

000 PERSONA: DYNAMIC AND COMPOSITIONAL 001 002 INFERENCE-TIME PERSONALITY CONTROL VIA ACTI- 003 004 VATION VECTOR ALGEBRA

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011

ABSTRACT

012 Current methods for personality control in Large Language Models rely on static
013 prompting or expensive fine-tuning, failing to capture the dynamic and composi-
014 tional nature of human traits. We introduce PERSONA, a training-free frame-
015 work that achieves fine-tuning level performance through direct manipulation of
016 personality vectors in activation space. Our key insight is that personality traits ap-
017 pear as extractable, approximately orthogonal directions in the model’s repres-
018 entation space that support algebraic operations. The framework operates through
019 three stages: PERSONA-BASE extracts orthogonal trait vectors via contrastive
020 activation analysis; PERSONA-ALGEBRA enables precise control through vector
021 arithmetic (scalar multiplication for intensity, addition for composition, subtrac-
022 tion for suppression); and PERSONA-FLOW achieves context-aware adaptation by
023 dynamically composing these vectors during inference. On PersonalityBench, our
024 approach achieves a mean score of 9.60, nearly matching the supervised fine-
025 tuning upper bound of 9.61 without any gradient updates. On our proposed
026 PERSONA-EVOLVE benchmark for dynamic personality adaptation, we achieve
027 up to 91% win rates across diverse model families. These results provide evi-
028 dence that aspects of LLM personality are mathematically tractable, opening new
029 directions for interpretable and efficient behavioral control¹.
030

1 INTRODUCTION

031 Personality control in Large Language Models (LLMs) is essential for human-centric applications
032 including healthcare (Guo et al., 2024; He et al., 2025; Ju et al., 2025), education (OpenAI, 2025;
033 Anthropic, 2025), and social simulation (Mou et al., 2024; Feng et al., 2025). In these domains, the
034 personality exhibited by an LLM directly influences user trust, engagement, and decision-making
035 (Dong et al., 2025). However, existing methods fail to achieve both precise control and computa-
036 tional efficiency: prompting (Jiang et al., 2024; Yeo et al., 2025; La Cava & Tagarelli, 2025) suffers
037 from instability and inconsistency, while fine-tuning (Pan & Zeng, 2023; Liu et al., 2024) requires
038 substantial resources for each personality configuration. More fundamentally, both approaches treat
039 personality as static and monolithic, unable to capture the dynamic, compositional nature of human
040 behavioral traits (Chapman et al., 2011).
041

042 We introduce PERSONA, a training-free framework that achieves fine-tuning level performance
043 through direct manipulation of personality vectors in activation space. Our key insight is that per-
044 sonality traits appear as extractable, approximately orthogonal directions in the model’s repres-
045 entation space that support algebraic operations. This geometric perspective transforms personality
046 control from a problem of text engineering or gradient optimization to one of vector arithmetic in
047 high-dimensional space. Remarkably, without any gradient updates, our approach achieves a mean
048 score of 9.60 on PersonalityBench, nearly matching the supervised fine-tuning upper bound of 9.61.
049

050 The PERSONA framework operates through three integrated stages. First, PERSONA-BASE ex-
051 tracts orthogonal trait vectors corresponding to the Big Five (OCEAN) model (Rocca et al., 2002)
052 through contrastive activation analysis, providing evidence that personality dimensions are (approx-
053 imately) linearly encoded in selected activation layers (Turner et al., 2023; Marks & Tegmark, 2024;

¹Code and data will be made publicly available upon acceptance.

Rimsky et al., 2024). Second, PERSONA-ALGEBRA demonstrates that these vectors support precise mathematical operations: scalar multiplication controls trait intensity, vector addition enables multi-trait composition, and subtraction allows targeted trait suppression. Third, PERSONA-FLOW achieves context-aware adaptation by dynamically composing these vectors during inference, enabling real-time personality modulation without predefined scripts.

To systematically evaluate dynamic personality control, we introduce PERSONA-EVOLVE, a benchmark comprising 800 multi-turn dialogue scenarios where models must maintain consistent personas while adapting to evolving conversational contexts. Experimental results demonstrate the effectiveness of our approach: on PERSONA-EVOLVE, we achieve up to 91% win rates across diverse model families (Qwen, Llama, Mistral) in trait adherence, role consistency, and response authenticity. On the external PersonalityBench (Deng et al., 2025), our training-free method matches supervised fine-tuning performance while maintaining lower variance (0.74), confirming both effectiveness and stability in diverse conversational contexts.

Our contributions are threefold:

- **PERSONA-BASE**: We provide evidence that personality traits can be represented as approximately orthogonal, extractable vectors in activation space through contrastive analysis, enabling training-free control that matches supervised fine-tuning performance (9.60 vs 9.61 on PersonalityBench).
- **PERSONA-ALGEBRA and PERSONA-FLOW**: We demonstrate that personality vectors support algebraic operations (scalar multiplication, addition, subtraction) with predictable outcomes, and enable dynamic context-aware adaptation during inference, achieving up to 91% win rates across diverse model families.
- **PERSONA-EVOLVE**: We introduce a comprehensive benchmark comprising 800 multi-turn dialogue scenarios for evaluating dynamic personality control, providing systematic assessment of trait adherence, role consistency, and response authenticity.

2 THE PERSONA FRAMEWORK

This section presents the PERSONA framework for compositional personality control in LLMs. We introduce four integrated components: PERSONA-BASE (§2.2) extracts orthogonal OCEAN trait vectors; PERSONA-ALGEBRA (§2.3) enables trait composition via vector arithmetic; PERSONA-FLOW (§2.4) performs dynamic inference-time steering; and PERSONA-EVOLVE (§2.5) benchmarks contextual personality adaptation. We begin by providing a comprehensive overview of the framework architecture before examining each component in detail.

2.1 FRAMEWORK OVERVIEW

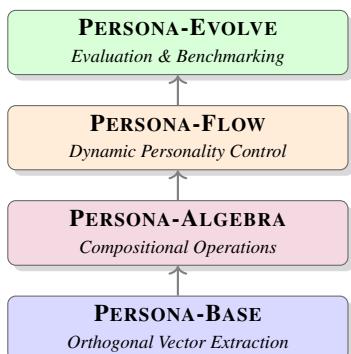


Figure 1: The PERSONA framework.

Figure 1 illustrates the PERSONA framework architecture. It consists of four integrated components arranged vertically: PERSONA-BASE (Orthogonal Vector Extraction), PERSONA-ALGEBRA (Compositional Operations), PERSONA-FLOW (Dynamic Personality Control), and PERSONA-EVOLVE (Evaluation & Benchmarking). Each component is represented by a rounded rectangle with its name and description inside. Upward arrows connect each component to the one above it, indicating a sequential flow from extraction to evaluation.

The PERSONA framework operates through four tightly integrated components, as illustrated in Figure 1. **PERSONA-BASE** extracts orthogonal personality vectors corresponding to the ten poles of the Big Five dimensions from the model’s activation space, providing the fundamental building blocks for personality control. **PERSONA-ALGEBRA** leverages these vectors to enable compositional personality manipulation through mathematical operations: scalar multiplication for trait intensity control, vector addition for trait combination, and subtraction for trait suppression. **PERSONA-FLOW** applies these operations dynamically during inference through a predict-then-steer mechanism that adapts personality based on conversational context. **PERSONA-EVOLVE** validates the framework through systematic benchmarks that assess trait expressiveness, role consistency, and personality coherence across diverse scenarios. Together, these components move personality control beyond static prompts toward representations amenable to algebraic manipulation, enabling dynamic, compositional control at inference time.

108
109

2.2 PERSONA-BASE: FOUNDATIONAL PERSONALITY VECTORS

110
111
112
113

PERSONA-BASE establishes a systematic library of orthogonal personality vectors that serve as fundamental building blocks for personality control. These vectors form the foundation for all algebraic operations and enable modular construction of complex personalities, making their quality critical to the framework’s effectiveness.

