TTPA: Token-level Tool-use Preference Alignment Training Framework
with Fine-grained Evaluation

Anonymous ACL submission

Abstract

Existing tool-learning methods usually rely on
supervised fine-tuning, they often overlook fine-
grained optimization of internal tool call de-
tails, leading to limitations in preference align-
ment and error discrimination. To overcome
these challenges, we propose Token-level Tool-
use Preference Alignment Training Framework
(TTPA), a training paradigm for constructing
token-level tool-use preference datasets that
align LLMs with fine-grained preferences us-
ing a novel error-oriented scoring mechanism.
TTPA first introduces reversed dataset construc-
tion, a method for creating high-quality, multi-
turn tool-use datasets by reversing the gener-
ation flow. Additionally, we propose Token-
level Preference Sampling (TPS) to capture
fine-grained preferences by modeling token-
level differences during generation. To ad-
dress biases in scoring, we introduce the Error-
oriented Scoring Mechanism (ESM), which
quantifies tool-call errors and can be used as
a training signal. Extensive experiments on
three diverse benchmark datasets demonstrate
that TTPA significantly improves tool-using
performance while showing strong generaliza-
tion ability across models and datasets. !

1 Introduction

Enabling Large Language Models (LLMs) (Ope-
nAl, 2023; Touvron et al., 2023) to interact with
external environments is critical for enhancing their
ability to solve complex real-world problems, such
as calling search engines to access real-time infor-
mation (Patil et al., 2024) and travel planning (Hao
et al., 2024; Xie et al., 2024). As LLMs continue
to evolve, integrating external tools is essential not
only to address practical user needs but also to ad-
vance toward artificial general intelligence (Wang
et al., 2023; Liu et al., 2023; Tian et al., 2024). Cur-
rent approaches primarily employ Supervised Fine-
Tuning (SFT) to improve the tool-use capabilities

!Code is available on Anonymous GitHub

of LLM (Qin et al., 2023b; Lin et al., 2024; Zhang
et al., 2024; Tang et al., 2023; Schick et al., 2023).
Although SFT improves tool call quality and facili-
tates structured outputs, it may still struggle with
fine-grained cases where even minor token-level
errors can lead to wrong tool calls, such as missing
braces. Moreover, they typically rely on synthetic
data generated in a forward manner, first creating
queries and then generating answers, which may
cause many issues, such as unanswerable queries
and leakage of tool names or arguments, resulting
in low-quality samples that require costly filter-
ing. To address the former issue, recent work ex-
plores Reinforcement Learning (RL) methods for
tool learning, such as TL-Training (Ye et al., 2024),
which uses complex reward functions with prox-
imal policy optimization (Schulman et al., 2017),
and DPO (Rafailov et al., 2023), which leverages
trajectory-level preference sampling that focuses
on the overall correctness of the full sequence of
tool calls. While RL-based approaches aim to
achieve preference alignment to help models prefer
correct tool use, they face key challenges in im-
plementation and stability (Qin et al., 2024): (1)
Existing methods often overlook fine-grained pref-
erence discrepancies within individual tool calls,
where subtle token-level differences can determine
the success or failure of the call. In highly struc-
tured outputs like tool calls, even a single token
error can lead to complete failure, highlighting the
necessity for more precise preference alignment.
(2) Furthermore, existing preference data sampling
methods typically rely on LLM or human evalua-
tions at the trajectory level, rather than assessing
each individual tool call. This coarse-grained as-
sessment introduces biases due to overlooking fine-
grained errors and relying on ambiguous criteria,
often resulting in preference data with low discrim-
inative quality and high noise levels, which limits
the effectiveness of alignment strategies.

To overcome the above challenges, we pro-

https://anonymous.4open.science/r/TTPO-3651

pose Token-level Tool-use Preference Alignment
Training Framework (TTPA), a tool-use training
paradigm that first constructs token-level prefer-
ence datasets that align LLLMs with fine-grained
preferences, and then employs an error-oriented re-
ward mechanism to train the model. The proposed
TTPA contains two main components: (1)Prefer-
ence Oriented Tool-use Dataset Construction, in-
cluding Reversed Dataset Construction and Token-
level Preference Sampling, (2)Error-oriented Scor-
ing Mechanism. In the first component, we first pro-
pose a reversed data construction approach, which
introduces a novel paradigm for creating multi-turn
tool-use datasets to address the latter issue of SFT
methods. Unlike conventional methods (Qin et al.,
2023b; Liu et al., 2024a) that start with queries,
our approach reverses the process: we first lever-
age LLMs to rehearse a sequence of tool calls
and a final answer within a predefined tool-using
scenario. The query is then constructed based
on the generated answer. This reversed strategy
avoids complex and inefficient filtering by deriving
queries from scenarios and answers, ensuring each
query is answerable and preventing data leakage.
Moreover, it maintains question difficulty since
the model must use multiple tools, with combined-
tool tasks considered more challenging. To cap-
ture the fine-grained preference in the tool calls,
we propose Token-level Preference Sampling. Un-
like trajectory-level methods (CHEN et al., 2024)
that incorporate complete tool-calling sequences,
our approach explicitly models token-level prefer-
ences by sampling top-k candidate tokens from the
probability distribution during tool-call generation
by LLM. When training the tool-use LLM, exist-
ing models employ LLMs to grade the outputs as
the training signal which usually introduces biases
caused by coarse-grained evaluation and ambigu-
ous criteria (Nath et al., 2025). Thus, we propose
the Error-oriented Scoring Mechanism, which de-
fines a taxonomy of tool-call errors. And then we
use it to construct a preference alignment dataset
and fine-tune the LLM.

Extensive experiments on three benchmark
datasets show that TTPA notably improves tool
selection, parameter filling, and return value pars-
ing capabilities. Moreover, the model fine-tuned
with TTPA demonstrates strong generalization and
transferability across datasets, enhancing the re-
liability and applicability of LLMs in real-world
applications.

Our contributions are summarized as follows:

e We propose Token-level Tool-use Preference
Alignment Training Framework (TTPA), a novel
tool-use training paradigm that aligns the LLM
with fine-grained token-level preference to reduce
the tool-call errors.

e We introduce the Preference Oriented Tool-use
Dataset Construction, which employs a reversed
data construction method and a token-level prefer-
ence sampling approach to construct fine-grained
preference data.

e We propose the Error-oriented Scoring Mech-
anism, which captures fine-grained differences
between answers, enabling precise alignment of
LLM.

e Experimental results demonstrate that TTPA sig-
nificantly improves tool-use capabilities on three
diverse benchmark datasets, and shows strong gen-
eralization across models and datasets.

