not
exploiting these beliefs might result in overly cautious play. Therefore, it is natural to investigate the
impact of incorrect beliefs on the agent’s payoff, in terms of a tradeoff between trusting or distrusting
the beliefs of types provided by type-based learning algorithms (e.g., Bayesian learning [16], best
response dynamics [17], and policy iteration with neural networks [18], etc.) in multi-agent systems.
To summarize the focus of this paper, we aim to address the following critical question:

What is the fundamental tradeoff between trusting/distrusting type beliefs in games?

Contributions. Motivated by the above question, we analyze the following payoff gap that arises
from erroneous type beliefs:

∆(ε;π) := max
d(θ,θ⋆)≤ε

(
max
ϕ

Payoff(ϕ, θ⋆)− Payoff(π(θ), θ⋆)

)
, (1)

where θ and θ⋆ are predicted and true type beliefs respectively; d(·, ·) measures the distance between
θ and θ⋆ bounded from above by ε and will be formally specified with concrete model contexts in
Section 3 and Section 4, together with the payoff, denoted by Payoff(·, ·) as a function of the true
type θ⋆ and the used strategy π. The agent uses a strategy π that depends on the type belief θ. Overall,
the payoff difference (1) above quantifies the worst-case gap between the optimal payoff (obtained
using an optimal strategy that maximizes Payoff(·, θ⋆)), and the payoff corresponding to π.

In particular, when the agent’s strategy π trusts the belief θ, it takes the opportunity to close the gap
in (1) when the belief error ε is small. However, when ε increases, such a strategy incurs a high risk
since it trusts the incorrect θ. Evaluating the payoff gap in (1) naturally yields a tradeoff between
opportunity and risk, as illustrated on the right of Figure 1. To be more precise, we measure the
tradeoff between two important quantities:
(Missed) Opportunity: ∆(0;π), corresponding to the case when the type beliefs are correct;
Risk: maxε>0 ∆(ε;π) measuring the payoff difference incurred by worst-case incorrect beliefs.
In summary, the (missed) opportunity measures the discrepancy of a strategy π from the optimal
strategy, which is aligned with the ground truth belief θ⋆ of other players in terms of the obtained
payoff. Additionally, the risk quantifies how inaccurate beliefs impact the difference in terms of
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Figure 1: Left: A stochastic Bayesian game where an agent interacts with an environment and
opponents, with a belief of their types θ ∈ Θ. Right: The tradeoff between trusting and distrusting
type beliefs, with trust leading to higher risk and opportunity and distrust resulting in lower risk and
opportunity, implying an opportunity-risk tradeoff with varying strategy π.

payoffs in the worst case. The goal of this paper is to investigate safe and exploitative strategies in
Bayesian games that achieve near-optimal opportunity and risk.

Our main results are two-fold. Firstly, in normal-form Bayesian games, we characterize a tradeoff
between the opportunity and risk. We consider a strategy as a convex combination of a safe strategy
and the best response given type beliefs. Upper bounds on opportunity and risk are provided in
Theorem 3.1. Conversely, lower bounds that hold for any mixed strategy are shown in Theorem 3.2.
Notably, when the game is fair, and the hypothesis set Θ is sufficiently large, these bounds tightly
converge. Secondly, we explore a dynamic setting in stochastic Bayesian games, where an agent,
provided with type beliefs about other players, engages in interactions over time, as illustrated in
Figure 1. Unlike the normal-form approach, we utilize a value-based strategy that establishes upper
bounds on opportunity and risk, as outlined in Theorem 4.1. Additionally, Theorem 4.2 provides lower
bounds on opportunity and risk that differ from the upper bounds by multiplicative constants, yielding
a characterization of the opportunity-risk tradeoff. Finally, a case study of a security game, simulating
a defender protecting an elephant population from illegal poachers, is provided in Section 5.

2 Related Work
Learning Types in Games. The concept of type-based methods dates back to the development of
Bayesian games, as first established by Harsanyi in the late 1960s [10, 11]. The concepts of learning
and updating beliefs appear in pioneering works like the adaptive learning [19]. While much game
theory research, including work by Kalai et al. [20], focuses on equilibrium analysis through Bayesian
belief-based learning, other studies, such as those by Nachbar et al. [21, 22] and [23, 24], reveal the
challenges players face in making correct predictions while playing optimally under certain game
conditions and assumptions. From an application perspective, Southey et al. [25] applied type-based
methods to poker, where players’ hands are partially hidden. They demonstrated how to maintain and
use beliefs to determine the best strategies in this setting. Besides classic results exemplified above,
closely related to our results, the recent work by Milec et al. [14] addresses the limitations of Nash
equilibrium strategies in two-player extensive-form games, particularly their inability to exploit the
weaknesses of sub-optimal opponents. They defined the exploitability of a strategy as the expected
payoff that a fully rational opponent can gain beyond the game’s base value and introduced a method
that ensures safety, defined as an upper limit on exploitability compared to the payoff obtained using
a Nash equilibrium strategy. However, the proposed tradeoff between the exploitation of the opponent
given the correct model and safety against an opponent who can deviate arbitrarily from the predicted
model is applicable specifically to an algorithm that employs a continual depth-limited restricted
Nash response.

Online Decision-Making with Predictions. The tradeoff between opportunity and risk analyzed
in this work is motivated by the recent progress in algorithms with predictions, also known as
learning-augmented algorithms [26, 27] for online decision-making problems such as caching [28,
29, 30], bipartite matching [31], online optimization [32, 33], control [34, 35, 36, 37], valued-based
reinforcement learning [38, 39, 40], and real-world applications [41, 42, 43, 44]. This line of
work investigates the impact of untrusted predictions on two key metrics known as consistency
and robustness, which are defined based on the competitive ratio of the considered contexts. It is
also worth highlighting that previous works in decision-making often provide best-of-both-worlds
guarantees for both stochastic and adversarial environments [45, 46, 46], while the results in this
work shed light on studying the intermediate regimes that do not fully align with either stochastic or
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adversarial settings and delves into interactive environments formed by players whose behaviors may
deviate from the type beliefs.

Stochastic Bayesian Games. Our results presented in Section 4 draw on foundational concepts
from stochastic Bayesian games as outlined by Albrecht et al. [47, 15], which merge concepts of the
Bayesian games [10, 11] and the stochastic games [48], with applications in cooperative multi-agent
reinforcement learning [9]. In [15], three methods—product, sum, and correlated—for integrating
observed evidence into posterior beliefs have been explored. Specifically, it has been demonstrated
that the Harsanyi-Bellman Ad Hoc Coordination (HBA) eventually make right future predictions
under specific conditions using the product posterior beliefs. However, while HBA may eventually
align with the correct type distribution, it is not guaranteed to learn it with the product posterior
beliefs. Under certain conditions, HBA with the sum and correlated posterior converges to the correct
type distribution. Nonetheless, even though methods like empirical behavioral hypothesis testing are
available to detect inaccuracies in type beliefs, a comprehensive theoretical analysis is still lacking.

3 Normal-Form Bayesian Games with Untrusted Type Beliefs

Let ∥ · ∥1 denote the ℓ1-norm and ∥ · ∥max denote the element-wise max norm.

3.1 Problem Setting, Opportunity, and Risk

Consider a normal-form game with two players: Player 1 possesses a payoff matrix A ∈ Ra×b with
∥A∥max ≤ α, where the first player has a choices of the rows and the second player has b choices of
the columns of A. Player 1 forms a belief about Player 2’s mixed strategy, denoted by a probability
distribution ρ over a set of hypothesized strategies Θ that contains a ground truth strategy y⋆.2

As a concrete example of the payoff gap proposed in (1), the following benchmark characterizes the
gap between payoffs obtained by a strategy with machine-learned belief ρ and an optimal strategy
knowing y⋆ beforehand:

∆NFG(ε;π) := max
d(ρ,y⋆)≤ε

(
max
x∈Pa

x⊤Ay⋆ − π(ρ)⊤Ay⋆
)
, (2)

given a fixed policy π : PΘ → Pa that outputs a mixed strategy of the first player knowing ρ, where
d (ρ, y⋆) := ∥Eρ[y]− y⋆∥1, PΘ and Pa are sets of probability distributions on Θ and the a different
choices of rows respectively.