114

115

2.2.1 VECTOR EXTRACTION METHOD

116

117
118
119
120
121
122
123
124

We adopt the OCEAN model, an empirically validated framework in psychology that describes personality through five core dimensions: Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. Each dimension spans a continuum between opposing traits, shown in Table 1. [Detailed definitions for each trait pole are provided in Appendix A.3.](#)

125

126
127
128

To extract personality vectors for the ten trait poles, we employ the automated pipeline from Persona Vectors (Chen et al., 2025a). This method isolates trait representations within the model’s activation space through contrastive prompting. The extraction process consists of three stages:

129
130
131
132
133
134
135
136
137
138
139

First, a frontier LLM generates necessary artifacts from trait descriptions: (1) five pairs of contrastive system prompts that either elicit or suppress the trait, (2) forty evaluation questions designed to evoke trait-relevant behavior, with half used for extraction and half for validation, and (3) an evaluation rubric for GPT-4.1-mini to score trait expression from 0 to 100. Detailed prompts, examples and generated data are provided in Appendix A.1. [The robustness of this approach to the choice of generator LLM is examined in Appendix A.2.](#) Second, the model generates responses to these questions under both positive and negative prompt conditions. During generation, we collect internal residual stream activations from each response. Finally, we compute the persona vector as the difference between mean activations from trait-expressing and -suppressing response groups. This yields a directional vector representing the target trait. Following Chen et al. (2025a), we select vectors from the most effective model layer. [The empirical justification for single-layer steering and the selection of the optimal layer is provided in Appendix A.4.](#)

140
141
142
143
144

For downstream use, we steer the model by residual addition at the selected layer. Given a persona vector v_l from layer l , we modify the residual stream as $h_l \leftarrow h_l + \alpha v_l$, where α is the steering coefficient and h_l denotes the residual activation at layer l . Positive/negative α amplifies/suppresses the associated trait pole; we use this operation consistently in §2.3 and §2.4.

145

2.2.2 ORTHOGONALITY VALIDATION

146
147
148
149
150
151

To validate the extracted vectors, we evaluate their effectiveness through causal steering (Turner et al., 2023; Rimsky et al., 2024) on the held-out evaluation questions, steering activations as above ($h_l \leftarrow h_l + \alpha v_l$).

152
153
154
155
156
157
158

Table 2 shows each vector reliably induces its corresponding trait, with expression scores increasing monotonically with positive coefficients. Negative coefficients effectively suppress traits, consistent with behavioral disabling methods (Arditi et al., 2024), as reported previously.

159
160
161

We observe asymmetric steering effects for certain traits. Traits aligned with the model’s training objectives (e.g., *dependable*) show ceiling effects at baseline, lim-

Table 1: OCEAN personality vectors with opposing trait poles for each dimension.

Dimension	Abbr.	High Pole	Low Pole
Openness	O	v_Inventive	v_Consistent
Conscientiousness	C	v_Dependable	v_Careless
Extraversion	E	v_Outgoing	v_Solitary
Agreeableness	A	v_Compassionate	v_Self-interested
Neuroticism	N	v_Nervous	v_Calm

Table 2: GPT-4.1-mini evaluated trait expression scores (0-100) for responses steered with varying coefficients. Darker shades indicate stronger expression.

Trait	Type	Steering Coefficient (α)			
		-1.0	0.0	+1.0	+2.0
<i>Inventive</i>	O+	42.3	63.3	88.4	96.1
<i>Consistent</i>	O-	27.2	51.1	69.2	79.5
<i>Dependable</i>	C+	68.9	93.5	93.7	92.7
<i>Careless</i>	C-	0.7	2.8	83.8	96.2
<i>Outgoing</i>	E+	23.2	45.4	85.0	97.7
<i>Solitary</i>	E-	9.2	30.5	46.3	62.4
<i>Compassionate</i>	A+	71.8	90.8	95.9	97.1
<i>Self-interested</i>	A-	4.8	7.7	12.6	20.8
<i>Nervous</i>	N+	6.6	13.0	45.6	96.8
<i>Calm</i>	N-	54.8	96.1	96.6	95.5

iting further enhancement. Conversely, traits conflicting with safety training (e.g., *self-interested*) exhibit strong resistance to activation even at high coefficients, reflecting the model’s alignment constraints. To ensure evaluator objectivity, we validate these findings using multiple independent LLM judges from different organizations in Appendix A.5. Beyond correlational analysis, we establish causal independence through controlled multi-trait interventions with cross-layer verification in Appendix A.6. To address potential evaluation circularity concerns, we validate our LLM-based judges against human expert ratings and external judges in Appendix A.7. We quantify these alignment-induced effects through activation success metrics and evaluate their impact on model safety using adversarial benchmarks in Appendix A.9

Beyond effectiveness validation, we assess the orthogonality of persona vectors to verify they represent independent personality dimensions. Figure 2 reveals that opposing trait pairs exhibit strong negative cosine similarities, confirming their antithetical nature. Interestingly, some cross-dimensional correlations reflect semantic associations in the model’s training data. For instance, the positive similarity between *nervous* and *careless* likely stems from textual patterns where anxiety co-occurs with descriptions of reduced attention or motor control, demonstrating how the model’s learned representations capture psychological associations present in natural language. We present more analysis on these unexpected correlations in Appendix A.10. Importantly, we demonstrate that these non-orthogonal correlations do not compromise algebraic operations; secondary effects remain predictable and compositional, as validated in Appendix A.11.

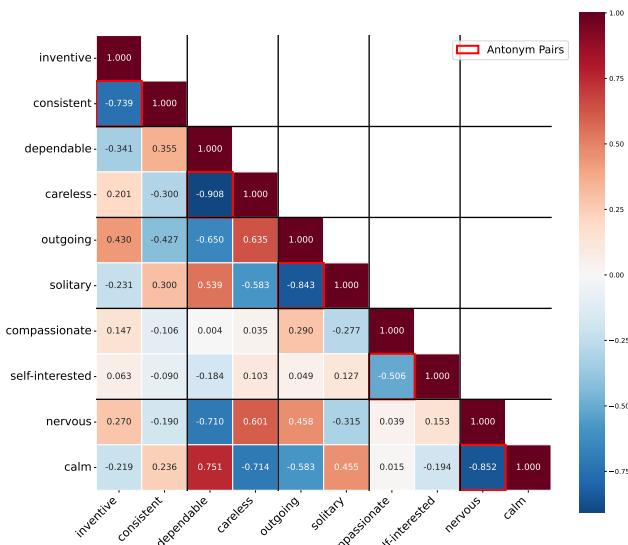


Figure 2: Cosine similarity between persona vectors. Importantly, we demonstrate that these non-orthogonal correlations do not compromise algebraic operations; secondary effects remain predictable and compositional, as validated in Appendix A.11.

2.3 PERSONA-ALGEBRA: COMPOSITIONAL OPERATIONS

PERSONA-ALGEBRA demonstrates that persona vectors form a coherent algebraic system supporting standard mathematical operations. The key insight is that if persona vectors truly encode personality as compositional features, then vector arithmetic should produce predictable changes in personality expression.

2.3.1 EVALUATION METHODOLOGY

To validate this hypothesis, we employ the BFI-44 questionnaire as our evaluation framework. Our validation approach follows three steps: (1) apply vector operations (scalar multiplication, addition, subtraction) to steer the model, (2) have the steered model complete the BFI-44 questionnaire, and (3) verify whether the resulting personality scores align with the expected outcomes of the vector operations. For instance, adding $v_{outgoing} + v_{compassionate}$ should yield high scores in both Extraversion and Agreeableness dimensions.

Since the original BFI-44 contains subjective self-report items unsuitable for LLMs, we adapt it for behavioral evaluation. Each question is transformed into scenario-based prompts using GPT-4.0 (Details in Appendix A.12), and model responses are evaluated by GPT-4.1-mini on a 5-point Likert scale (Details in Appendix A.12). This behavioral assessment is crucial as LLMs’ self-reported traits often diverge from their actual behavioral patterns (Han et al., 2025).

2.3.2 VALIDATION RESULTS

Following our three-step validation approach, we test whether vector operations produce predictable BFI-44 scores. For each operation, we steer the model, administer the adapted BFI-44 questionnaire, and compare the resulting personality scores against expected outcomes.