2 Related work

Tool Learning. Tool learning enhances LLMs
by integrating external tools, enabling them to se-
lect tools, generate parameters, and parse results
to respond to user queries (Qin et al., 2023a; Li
et al., 2023; Huang et al., 2023; Shi et al., 2023).
Approaches include tuning-free methods, which
use in-context learning or algorithmic design (Yao
et al., 2023; Shi et al., 2024b; Huang et al., 2024;
Zhu et al., 2025), and tuning-based methods, which
fine-tune on tool-use datasets (Wu et al., 2024,
Kong et al., 2024; Gao et al., 2024). Tuning-
free methods are often limited by the foundation
model’s capabilities, while tuning-based methods
face challenges with noisy data. Our framework
addresses this by employing Reversed Dataset Con-
struction and Token-level Preference Sampling to
produce high-quality, low-noise datasets, ensuring
better alignment with tool-use tasks and addressing
fine-grained discrepancies in tool calls. Addition-
ally, our approach introduces an error-oriented scor-
ing mechanism to refine the alignment process and
improve model robustness in complex scenarios.

Tool-Use Datasets. Tool learning has driven the
creation of datasets to improve LLMs’ tool-use ca-
pabilities (Patil et al., 2023; Wang et al., 2024a;
Gao et al., 2024). ToolBench (Qin et al., 2023b)
leverages LL.Ms to compile large datasets, while
APIGen (Liu et al., 2024b) uses an automated
pipeline to generate diverse datasets across mul-
tiple API categories. ToolACE (Liu et al., 2024a)
further advances this by integrating tool synthesis

and dialogue generation, enhancing dataset diver-
sity and complexity. However, these datasets often
suffer from noise, single-turn limitations, or high re-
source costs, and few address the growing need for
preference-based datasets. Our framework uses Re-
versed Dataset Construction and Token-level Pref-
erence Sampling to construct high-quality prefer-
ence datasets, aligning token-level tool-use pref-
erences and improving fine-grained alignment for
structured outputs, ensuring better generalization
across diverse tool-use scenarios.

3 Method

3.1 Overview

In this section, we present the details of the pro-
posed method TTPA. An overview of TTPA is illus-
trated in Figure 1, which contains two main com-
ponents: (1)Preference Oriented Tool-use Dataset
Construction, a unified framework that includes Re-
versed Dataset Construction for generating reliable
and non-leaked raw instruction data, and Token-
level Preference Sampling for constructing Pre-
ferred & Dispreferred pairs through fine-grained
scoring (2)Error-oriented Scoring Mechanism, a
token-level evaluation method designed to capture
token-level preferences by fine-grained scoring.
Further details, such as error weights and the exam-
ple, can be found in Appendix A.

3.2 Reversed Dataset Construction

Most existing work trains LLM on synthetic tool-
use datasets, and this approach has led to notable
progress (Li et al., 2023; Tang et al., 2023; Liu
et al., 2024a; Qin et al., 2023b; Liu et al., 2024b).
However, in existing tool-use datasets, the gen-
erated queries may explicitly reveal information
about the tools or parameters involved (Qin et al.,
2023b). However, in real-world scenarios, user
queries typically do not explicitly specify the tools
to be called or the input parameters. This discrep-
ancy creates a gap between the dataset and real-
world applications, ultimately affecting the model’s
performance in practical settings. Traditional ap-
proaches (Qin et al., 2023b; Liu et al., 2024a) that
guide LLMs to first generate a query () and then
solve it, which may result in unsolvable or overly
ambiguous queries. While some filtering rules can
be applied to remove low-quality data, such filter-
ing consumes significant resources, including API
calls, GPU usage, time, and other computational
costs, and often fails to achieve the desired effec-

tiveness, as shown in (Liu et al., 2024b). To address
these issues, we propose the Reversed Dataset Con-
struction method to construct a tool-use dataset.

First, we use a candidate tool set 7T.,, as in-
put and then prompt the generator ¢ to construct
three items: (1) A tool-use scenario description
S which is a short sentence to describe this tool-
use application scenario. (2) A toolset Tye =
{t1,t2,- -+ ,tny} with N tools is selected accord-
ing to the task requirement in the scenario, which
should be used in the scenario S. (3) Some con-
straint Cons of the scenario S to restrict the so-
lution space. Next, our goal is to generate an
answer A based on the tool-use application sce-
nario S. We simulate the task-solving process by
iteratively selecting and calling the tools in 7.
Specifically, in each tool calling step, we predict
the tool used in the ¢-th step tiall based on the an-
swer generation prompt P4, the input sequence S,
the available tools T, the constraints Cons, and
the memory of previous tool interactions M*~*,
where M~ = Uj._l{tgau,tﬁes}. After selecting
the tool, we obtain the output t’, by calling tiall.

After multiple rounds of tool interactions, the
generator ¢ obtains a series of results returned by
the tools, and then we generate the answer A ac-
cording to these inputs. Finally, we instruct the gen-
erator ¢ to generate a query (. Since the queries
are derived from answers, each query in this dataset
is guaranteed to have a valid solution. Furthermore,
the queries, answers, and associated tool results are
highly correlated, ensuring that solving the queries
necessitates the use of tools. This design signif-
icantly reduces noise in the dataset, resulting in
higher data quality.

3.3 Token-level Preference Sampling

Since the trajectory-level sampling method (CHEN
et al., 2024), which aligns preferences at a macro
level by capturing the overall learning path, usually
fails to account for fine-grained distinctions within
individual trajectories. To tackle this problem, we
propose the Token-level Preference Sampling strat-
egy for Direct Preference Optimization (DPO). For
brevity, we denote by Mgre the set of tool calls and
their corresponding return values prior to the i-th
tool call, i.e., Mgre = {thpthe, ot it

To construct a preference dataset more suitable
for training the tool learning model .#, we build
the dataset by sampling from the outputs of .Z,
which predicts a probability distribution Pyreq Over

possible tool calls for the i-th step, given the in-

Tool 1
Tool 2

@ History <% 2% Other tool

Tool n Multi-turn Tool calls

Tool List

Parse
. — }% Tool call
a8 Scenario

Constraints
@ Using Tools

Force Query Generation

@ Answer £t é(Answer_gen

Preference Oriented Tool-use Dataset Construction

L Scenario Simulate_+ | ___________ Reversed Data Construction .