In particular, we focus on measuring a tradeoff between two important quantities, the (missed)
opportunity ∆NFG(0;π) and the risk maxε>0 ∆NFG(ε;π). In addition, a strategy π is β-foregone if
∆NFG(0;π) ≤ β(π) and δ-risky if maxε>0 ∆NFG(ε;π) ≤ δ(π). The former measures how far the
considered strategy π is away from the optimal strategy knowing the ground truth type y⋆ of Player 2
in terms of the payoff obtained; the latter quantifies the worst-case impact of inaccurate belief on the
payoff difference.

3.2 Motivating Example: Matching Pennies

Before presenting general results, we illustrate the underlying concepts through a simple normal-form
game. Consider the matching pennies game as a classic example, where the mixed strategies for
players as defined follows.

Suppose a = b = 2 and each of the two players has the option to choose either Heads (H) or Tails (T).
Let y⋆ ∈ [0, 1] be the true probability that Player 2 plays H and 1− y⋆ the probability of playing T.
Suppose the hypothesis set Θ contains all possible mixed strategies, each corresponding to a type of
Player 2. Then, Player 1 receives a belief of y⋆, denoted by y. Similarly, let x be the probability that
Player 1 plays H and 1− x the probability of playing T. If two players’ actions match, Player 1 will
receive 1 and −1 otherwise. The problem setting is summarized in Figure 2. Given y⋆ and x, the
expected payoff is therefore (2y⋆ − 1)(2x− 1). The best response of Player 1, depending on y, is

2Note that we assume y⋆ ∈ Θ for the ease of presentation aligning with Assumption 1 in [15], and our results
can be easily generalized to the case when Θ does not contain y⋆ by modifying the definition of ε to incorporate
incomplete or incorrect hypothesized types.
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Figure 2: Left: Matching Pennies payoff matrix for Player 1 (row player) with type belief y and
Player 2 (column player) whose strategy is defined by y⋆. Right: Opportunity-risk tradeoff that
satisfies ∆MP(0;π) + maxε ∆MP(ε;π) = 2.

characterized by:

BR(y) =


x = 0 if y < 1

2 ,

x ∈ [0, 1] if y = 1
2 ,

x = 1 if y > 1
2 .

(3)

Given a strategy π : [0, 1] → [0, 1], the payoff gap in (2) for this example is instantiated as

∆MP(ε;π) := max
|y−y⋆|≤ε

2
(
(2y⋆ − 1)BR(y⋆)− (2y⋆ − 1)π(y)

)
. (4)

Impossibility. We first consider an arbitrary strategy π : [0, 1] → [0, 1] that is (1 − λ)-foregone.
Suppose π chooses H with a probability π(y) and T with a probability 1− π(y). Therefore, setting
ε = 0, the payoff gap must satisfy ∆MP(0;π) = maxy∈[0,1] 2(2y − 1) (BR(y)− π(y)) ≤ 1− λ,
which implies π (0) ≤ (1− λ)/2 and π (1) ≥ (1 + λ)/2 by setting y = 0 and y = 1, respectively.
Thus, plugging in y⋆ = 1 and y = 0, we conclude that

max
ε

∆MP(ε;π) ≥ max
|y−y⋆|≤1

2 (BR(y⋆)− π(y)) ≥ 2 (BR(1)− π(0)) ≥ 1 + λ,

since BR(1) = 1 by (3). This implies that π has to be at least (1 + λ)-risky. Note that this argument
holds for any arbitrarily chosen π.

Mixed Strategy Existence. Now, let us construct a concrete strategy to derive upper bounds on the
(missed) opportunity and risk. The idea is to combine the strategy BR(y), which exploits the belief y
of types, and the Nash equilibrium strategy of this game, known as x = 1/2, which is a solution of
the minimax problem miny∈[0,1] maxx∈[0,1](2y − 1)(2x− 1) that enhances safety.

Fix π(y) := λBR(y) + (1− λ)x a mixed strategy as a convex combination of the two strategies.

The payoff gap in (4) satisfies

∆MP(ε;π) ≤ max
|y−y⋆|≤ε

2(2y⋆ − 1)
(
λ (BR(y⋆)− BR(y)) + (1− λ) (BR(y⋆)− 1/2)

)
.

Opportunity: Therefore, there exists a mixed strategy π such that when ε = 0 (i.e., BR(y) = BR(y⋆)),
its (missed) opportunity is bounded by

∆MP(0;π) = max
y∈[0,1]

2(2y − 1) (1− λ) (BR(y)− 1/2) ≤ 1− λ.

Risk: Moreover, maximizing over ε such that y = 0, y⋆ = 1, BR(y⋆)− BR(y) = 1, the risk for π
always satisfies maxε ∆MP(ε;π) ≤ 1 + λ.

Pareto Optimality In conclusion, above construction shows that there is a mixed strategy π for the
matching pennies that is (1 − λ)-foregone and (1 + λ)-risky. Conversely, any (1 − λ)-foregone
strategy must be at least (1 + λ)-risky. The segment on the right of Figure 2 represents a Pareto front,
and the strategy constructed as a convex combination is confirmed to be Pareto optimal following the
arguments above. This motivating example indicates a tight tradeoff between opportunity and risk for
matching pennies. In the sequel, we further generalize this result to normal-form games.
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3.3 Opportunity-Risk Tradeoff for Normal-Form Games

In general, the opportunity-risk tradeoff depends on the hypothesis set Θ that contains a subset of
candidate strategies and the payoff matrix of the game. We state useful definitions to characterize
properties of the hypothesis set Θ and the considered normal-form game.
Definition 1. Given a hypothesis set Θ, we let the diameter of Θ with respect to the ℓ1-norm be
η(Θ) := maxy,z∈Θ ∥y − z∥1. Define the following type intensity

κ(Θ) := max
y,z∈Θ

 ∑
i:yi≤zi

zi −
∑

i:yi>zi

zi

 subject to
∑

i:yi≤zi

yi <
∑

i:yi>zi

yi. (5)

Furthermore, with fixed Θ and A, we define the maximum and value of the game by

µΘ(A) := max
y∈Θ

max
x∈Pa

∣∣x⊤Ay
∣∣ (maximum), νΘ(A) := min

y∈Θ
max
x∈Pa

x⊤Ay (value). (6)

The type intensity, as defined in (5), quantifies the divergence between two distributions within the
set Θ, specifically those that maximize the given objective. As the density of Θ increases, the value
of κ(Θ) approaches 1.
Theorem 3.1 (NFG EXISTENCE). Fix any Θ and consider a general-sum normal-form game where
Player 1 has a payoff matrix A ∈ Ra×b with µΘ(A) ≤ µ and νΘ(A) ≥ ν. For any 0 ≤ λ ≤ 1,
there exists a mixed strategy π : PΘ → Pa for Player 1 that is (1 − λ) (µ− ν)-foregone and
((1− λ) (µ− ν) + λµη(Θ))-risky.

To show Theorem 3.1, we construct a mixed strategy as follows. Denote by x as the following
safe/minimax strategy of Player 1, which is the Nash equilibrium when the game is zero-sum:

min
y∈Θ

x⊤Ay = max
x∈Pa

min
y∈Θ

x⊤Ay. (7)

Motivated by the matching pennies example in Section 3.2, Player 1 implements a mixed strategy
π(ρ) := λx̃+(1−λ)x given the predicted belief ρ as a distribution over types in Θ, where x̃ ∈ Pa is
a best response strategy given ρ such that x⊤AEρ[y] is maximized. The detailed proof of Theorem 3.1
is provided in Appendix A.

Moreover, we further show the following impossibility result, indicating that the tradeoff in Theo-
rem 3.1 is tight. We relegate the proof of Theorem 3.2 to Appendix B.
Theorem 3.2 (NFG IMPOSSIBILITY). For any Θ satisfying κ(Θ) ≥ 0, there is a payoff matrix
A ∈ Ra×b with µΘ(A) ≤ µ and νΘ(A) ≥ ν such that for any 0 ≤ λ ≤ 1, if any mixed strategy
π : PΘ → Pa for Player 1 is (1− λ) (µ− ν)-foregone, then it is at least (κ(Θ)µ− ν) (1 + λ)-risky.