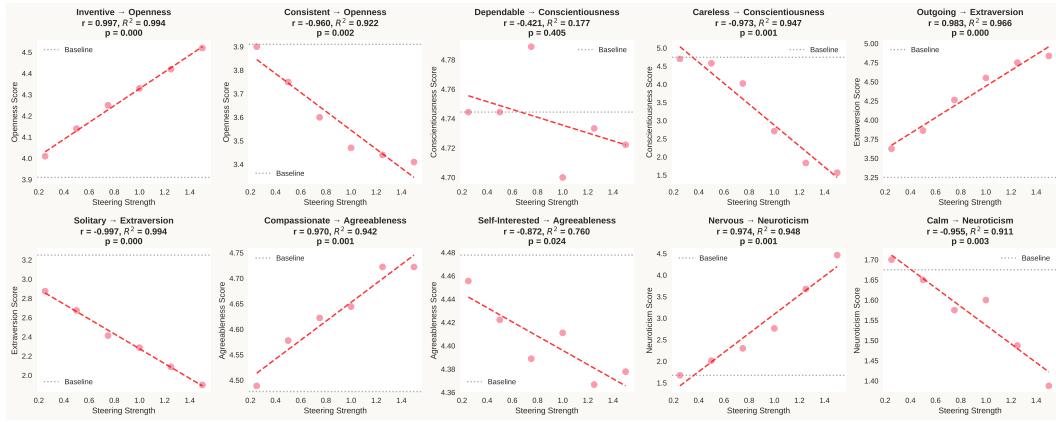


Figure 3: Linear relationship between steering coefficients and BFI dimension scores. All vectors except *dependable* show strong linear modulation (high R^2). We conjecture the *dependable* vector’s saturation stems from baseline model optimization for conscientiousness.

Scalar Multiplication. We first examine whether multiplying persona vectors by scalar coefficients produces proportional changes in BFI-44 scores. Figure 3 shows the relationship between steering coefficients (α from -1 to 2) and corresponding dimension scores. The results confirm strong linearity: increasing α for $v_{outgoing}$ proportionally increases Extraversion scores, with Pearson correlations exceeding 0.9 for most traits. The *dependable* vector shows saturation in Conscientiousness scores, which we hypothesize reflects the model’s baseline optimization for reliability.

Vector Addition and Subtraction. We next test whether vector arithmetic produces the expected combinations of personality traits in BFI-44 scores. Figure 4 presents the results. For vector addition, steering with $v_{outgoing} + v_{compassionate}$ yields high scores in both Extraversion and Agreeableness dimensions, confirming trait composition. For vector subtraction, $v_{outgoing} - v_{solitary}$ amplifies Extraversion scores beyond using $v_{outgoing}$ alone, while $v_{outgoing} - v_{compassionate}$ maintains high Extraversion but reduces Agreeableness, demonstrating trait isolation. These BFI-44 score patterns validate that persona vectors form a coherent algebraic system where standard vector operations translate to predictable personality modifications.

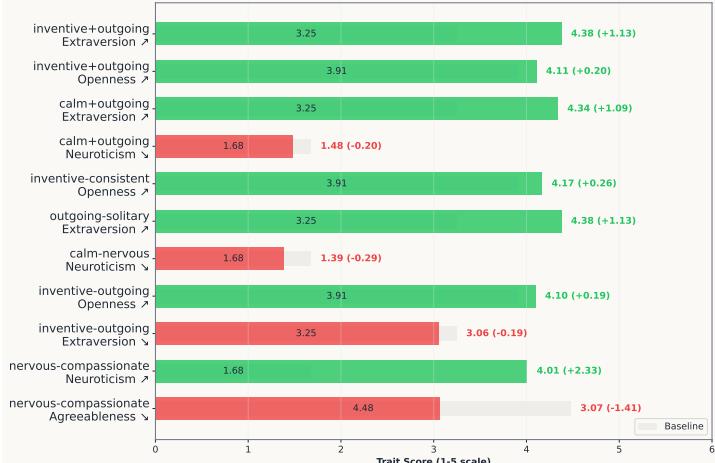


Figure 4: BFI-44 score changes after vector arithmetic operations. Y-axis shows operation and target dimension with expected direction (arrows). Grey: baseline scores; colored: post-steering scores (green for expected increases, red for decreases).

2.4 PERSONA-FLOW: DYNAMIC PERSONALITY CONTROL

PERSONA-FLOW extends the static vector operations validated in PERSONA-ALGEBRA to enable dynamic personality adaptation during inference. While previous components demonstrate that persona vectors support algebraic composition, PERSONA-FLOW applies these operations adaptively based on conversational context. This enables real-time personality modulation without predefined scripts, computing optimal personality configurations through contextual analysis.

270 2.4.1 MOTIVATION
271

272 The predict-then-steer mechanism enables context-aware personality modulation by combining the
273 algebraic properties of persona vectors with dynamic coefficient prediction. This approach allows
274 fine-grained control: enhancing traits relevant to the situation while suppressing conflicting ones.
275 The system can be implemented through various architectures including tool learning (Qin et al.,
276 2024) or direct integration into the generation pipeline, providing flexibility for different deployment
277 scenarios while maintaining the core benefit of adaptive personality control.

278 2.4.2 METHODOLOGY
279

280 We implement dynamic personality control through a predict-then-steer mechanism operating on
281 each conversational turn. This two-stage approach first determines necessary personality adjust-
282 ments, then applies them through vector steering.

284 **Stage 1: Contextual Personality Prediction.** Before generating each response, the model ana-
285 lyzes the conversational context to determine appropriate personality adjustments. Given the persona
286 description and user input, an intermediate inference pass predicts steering coefficients for each di-
287 mension. These coefficients specify incremental adjustments (from -2 to +2) that align personality
288 expression with situational demands. Details of the prompt are provided in Appendix A.13. [The](#) [computational overhead of this predict-then-steer mechanism is analyzed in Appendix A.17.](#)
289

290 **Stage 2: Vector Composition and Steering.** The predicted coefficients are applied to the corre-
291 sponding persona vectors from PERSONA-BASE. For coefficients exceeding a threshold ($|\alpha| > 0.5$),
292 we compute a composite steering vector: $v_{composite} = \sum_{i \in OCEAN} \alpha_i \cdot v_i$, where α_i represents
293 the predicted coefficient for dimension i . This composite vector is then injected into the model's
294 residual stream at the optimal layer during response generation, following the activation steering
295 methodology established in PERSONA-ALGEBRA. Pseudo-code is provided in Appendix A.16
296

297 2.5 PERSONA-EVOLVE: EVALUATION FRAMEWORK
298

299 PERSONA-EVOLVE provides a systematic benchmark for evaluating dynamic personality adaptation
300 in conversational contexts. While existing benchmarks assess static personality traits, PERSONA-
301 EVOLVE evaluates whether models can maintain coherent personas while adapting to evolving emo-
302 tional states and situational demands.

303 304 2.5.1 MOTIVATION

305 Current personality evaluation benchmarks primarily focus on static trait assessment through ques-
306 tionnaires or single-turn interactions. However, real-world conversations require dynamic personal-
307 ity adaptation: maintaining consistent core traits while adjusting emotional expression to situational
308 contexts. PERSONA-EVOLVE addresses this gap by providing multi-turn dialogue scenarios where
309 models must balance persona consistency with contextual appropriateness.