Error-oriented Scoring
i Golden Tool Call:

(1) Check Format: .
Score =0, if error.
Tool call Json.loads.
@ [Score=1, else.
(2) Check Tool Name:
Name 2 Name*

SFT-DataSet

1
/Quew_gen i S& (Name*, {Para_1*, ..., Para N*}}
1
lExtract ! Sampled Tool Call:
@ Query i >§ {Name, {Para_1, ..., Para N}}
+ | 7
é History ! Tool Doc: Parameter Information
- 1
Add ' Scoring Process:
1
1
1

Score =0, if not equal.

ettt et ittt ettt ittty | @ Score=1, else.
i @, Query —— }Q Tool call: 1, i ! (3) Check Parameters:
! 0 -m--n - . @Erronoriented [Required Paras. Para_1 Type
! @ % Tool call: 0 . m] n ' . :l;: Scoring i ! @lln@or not® ®ll@orHe
B 1 *
E I;l Q ReSPonsel X Tool call: : E H {Para_1, ..., Para_N} Para_1* Type
' WS | e 4 : ! @lm@or not® Para_1 Value - --
1 1 0l
Lo | 5% Tool call - ol- -1 @ score® >--> @ Score” 1| 1 Al Valid Paras. P@alrla@l’: Véiog
: r 1 = o . l i : Y Count({ J P
i J Tk -Hl - ' _ @
! Yo - & Responsen Ok' Preferred: 3 Tool call; Vo SCOfe"me(@ @ “OCe®
. - . 1 =1
' @ Answer Probs Distribution Dispreferred: 0thers vl
1 1
1 ! I

(2) Token-level Preference Sampling

Final Score = Zw‘ Score;
i=0

Figure 1: The overall framework of our work, which mainly consists of Preference Oriented Tool-use Dataset

Construction and Error-oriented Scoring Mechanism.

put question (), the available tools Ty, and the
prior tool usage history Mgre During the token-
by-token generation process of tool learning model
-Z, the token probability distribution Fy.q over the
entire vocabulary is computed before each token is
generated. During sampling, candidate tokens are
selected from the top-ranked tokens in Fyeq. How-
ever, the probability gap between the top-ranked
tokens is not always significant, and the probabili-
ties of the top-ranked tokens are very close. This
close probabilities’ distribution creates ambiguity
during decoding, as different decoding strategies
may randomly select different high-probability to-
kens. Such randomness is particularly problem-
atic for structured and fixed outputs like tool calls,
where even a single incorrect token can lead to the
failure of the entire tool call. Therefore, we use the
uncertainty in token probabilities as a sampling cri-
terion, perturbing only a small number of tokens at
a time to simulate the uncertain sampling behavior
of LL.Ms during the decoding phase:

Ch o ~ Poreal(Dist < €), (1)
where Dist = p,, — py;, 2)
where CE denotes K-times tool call sampling re-

sults in the condition of the distance Dist between
rank-j token’s probability p,; and rank-1 token’s
probability p,, smaller than the predefined hyper-

parameter ¢, the value of K is dynamically deter-
mined based on the specific probability. Unlike
deterministic decoding methods (Shi et al., 2024a),
which often produce repetitive or suboptimal re-
sults, our approach introduces controlled random-
ness by perturbing a small number of tokens based
on their uncertainty. Next, we compute the score ;
for each sampled tool call ¢t,,, € CK using scor-
ing mechanism .#, which can capture fine-grained
errors that may occur during tool calls, enabling
precise alignment of model preferences. The de-
tails of this mechanism will be introduced in § 3.4.

3.4 Error-oriented Scoring Mechanism

Existing tool learning methods usually employ
LLM-based evaluation or human evaluation to as-
sess the quality of generated tool calls, and then
use this signal to optimize the model parameters.
In this paper, we design an error-oriented scoring
mechanism .% that can capture fine-grained errors
that may occur during tool calls. For tool learning
tasks, since tool calls are structured representations,
we propose a taxonomy for the tool-call errors. For
a tool call result t.,;, the scoring function 9 is de-
signed to identify whether the call contains errors
and to classify these errors into specific error types:

0, if e; detected.
8 (tean) = { ’ 3
(Fean) 1, if e; not detected. ©)

where e; denotes a specific error type (e.g., format
errors and tool name errors). However, since dif-
ferent tools may have varying numbers of param-
eters, simply matching the predicted parameters
with the ground-truth parameters could result in
coarse-grained outcomes. Therefore, we perform a
detailed validation on each parameter output by the
model, including type errors and value errors. In
the evaluation process, each parameter is assigned a
score, and the final scores for parameter type errors
and parameter value errors are obtained by taking
the weighted average of all parameter scores:

X
. 1
0% (tean) = 57 >, (1), €
J
where (v;) denotes a similar function to score

each parameter v of the X parameters generated by
tool learning model ., which can be represented

as:
0,
’Y(UJ) = {1,

After the scores for all error types are computed, we
obtain the final score for the tool call by weighted
sum the scores of all types of errors detecting:

if v; not correct.
j
: &)

if v; correct.

H
y(tcall) = Zwi -9 (tcall)a (6)

where w; denotes the hyper-parameter weight of
the type of error e;, 0% (t.1) denotes the score of
each type of error and H denotes the total number
of error types. This scoring mechanism can be
utilized to generate a preference-aligned dataset,
which is subsequently employed for training tool
learning models using the DPO method.

4 Experimental Setup

4.1 Implementation Details

To evaluate the effectiveness of TTPA, we first ap-
ply Reversed Data Construction and Token-level
Preference Sampling to generate 3,895 instruction
instances and 8,550 preference pairs using 114 spe-
cialized APIs. In this process, we employ state-of-
the-art language models, GPT-40-mini and GPT-
40 (OpenAl, 2023), as generators ¢ to ensure high-
quality and valid data. Subsequently, we fine-tune
Qwen2.5-7B-Instruct (Qwen et al., 2025) as the
tool-use model .Z on the constructed dataset to
optimize its performance.

4.2 Baseline

We conduct a comprehensive comparison between
TTPA and several state-of-the-art baselines in
tool use, including: (1) GPT-40-mini, by Ope-
nAl, known for its strong tool-use performance;
(2) Hammer2.0-7b (Lin et al., 2024), a state-of-
the-art tool learning model, demonstrates excep-
tional function calling capabilities, particularly ex-
celling in robustness. (3) ToolACE-8B (Liu et al.,
2024a), an advanced tool learning model, trained
on coherent dialogue-based tool use datasets for
robust multi-turn conversational tool utilization.
(4) xLAM-7b-r (Liu et al., 2024b), an advanced
LLM optimized for decision-making and tool-use
from 60k single-turn samples. In addition to
these models, we also include LLaMA-3.1-8B and
Qwen-2.5-7B as baselines in the comparative ex-
periments. In these baselines, Hammer2.0-7B is
fine-tuned from Qwen-2.5-7B, while Tool ACE-8B
and xLAM-7B-R are based on LLaMA-3.1-8B.
Our experiments include models fine-tuned from
both the same and different base models, enabling
a broader evaluation of TTPA’s effectiveness.