In particular, Theorem 3.1 and 3.2 together imply the following special case when the hypothesis
set Θ contains all possible mixed strategies in Pb. This corollary highlights that for a fair game, the
tradeoff is tight and the mixed strategy π(ρ) := λx̃+(1−λ)x with λ ∈ [0, 1] is Pareto optimal when
the hypothesis set contains all possible mixed strategies.
Corollary 3.1 (NFG PARETO OPTIMALITY). Suppose Θ = Pb and the game is fair, where Player 1
has a payoff matrix A ∈ Ra×b with ∥A∥max ≤ α. For any 0 ≤ λ ≤ 1, there exists a mixed strategy
π for Player 1 that is (1− λ)α-foregone and (1 + λ)α-risky. Furthermore, there is a payoff matrix
A ∈ Ra×b with ∥A∥max ≤ α such that for any 0 ≤ λ ≤ 1 if any mixed strategy π for Player 1 is
(1− λ)α-foregone, then it is at least (1 + λ)α-risky.

It is worth noting that the requirement can be relaxed straightforwardly so that as long as the
hypothesis set contains two mixed strategies such that κ(Θ) = 1 in (5), the statement holds. The
proof of Corollary 3.1 can be found in Appendix C.

4 Stochastic Bayesian Games with Untrusted Type Beliefs

In many real-world applications, agents are coupled through a shared state in stochastic Bayesian
games [47, 15], which combines standard Bayesian games [10, 11] with the stochastic games [48].
In this section, we consider an infinite-horizon time-varying discounted n-player stochastic Bayesian
game, represented by a tuple M := ⟨S,A,Θ, σ, p, r, γ⟩, and analyze the impact of beliefs on the
opportunity-risk tradeoff.
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4.1 Preliminaries: MDP for Stochastic Bayesian Games

Let S be a finite set of states. Write N := {1, . . . , n}. Let A(i) be the set of finitely many actions that
player i ∈ N can take at any state s ∈ S. Furthermore, A := A(1)× · · · × A(n) denotes the set of
action profiles a = (a(i) : i ∈ N ) with a(i) ∈ A(i). The types of other players are unknown to i-th
player. The set Θ =

∏
j ̸=i Θ(j) is a product type space where each opponent j chooses types from

Θj . We focus on the decision-making of the i-th player, considering stationary (Markov) strategies.3
At each time t ≥ 0 each player j ̸= i uses a mixed strategy πj : S ×Θ(j) → PA(j) parameterized
by a type that depends on the current state and the true type θ⋆j ∈ Θ(j). We use r : S ×A → R to
denote the reward function for the i-th player, which is assumed to be bounded, as formally defined
below.
Assumption 1. The reward r : S ×A → R satisfies that |r(s, a)| ≤ rmax for all s ∈ S, a ∈ A.

For any pair of states (s, s′) and action profile a ∈ A, we define p(s′|s, a) as a transition probability
from s to s′ given an action profile a. Finally, let γ ∈ (0, 1) be a discount factor. We define the
expected utility of the i-th player using a strategy πi as the expected discounted total payoff

J
(
πi; θ

⋆
−i

)
:= E

[ ∞∑
t=0

γtr (st, at)

]
, (8)

where θ⋆−i := (θ⋆j ∈ Θ(j) : j ̸= i), with respect to stochastic processes (st ∼ p (· | st−1, at−1))t>0

and (at(i) ∼ πi (st))t≥0, which generate the state and the action trajectories. The expectation in (8)
is taken with respect to all randomness induced by the initial state distribution s0 ∼ p0 ∈ PS , the
state transition kernel p, and strategy profile π (as well as opponents’ types in Θ).

4.2 Opportunity, Risk, and Type Beliefs

Suppose the i-th player has beliefs of the other players’ types, provided by a machine-learned
forecaster, denoted by θ−i. For notational simplicity, we write πi, the strategy for the i-th player as
π, and the strategies π−i for the opponents as σ (parameterized by θ−i). Furthermore, we omit the
subscripts and denote the type beliefs and true types as θ and θ⋆, and write the payoff in (8) as J (π)
if there is no ambiguity. The i-th player uses a strategy π : S ×Θ → PA(i), which is a function of
the type beliefs of the other players. Given a strategy π used by the agent and strategies by other
players, denoted by σ, we define the following useful value functions of the game:

V π,σ(s) := Ep,π,σ

[ ∞∑
τ=t

γτ−tr (st, at) |st = s

]
, (9)

which satisfies the Bellman equation V π,σ(s) = Ea∼π(s),a′∼σ(s) [(r + γPV π,σ) (s, (a, a′))] , where
we define an operator PV π(s, (a, a′)) := Es′∼p(·|s,(a,a′)) [V

π,σ(s′)].

The following worst-case payoff gap is defined similarly as the one in (2) for normal-form games,
which in our context can be considered as the dynamic regret for a strategy πi against an optimal
strategy. Note that an optimal strategy is also a best response strategy π⋆ knowing the true types of
all players in hindsight maximizing (9). The optimal value function given σ and π⋆ is denoted by
V ⋆,σ(s), whose Bellman optimality equation is V ⋆,σ(s) = maxa∈A (r + γPσV ⋆,σ) (s, a).

Definition 2. Given a stochastic Bayesian game M = ⟨S,A,Θ, σ, p, r, γ⟩, for a fixed strategy π,
the payoff gap is defined as

∆SBG(ε;π) := sup
d(θ,θ⋆)≤ε

sup
s0∈S

(
V π⋆,σ(θ⋆)(s0)− V π(θ),σ(θ⋆)(s0)

)
, (10)

where s0 denotes an initial state and d (θ, θ⋆) := maxs∈S ∥σ(s; θ)− σ(s; θ⋆)∥1 ≤ ε.

Similar to normal-form Bayesian games, we define the (missed) opportunity and risk below.
Definition 3. Given a payoff gap ∆SBG(ε;π) in (10), the (missed) opportunity of π is ∆SBG(0;π)
and the risk is maxε>0 ∆SBG(ε;π). Moreover, a strategy π is β-foregone if ∆SBG(0;π) ≤ β(π) and
δ-risky if maxε>0 ∆SBG(ε;π) ≤ δ(π).

3Note that if all the other players use Markov strategies, then the considered player has a best response that is
a Markov strategy.
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Figure 3: Comparison of lower and upper bounds with a varying discount factor γ.

Our goal is to characterize a tradeoff between the opportunity and risk for stochastic Bayesian games.
Finally, we define the value of the game.
Definition 4. Given a hypothesis set Θ and a stochastic Bayesian game M = ⟨S,A,Θ, σ, p, r, γ⟩,
we denote the value of M by

νΘ(M) := max
π∈Π

min
θ−i∈Θ

J(π; θ−i) (value). (11)

4.3 Opportunity-Risk Tradeoff for Stochastic Bayesian Games

Based on the definitions above, our first result states an upper bound on the opportunity and risk for
stochastic Bayesian games. Proving the bounds in Theorem 4.1 is nontrivial because the players
are coupled by a shared state. Consequently, the analysis used in Section 3 for a simple convex
combination of the best response to type beliefs θ and a safe strategy in normal-form games cannot
be directly applied to the stochastic setting.
Theorem 4.1 (SBG EXISTENCE). Consider a stochastic Bayesian game M = ⟨S,A,Θ, σ, p, r, γ⟩
with νΘ(M) ≥ ν. For any 0 ≤ λ ≤ 1, there exists a strategy π whose (missed) opportunity and risk
satisfy

β(π) ≤ 1

1− λγ
(C1(γ)rmax − γν) (1− λ), with C1(γ) :=

γ2 − 3γ + 6

(1− γ)2
,

δ(π) ≤ 1

1− λγ
(C2(γ)rmax − γν) (1 + λ), with C2(γ) := max (C3(γ), C4(γ)) ,

C3(γ) :=
γ2 − 3γ + 2

1− γ
and C4(γ) :=

2− 2γ2 + 1

(1− γ)2
,

where rmax is defined in Assumption 1.

The proof of Theorem 4.1 is given in Appendix D, which constructs the following strategy.