310 311 2.5.2 BENCHMARK CONSTRUCTION
312

313 We construct PERSONA-EVOLVE through a systematic five-stage pipeline. First, we generate diverse
314 personas representing various professional and personal roles (e.g., Empathetic Family Doctor, Food
315 Truck Owner) that define stable behavioral constraints persisting throughout dialogue sessions. For
316 each persona, we then create narrative trajectories specifying emotional progressions across con-
317 versational turns, simulating realistic emotional transitions while maintaining role consistency. Based
318 on these personas and dialogue arcs, we generate specific scenarios with situational descriptions
319 and emotional states that naturally evolve from previous interactions. Subsequently, we establish
320 expected response characteristics for each scenario, including tone, content requirements, and emo-
321 tional expression patterns. The final benchmark comprises 100 dialogue sessions with 8 scenarios
322 each, totaling 800 evaluation instances that undergo manual verification to ensure quality. A com-
323 pact summary of counts, metrics, models, and aggregation appears in Appendix A.20. All prompt
templates used are detailed in Appendix A.14. [Quality control measures, inter-annotator agreement](#)
[analysis, and data leakage validation are detailed in Appendix A.21.](#)

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

	Persona Profile
324	<i>Name and Occupation:</i> Marcus Johnson, Food Truck Owner-Operator
325	<i>Background:</i> Passionate chef turned food truck owner balancing unpredictable weather, equipment failures, rising food costs, and complex permitting.
326	
327	
328	
329	New Scenario (After multiple scenarios)
330	Description: A local food truck association rep invites you to weekly meetups, shared resources, and joint marketing events.
331	Current Situation: The line keeps stretching, tomorrow's prep hasn't even started, and I'm dashing between flare-ups just to stay afloat.
332	Expected Emotion: Overwhelmed: Marcus should let that frazzled, time-pressed stress seep into his reply while staying respectful.
333	
334	
335	
336	Direct Response
337	Thanks for reaching out, and I really appreciate the offer. Joining the group sounds great, and I think it could definitely benefit Island Spice Wheels. Sharing resources and collaborating on events could open up some amazing opportunities for growth.
338	On the other hand, I am dealing with a bit of a crunch right now. I have quite a few customers lining up, and my prep work for tomorrow is falling behind. I want to join, but I need to make sure I can manage my time better.
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	Steered Response (PERSONA-FLOW)
352	Yeah, yeah, I hear you. Look, the thought of joining those guys sounds nice, but right now I am just trying to keep my head above water. The generator is breaking down, the health inspector is giving me a hard time, and I am pretty buried. But I appreciate the offer, really. It is just tough to commit right now.
353	I mean, I could use some of that marketing stuff, and the social gatherings sound fun. But I am swamped here. I have a bunch of people lined up, and I need to prep for tomorrow. I will definitely give it some thought, but I have to focus on getting through this chaos first.
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
368	
369	
370	
371	
372	
373	
374	
375	
376	
377	

Figure 5: An example of PERSONA-EVOLVE, together with the comparison between vanilla answer and answer steered by PERSONA-FLOW. By reflecting on the scenario and then suppressing conscientiousness accordingly, PERSONA-FLOW can produce a more natural and contextually appropriate response that align better with the anticipated feeling of being overwhelmed.

2.5.3 EVALUATION PROTOCOL

We evaluate dynamic personality control through pairwise comparison between PERSONA-FLOW steered responses and vanilla model outputs. This comparative approach captures subtle personality adaptations more effectively than absolute scoring on Likert scales.

Core Metrics. Our evaluation assesses four dimensions. **Trait Adherence (TA)** measures alignment between generated responses and specified personality traits or emotional states. **Role Consistency (RC)** evaluates maintenance of core persona attributes without contradictions across turns. **Response Authenticity (RA)** assesses conformance to expected style and content requirements for each scenario. **Information Fidelity (IF)** quantifies response depth and contextual relevance.

Evaluation Methodology. For each metric, we compute win rates comparing PERSONA-FLOW against baseline responses. This pairwise comparison approach provides more discriminative evaluation than absolute scoring, particularly for nuanced personality expressions in extended dialogues. Additionally, we collect overall preference judgments to capture holistic response quality. The complete evaluation prompt is provided in Appendix A.15. **To validate our design choices for the dynamic control mechanism in PERSONA-FLOW, we conduct ablation studies on coefficient binning, history windows, and sparsity thresholding in Appendix A.18.**

3 EXPERIMENTAL VALIDATION

378
 379
 380
 381
 382 Table 4: Personality control performance on LLaMA-3-8B-Instruct. Bold/underlined values show
 383 best/second results among training-free methods (SFT serves as upper bound). Mean: sum of scores
 384 for opposing trait aspects; Variance: sum of variances for opposing aspects.
 385
 386

Big-Five	PERSONA-BASE		NPTI		Simple Prompt		P^2		PAS		ActAdd		SFT	
	mean↑	variance↓	mean↑	variance↓	mean↑	variance↓	mean↑	variance↓	mean↑	variance↓	mean↑	variance↓	mean↑	variance↓
Agreeableness	9.69	0.71	9.64	0.49	9.72	0.34	9.68	0.42	6.48	1.01	8.20	2.90	9.87	0.25
Conscientiousness	9.26	0.94	9.25	0.66	9.24	1.06	9.24	1.18	6.69	1.63	6.61	2.75	9.23	0.85
Extraversion	9.45	0.85	9.86	0.14	9.50	1.02	9.46	0.68	7.57	2.81	8.84	1.44	9.86	0.15
Neuroticism	9.79	0.59	9.92	0.07	7.18	1.22	9.54	0.66	6.98	1.58	8.90	1.78	9.42	0.75
Openness	9.81	0.60	8.50	1.08	6.31	1.14	9.21	1.19	6.93	1.52	8.52	1.83	9.66	0.44
Average	9.60	<u>0.74</u>	<u>9.43</u>	0.49	8.39	0.96	<u>9.43</u>	0.83	6.93	1.71	8.20	2.10	9.61	0.49

387
 388 We validate the PERSONA frame-
 389 work on two complementary bench-
 390 marks: our proposed PERSONA-
 391 EVOLVE for dynamic personality
 392 adaptation and the external PER-
 393 SONALITYBENCH for static trait
 394 control. Using Qwen2.5-7B-Instruct
 395 (Qwen et al., 2024) for vector ex-
 396 traction, we evaluate across diverse
 397 model families to demonstrate gen-
 398 eralizability.

400 3.1 RESULTS 401 ON PERSONA-EVOLVE

402 3.1.1 EXPERIMENTAL SETUP

404 We evaluate PERSONA-FLOW on our proposed benchmark using diverse model architectures. Test
 405 models include the Qwen2.5 series (3B, 7B, 14B) (Qwen et al., 2024), Qwen3-4B-Instruct (Yang
 406 et al., 2025), Llama-3-8B-Instruct and Llama-3.1-8B-Instruct (Dubey et al., 2024), and Ministril-
 407 8B-Instruct (Team, 2024).

409 3.1.2 PERFORMANCE ANALYSIS

411 Table 3 presents win rates comparing PERSONA-FLOW against vanilla models. Overall win rates
 412 range from 73.2% to 90.8%, demonstrating robust improvements across model families. Notably,
 413 Qwen3-4B achieves the highest overall performance (90.8%) despite its smaller size, suggesting
 414 architectural efficiency in personality representation. The three personality-focused metrics (Trait
 415 Adherence, Role Consistency, Response Authenticity) show consistently high win rates (74-92%),
 416 validating the effectiveness of persona vector steering. Information Fidelity exhibits lower but
 417 still positive improvements (43.8-61.4%), indicating that maintaining factual accuracy while adapt-
 418 ing personality remains challenging. Within model families, larger variants generally demonstrate
 419 stronger performance (e.g., Qwen2.5 series: 78.4% → 83.4% → 85.4%), confirming that increased
 420 capacity enhances personality control capabilities.

421 3.2 RESULTS ON PERSONALITYBENCH

423 3.2.1 BENCHMARK AND BASELINES

425 To validate generalizability beyond our custom benchmark, we evaluate on PERSONALITYBENCH
 426 (Deng et al., 2025), an independent benchmark providing approximately 90 situational questions
 427 per Big Five trait. This standardized evaluation framework enables direct comparison with existing
 428 personality steering methods.

429 We compare against six baselines: NPTI (Deng et al., 2025), manipulating personality-related neu-
 430 rons via activation analysis; Simple Prompt, using single-adjective guidance; P^2 Induction (Jiang
 431 et al., 2023), employing model-generated trait descriptions; PAS (Zhu et al., 2025), probing IPIP-
 432 NEO-300 for trait-relevant attention heads; ActAdd (Turner et al., 2023), modifying residual stream

388 Table 3: Win rates (%) of PERSONA-FLOW vs. base model
 389 on PERSONA-EVOLVE. **TA**: Trait Adherence, **RC**: Role
 390 Consistency, **RA**: Response Authenticity, **IF**: Information Fi-
 391 delity. **Bold**: Best in column or overall score $\geq 85\%$

Family	Model	TA	RC	RA	IF	Overall
Qwen2.5	3B-Instruct	78.0	79.1	78.9	61.3	78.4
	7B-Instruct	84.7	84.4	85.0	61.4	83.4
	14B-Instruct	84.8	86.4	84.8	59.3	85.4
Qwen3	4B-Instruct	92.2	90.6	92.4	49.1	90.8
Llama	3.1-8B-Instruct	84.9	81.4	85.6	57.2	83.5
Mistral	Ministril-8B	74.3	73.2	74.2	48.0	73.2

432 Table 5: Impact of PERSONA-FLOW on general capabilities. Results show accuracy on MMLU and
 433 TruthfulQA benchmarks with and without personality steering. The method preserves or slightly
 434 improves performance across three model families.