4.3 Dataset & Metric

We evaluate the tool learning model fine-tuned with
TTPA on two commonly-used benchmarks and our
proposed testset. The statistics of these datasets are
shown in Table 2. We first use the subset of widely-
used ToolBench (Qin et al., 2023b) benchmark,
including /1-instruction and I11-tool. For evalua-
tion, we employ the Pass Rate metric, which serves
as an intuitive measure of tool learning LLMs’ ca-
pability in accurately selecting appropriate tools
and generating corresponding parameters by the
model within a constrained number of inference
steps. Moreover, we employ the Berkeley Function-
Calling Benchmark (BFCL) (Patil et al., 2024),
which covers complex scenarios such as multiple
tool use. In the evaluation framework, BFCL pri-
marily assesses LLMs based on Abstract Syntax
Tree Evaluation. This evaluation measures the syn-
tactic correctness of generated tool calls by verify-
ing their alignment with predefined tool documen-
tation in terms of structure and parameters. We
also employ our testset where we randomly split
10% of the generated data for testing. In the test-
ing process, we employ the error-oriented scoring
mechanism as the evaluation metric, enabling a
fine-grained assessment of tool calls.

Models Vanilla QS QL TS TE TCE
11-instruction
GPT-40-mini 82.0% 80.0% 83.5% 84.0% 81.5% 81.0%
Hammer2.0-7b 60.0% 56.0% 54.5% 58.0% 51.5% 53.0%
xLAM-7b-r 77.5% 78.5% 73.5% 79.5% 75.5% 73.0%
ToolACE-8B 77.0% 75.5% 78.5% 74.0% 72.0% 72.0%
LLaMa3.1-8B 74.5% 74.5% 73.5% 72.5% 71.5% 66.5%
Qwen-2.5-7B 50.0% 52.5% 45.0% 51.5% 38.0% 40.5%
TTPA (Qwen) 86.0% 88.5% 84.5% 87.5% 86.0% 83.5%
11-tool
GPT-40-mini 85.5% 83.5% 80.0% 81.5% 83.0% 82.0%
Hammer2.0-7b 62.0% 66.0% 56.0% 68.5% 51.0% 51.0%
xLAM-7b-r 77.5% 77.0% 77.0% 73.5% 71.0% 69.5%
ToolACE-8B 76.0% 77.5% 86.0% 77.5% 76.0% 76.0%
LLaMa3.1-8B 77.0% 80.5% 74.0% 77.5% 72.0% 70.5%
Qwen-2.5-7B 54.5% 60.0% 51.0% 57.0% 42.0% 44.5%
TTPA (Qwen) 85.0% 84.0% 82.0% 81.5% 83.0% 83.5%

Table 1: The results of evaluation on various ToolBench subsets. The dataset abbreviations correspond to specific
modifications: (1) Vanilla represents the original ToolBench dataset; (2) Query Shorten (QS) denotes the version
with condensed queries for increased information density; (3) Query Lengthen (QL) indicates extended queries
with additional information, resulting in sparser key information distribution; (4) Tools Shuffle (TS) refers to the
variant with randomized tool candidate ordering; (5) Tools Expand (Intra-category) (TE) represents the expanded
toolset within the same category; and (6) Tools Expand (Cross-category) (TCE) indicates the expanded toolset
across different categories. We highlight the best performance in bold.

Attributes ToolBench BFCL Ours
Subsets 12 5 1
Amount 2400 1929 385
APIs 1543 1100 114
Avg. APIs 5.06 1 5.56

Table 2: Statistics of the experimental datasets. APIs
presents the total number of using APIs in the entire
dataset, and Avg. APIs presents the average number of
tool-calls per individual case.

5 Experimental Result

5.1 Overall Performance

To assess the effectiveness of our proposed TTPA,
we conducted a comprehensive comparison of our
model with several strong baseline models across
three diverse datasets. The results are shown in
Table 1, Table 3, and Table 4 for Toolbench, BFCL,
and Our testset, respectively.

ToolBench The findings in ToolBench validate
the effectiveness of training on tool-use datasets, re-
vealing that models with merely 7-8 billion param-
eters can achieve comparable or even superior per-
formance to state-of-the-art GPT-40-mini in some
subsets. This highlights the critical role of domain-
specific fine-tuning in enhancing the tool-use capa-

bility of LLMs. Our TTPA outperforms the base-
lines in most scenarios, demonstrating the general-
izability of our approach. However, an exception
is observed in the QL sub-dataset under the I1-tool
dataset, where Tool ACE-8B achieves better perfor-
mance. This discrepancy can likely be attributed
to the fact that ToolACE incorporates extensive
dialogue information during its training process,
enabling it to handle long queries more effectively.
Moreover, due to the long-context training data de-
rived from a long candidate tool list, models are
required to select the correct tool in more complex
scenarios. Consequently, our model exhibits higher
robustness across five out of six sub-datasets. In
contrast to other models, where performance fluc-
tuations exceed 5% even 10%, our model main-
tains a pass rate variation of less than 2%. The
exception observed in the TCE sub-dataset, where
performance declines, is likely due to the crossed
expansion of the candidate tool list, which indicates
that the model must first identify the appropriate
sub-toolsets category before selecting the correct
tool within that subset. Due to the lack of sufficient
training data for this specific challenge, most mod-
els perform worse on this dataset compared to their
performance on the vanilla dataset. Nevertheless,
our model still surpasses the baselines, achieving

Models Multiple(live) Simple(live) Multiple Simple Relevance(live)
GPT-40-mini 76.3% 77.1% 90.0% 90.5% 77.8%
Hammer2.0-7b 75.0% 67.4% 93.5% 95.2% 83.3%
xLAM-7b-r 75.4% 73.6% 95.0% 92.2% 100.0%
ToolACE-8B 75.2% 78.2% 95.5% 95.0% 94.4%
LLaMa-3.1-8B 65.8% 72.8% 80.5% 91.2% 94.4%
Qwen-2.5-7B 72.4% 72.6% 94.0% 95.3% 77.7%
TTPA (Qwen) 71.7% 79.5% 93.0% 95.5% 94.5%

Table 3: Accuracy performance on the BFCL subsets. Multiple and Simple denote that the LLMs are provided
multiple tools and one tool, respectively. /ive distinguishes itself from other datasets in the same category. Bold
values represent the highest performance for the models evaluated.

Models Name Para. Content
GPT-40-mini 43.0% 70.3% 64.6%
Hammer2.0-7b 33.9% 67.3% 59.7%
xLAM-7b-r 39.6% 71.1% 63.1%
ToolACE-8B 31.7% 62.7% 51.1%
LLaMa-3.1-8B 32.6% 57.1% 46.9%
Qwen-2.5-7B 29.1% 54.4% 46.3%
TTPA (Qwen) 57.8% 81.3% 74.2%

Table 4: Results on our testset. Name, Para. and Con-
tent denote the tool calls’ accuracy of tool selection,
parameters choosing, and parameters content filling,
respectively. Bold values represent the highest perfor-
mance for the models evaluated.

the best performance.