Given type beliefs θ, we denote a parameterized strategy σ̃ := σ(θ), and let σ = σ(θ) be the safe
strategies of the opponents, with θ being an optimal solution of the minimax optimization in (11).
Denoting Ṽ := V ⋆,σ̃ and V := V ⋆,σ the optimal value functions with the opponents’ strategies being
σ̃ and σ respectively. Unlike the convex combination used to show Theorem 3.1 for normal-form
Bayesian games, the strategy constructed for proving Theorem 4.1 is a value-based strategy below

π (θ; s) ∈ argmax
a∈PA(i)

a⊤
(
λRṼ (s)σ̃(s) + (1− λ)RV (s)σ(s)

)
, (12)

where λ is a parameter that indicates the level of trusts on type beliefs, and for a fixed state s ∈ S and
a given value function V : S → R, RV is an A(i)×

∏
j ̸=i A(j) matrix defined as

RV ((ai, a−i) ; s) := r (s, (ai, a−i)) + γ
∑
s′∈S

p (s′|s, (ai, a−i))V (s).

As Theorem 4.1 indicates, this design leads a safe and exploitative play, whose efficacy is validated
through case studies in Section 5. Finally, the following lower bounds can be derived, implying that
the upper bounds on β(π) and δ(π) are tight and the value-based strategy formed in (12) are Pareto
optimal up to multiplicative constants. Together, the theoretical bounds are illustrated in Figure 3.
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Figure 4: Comparison of average payoff for a player when varying values of λ and 6 potential discrete
types for an instantiation of a 2× 2 game.

Theorem 4.2 (SBG IMPOSSIBILITY). There is a stochastic Bayesian game M = ⟨S,A,Θ, σ, p, r, γ⟩
whose value satisfies ν(M,Θ) ≥ ν such that for any 0 ≤ λ ≤ 1, if any strategy π is

1
1−λγ (rmax − ν) (1− λ)-foregone, then it is at least 1

1−λγ (rmax − ν) (1 + λ)-risky.

In Theorem 4.2, the bounds on (missed) opportunity and risk differ from those in Theorem 4.1 by
multiplicative constants. Theorem 4.2 can be derived by applying Theorem 3.2 for normal form
games to a stateless MDP. We relegate the proof of Theorem 4.2 to Appendix E.

5 Case Studies

2× 2 Game. We provide a set of numerical evaluations to showcase the opportunity-risk tradeoff
across a range of game theoretic scenarios. We begin with a focus on 2× 2 games and to that end
we sample games spanning the topology of 2 × 2 matrix games as shown in [49]. This topology
includes the comprehensive set of 78 strictly ordinal 2× 2 games introduced by [50]. We formulate
our evaluation as a single state Stochastic Bayesian Game with the state being a specific 2× 2 game.
This evaluation is helpful in providing a concrete illustration of the tradeoff dynamics on a wide
range of games within a particular topology given the comprehensive bench-marking done on the set
of 2× 2 games.

We make use of 3 broad type classes (Markovian, Leader-Follower-Trigger-Agents, and Co-evoloved
Neural Networks) inspired from work by [51]. It is from these classes that we construct our types
which are then used in simulations with a player leveraging a strategy that is a convex combination of
a safe strategy and the best response give type beliefs or predictions. Figs 4 and 5 shows the tradeoff
in one particular game as an agent moves from being fully robust as indicated by λ = 0 to fully
trusting of the advice when λ = 1. In Appendix F, we provide further information on the particular
types as well as illustrations on a couple of other games sampled from the topology of 2× 2 games
to showcase the range of tradeoffs which exist in this landscape.

Security Game. Extending our empirical study to real world settings, we also provide an evaluation
of the opportunity-risk tradeoff using data from wildlife tracking studies. Security games are a clear
domain wherein the tradeoff between opportunity and risk is very critical to the application. Building
on a large body of work that has sought to understand the implications of game theoretic analysis in
the environmental conservation domain, we formulate and explore the opportunity-risk tradeoff using
data from real world wildlife movements. In particular, we formulate a green security game motivated
by works such as [52] wherein we simulate a defender who is trying to protect an elephant population
from attackers who are illegal poachers. The defender and attacker engage a multi-state Stochastic
Bayesian Game where the states are constructed from historic elephant movement data sourced from
[53]. Our evaluation shows the practicality and wide ranging impact of this investigation. Figure 6
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Figure 5: Left: 2× 2 games considered in our case study; Right: Opportunity-risk tradeoff in the
evaluation of a 2× 2 game using an algorithm that has varying trust of type beliefs in 1,000 random
runs. Fully trusting (λ = 1) and distrusting (λ = 0) type beliefs yield a best response strategy and a
minimax strategy correspondingly.

Figure 6: Comparison of average payoff for the defender in a security game protecting an elephant
population against illegal poachers when varying values of λ and 6 potential discrete attacker types.

shows the tradeoff for this setting evaluated for each particular type. We include implementation
details on this game in Appendix F.

6 Concluding Remarks

In this study, we explored the fundamental limits of safe and exploitative strategies within both
normal-form and stochastic Bayesian games, where pre-established type beliefs about opponents are
considered. Given that these type beliefs may be inaccurate, relying on them to exploit opponents
can result in high-risk strategies. Conversely, not leveraging these beliefs yields overly cautious play,
leading to missed opportunities. We have quantified these dynamics by providing upper and lower
bounds on the payoff gaps corresponding to different type belief inaccuracies, thereby characterizing
the tradeoffs between opportunity and risk. These bounds are consistent up to multiplicative constants.

Limitations and Future Directions. In our current problem setting, the dynamics of a stochastic
Bayesian game is assumed to be stationary, aligning with the canonical models in the related
literature (for example [51]). To address this limitation, we plan to extend our framework to include
time-varying type beliefs, addressing the absence of analysis for MDPs with dynamic transition
probabilities and reward structures. Additionally, refining the opportunity and risk bounds to make
them tighter would provide more precise strategic insights.
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Broader Impacts. The implications of our research extend beyond theoretical interests and have
practical significance in fields such as economics, cybersecurity, and strategic planning, where
decision-making under uncertainty is crucial. By improving the understanding of how predictive
information can be used safely and effectively in competitive environments, our work supports
the development of more robust strategies in these areas. This can lead to better risk management
practices and enhance the ability of systems to make informed decisions even when faced with
unreliable or incomplete information. However, there are potential negative impacts, such as the risk
of misuse of predictive models that may lead to biased or unfair decisions if the underlying data or
assumptions are flawed. Future research could focus on reducing these risks, ensuring AI systems
remain reliable and safe.

A Proof of Theorem 3.1

We first consider bounding the opportunity, focusing on the case when the predicted belief contains
no error, i.e., y⋆ = Eρ[y]. Then, by the definition of π(ρ), for any payoff matrix A with µΘ(A) ≤ µ
and νΘ(A) ≥ ν, we get

∆NFG(0;π) = max
y⋆∈Θ

(
max
x∈Pa

x⊤Ay⋆ − π(ρ)Ay⋆
)

≤(1− λ)

(
max
x∈Pa

max
y⋆∈Θ

x⊤Ay⋆ − min
y⋆∈Θ

x⊤Ay⋆
)
, (13)

where we have maximized the two terms maxx∈Pa x
⊤Ay⋆ and x⊤Ay⋆ separately over y⋆ ∈ Θ to

obtain (13). Therefore, noting the definition of the safe strategy x in (7),

∆NFG(0;π) ≤(1− λ)

(
max
x∈Pa

max
y⋆∈Θ

x⊤Ay⋆ −max
x∈Pa

min
y⋆∈Θ

x⊤Ay⋆
)

≤ (1− λ) (µ− ν) . (14)

Now, we consider bounding the risk. By the definition of the following mixed strategy π(ρ) used by
Player 1, for any payoff matrix A with µΘ(A) ≤ µ, νΘ(A) ≥ ν, and ∥A∥max ≤ α,

∆NFG(ε;π) = max
d(ρ,y⋆)≤ε

(
max
x∈Pa

x⊤Ay⋆ − π(ρ)⊤Ay⋆
)

≤ max
d(ρ,y⋆)≤ε

(
max
x∈Pa

x⊤AEρ[y]− λx̃⊤Ay⋆
)
− (1− λ) min

y⋆∈Θ
x⊤Ay⋆. (15)

In (15), we replace maxx∈Pa
x⊤Ay⋆ by maxx∈Pa

x⊤AEρ[y] since y⋆ ∈ Θ and there exists a feasible
ρ with Eρ[y] = y⋆ that always satisfies the constraint d (ρ, y⋆) ≤ ε.