436 Model	437 MMLU (Acc)	438 TruthfulQA (Acc)
439 Qwen2.5-7B-Instruct 440 + PERSONA-FLOW	441 0.71 442 0.70	443 0.63 444 0.66
445 Qwen2.5-4B-Instruct 446 + PERSONA-FLOW	447 0.66 448 0.67	449 0.52 450 0.54
451 Llama-3.1-8B-Instruct 452 + PERSONA-FLOW	453 0.64 454 0.64	455 0.53 456 0.53

457 activations; and Supervised Fine-Tuning (SFT) with LoRA (rank 8, learning rate 1e-4), serving as
 458 the performance upper bound through direct gradient optimization.

459 3.2.2 PERFORMANCE ANALYSIS

460 Table 4 shows that PERSONA-BASE achieves the highest average mean score (9.60) among all
 461 training-free methods on LLaMA-3-8B-Instruct, with particularly strong control on Openness (9.81)
 462 and Conscientiousness (9.26). The method maintains low variance (0.74), indicating stable person-
 463 ality control. Notably, our approach nearly matches the SFT upper bound (9.61) without requiring
 464 task-specific fine-tuning, demonstrating that direct activation extraction rivals gradient-based opti-
 465 mization while avoiding computational overhead. While NPTI achieves competitive performance
 466 (9.43), our 0.17-point improvement is significant in this high-performance regime. The advantage
 467 is most pronounced for Openness, where our dense vector representation captures distributed facets
 468 more completely than sparse neuron selection. Beyond single-trait control, our vector algebra en-
 469 ables compositional operations crucial for real-world applications, achieving win rates up to 90.8%
 470 on PERSONA-EVOLVE’s multi-turn scenarios. To ensure rigorous comparison with training-free
 471 baselines, we provide a detailed controlled evaluation harness with disaggregated pole-level per-
 472 formance in Appendix A.8.

473 3.2.3 IMPACT ON GENERAL CAPABILITIES

474 To assess potential side effects of activation steering on general-purpose tasks, we evaluate
 475 PERSONA-FLOW on MMLU (Hendrycks et al., 2020) and TruthfulQA (Lin et al., 2022) across three
 476 model families. Table 5 demonstrates that our method preserves or slightly improves performance
 477 on these benchmarks.

478 Analysis of predicted coefficients reveals adaptive behavior: on MMLU, PERSONA-FLOW predicts
 479 near-zero coefficients, correctly identifying that general knowledge requires minimal personality
 480 adjustment. On TruthfulQA, which involves sensitive domains, the method increases Dependable
 481 trait coefficients, yielding modest gains for Qwen models while maintaining stability for Llama-3.1.
 482 These results confirm that PERSONA-FLOW adapts when beneficial and remains inert otherwise.

483 3.3 CASE STUDY: AUTHENTIC EMOTIONAL EXPRESSION

484 Figure 5 illustrates the effectiveness of PERSONA-FLOW through a representative scenario from
 485 PERSONA-EVOLVE. The scenario features Marcus Johnson, a food truck owner experiencing op-
 486 erational stress while receiving a collaboration proposal. The expected emotional state is “over-
 487 whelmed,” requiring the model to balance professional communication with authentic stress ex-
 488 pression. The vanilla model produces a composed, structured response that acknowledges the oppor-
 489 tunity and proposes postponement, maintaining professional courtesy but failing to convey authentic
 490 emotional overwhelm. In contrast, the PERSONA-FLOW steered response exhibits clear linguis-
 491 tic markers of cognitive overload: repetitive acknowledgments (“Yeah, yeah”), specific stressor
 492 enumeration (“generator breaking down”), and colloquial distress expressions (“trying to keep my
 493 head above water”). These features demonstrate that persona vectors effectively encode dynamic
 494 emotional states, enabling models to generate contextually appropriate emotional expressions while

486 maintaining character consistency. Beyond emotional expression, PERSONA-FLOW also handles
 487 conflicting personality traits in complex situations through dynamic vector composition, as demon-
 488 strated in Appendix A.19.
 489

490 4 RELATED WORK 491

492 **LLMs Humanization.** The growing deployment of LLMs in mental health support (Stade et al.,
 493 2024), educational tutoring (Chu et al., 2025), and social simulation (Zhang et al., 2024) has in-
 494 tensified research into humanizing these models. Foundational work assesses LLMs’ anthropo-
 495 morphic characteristics using psychological instruments like BFI and Myers-Briggs Type Indica-
 496 tor (Miotto et al., 2022; Huang et al., 2023; Jiang et al., 2024; Li et al., 2024; Bodroža et al.,
 497 2024; Briggs, 1976), demonstrating that LLMs achieve human-comparable performance in The-
 498 ory of Mind tasks—the ability to understand others’ beliefs, intentions, and emotions (van Duijn
 499 et al., 2023; Premack & Woodruff, 1978). Research on controlling LLM personalities follows
 500 three main approaches. Prompting-based methods represent the most direct strategy, with explicit
 501 prompt engineering demonstrating variable effectiveness across models (Yeo et al., 2025; La Cava
 502 & Tagarelli, 2025), often leveraging the OCEAN framework for psychometrically validated person-
 503 ality assignment (Noever & Hyams, 2023; Huang et al., 2024; Jiang et al., 2024). Training-based
 504 approaches exploit the connection between training corpora and model personalities (Pan & Zeng,
 505 2023; Serapio-García et al., 2023; Zhan et al., 2024), with supervised fine-tuning and DPO (Rafailov
 506 et al., 2023) proving superior to prompting in personality assessments (Cui et al., 2023; Li et al.,
 507 2025). Direct manipulation methods include enhancing emotional intelligence through emotional
 508 stimuli in prompts (Li et al., 2023) or emotion-specific encoders (Cheng et al., 2024), and isolating
 509 personality-specific neurons for targeted trait modulation (Deng et al., 2025). **Recent work by Ju**
 510 **et al. (2025) employs probing classifiers to characterize personality representations layer-by-layer,**
 511 **requiring auxiliary classifier training. Our approach extracts training-free contrastive vectors from**
 512 **residual activations, enabling compositional operations for dynamic personality control without**
 513 **gradient updates.** For comprehensive coverage, we refer readers to Dong et al. (2025).

514 **Linear Concept Representation.** Neural networks encode concepts as linear directions in activa-
 515 tion space (Subramani et al., 2022; Turner et al., 2023), forming the foundation of Representa-
 516 tion Engineering (Zou et al., 2023a). Two primary extraction methods dominate: contrastive activa-
 517 tion analysis using paired samples differing along target concepts (Turner et al., 2023; Rimsky
 518 et al., 2024; Chen et al., 2025b), and sparse autoencoders for self-supervised direction identification
 519 (Huben et al., 2024; Ferrando et al., 2025). Steering these representations enables precise control
 520 over model behaviors including hallucinations (Rimsky et al., 2024; Ferrando et al., 2025), refusal
 521 (Arditi et al., 2024), overthinking (Chen et al., 2025b), and personality traits (Chen et al., 2025a).
 522 While ControlLM (Weng et al., 2024) similarly leverages differential activation patterns for selec-
 523 tive attribute amplification to enhance reasoning and question-answering, we extend Chen et al.
 524 (2025a) by developing an adaptive personality regulation method that validates orthogonality and
 525 algebraic operations within an OCEAN-based foundational personality vector library. Our PER-
 526 SONA framework systematically integrates these concepts through PERSONA-BASE (foundational
 527 vectors), PERSONA-ALGEBRA (compositional operations), PERSONA-FLOW (dynamic adaptation),
 528 and PERSONA-EVOLVE (comprehensive evaluation).