BFCL The results on BFCL demonstrate that
the SOTA baseline models have achieved remark-
able performance, particularly on the multiple and
simple subsets, where they attain accuracy rates
exceeding 90%. Notably, our fine-tuned model
demonstrates comparable performance to these ex-
isting approaches, reaching SOTA performance lev-
els. However, we identify a potential limitation in
the BFCL evaluation system: its design may intro-
duce bias during assessment since the number of
solutions included for a specific case is fewer than
the actual possible solutions. This limitation could
lead to two main issues: (1) correct tool calls being
misclassified as false, thereby reducing accuracy
metrics, and (2) potential favoritism toward models
trained on specific datasets that the datas’ distri-
bution is similar to the BFCL’ data. These factors
may partially explain why our model shows slightly
inferior performance compared to SOTA models
on certain subsets. More detailed case studies can
be found in the Appendix A.1.

Our Testset Moreover, on our custom test set,
our fine-tuned model outperforms existing ad-

Error Types Example Reason
Format LEEEREE ¥ Missing a "}".

Wrong tool {*name”: “tool”, - -} Wrong tool na_me" tool",
name correct “function".
Missing {-+-,"paras.":{“year": | Missing required para.
required para. |2025,---}} “year".

Wrong para. {---,"paras.":{“years":| Wrong para. “years",

name 2025, ---}} correct “year".

Wrong para. | { Wrong para. type

-+« ,"paras.":{“year":
“2025”, - - }}

type "string", correct "int".
The value of "year"

Wrong para. {---,"paras.":{"year": o

value 2036, - --}} should be earlier than

current year.

Figure 2: Error types of tool calls. Example column
presents the examples of different error types. Reason
column presents the reason why the example failed.

vanced tool learning models across three critical
aspects that show the capability of tool-use: tool
name selection, parameters choosing, and parame-
ters’ value filling. Specifically, our model achieves
accuracies of 57.8%, 81.3%, and 74.2%, respec-
tively, representing at least an average improve-
ment of 11.8% compared to the baseline advanced
models. All results on these test sets show the effec-
tiveness of our proposed TTPA, which can enhance
the LLMs’ capability of tool-use.

5.2 Error Type Analysis

In tool-use tasks, LLM errors can be classi-
fied into three main categories of six types (Fig-
ure 2) (Dathathri et al., 2020; Ye et al., 2024).
Analyzing these errors provides insights for op-
timizing LLMs’ tool-use capabilities. The first
category is format errors, where LLMs must gen-
erate machine-parsable tool calls, requiring strict
adherence to correct output formats. The second
category involves tool selection errors, as LLMs
need to choose the most appropriate tool based
on task requirements and a thorough understand-

ing of each tool’s functionality. The final category
concerns parameter errors, which include missing
required parameters, invalid parameter types, or
values that significantly deviate from the golden
references, particularly for parameters involving
natural language text. These errors reflect LLMs’
capabilities in three dimensions: (1) instruction
following (structured outputs), (2) document com-
prehension (tool selection), and (3) text generation
(parameter filling). This analysis highlights LLMs’
limitations and guides targeted improvements in
tool-use tasks.

Dataset Base Model TTPA Model
ToolBench
-I1-inst.(avg.) 46.3% 86.0%
-I1-tool(avg.) 51.5% 83.2%
BFCL
-Multiple(avg.) 83.3% 82.4%
-Simple(avg.) 84.2% 87.5%
-Relevance 77.8% 94.5%
Ours
-Testset(avg.) 43.3% 71.1%

Table 5: Ablation study. We employ Qwen2.5-7B-
Instruct as base model, finetuning with TTPA. avg.
presents the average accuracy across all subsets of the
corresponding category or different evaluation aspects.

5.3 Ablation Study

To evaluate the effectiveness of our proposed TTPA
in enhancing the tool-use capabilities of LLMs, we
conducted an ablation study comparing the tool-use
performance of the base model across various sce-
narios before and after TTPA remarkably enhances
the tool-use capabilities of LLMs. Specifically, we
observed substantial improvements across all three
benchmark datasets, with performance gains reach-
ing up to 39.7%. These findings suggest that con-
structing token-level preference datasets for model
fine-tuning enables more granular alignment with
correct tool calls while identifying suboptimal or er-
roneous tool calls, thereby substantially improving
tool-use performance.

5.4 General Performance

To comprehensively evaluate the impact of TTPA
on the general capabilities of LLMs, we con-
duct experiments across multiple benchmarks
that assess diverse cognitive abilities: MMLU-
pro (Wang et al., 2024b) fro knowledge mastery,
HellaSwag (Zellers et al., 2019) for commonsense

GPT-40-mini
Hammer2.0-7b
XLAM-7B-fc-r
ToolACE-8B
TTPA (Qwen)

ToolBench

MMLU-pro 5 0.8 CSQA
0.6

0.4
0.2

HellaSwag GSM8K

Figure 3: The results of evaluation on the general
datasets.

reasoning, GSM8K (Cobbe et al., 2021) for mathe-
matical problem-solving, CommonSenseQA (Tal-
mor et al., 2019) for conceptual understanding, and
ToolBench for tool-usage. The results, presented in
Figure 3, demonstrate that the model fine-tuned
with TTPA achieved comparable tool-use capa-
bilities to the state-of-the-art GPT-40-mini model
while maintaining competitive performance across
other general benchmarks. Furthermore, our analy-
sis reveals that the model exhibits robust general-
ization capabilities across different domains, sug-
gesting the effectiveness of the TTPA fine-tuning
approach in both enhancing specialized and main-
taining general-purpose performance.

6 Conclusion

In this paper, we present Token-level Tool-
use Preference Alignment Training Framework
(TTPA), an automated method for constructing
high-quality tool-use preference datasets to en-
hance the tool-use capability of large language
models. The TTPA employs Preference Oriented
Tool-use Dataset Construction, which incorporates
two key components: (1) Reversed Data Construc-
tion for generating diverse tool-use dataset, and
(2) Token-level Preference Sampling for captur-
ing token-level preference, to construct a rich and
fine-grained tool-use preference dataset that better
aligns with real-world usage scenarios. Addition-
ally, we develop an Error-oriented Scoring Mecha-
nism that enables precise alignment of LLMs with
fine-grained user preferences during tool-usage.
Experiment results demonstrate that the tool learn-
ing model fine-tuned with TTPA can achieve state-
of-the-art performance, thereby advancing the field
of tool usage in Large Language Models.

Limitations

The main limitation is that conducting fine-grained
token-level preference sampling may lead to an
increase in computational complexity, requiring
higher computational resources and extending the
overall training time. In future work, we plan to
integrate efficient inference methods with our ap-
proach to enhance sampling efficiency. Addition-
ally, our training data is based on a predefined static
set of tools, whereas in practical applications, the
external environment is dynamically changing. The
model’s adaptability in dynamic environments still
requires further research and validation. We aim
to construct a dynamic tool library and extend our
method to this dynamic setting, further improving
the model’s tool-use capabilities in dynamic envi-
ronments.