Since x̃ is a best response strategy given ρ, maxx∈Pa x
⊤AEρ[y] = x̃⊤AEρ[y]. Decomposing

maxx∈Pa x
⊤Ay⋆ = (1− λ)maxx∈Pa x

⊤Ay⋆ + λmaxx∈Pa x
⊤Ay⋆ and maximizing the two terms

(1− λ)maxx∈Pa x
⊤Ay⋆ and λmaxx∈Pa x

⊤Ay⋆ over d (ρ, y⋆) ≤ ε respectively, ∆(ε;α, π) can be
further bounded from above by

max
A:∥A∥max≤α

(
(1− λ) max

x∈Pa,y⋆∈Θ
x⊤Ay⋆ + λ max

d(ρ,y⋆)≤ε

(
x̃⊤A(Eρ[y]− y⋆)

)
− (1− λ)ν

)
. (16)

Since d (ρ, y⋆) := ∥Eρ[y]− y⋆∥1 ≤ ε, (16) yields

∆NFG(ε;π) ≤(1− λ) (µ− ν) + λµε. (17)

Maximizing over ε ≤ η(Θ) for (17), we conclude the theorem.

B Proof of Theorem 3.2

We first suppose a mixed strategy π : PΘ → Pa for Player 1 is (1 − λ) (µ− ν)-foregone, given a
belief of types ρ ∈ PΘ.
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Let y′ and y′′ be two mixed strategies in Θ that achieve κ(Θ) ≥ 0 (select arbitrary strategies if there
are multiple to break the tie), i.e.,

κ(Θ) =
∑

i:y′
i≤y′′

i

y′′i −
∑

i:y′
i>y′′

i

y′′i subject to
∑

i:y′
i≤y′′

i

y′i <
∑

i:y′
i>y′′

i

y′i.

Let I+ := {i ∈ [b] : y′i > y′′i } and I− := {i ∈ [b] : y′i ≤ y′′i } be two indices of actions with
non-negative and positive coordinates of z where [b] := {1, . . . , b}. Consider a payoff matrix Aµ

with the following form. Suppose without loss of generality that a is even; otherwise, we append
an all-zero row to Aµ. Let β := µ− ν. For the i-th column of Aµ, we set it as (β,−β, . . . ,−β)⊤ if
i ∈ I+ and (−β, β, . . . , β)⊤ if i ∈ I−.

A = Aµ =


· · · β −β · · ·
· · · −β β · · ·
...

...
...

...
· · · −β︸︷︷︸

i∈I+

β︸︷︷︸
i+1∈I−

· · ·

+Aν ,

where (Aν)ij = ν for all i ∈ [a] and j ∈ [b]. Clearly, with this A, µΘ(A) ≤ µ and νΘ(A) ≥ ν.

Then, by definition, setting ε = 0 with Eρ[y] = y⋆ (the type belief contains no error), the payoff gap
satisfies

∆NFG(0;π) = max
y⋆∈Θ

(
max
x∈Pa

x⊤Ay⋆ − π(ρ)Ay⋆
)

≤ (1− λ)(µ− ν). (18)

Now, plugging in y′ into (18) above. This implies

max
y⋆∈Θ

(
max
x∈Pa

x⊤Ay⋆ − π(ρ)⊤Ay⋆
)

≥ max
x∈Pa

x⊤Ay′ − π(ρ)⊤Ay′ = µ− π(ρ)⊤Ay′. (19)

For notational convenience, denote 𭟋(Θ) :=
∑

i:y′
i>y′′

i
y′i −

∑
i:y′

i≤y′′
i
y′i. Combining (18) and (19),

π(ρ)⊤Ay′ = π(ρ)⊤(Aµ + Aν)y
′ ≥ (1 − λ)ν + λµ. Thus, π(ρ)⊤Aµy

′ ≥ λ(µ − ν). Equivalently,
𭟋(Θ) (µ− ν)π(ρ)⊤f ≥ λ (µ− ν) , where f := (1,−1, 1, . . . , 1,−1)⊤. By the construction of A,
we get

π(ρ)⊤Aµy
′′ = −

(
π(ρ)⊤f

)
(µ− ν) ·

 ∑
i:y′

i≤y′′
i

y′′i −
∑

i:y′
i>y′′

i

y′′i

 ≤ −λ (µ− ν) · κ(Θ)

𭟋(Θ)
.

Therefore, since 0 < 𭟋(Θ) ≤ 1,

π(ρ)⊤(Aµ +Aν)y
′′ = ν + π(ρ)⊤Aµy

′′ ≤ ν − λ (µ− ν)κ(Θ) = −λµκ(Θ) + (1 + λκ(Θ))ν.

Hence, we get

max
y⋆∈Θ

(
max
x∈Pa

x⊤Ay⋆ − π(ρ)⊤Ay⋆
)

≥ max
x∈Pa

x⊤Ay′′ − π(ρ)⊤Ay′′

≥ κ(Θ) (1 + λ)µ− (1 + λκ(Θ))ν

≥ (κ(Θ)µ− ν) (1 + λ) .

C Proof of Corollary 3.1

If Θ = Pb, then κ(Θ) = 1. Furthermore, by definition, we get

µA (Pb) := max
y∈Pb

max
x∈Pa

∣∣x⊤Ay
∣∣ = ∥A∥max, νA (Pb) := min

y∈Pb

max
x∈Pa

x⊤Ay = 0,

where the equality on the RHS holds since the game is fair. Applying Theorem 3.1 and 3.2, we obtain
the corollary.
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D Proof of Theorem 4.1

Given type beliefs, we denote strategies σ̃ := σ(θ), σ := σ (θ⋆), and let σ = σ(θ) be the safe
strategies of the opponents, with θ being an optimal solution of the minimax optimization in (11).
Denoting Ṽ := V ⋆,σ̃, V := V ⋆,σ, V ⋆ := V ⋆,σ the value functions with the opponents’ strategies
being σ̃, σ, and σ, respectively. Given the strategy π defined in (12), we first state two useful bounds.
Lemma 1. Given the strategy defined in (12), the following bounds on the reward function hold:

BOUND 1 : Eπ⋆,σ [r]−Eπ,σ [r] ≤ γλ
(
Ep,π,σ̃

[
V ⋆(s)

]
− Ep,π⋆,σ̃

[
V ⋆(s)

])
+ 2λ (εrmax + γη)

+γ(1− λ)
(
Ep,π,σ

[
V (s)

]
− Ep,π⋆,σ

[
V (s)

])
+(1− λ) (Eπ⋆,σ [r]− Eπ⋆,σ [r]) + (1− λ) (Eπ,σ [r]− Eπ,σ [r]) , (20)

where η := maxs∈S

∣∣∣V ⋆(s)− Ṽ (s)
∣∣∣, and

BOUND 2 : Eπ,σ [r]− Eπ,σ [r] ≤ γ
(
Ep,π,σ

[
V (s)

]
− Ep,π,σ

[
V (s)

])
+

λ

1− λ

(
(Eπ,σ̃ [r]− Eπ,σ̃ [r]) + γ

(
Ep,π,σ̃

[
Ṽ (s)

]
− Ep,π,σ̃

[
Ṽ (s)

]))
. (21)

Proof of Lemma 1. First, we prove BOUND 1 in (20).