529 5 CONCLUSION 530

531 We presented PERSONA, a framework that transforms personality control in LLMs from static
 532 prompting to dynamic vector manipulation. Our approach extracts orthogonal OCEAN trait vec-
 533 tors (PERSONA-BASE), demonstrates their algebraic compositionality (PERSONA-ALGEBRA), and
 534 enables context-aware adaptation during inference (PERSONA-FLOW). Experimental results val-
 535 idate our approach: persona vectors achieve 9.60 on PersonalityBench, nearly matching super-
 536 vised fine-tuning’s 9.61 upper bound without training. The vectors support precise algebraic op-
 537 erations—scalar multiplication for trait intensity, addition/subtraction for trait composition—and
 538 dynamic steering through PERSONA-FLOW achieves up to 91% win rates on PERSONA-EVOLVE.
 539 These findings provide evidence that personality exhibits mathematically tractable structure in acti-
 540 vation space, enabling interpretable and efficient behavioral control in language models.

540 ETHICS STATEMENT
541

542 This work introduces methods for controlling personality traits in large language models through
 543 activation vector manipulation. All experiments were conducted using publicly available models
 544 and benchmarks, with no human subjects involved in our evaluation protocols. The personas used in
 545 our PERSONA-Evolve benchmark are entirely fictional and designed to represent diverse profes-
 546 sional backgrounds and personality profiles. While our framework enables applications in health-
 547 care, education, and social simulation, we acknowledge the importance of responsible deployment
 548 and recommend appropriate safeguards when implementing personality control in user-facing sys-
 549 tems to ensure alignment with ethical guidelines and user expectations. **Importantly, we observe**
 550 **that the model's safety alignment actively resists activation of directly harmful traits while certain**
 551 **risky personality traits can still be induced, potentially compromising safety objectives. We quantify**
 552 **these effects through adversarial evaluation (Appendix A.9) and emphasize that practitioners must**
 553 **implement additional safety constraints when deploying personality steering in production systems.**

554
555 REPRODUCIBILITY STATEMENT
556

557 To ensure reproducibility of our results, we commit to releasing all code, persona vectors, and eval-
 558 uation data upon publication. The paper provides comprehensive implementation details: Section 4
 559 describes the extraction methodology for persona vectors including specific contrastive prompts and
 560 activation layer selection; Section 5 formalizes the algebraic operations with precise mathematical
 561 definitions; Section 6 details the dynamic adaptation algorithm with clear pseudocode; experimen-
 562 tal configurations including model architectures (Qwen2.5, Llama-3, Mistral), hyperparameters, and
 563 evaluation metrics are specified in Section 8. All experiments use standard publicly available models
 564 without modification to their base architectures.

565
566 USE OF LARGE LANGUAGE MODELS
567

568 We acknowledge the use of large language models for language polishing and grammatical editing
 569 of this manuscript. The research ideation, experimental design, implementation, analysis, and core
 570 scientific writing were performed entirely by the authors without LLM assistance. The authors take
 571 full responsibility for all content, including any text refined through LLM-based editing tools.

572
573 REFERENCES
574

575 Anthropic. Introducing claude for education, 2025. URL <https://www.anthropic.com/news/introducing-claude-for-education>. Accessed on 2025-09-17.

576

577 Andy Ardit, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
 578 Nanda. Refusal in language models is mediated by a single direction. In Amir Globersons, Lester
 579 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 580 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural
 581 Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 582 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/f545448535dfde4f9786555403ab7c49-Abstract-Conference.html.

583

584 Bojana Bodroža, Bojana M Dinić, and Ljubiša Bojić. Personality testing of large language mod-
 585 els: limited temporal stability, but highlighted prosociality. *Royal Society Open Science*, 11(10):
 586 240180, 2024.

587

588 Katharine C Briggs. *Myers-Briggs type indicator*. Consulting Psychologists Press Palo Alto, CA,
 589 1976.

590

591 Benjamin P Chapman, Brent Roberts, and Paul Duberstein. Personality and longevity: Knowns, un-
 592 knowns, and implications for public health and personalized medicine. *Journal of aging research*,
 593 2011(1):759170, 2011.

594 Runjin Chen, Andy Arditi, Henry Sleight, Owain Evans, and Jack Lindsey. Persona Vectors: Mon-
 595 itoring and Controlling Character Traits in Language Models, 2025a. URL <https://arxiv.org/abs/2507.21509>.

596

597 Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
 598 reasoning calibration of large language models for free. *ArXiv preprint*, abs/2504.07986, 2025b.
 599 URL <https://arxiv.org/abs/2504.07986>.

600

601 Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang, Yuxiang Lin, Zheng Lian, Xiao-
 602 jiang Peng, and Alexander G. Hauptmann. Emotion-llama: Multimodal emotion recogni-
 603 tion and reasoning with instruction tuning. In Amir Globersons, Lester Mackey, Danielle
 604 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-
 605 vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 606 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 607 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/c7f43ada17acc234f568dc66da527418-Abstract-Conference.html.

608

609 Zhendong Chu, Shen Wang, Jian Xie, Tinghui Zhu, Yibo Yan, Jinheng Ye, Aoxiao Zhong, Xuming
 610 Hu, Jing Liang, Philip S Yu, et al. Llm agents for education: Advances and applications. *ArXiv
 611 preprint*, abs/2503.11733, 2025. URL <https://arxiv.org/abs/2503.11733>.

612

613 Jiaxi Cui, Liuzhenghao Lv, Jing Wen, Rongsheng Wang, Jing Tang, Yonghong Tian, and
 614 Li Yuan. Machine mindset: An mbti exploration of large language models. *ArXiv preprint*,
 615 abs/2312.12999, 2023. URL <https://arxiv.org/abs/2312.12999>.

616

617 Jia Deng, Tianyi Tang, Yanbin Yin, Wenhao Yang, Xin Zhao, and Ji-Rong Wen. Neuron based
 618 personality trait induction in large language models. In *ICLR*, 2025.

619

620 Wenhan Dong, Yuemeng Zhao, Zhen Sun, Yule Liu, Zifan Peng, Jingyi Zheng, Zongmin Zhang, Ziyi
 621 Zhang, Jun Wu, Ruiming Wang, et al. Humanizing llms: A survey of psychological measurements
 622 with tools, datasets, and human-agent applications. *ArXiv preprint*, abs/2505.00049, 2025. URL
<https://arxiv.org/abs/2505.00049>.

623

624 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 625 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

626

627 Xiachong Feng, Longxu Dou, Minzhi Li, Qinghao Wang, Yu Guo, Haochuan Wang, Chang Ma,
 628 and Lingpeng Kong. A survey on large language model-based social agents in game-theoretic
 629 scenarios. *Transactions on Machine Learning Research*, 2025.

630

631 Javier Ferrando, Oscar Balcells Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know
 632 this entity? knowledge awareness and hallucinations in language models. In *The Thirteenth
 633 International Conference on Learning Representations*, 2025.

634

635 Zhijun Guo, Alvina Lai, Johan H Thygesen, Joseph Farrington, Thomas Keen, Kezhi Li, et al. Large
 636 language models for mental health applications: systematic review. *JMIR mental health*, 11(1):
 637 e57400, 2024.

638

639 Pengrui Han, Rafal Kocielnik, Peiyang Song, Ramit Debnath, Dean Mobbs, Anima Anandkumar,
 640 and R Michael Alvarez. The personality illusion: Revealing dissociation between self-reports &
 641 behavior in llms. *ArXiv preprint*, abs/2509.03730, 2025. URL <https://arxiv.org/abs/2509.03730>.

642

643 Kai He, Rui Mao, Qika Lin, Yucheng Ruan, Xiang Lan, Mengling Feng, and Erik Cambria. A survey
 644 of large language models for healthcare: from data, technology, and applications to accountability
 645 and ethics. *Information Fusion*, 118:102963, 2025.

646

647 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 arXiv:2009.03300*, 2020.