Ethical Considerations

The research conducted in this paper centers on
investigating the effectiveness of fine-grained align-
ing LLMs for tool-usage. Our work systematically
benchmarks LLMs under various real-world sce-
narios and evaluates their performance.

In the process of conducting this research, we
have adhered to ethical standards to ensure the in-
tegrity and validity of our work. All the tasks as
well as tools used in our experiment were obtained
from existing benchmarks and public open re-
sources, thus ensuring a high level of transparency
and reproducibility in our experimental procedure.

To minimize potential bias and promote fair-
ness, we use the prompts following existing works,
which are publicly accessible and freely available.
We have made every effort to ensure that our re-
search does not harm individuals or groups, nor
does it involve any form of deception or potential
misuse of information.

References

SIIA CHEN, Yibo Wang, Yi-Feng Wu, Qingguo Chen,
Zhao Xu, Weihua Luo, Kaifu Zhang, and Lijun
Zhang. 2024. Advancing tool-augmented large lan-
guage models: Integrating insights from errors in
inference trees. In Advances in Neural Information
Processing Systems.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
International Conference on Learning Representa-
tions: ICLR.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang,
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and
Zhaochun Ren. 2024. Confucius: Iterative tool learn-
ing from introspection feedback by easy-to-difficult
curriculum. In Proceedings of the AAAI Conference
on Artificial Intelligence: AAAI

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu
Fan. 2024. Large language models can plan your trav-
els rigorously with formal verification tools. arXiv
preprint arXiv:2404.11891.

Chengrui Huang, Zhengliang Shi, Yuntao Wen, Xiuy-
ing Chen, Peng Han, Shen Gao, and Shuo Shang.
2024. What affects the stability of tool learning? an
empirical study on the robustness of tool learning
frameworks. arXiv.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqgiang Gong, et al. 2023. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. arXiv.

Yilun Kong, Jingqing Ruan, YiHong Chen, Bin Zhang,
Tianpeng Bao, Shi Shiwei, du Guo Qing, Xiaoru Hu,
Hangyu Mao, Ziyue Li, Xingyu Zeng, Rui Zhao, and
Xueqgian Wang. 2024. TPTU-v2: Boosting task plan-
ning and tool usage of large language model-based
agents in real-world industry systems. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing: Industry Track.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. API-bank: A comprehensive
benchmark for tool-augmented LLMs. In Associa-
tion for Computational Linguistics: EMNLP.

Qigiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie,
Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu Zhou,
Cheng Cheng, Yin Zhao, Jun Wang, and Weinan
Zhang. 2024. Hammer: Robust function-calling for
on-device language models via function masking.
arXiv.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruim-
ing Tang, Defu Lian, Qun Liu, and Enhong Chen.
2024a. Toolace: Winning the points of 1lm function
calling. In International Conference on Learning
Representations: ICLR.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen

Men, Kejuan Yang, et al. 2023. Agentbench: Evaluat-
ing llms as agents. arXiv preprint arXiv:2308.03688.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian
Lan, Shirley kokane, Juntao Tan, Weiran Yao, Zhi-
wei Liu, Yihao Feng, Rithesh R N, Liangwei Yang,
Silvio Savarese, Juan Carlos Niebles, Huan Wang,
Shelby Heinecke, and Caiming Xiong. 2024b. Api-
gen: Automated pipeline for generating verifiable
and diverse function-calling datasets. In Advances in
Neural Information Processing Systems.

Vaskar Nath, Pranav Raja, Claire Yoon, and Sean
Hendryx. 2025. Toolcomp: A multi-tool reasoning
& process supervision benchmark. arXiv.

OpenAl OpenAl. 2023. Gpt-4 technical report.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2023. Gorilla: Large language model
connected with massive apis. arXiv.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2024. Gorilla: Large language model
connected with massive apis. In Advances in Neural
Information Processing Systems.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023a. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou,
Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung,
Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen,
Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li, Ziwei
Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan,
Xin Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang,
Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang,
Cheng Yang, Tongshuang Wu, Heng Ji, Guoliang Li,
Zhiyuan Liu, and Maosong Sun. 2024. Tool learning
with foundation models. In ACM Comput. Surv.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing
Xie, Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan
Liu, and Maosong Sun. 2023b. ToolLLM: Facilitat-
ing Large Language Models to Master 16000+ Real-
world APIs. International Conference on Learning
Representations: ICLR.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. arXiv.

10

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language Models Can Teach Themselves to Use
Tools. Neural Information Processing Systems:
NeurIPS.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang,
Yifan Wang, Yujiu Yang, and Wai Lam. 2024a. A
thorough examination of decoding methods in the era
of llms. arXiv.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Zhumin Chen,
Suzan Verberne, and Zhaochun Ren. 2024b. Chain
of tools: Large language model is an automatic multi-
tool learner. ArXiv.

Zhengliang Shi, Shen Gao, Zhen Zhang, Xiuying Chen,
Zhumin Chen, Pengjie Ren, and Zhaochun Ren. 2023.
Towards a unified framework for reference retrieval
and related work generation. In Association for Com-
putational Linguistics: EMNLP.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

Shubo Tian, Qiao Jin, Lana Yeganova, Po-Ting Lai,
Qingqing Zhu, Xiuying Chen, Yifan Yang, Qingyu
Chen, Won Kim, Donald C Comeau, et al. 2024. Op-
portunities and challenges for chatgpt and large lan-
guage models in biomedicine and health. In Briefings
in Bioinformatics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,

Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024a. Exe-
cutable code actions elicit better llm agents. arXiv
preprint arXiv:2402.01030.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,
Lifan Yuan, Hao Peng, and Heng Ji. 2023. Mint:
Evaluating 1lms in multi-turn interaction with tools
and language feedback. International Conference on
Learning Representations: ICLR.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,
and Wenhu Chen. 2024b. Mmlu-pro: A more robust
and challenging multi-task language understanding
benchmark. arXiv.

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. 2024.
ToolPlanner: A tool augmented LLM for multi gran-
ularity instructions with path planning and feedback.
In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,
Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. 2024. Travelplanner: A benchmark for real-
world planning with language agents. arXiv preprint
arXiv:2402.01622.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations: ICLR.

Junjie Ye, Yilong Wu, Sixian Li, Yuming Yang, Tao Gui,
Qi Zhang, Xuanjing Huang, Peng Wang, Zhongchao
Shi, Jianping Fan, and Zhengyin Du. 2024. TI-
training: A task-feature-based framework for training
large language models in tool use. arXiv.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can
a machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics.