Based on the definition of the policy π in (12), it follows that for any fixed state s ∈ S,

λEπ⋆,σ̃ [r] + (1− λ)Eπ⋆,σ [r] + γλEp,π⋆,σ̃

[
Ṽ (s)

]
+ γ(1− λ)Ep,π⋆,σ

[
V (s)

]
≤λEπ,σ̃ [r] + (1− λ)Eπ,σ [r] + γλEp,π,σ̃

[
Ṽ (s)

]
+ γ(1− λ)Ep,π,σ

[
V (s)

]
. (22)

Furthermore, considering the difference between the expected rewards corresponding to implementing
π⋆ and the strategy π defined in (12), since by Assumption 1, |r| ≤ rmax for all t ∈ [T ] and any
strategy π ∈ Π,

|Eπ,σ [r]− Eπ,σ̃ [r]| ≤ max
s∈S

∥σ(s)− σ̃(s)∥1 rmax ≤ εrmax. (23)

Therefore, using (23),

Eπ⋆,σ [r]− Eπ,σ [r] =λ (Eπ⋆,σ [r]− Eπ,σ [r]) + (1− λ) (Eπ⋆,σ [r]− Eπ,σ [r])

≤λ (Eπ⋆,σ̃ [r]− Eπ,σ̃ [r]) + (1− λ) (Eπ⋆,σ [r]− Eπ,σ [r]) + 2λεrmax

+ (1− λ) (Eπ⋆,σ [r]− Eπ⋆,σ [r])

+ (1− λ) (Eπ,σ [r]− Eπ,σ [r])

= (λEπ⋆,σ̃ [r] + (1− λ)Eπ⋆,σ [r])− (λEπ,σ̃ [r] + (1− λ)Eπ,σ [r])

+ (1− λ) (Eπ⋆,σ [r]− Eπ⋆,σ [r])

+ (1− λ) (Eπ,σ [r]− Eπ,σ [r]) + 2λεrmax. (24)

Combining (22) and (24), we obtain

Eπ⋆,σ [r]− Eπ,σ [r]− 2λεrmax

≤γ
(
λ
(
Ep,π,σ̃

[
Ṽ (s)

]
− Ep,π⋆,σ̃

[
Ṽ (s)

])
+ (1− λ)

(
Ep,π,σ

[
V (s)

]
− Ep,π⋆,σ

[
V (s)

]))
+ (1− λ) (Eπ⋆,σ [r]− Eπ⋆,σ [r]) + (1− λ) (Eπ,σ [r]− Eπ,σ [r]) . (25)

By definition,∣∣∣Ep,π,σ̃

[
V ⋆(s)

]
− Ep,π,σ̃

[
Ṽ (s)

]∣∣∣ ≤ ∑
s′∈S

∑
a,a′∈A

p(s′|s, (a, a′))πt(s, a)σ̃t(s, a
′)η ≤ η,

and similarly,
∣∣∣Ep,π⋆,σ̃

[
V ⋆(s)

]
− Ep,π⋆,σ̃

[
Ṽ (s)

]∣∣∣ ≤ η, thus, (25) yields

Eπ⋆,σ [r]− Eπ,σ [r] ≤γλ
(
Ep,π,σ̃

[
V ⋆(s)

]
− Ep,π⋆,σ̃

[
V ⋆(s)

])
+ 2λ (εrmax + γη)

+ γ(1− λ)
(
Ep,π,σ

[
V (s)

]
− Ep,π⋆,σ

[
V (s)

])
+ (1− λ) (Eπ⋆,σ [r]− Eπ⋆,σ [r]) + (1− λ) (Eπ,σ [r]− Eπ,σ [r]) .
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Next, we show BOUND 2 in (21).

By the definition of the policy π in (12), it follows that for any fixed state s ∈ S , similarly we obtain

λEπ,σ̃ [r] + (1− λ)Eπ,σ [r] + γλEp,π,σ̃

[
Ṽ (s)

]
+ γ(1− λ)Ep,π,σ

[
V (s)

]
≤λEπ,σ̃ [r] + (1− λ)Eπ,σ [r] + γλEp,π,σ̃

[
Ṽ (s)

]
+ γ(1− λ)Ep,π,σ

[
V (s)

]
. (26)

Rearranging the terms in (26),
Eπ,σ [r]− Eπ,σ [r] ≤ γ

(
Ep,π,σ

[
V (s)

]
− Ep,π,σ

[
V (s)

])
+

λ

1− λ

(
(Eπ,σ̃ [r]− Eπ,σ̃ [r]) + γ

(
Ep,π,σ̃

[
Ṽ (s)

]
− Ep,π,σ̃

[
Ṽ (s)

]))
.

Lemma 2. The payoff gap for the policy π defined in (12) satisfies

∆SBG(ε;π) ≤
rmax

1− λγ

(
2λε

1− γ
+min

{
2(1− λ)

1− γ
,

2λ

(1− γ)2

}

+
(1− λ)(2− γ)

1− γ

)
+

γ (2λη − ν)

1− λγ
.

Proof. By definition of the payoff gap (see Definition 2) and the value function in (9), we get

∆SBG(ε;π) = sup
d(θ,θ⋆)≤ε

max
s∈S

(
V ⋆,σ(s)− V π(θ),σ(s)

)
.

Our first goal is to derive an upper bound on ∆SBG(ε;π), aligning with the classic loss bound of
approximate value functions [54]. However, the policy considered in our context is not directly
maximizing the approximate value function, but a mixed strategy defined by an optimization as
in (12). For notational convenience, we write for s ∈ S,

Ep,π,σ [V (s)] :=
∑

a,a′∈A

∑
s′∈S

p(s′|s, (a, a′))π(s, a)σ(s, a′)V (s′).

For notational simplicity, we denote V π(s) := V π,σ(s). For any state s ∈ S and strategies (σ, σ̃)
satisfying d (θ, θ⋆) = maxs∈S ∥σ(s; θ)− σ(s; θ⋆)∥1 ≤ ε, applying BOUND 1 in Lemma 1, the
Bellman equations corresponding to π⋆ and π imply

V ⋆(s)− V π(s) =Eπ⋆,σ[r]− Eπ,σ[r] + γ
(
Ep,π⋆,σ

[
V ⋆(s)

]
− Ep,π,σ

[
V π(s)

])
≤ λγ

(
Ep,π,σ̃

[
V ⋆(s)

]
− Ep,π⋆,σ̃

[
V ⋆(s)

]
+ Ep,π⋆,σ

[
V ⋆(s)

]
− Ep,π,σ

[
V π(s)

])
+γ(1− λ)

(
Ep,π,σ

[
V (s)

]
− Ep,π,σ

[
V π(s)

]
+ Ep,π⋆,σ

[
V ⋆(s)

]
− Ep,π⋆,σ

[
V (s)

])
+(1− λ) (Eπ,σ [r]− Eπ,σ [r]) + (1− λ) (Eπ⋆,σ [r]− Eπ⋆,σ [r])

+2λ (εrmax + γη) . (27)

Applying the Bellman equations, for any s ∈ S,
V π(s) =Ea∼π(s),a′∼σ(s) [(r + γPV π) (s, (a, a′))]

=Eπ,σ [r] + γEp,π,σ [V
π(s)] . (28)

Similarly, it also holds that
V ⋆(s) = Eπ⋆,σ [r] + γEp,π⋆,σ [V

⋆(s)] . (29)

Plugging (28), and (29) into (27),

V ⋆(s)− V π(s) ≤λγ
(
Ep,π,σ̃

[
V ⋆(s)

]
− Ep,π⋆,σ̃

[
V ⋆(s)

]
+ Ep,π⋆,σ

[
V ⋆(s)

]
− Ep,π,σ

[
V π(s)

])
+ (1− λ)

( ((
Eπ,σ [r] + γEp,π,σ

[
V (s)

])
− V π(s)

) )
(30)

+ (1− λ)
(
V ⋆(s)−

(
Eπ⋆,σ [r] + γEp,π⋆,σ

[
V (s)

]) )
(31)

+ 2λ (εrmax + γη) . (32)
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Part I: Proof of Risk Bound

Let V
π
(s) := V π,σ(s) for any s ∈ S. For the term in (30), we always have V π(s) ≥ V

π
(s) [48],(

Eπ,σ [r] + γEp,π,σ

[
V (s)

])
− V π(s) ≤γ

(
Ep,π,σ

[
V (s)

]
− Ep,π,σ

[
V

π
(s)
])

=γEp,π,σ

[
V (s)− V

π
(s)
]
.