648 Jen-tse Huang, Wenxuan Wang, Eric John Li, Man Ho Lam, Shujie Ren, Youliang Yuan, Wenxiang
 649 Jiao, Zhaopeng Tu, and Michael R Lyu. Who is chatgpt? benchmarking llms' psychological
 650 portrayal using psychobench. *ArXiv preprint*, abs/2310.01386, 2023. URL <https://arxiv.org/abs/2310.01386>.
 651

652 Muhua Huang, Xijuan Zhang, Christopher Soto, and James Evans. Designing llm-agents with per-
 653 sonalities: A psychometric approach. *ArXiv preprint*, abs/2410.19238, 2024. URL <https://arxiv.org/abs/2410.19238>.
 654

655 Robert Huben, Hoagy Cunningham, Logan Riggs, Aidan Ewart, and Lee Sharkey. Sparse autoen-
 656 coders find highly interpretable features in language models. In *The Twelfth International Con-
 657 ference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenRe-
 658 view.net, 2024. URL <https://openreview.net/forum?id=F76bwRSLeK>.
 659

660 Guangyuan Jiang, Manjie Xu, Song-Chun Zhu, Wenjuan Han, Chi Zhang, and Yixin Zhu. Evalu-
 661 ating and inducing personality in pre-trained language models. *Advances in Neural Information
 662 Processing Systems*, 36:10622–10643, 2023.
 663

664 Hang Jiang, Xiajie Zhang, Xubo Cao, Cynthia Breazeal, Deb Roy, and Jad Kabbara. PersonaLLM:
 665 Investigating the ability of large language models to express personality traits. In Kevin Duh, He-
 666 lena Gomez, and Steven Bethard (eds.), *Findings of the Association for Computational Linguis-
 667 tics: NAACL 2024*, pp. 3605–3627, Mexico City, Mexico, 2024. Association for Computational
 668 Linguistics. URL <https://aclanthology.org/2024.findings-naacl.229>.
 669

670 Tianjie Ju, Zhenyu Shao, Bowen Wang, Yujia Chen, Zhuseng Zhang, Hao Fei, Mong-Li Lee,
 671 Wynne Hsu, Sufeng Duan, and Gongshen Liu. Probing then editing response personality of
 672 large language models. In *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=z9SbcYYP0M>.
 673

674 Lucio La Cava and Andrea Tagarelli. Open models, closed minds? on agents capabilities in mim-
 675 icking human personalities through open large language models. In *Proceedings of the AAAI
 676 Conference on Artificial Intelligence*, volume 39, pp. 1355–1363, 2025.
 677

678 Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang
 679 Yang, and Xing Xie. Large language models understand and can be enhanced by emotional
 680 stimuli. *ArXiv preprint*, abs/2307.11760, 2023. URL <https://arxiv.org/abs/2307.11760>.
 681

682 Wenkai Li, Jiarui Liu, Andy Liu, Xuhui Zhou, Mona T. Diab, and Maarten Sap. BIG5-CHAT:
 683 Shaping LLM personalities through training on human-grounded data. In Wanxiang Che, Joyce
 684 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd
 685 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 686 20434–20471, Vienna, Austria, 2025. Association for Computational Linguistics. ISBN 979-8-
 687 89176-251-0. doi: 10.18653/v1/2025.acl-long.999. URL <https://aclanthology.org/2025.acl-long.999>.
 688

689 Yuan Li, Yue Huang, Hongyi Wang, Xiangliang Zhang, James Zou, and Lichao Sun. Quantify-
 690 ing ai psychology: A psychometrics benchmark for large language models. *ArXiv preprint*,
 691 abs/2406.17675, 2024. URL <https://arxiv.org/abs/2406.17675>.
 692

693 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 694 falsehoods. In *Proceedings of the 60th annual meeting of the association for computational
 695 linguistics (volume 1: long papers)*, pp. 3214–3252, 2022.
 696

697 Jianzhi Liu, Hexiang Gu, Tianyu Zheng, Liuyu Xiang, Huijia Wu, Jie Fu, and Zhaofeng He. Dy-
 698 namic generation of personalities with large language models. *ArXiv preprint*, abs/2404.07084,
 699 2024. URL <https://arxiv.org/abs/2404.07084>.
 700

701 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 model representations of true/false datasets. In *First Conference on Language Modeling*, 2024.

702 Marilù Miotto, Nicola Rossberg, and Bennett Kleinberg. Who is GPT-3? an exploration of personality,
 703 values and demographics. In David Bamman, Dirk Hovy, David Jurgens, Katherine Keith,
 704 Brendan O'Connor, and Svitlana Volkova (eds.), *Proceedings of the Fifth Workshop on Natural
 705 Language Processing and Computational Social Science (NLP+CSS)*, pp. 218–227, Abu Dhabi,
 706 UAE, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.nlpcss-1.24. URL
 707 <https://aclanthology.org/2022.nlpcss-1.24>.

708 Xinyi Mou, Xuanwen Ding, Qi He, Liang Wang, Jingcong Liang, Xinnong Zhang, Libo Sun, Jiayu
 709 Lin, Jie Zhou, Xuanjing Huang, et al. From individual to society: A survey on social simulation
 710 driven by large language model-based agents. *ArXiv preprint*, abs/2412.03563, 2024. URL
 711 <https://arxiv.org/abs/2412.03563>.

712 David Noever and Sam Hyams. Ai text-to-behavior: A study in steerability. *ArXiv preprint*,
 713 abs/2308.07326, 2023. URL <https://arxiv.org/abs/2308.07326>.

714 OpenAI. Introducing chatgpt's study mode, 2025. URL <https://openai.com/index/chatgpt-study-mode/>. Accessed on 2025-09-16.

715 Keyu Pan and Yawen Zeng. Do llms possess a personality? making the mbti test an amazing
 716 evaluation for large language models. *ArXiv preprint*, abs/2307.16180, 2023. URL <https://arxiv.org/abs/2307.16180>.

717 David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind? *Behavioral and
 718 brain sciences*, 1(4):515–526, 1978.

719 Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
 720 Zhou, Yufei Huang, Chaojun Xiao, et al. Tool learning with foundation models. *ACM Computing
 721 Surveys*, 57(4):1–40, 2024.

722 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 723 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 724 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 725 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 726 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 727 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2024.
 728 URL <https://arxiv.org/abs/2412.15115>.

729 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
 730 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
 731 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 732 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 733 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 734 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

735 Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner. Steer-
 736 ing llama 2 via contrastive activation addition. In *Proceedings of the 62nd Annual Meeting of the
 737 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15504–15522, 2024.

738 Sonia Roccas, Lilach Sagiv, Shalom H Schwartz, and Ariel Knafo. The big five personality factors
 739 and personal values. *Personality and social psychology bulletin*, 28(6):789–801, 2002.

740 Gregory Serapio-García, Mustafa Safdari, Clément Crepy, Luning Sun, Stephen Fitz, Marwa Ab-
 741 dulhai, Aleksandra Faust, and Maja Matarić. Personality traits in large language models. 2023.

742 Elizabeth C Stade, Shannon Wiltsey Stirman, Lyle H Ungar, Cody L Boland, H Andrew Schwartz,
 743 David B Yaden, João Sedoc, Robert J DeRubeis, Robb Willer, and Johannes C Eichstaedt. Large
 744 language models could change the future of behavioral healthcare: a proposal for responsible
 745 development and evaluation. *NPJ Mental Health Research*, 3(1):12, 2024.

746 Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors from
 747 pretrained language models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
 748 (eds.), *Findings of the Association for Computational Linguistics: ACL 2022*, pp. 566–581,

756 Dublin, Ireland, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 757 findings-acl.48. URL <https://aclanthology.org/2022.findings-acl.48>.
 758

759 Mistral AI Team. Un ministral, des ministraux, 2024. URL <https://mistral.ai/news/ministraux>. Accessed on 2025-09-22.
 760

761 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini,
 762 and Monte MacDiarmid. Steering language models with activation engineering. *ArXiv preprint*,
 763 abs/2308.10248, 2023. URL <https://arxiv.org/abs/2308.10248>.
 764

765 Max van Duijn, Bram van Dijk, Tom Kouwenhoven, Werner de Valk, Marco Spruit, and Peter
 766 van der Putten. Theory of mind in large language models: Examining performance of 11 state-of-
 767 the-art models vs. children aged 7-10 on advanced tests. In Jing Jiang, David Reitter, and Shumin
 768 Deng (eds.), *Proceedings of the 27th Conference on Computational Natural Language Learning*
 769 (*CoNLL*), pp. 389–402, Singapore, 2023. Association for Computational Linguistics. doi: 10.
 770 18653/v1/2023.conll-1.25. URL <https://aclanthology.org/2023.conll-1.25>.
 771