Wei Zhang, Yi Zhang, Li Zhu, Qianghuai Jia, Feijun
Jiang, Hongcheng Guo, Zhoujun Li, and Mengping
Zhou. 2024. Adc: Enhancing function calling via
adversarial datasets and code line-level feedback.

11

Dongsheng Zhu, Weixian Shi, Zhengliang Shi,
Zhaochun Ren, Shuaiqiang Wang, Lingyong Yan,
and Dawei Yin. 2025. Divide-then-aggregate: An
efficient tool learning method via parallel tool invo-
cation. arXiv.

A Appendix

A.1 Case Study
A.1.1 BFCL

Figure 4 shows one case in the evaluation pro-
cess of Multiple (live) subset of BFCL datasets,
which TTPA (Qwen) failed while XLAM-7b-r suc-
cess due to the limitation of the evaluate system of
BFCL. As shown in Figure 4, the correct function
get_tesco_locations has three acceptable param-
eters, where the parameters radius and limit are
optional and not specified. But the golden answer
just contains limited valid answers, such that TTPA
(Qwen)’s output is evaluated as failure although it
generates the correct API name and required param-
eters (including the parameter’s name, type, and
value).

A.2 Training Details

The hyper-parameters of the training process are
illustrated in Table 6.

A.3 Error-weights

The error weight hyperparameters in the Error-
oriented Scoring Mechanism are critical since they
directly impact the model’s performance. In this
work, we empirically set the error weights based
on preliminary observations. In future work, we
plan to conduct a more thorough investigation. The
error-weights used in the Error-oriented Scoring
are detailed in Table 7.

A.4 Example of the Entire Process

The entire process for our proposed model is as
follows:

Data Construction: We first prompt GPT to gen-
erate a specific scenario which includes some con-
straints and using tools. Based on the generated
scenario, the generator begins to call the tools multi-
turns. Then we generate an answer based on the
tool call results and the scenario. Finally, we gen-
erate a query corresponding to all the information.

Tool-Learning: Then we employ a tool-learning
model to solve the generated query. During this
process, we sample multiple tool-calling samples
from the generated tokens’ distribution. By scoring
the samples, we can get the preferrence pairs.
Additional examples will be incorporated into
the appendix, a simple one detailed in Figure 5.

12

A.5 Details of Proposed Dataset

The details of the proposed dataset are shown in
Table 8.

] Avg. Avg.
Amount Domains APIs APIs Tokens
3895 6 114 5.56 6348

Table 8: The details of the proposed dataset. Avg. APIs
and Avg. Tokens denote the average number of API calls
and the number of tokens consumed per task, respec-
tively.

A.6 Token-level Analysis

To capture the changes in sampling ratio during
token sampling before and after TTPA training, we
design a token-level analysis experiment. Suppose
that in each turn, we can sample x tool calls, and
solving a problem requires ¢ turns. The sampling
ratio can be denoted as:

Ratio =

Efzo z
t

But in the best situation, the model should gener-
ate the right tool call in a high probability and the
wrong tool call in a low probability which can not
be sampled. So the optimal sampling ratio should
be 1, meaning that the model consistently generates
the correct tool call without considering any other
alternatives. We can reflect token-level changes
by calculating the sampling ratio of each tool call.
Specifically, for a given tool call, if there are many
possible sampling outcomes, it indicates a higher
likelihood of generating incorrect answers. There-
fore, this sampling ratio can reflect the token-level
changes in model generation after TTPA training,
demonstrating the effectiveness of the TTPA train-
ing. The specific results are shown in the table 9
below. On our test set, the token distribution gen-
erated by the base model is more dispersed com-
pared to that after TTPA training. This is reflected
in its higher maximum value, lower mean, and
greater variance, indicating instability in model out-
put. This suggests that TTPA training mitigates the
likelihood of token-level errors to some extent, as
the generated token distribution becomes smoother.

A.7 Prompt Templates

The prompts we designed are listed below:

A.7.1 Reversed Dataset Construction
Prompt of Scenario Simulation:

LR
Scheduler

Learning
Rate

Warm-up
Ratio

Batch Size

Epochs LoRA rank LoRA alpha

1074 0.1 cosine

32

5 16 32

Table 6: Hyper-parameters in experiments for training.

Name Regauired Valid Para. Para. Type Para. Value
Para.
3 3 1 2 2

Table 7: The Error weights used in Error-oriented Scoring.

(Given the following tools, simulate a scenario where these
tools are used in a real-world scenario.

You DO NOT need to actually use the tools, just simulate
the scenario based on the information provided by the tools.
Your goal is to simulate a realistic scenario that involves
multiple turns and multiple tools to help another answerer
to answer the implicit question asked by a asker.

When simulating the scenario, consider the following:

1. The scenario should be as realistic as possible and should
involve multiple turns (at least two tools).

2. The scenario should be related to the tools provided.

IMPORTANT: The scenario you simulate CAN NOT
contain any explicit questions.

You SHOULD only state the scenario.

The scenario you simulate CAN NOT contain any tool
name in the tools above.

You SHOULD keep the scenario as realistic as possible.

YOUR OUTPUT CONTAINS:

scenario: str, the scenario you simulated, it should be a few
short words. Also, it should not be a question or instruction.
It is just a statement about the scenario.

additional_information: list[str], any information you want
to provide about the scenario that may help the answerer to
understand the scenario better, at least 4, at most 7. Such as
the time, the location, the people involved, etc.

tools: list[str], the tools’ name you think are related to the
scenario, you should choose the tools from the tools above.
And the number of tools should be at least 7, at most 10.

There are the tools you can choose:

itools}

Prompt of Answer Generation:

(You are a data scientist tasked with generating questions to|
extract specific information from a given dataset.

Imagine that there is a asker, you should answer the asker’s
questions based on the tool calls.

But there is no explicit question, you need to answer the
implicit question that the asker may have.

There are some Steps you can follow:

Steps:

1. Choose an appropriate tool that you believe can help
generate the questions.

2. call the selected tool to obtain the tool calls.

3. If the tool calls are insufficient to generate the questions,

(select another tool and repeat the process.

4. Once you have gathered enough information, call the
Answer_gen tool to generate an answer based on the tool
calls.

5. If there are errors, such as the tool returns invalid
information or the tool call failed, call the Restart tool to
restart.

Rules:

1. You can choose only one tool at a time.

2. The task must involve multiple turns (at least two tools).
3. Simulate a realistic scenario in the Additional Informa-
tion section.

Additional Information:
{add_info}

Note:

1. Adapt it to your role and make the task as complex and
realistic as possible.

2. You should chose the tools related to the scenarios {scene}

| and the information provided.

J

Prompt of Query Generation:

(- . .
Imagine that there is a answerer. The answerer answer a
question by calling some tools.