Furthermore, the Bellman equation implies

V (s)− V
π
(s) = (Eπ,σ [r]− Eπ,σ [r]) + γ

(
Ep,π,σ

[
V (s)

]
− Ep,π,σ

[
V

π
(s)
])

. (33)

Applying BOUND 2 in Lemma 1,

V (s)− V
π
(s) ≤γ

(
Ep,π,σ

[
V (s)

]
− Ep,π,σ

[
V

π
(s)
]
+ Ep,π,σ

[
V (s)

]
− Ep,π,σ

[
V (s)

])
+

λ

1− λ

(
(Eπ,σ̃ [r]− Eπ,σ̃ [r]) + γ

(
Ep,π,σ̃

[
Ṽ (s)

]
− Ep,π,σ̃

[
Ṽ (s)

]))
≤γ
(
Ep,π,σ

[
V (s)

]
− Ep,π,σ

[
V

π
(s)
])

+
2λ

1− λ

((
1 +

γ

1− γ

))
rmax. (34)

Since above holds for any state s ∈ S, let s′ be a state such that the value gap V ⋆(s) − V π(s) is
maximized. Therefore, (34) implies

V (s)− V
π
(s) ≤ 2

(1− γ)2
λ

1− λ
rmax. (35)

Then, for the term in (31), by definition V ⋆(s) ≤ rmax/(1− γ), and

Eπ⋆,σ [r] + γEp,π⋆,σ

[
V (s)

]
≥ γν − rmax. (36)

Combing the bounds in (35) and (36) with (32), we conclude that

V ⋆(s)− V π(s) ≤λγ
(
Ep,π,σ̃

[
V ⋆(s)

]
− Ep,π⋆,σ̃

[
V ⋆(s)

]
+ Ep,π⋆,σ

[
V ⋆(s)

]
− Ep,π,σ

[
V π(s)

])
+

2

(1− γ)2
λrmax + (1− λ)

(
2− γ

1− γ
rmax − γν

)
+ 2λ (εrmax + γη) . (37)

Now, noting that by definition we have∣∣Ep,π,σ

[
V ⋆
]
− Ep,π,σ̃

[
V ⋆
]∣∣

≤
∑

a,a′∈A,s′∈S
p(s′|s, (a, a′))π(s, a) |σ(s, a′)− σ̃(s, a′)|V ⋆(s′) ≤ ε

rmax

1− γ
,

and similarly, ∣∣Ep,π⋆,σ

[
V ⋆
]
− Ep,π⋆,σ̃

[
V ⋆
]∣∣ ≤ε

rmax

1− γ
.

Therefore, rearranging the terms and simplifying above, (37) becomes

V ⋆(s)− V π(s) ≤ 2λ

(1− γ)2
rmax + (1− λ)

(
2− γ

1− γ
rmax − γν

)
+ 2λ (εrmax + γη)

+
2γλrmax

1− γ
ε+ γλ

(
Ep,π,σ

[
V ⋆
]
− Ep,π,σ[V

π]
)
. (38)

Since above holds for any state s ∈ S, let s∗ be a state such that the value gap V ⋆(s) − V π(s) is
maximized. Thus,

Ep,π,σ

[
V ⋆(s∗)

]
− Ep,π,σ[V

π(s∗)]

=
∑

a,a′∈A

∑
s′∈S

p (s′|s∗, (a, a′))π (s∗, a)σ (s∗, a′) (V ⋆(s′)− V π(s′)) ≤ V ⋆(s∗)− V π(s∗).
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Continuing from (38),

(V ⋆(s∗)− V π(s∗))− λγ (V ⋆(s∗)− V π(s∗))

≤2rmax

(
λ

(1− γ)2
+

γλ

1− γ
ε+ λε

)
+ 2λγη + (1− λ)

(
2− γ

1− γ
rmax − γν

)
=2rmax

(
λ

(1− γ)2
+

λε

1− γ

)
+ 2λγη + (1− λ)

(
2− γ

1− γ
rmax − γν

)
.

Therefore, rearranging the terms we obtain

∆SBG(ε;π) ≤
rmax

1− λγ

(
2λε

1− γ
+

2λ

(1− γ)2
+

(1− λ)(2− γ)

1− γ

)
+

γ (2λη − (1− λ)ν)

1− λγ
.

Part II: Proof of Opportunity Bound

Now, the terms in (30) can be bounded alternatively as

(1− λ)
( ((

Eπ,σ [r] + γEp,π,σ

[
V (s)

])
− V π(s)

) )
≤2

1− λ

1− γ
rmax.

Using this and following the same steps, we obtain

∆SBG(ε;π) ≤
rmax

1− λγ

(
2λε

1− γ
+

2(1− λ)

(1− γ)2
+

(1− λ)(2− γ)

1− γ

)
+

γ (2λη − (1− λ)ν)

1− λγ
.

Finally, setting ε = η = 0, we obtain

∆SBG(0;π) ≤
1

1− λγ

(
rmax

(
γ2 − 3γ + 6

(1− γ)2

)
− γν

)
(1− λ).

Since d (θ, θ⋆) := maxs∈S ∥σ(s; θ)− σ(s; θ⋆)∥1 ≤ 2, setting the worst ε = 2, and noticing that
η ≤ 2rmax

1−γ ,

∆SBG(ε;π) ≤
rmax

1− λγ

((
4(1− γ2) + 2

)
λ

(1− γ)2
+

(1− λ)(2− γ)

1− γ

)
− γ(1− λ)ν

1− λγ
.

E Proof of Theorem 4.2

We prove the theorem by considering a stateless MDP, which reduces a stochastic Bayesian
game M = ⟨S,A,Θ, σ, p, r, γ⟩ to a normal-form game in Theorem 3.2. Furthermore, let
L :=

{
1, . . . ,

∏
j ̸=i |A(j)

}
. We fix a strategy kernel σ such that

κ(Θ) := max
s∈S,θ,θ′∈Θ

 ∑
l∈L:σl(s;θ)=0

σl(s; θ
′)−

∑
l∈L:σl(s;θ)>0

σl(s; θ
′)

 = 1.

Therefore, the construction of the payoff matrix A ∈ R|A(i)|×
∏

j ̸=i |A(j)| in the proof of Theorem 3.2
with µΘ(A) ≤ rmax

1−γ and νΘ(A) ≥ ν yields that for any 0 ≤ λ ≤ 1, if any mixed strategy π is
1

1−λγ (rmax − ν) (1− λ)-foregone, then since

1

1− λγ
(rmax − ν) (1− λ) ≤

(
rmax

1− γ
− ν

)
(1− λ),

then π is at least
(

rmax

1−γ − ν
)
(1 + λ)-risky. Furthermore, since(

rmax

1− γ
− ν

)
(1 + λ) ≥

(
rmax

1− λγ
− ν

1− λγ

)
(1 + λ) ,

π is at least 1
1−λγ (rmax − ν) (1 + λ)-risky.
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F Details on Experiments

F.1 Details on 2× 2 Game simulations

F.1.1 Game definition

• We define a Stochastic Bayesian game with one state: a particular 2× 2 game sampled from
the topology of 2× 2 games.

• The payoffs for each player are stipulated by the 2× 2 game. We set the time horizon for
the game be 1,000 giving us an empirical evaluation of the expected payoff for each strategy

F.1.2 Type definitions

As mentioned we have 3 classes of types and below we provide a description of the general classes as
well as the specific types we used in our evaluation.

1. Markovian Types: These are types whose strategy only depends on the current state. We
made use of 4 types of Markovian strategies

• Type 1: Always play action 0
• Type 2: Always play action 1
• Type 3: The minimax strategy for the player
• Type 4: Returns a random strategy

2. Leader- Follower-Trigger Agents: Inspired by [55], these agents have a preferred sequence
of play they seek to enforce. Importantly they have access to history of play and when the
other player does not play according to their preferred sequence the alter their strategy by
engaging in “punishing” behavior such as playing the minimax strategy or by resetting to a
previous action. In our case, we evaluated against simple versions of such agents, wherein
our agent had a preferred mixed strategy and when the empirical observed strategy over a
preset number of previous plays from the opponent did not match their preferred strategy,
they “punished” the opponent by playing a minimax strategy. In particular, we had an agent
look at the previous 4 actions of the opponent and if they selected action 1 more than twice,
they chose to play a minimax strategy for the next round.

3. Co-evolved Neural Networks: Inspired by work in [51] we use ideas of genetic program-
ming [56], to generate agents from neural networks. We randomly initialized 10 neural
networks with a single hidden layer for both the row and column player. All networks would
take as input the previous 4 actions of both players and the corresponding state information.
We sample randomly from populations of the row and column players and simulate the
game. After simulation we calculate a fitness score based on average payoffs for each agent
and a similarity score so as to ensure diversity in the models. We “evolve” the populations
by selecting random portions of both populations to mutate whilst also having cross-over
between members of the populations selected by fitness (this is done for both populations
hence “co-evolve”). We then proceed to create new populations using the most fit agents
from a previous generation (i.e., we take the top 50% of a population pre-evolution and 50%
post evolution and then create a new population if the average fitness of this new constructed
population is greater than the average fitness of the previous population.)