But there is no explicit question, you need to guess the
implicit question that the answerer may answer from the
scenario and answer, tool calls given by the answerer.

Remember that the implicit question should be closely
related to the tool calls and the final answer.

But if the answer does not give a clear answer because the
tool calls failed, you should guess the implicit question as if
the tool calls were successful.

Remember that the question should contains the key
information that solve the task should be used, such as the
date, the location, the people involved, the data to calculate,
etc.

RULES:

1. The question should be designed such that the provided
answer is the solution, and the sequence of tool calls repre-
sents the steps to derive this answer.

2. Ensure the question is intricate and closely related to the
tool calls and the final answer.

3. Write the question from a first-person perspective, mak-
ing it sound natural and human-like.

4. The question should include the necessary information

13

[about the simulation scenario and parameters in a implicit]
way.

The prompts using in the data construction to
simulate the user’s instructions:

(USER_PROMPT_STEP_1:
Please call one tool related to the scenarios: {choos-
ing_scenes}.

USER_PROMPT_STEP_2:

You can call another tool if you think the tool calls are not
enough.

Or you can call the Answer_gen tool to generate the answer
based on the tool calls.

USER_PROMPT_STEP_3:

It’s enough. You are allowed to choose at most one another
tool expect Answer_gen tool, then you must call the
Answer_gen tool to generate an answer based on the tool
calls.

USER_PROMPT_STEP_4:
| Please generate an answer based on the tool calls.

A.7.2 Token-level Preference Sampling

The prompt using in the inference process of the
Token-level Preference Sampling:

(You are a tool-use professor, you can use many tools to do
the following task that the user ask.

At each step, you need to analyze the status now and
what to do next, with a tool call to actually execute your step.

One step just give one tool call, and you will give ONE step
each time I call you.

After the call, you will get the call result, and you are now
in a new state.

Then you will analyze your status now, then decide what to
do next...

After many steps, you finally perform the task, then you can
give your final answer.

Remember:

1. the state change is irreversible, you can’t go back to one
of the former state, if you want to restart the task or you
want to give the final answer call the Finish tool.

2. You can do more then one trys, so if your plan is to
continuously try some conditions, you can do one of the
conditions per try.

Let’s Begin!

14

Models Minimum Maximum Mean Variance Normalized

Variance
Qwen?2.5-7b-Instruct 0 1.99 0.72 0.13 0.03
TTPA(Qwen2.5-7b-Instruct) 0 1.62 0.80 0.08 0.01

Table 9: The token-level analysis experiment to capture the changes of sampling ratio in token sampling before and
after TTPA training.

4 N

Query: Can you find me the closest Tesco stores near Letterkenny,Ireland please?

Apis:
{
"function": [
"name": "get_tesco_locations",
"description": "Retrieve a list of the nearest Tesco stores based on the specified location,

typically used for finding convenient shopping options.",
"parameters": {

"type": "dict",
"required": ["location"],
"properties": {

"location": {

"type": "string",

"description": "The city and state of the user's location, in the format of 'City, State’,

such as 'San Francisco, CA' or 'City, Country'. Use short form only for state"

Iy
"radius": {
"type": "integer",
"description": "The search radius in miles around the specified location
within which to find Tesco stores.",
"default": 10
p
"limit": {
"type": "integer",
"description": "The maximum number of Tesco store locations to return.",
"default": S
}
I
I
I
{
"name": "get_news_report",
"description": "Retrieves the latest news for a specified location formatted as 'City, State'.",
"parameters": {
"type": "dict",
"required": ["location"],
"properties": {
"location": {
"type": "string",
"description": "The location for which to retrieve the news, in the format of 'City, State’,
such as 'San Francisco, CA' or 'New York, NY'."
I
i
+
i

Golden Answer: [{"get_tesco_locations": {"location": ["Letterkenny, Ireland"],
"radius": ["", 10], "limit": ["", 5]1}}]

:TTPA (Qwen) Answer: [{"get_tesco_locations": {"location": "Letterkenny, Ireland",
: "radius": 5, "limit": 3}}]

:Error: ["Invalid value for parameter 'radius': 5. Expected one of ['', 10]."],
1 "error_type": "value_error:others"

Figure 4: The case study of BFCL. TTPA (Qwen) passes the question but is evaluated as false.

15

a N

1.Scenario simulation:
1. Scenario: a holiday plan about hotels.
2. Constraints: one person, at Malage, Spain, from 2024-10-17 to 2024-10-20.

3.Using Tools(too long to list): search_hotel_location, search_hotels...

2.Reversed Data Construction:
1.Tool Call 1: {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"question": "Malaga,
Spain"}}}
2.Tool Result 1: {Malaga, Spain: 187438}
3.Tool Call 2: {"type": "function", "function": {"name": "search_hotels", "arguments": {"geoId": "187438", “"checkIn":
"2024-10-17", “"checkOut": "2024-10-20", "adults": 1, "rooms": 1, "sort": "PRICELOW"}}}
4.Tool Result 2(too long to list): {{"Tandem Soho Suites": {...}}, {...}}
5. Answer Generation: The top 5 hotels in Malaga, Spain, sorted by price from low to high are:\nl. Tandem Soho
Suites\n2. ICON Malabar\n3. Vincci Larios Diez\n4. Vincci Seleccion Posada del Patio\n5. Soho Boutique Equitativa
6.Query Generation: I plan to have a holiday at Malage, Spain from 2024-10-17 to 2024-10-20. Please help me find the
top 5 hotels in Malaga, Spain, sorted by price from low to high.
3.Token-1level Preference Sampling:
1. Input:
I plan to have a holiday at Malage, Spain from 2024-10-17 to 2024-10-20. Please help me find the top 5 hotels in
Malaga, Spain, sorted by price from low to high. {Using tools}
2. Sampling:

1. {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"question": "Malaga, Spain"}}}
2. {"type": "function", "function": {"name": "search_hotel", "arguments": {"question": "Malaga, Spain"}}}, name error
3. {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"question": "New York"}}}, value
error
4. {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"question": "Malaga, Spain"}},
format error
5. {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"questions": "Malaga, Spain"}}},
key error
4.Scoring:
1. {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"question": "Malaga, Spain"}}} = 1
2. {"type": "function", "function": {"name": "search_hotel", "arguments": {"question": "Malaga, Spain"}}} = 0.18
3. {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"question": "New York"}}} = 0.9
4. {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"question": "Malaga, Spain"}} = 0
5. {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"questions": "Malaga, Spain"}}} = 0.27
5.Sorting:
1.Preferred: {"type": "function", "function": {"name": "search_hotel_location", "arguments": {"question": "Malaga,
Spain"}}}

2. Dispreferred: Others

- J

Figure 5: The complete example of entire process.

16