F.1.3 Experimental illustration of tightness of bounds

We have included additional adversarial examples to demonstrate the tightness of the bounds presented
in Theorems 3.1 and 3.2. In particular, we consider the zero-sum Matching Pennies (MP) and an
Adjusted Matching Pennies (AMP) as our two examples. We assume the hypothesis set Θ for Player
2 contains 6 behavioral types:

• Markovian Types:
– Type 1: Always play action 0
– Type 2: Always play action 1
– Type 3: Minimax strategy
– Type 4: Random strategy
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• Type 5: Leader-Follower-Trigger Agents
• Type 6: Co-evolved Neural Networks

The payoff matrices for the MP and AMP, respectively are[
1 −1
−1 1

]
, and

[
1.2 −0.8
−0.8 1.2

]
=

[
1 −1
−1 1

]
+

[
0.2 0.2
0.2 0.2

]
.

It’s worth mentioning that the AMP payoff matrix constructed above is an adversarial example that
follows the same construction of the adversarial payoff matrix A used in the proof of Theorem 3.2.
Given the considered Θ, we know that κ(Θ) = 1 and η(Θ) = 2. The upper and lower bounds in
Theorem 3.1 and 3.2 therefore read:

Upper Bound: x = (1− λ)(µ− ν), y = (1− λ)(µ− ν) + 2λµ, λ ∈ [0, 1],

Lower Bound: x = (1− λ)(µ− ν), y = (1 + λ)(µ− ν), λ ∈ [0, 1],

where for MP, µ = 1, ν = 0; for AMP, µ = 1.2, ν = 0.2.

Besides the bounds above, we also plot simulated risk and opportunity values in the figures using an
algorithm that has varying trust of type beliefs in 100 and 1,000 runs. The algorithm is presented with
a type prediction and takes a convex combination of the best response to the type prediction and the
minimax strategy with the trust parameter λ determining how much to weigh the best response. It is
the same as π, the mixed strategy used to prove Theorem 3.1. Fully trusting (λ = 1) and distrusting
(λ = 0) type beliefs yield a best response strategy and a minimax strategy correspondingly. The agent
then samples from their resulting mixed strategy an action to play while the opponent also samples
from whatever mixed strategy they are using an action to play.

We sample this interaction for the number of runs and gather empirical payoff information, which we
use to plot the opportunity risk tradeoff. The variance of the risk and opportunity values decreases
as the number of runs increases, as illustrated by the error bars in the attached figures. Moreover,
we include as plots the bounds on the opportunity risk tradeoff and show the tightness or looseness
of these bounds in two games we pick. Please note that some of the simulated risk and opportunity
values fall outside the bounds. This is because the bounds are applicable only to expected payoff
gaps, and individual simulations may deviate from these expected values.

In the Fig 7, the top two figures display the results from 100 runs, while the bottom two figures
present the results from 1,000 runs. The left two figures correspond to the MP example, while the
right two figures are for the AMP example, demonstrating the gap between the lower and upper
bounds. In particular, in an AMP game, we see that the upper bound is loose, and the empirical
opportunity-risk tradeoff matches the lower bound we derive. In future work, we will investigate if
this gap can be closed. This ‘adversarial’ example illustrates the looseness in the upper bound we
derive. In the canonical Matching Pennies game, we find that the lower and upper bounds are tight
with the empirical tradeoff matching these theoretical bounds, coinciding with Corollary 3.1.
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Figure 7: Opportunity-risk tradeoff for Matching Pennies (MP) and Adjusted Matching Pennies
(AMP) games over 100 (top) and 1,000 (bottom) runs. Left: Matching Pennis. Right: Adjusted
Matching Pennies. As the number of runs increases, the variance of both risk and opportunity values
decreases.

F.2 Details on Green Security Game simulations

F.2.1 Data description

The data is from a study tracking geo-location information of 32 African elephants in the Hwange
National Park in Zimbabwe, Africa. The data was collected from 2009 to 2017 and includes time
stamp information as well as longitudinal and latitudinal information of the elephants

F.2.2 Data processing

We divided each year into two based on the seasons in Zimbabwe which would affect the location of
the elephants as they migrate given changes in the environment. A year was divided into a “Rainy”
season which runs from October to March and a “Dry” season which runs from April to September.

We divided the area covered in the dataset into 9 locations and thus had a 3× 3 grid which served
as a surveillance area. For each elephant in the season, we calculated its mean location and so for
each of the seasons we had a mean location for the elephants. It is important to note, given migratory
nature of elephants across national borders, each season does not necessarily have all 32 elephants
as they move as a result of a wide range of factors (e.g., availability of water). Some seasons, also
notably, do not have any recorded elephant presence in the area under surveillance. We do not see
this as a limitation as the dynamic environment presents changes in the game which the defender has
to take into account.

F.2.3 Green Security Game

Each of the seasonal elephant information presents us with a state for our Stochastic Bayesian Game.
We define the game in the following manner:

• State: We have 16 states from the seasonal information we get from the data

• Actions: Each player (attacker or defender) has 9 available actions each corresponding to a
selection of an area in the 3× 3 grid defined above.

• Payoffs: Let n be the number of elephants recorded in a particular grid square:
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– If the attacker and defender select the same grid square, the defender gets n while the
attacker gets −2

– If the attacker and defender select different grid squares, let natt be the number of
elephants in the grid square selected by the attacker. The defender gets payoff −natt

while the attacker gets payoff natt

These payoffs were designed to model the asymmetric nature of the defending task. An
offender often will get a fixed penalty as stipulated by law, whilst the defender always
depends on the number of elephants the attacker has access to.

• Transitions: To take into account the effect of changes in weather whilst also bringing
in some stochasticity, we made it such that there is some transition probability between
any “Rainy” state to any “Dry” state and vice-versa. We do however, slightly, increase the
probability of transition between adjacent historical states, to reflect historical data. We have
the probability of transitioning between any two “Rainy” or “Dry” states to be zero. Our
transition probabilities do not depend on the actions taken by the agents.

F.2.4 Type definitions

We make use of the same types as in the 2 × 2 game simulations. We make adjustments to the
Markovian types in that Types 1 and 2 now select the grid with the highest population of elephants
and second highest population of elephants, respectively. The Leader-Follower-Trigger Agents now
looks to see if the other player is selecting the grid with the highest number of elephants for more
than 50% of the historic play in which case they turn to play their minimax strategy

F.3 Additional 2× 2 game evaluations

We include as an illustration as well as for completeness a couple of other 2 × 2 games we also
evaluated against. This is helpful as it shows the variety of tradeoffs that exist within the topology of
2× 2 games. In particular, we see some games exhibiting gradation as the agent moves from fully
robust to fully trusting whilst in others there does not exist such a tradeoff because of the existence
of a dominant strategy for the row player regardless of the type of the column player (e.g., the last
game we show in this section). We note that the games provided in this file do not exhaust the entire
topology of 2× 2 games. They are however added to show the range of tradeoffs that could exist in
games.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction align with our theoretical
and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: The limitations of this work are discussed in our last concluding remark
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have clearly stated our model assumptions for the derived results to hold.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have detailed the settings and parameters used in the experiments, and we
will further release our code after the anonymous review stage.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Our contributions focus on the theoretical side. The experimental results
shown in the submitted manuscript do not depend on private datasets and can be reproduced
using the provided settings and parameters.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have clearly stated our experimental settings and details to reproduce the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: When there is randomness in our experiments, we characterize the variability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our contributions focus on the theory side, and the experimental setup is
sufficiently basic that it does not require intense computing resources such as GPUs.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both positive and negative societal impacts in our conclud-
ing remark section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32


	Introduction
	Related Work
	Normal-Form Bayesian Games with Untrusted Type Beliefs
	Problem Setting, Opportunity, and Risk
	Motivating Example: Matching Pennies
	Opportunity-Risk Tradeoff for Normal-Form Games

	Stochastic Bayesian Games with Untrusted Type Beliefs
	Preliminaries: MDP for Stochastic Bayesian Games
	Opportunity, Risk, and Type Beliefs
	Opportunity-Risk Tradeoff for Stochastic Bayesian Games

	Case Studies
	Concluding Remarks
	Bibliography
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Corollary 3.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Details on Experiments
	Details on 2 2 Game simulations
	Game definition
	Type definitions
	Experimental illustration of tightness of bounds

	Details on Green Security Game simulations
	Data description
	Data processing
	Green Security Game
	Type definitions

	Additional 2 2 game evaluations