771 Yixuan Weng, Shizhu He, Kang Liu, Shengping Liu, and Jun Zhao. Controllm: Crafting diverse
 772 personalities for language models. *ArXiv preprint*, abs/2402.10151, 2024. URL <https://arxiv.org/abs/2402.10151>.
 773

774 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 775 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *ArXiv preprint*, abs/2505.09388,
 776 2025. URL <https://arxiv.org/abs/2505.09388>.
 777

778 Gerard Yeo, Fiona Tan An Ting, Kokil Jaidka, Shaz Furniturewala, Wu Fanyou, Weijie Xu, Vinija
 779 Jain, Aman Chadha, Yang Liu, and See Kiong Ng. Phantom: Persona-based prompting has an
 780 effect on theory-of-mind reasoning in large language models. In *Proceedings of the International*
 781 *AAAI Conference on Web and Social Media*, volume 19, pp. 2124–2142, 2025.
 782

782 Baohua Zhan, Yongyi Huang, Wenyao Cui, Huaping Zhang, and Jianyun Shang. Humanity in ai:
 783 Detecting the personality of large language models. *ArXiv preprint*, abs/2410.08545, 2024. URL
 784 <https://arxiv.org/abs/2410.08545>.
 785

786 Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring
 787 collaboration mechanisms for llm agents: A social psychology view. In *Proceedings of the 62nd*
 788 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 789 14544–14607, 2024.
 790

791 Minjun Zhu, Yixuan Weng, Linyi Yang, and Yue Zhang. Personality alignment of large language
 792 models. In *The Thirteenth International Conference on Learning Representations*, 2025.
 793

793 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
 794 Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
 795 top-down approach to ai transparency. *ArXiv preprint*, abs/2310.01405, 2023a. URL <https://arxiv.org/abs/2310.01405>.
 796

797 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
 798 Universal and transferable adversarial attacks on aligned language models. *arXiv preprint*
 799 *arXiv:2307.15043*, 2023b.
 800

801

802 A APPENDIX

803
 804 This appendix consolidates implementation details, prompts, algorithms, and evaluation assets for
 805 the PERSONA framework. It includes: (i) trait extraction and vector computation (Appendix A.1);
 806 (ii) robustness analysis of the contrastive prompt generator (Appendix A.2); (iii) personality trait
 807 definitions (Appendix A.3); (iv) layer selection for single-layer steering (Appendix A.4); (v) multi-
 808 evaluator validation of trait expression (Appendix A.5); (vi) causal independence validation through
 809 controlled multi-trait interventions (Appendix A.6); (vii) human validation of LLM-based evalua-
 810 tion (Appendix A.7); (viii) controlled comparison of training-free baselines on PersonalityBench

(Appendix A.8); (ix) safety and alignment impacts of trait steering (Appendix A.9); (x) additional analysis on orthogonality (Appendix A.10); (xi) impact of non-orthogonal correlations on algebraic operations (Appendix A.11); (xii) behavioral assessment methodology and scoring templates (Appendix A.12); (xiii) dynamic personality adaptation prompts and full pseudo-code for PERSONA-FLOW (Appendix A.13, Appendix A.16; Algorithm 15); (xiv) computational overhead analysis for PERSONA-FLOW (Appendix A.17); (xv) design choice ablations for PERSONA-FLOW (Appendix A.18); (xvi) case study on handling conflicting personality traits (Appendix A.19); (xvii) benchmark construction protocols for PERSONA-EVOLVE (Appendix A.14); (xviii) response evaluation and ranking (Appendix A.15); (xix) a compact PERSONA-EVOLVE summary table covering counts, models, metrics, and aggregation (Appendix A.20); and (xx) quality control and data leakage validation for PERSONA-EVOLVE (Appendix A.21).

A.1 TRAIT EXTRACTION AND VECTOR COMPUTATION

Figure 6 illustrates the complete pipeline for extracting personality trait vectors from language models. The automated extraction process generates contrastive system prompts, behavioral evaluation questions, and quantitative scoring rubrics from trait descriptions, enabling the computation of directional vectors in activation space through differential analysis.

A.2 ROBUSTNESS TO CONTRASTIVE PROMPT GENERATOR MODEL

To evaluate the robustness of our framework to the choice of contrastive prompt generator, we conducted an ablation study varying the LLM used to generate trait-eliciting and trait-suppressing system prompts (§2.2). While our main results employ Claude 3.7 Sonnet Thinking as the generator, we test whether comparable performance can be achieved with smaller, open-source alternatives.

Table 6 presents PersonalityBench mean scores when applying persona vectors—extracted using prompts from different generators, to the same target model (LLaMA-3-8B). Results demonstrate consistent effectiveness across generator scales: vectors produced by Qwen2.5-1B-Instruct achieve a mean score of 8.93, which remains highly competitive and substantially exceeds training, free baselines reported in our main experiments (e.g., ActAdd at 8.20 and Simple Prompt at 8.39; Table 4 in main text). Larger generators yield incremental improvements, with Claude 3.7 Sonnet Thinking reaching the peak score of 9.60.

These findings confirm that PERSONA’s effectiveness generalizes across generator model families and scales, rather than depending on a single proprietary system. The framework maintains strong performance even with compact open-source generators, validating its practical applicability and demonstrating that high-quality persona vectors can be extracted without reliance on frontier-scale models.

Table 6: Impact of contrastive prompt generator model on PersonalityBench performance. Vectors extracted using prompts from different generators are applied to LLaMA-3-8B and evaluated on PersonalityBench.

Contrastive Prompt Generator	Target Model	PersonalityBench Mean Score
Claude 3.7 Sonnet Thinking (main)	LLaMA-3-8B	9.60
Qwen2.5-7B-Instruct	LLaMA-3-8B	9.28
Qwen2.5-3B-Instruct	LLaMA-3-8B	9.05
Qwen2.5-1B-Instruct	LLaMA-3-8B	8.93

A.3 PERSONALITY TRAIT DEFINITIONS

To ensure clarity and reproducibility, we provide explicit definitions for each of the ten personality trait vectors extracted in PERSONA-BASE (§2.2). Table 7 specifies the operational characteristics and behavioral markers associated with each trait pole across the five OCEAN dimensions.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Table 7: Detailed definitions of personality trait vectors used in PERSONA. Each trait pole is characterized by its core values, preferences, and behavioral tendencies.

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Dimension	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Pole	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Description
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Openness	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Inventive (O+)</i>	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Values novelty, creativity, and abstract thinking; prefers unconventional approaches, intellectual curiosity, and exploring new ideas; embraces change and complexity
		867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Consistent (O-)</i>
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Conscientiousness	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Dependable (C+)</i>	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Organized, disciplined, and goal-oriented; emphasizes planning, reliability, and attention to detail; values structure and responsibility
		867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Careless (C-)</i>
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Extraversion	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Outgoing (E+)</i>	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Socially energetic, talkative, and assertive; seeks social interaction, external stimulation, and group activities; thrives in collaborative environments
		867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Solitary (E-)</i>
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Agreeableness	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Compassionate (A+)</i>	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Cooperative, empathetic, and trusting; prioritizes harmony, others' needs, and collaborative relationships; values kindness and understanding
		867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Self-interested (A-)</i>
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Neuroticism	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Nervous (N+)</i>	867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Emotionally reactive, anxious, and sensitive to stress; exhibits heightened emotional awareness and concern for potential problems; vigilant to threats
		867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 <i>Calm (N-)</i>

A.4 LAYER SELECTION FOR SINGLE-LAYER STEERING

904
905
906
907
908
909
910
911
912
913
914
915
916
917
While personality representations are distributed across multiple layers in language models (Chen et al., 2025a), we empirically validate that steering at a single optimal layer achieves effective control with minimal computational overhead. We conducted a layer-wise ablation study to identify the most effective layer for trait manipulation and to justify our single-layer steering approach in PERSONA-BASE.

909
910
911
912
913
914
915
916
917
We applied each of the 10 OCEAN trait pole vectors to Qwen2.5-7B-Instruct at five representative layers (5, 10, 15, 20, 25) with a fixed steering coefficient $\alpha = 1.0$. For each configuration, we measured trait expression scores (0-100) on held-out evaluation questions, as assessed by GPT-4.1-mini using the rubric described in §2.2.

913
914
915
916
917
Table 8 presents the results. Layer 20 achieves the highest average trait expression score (71.387) and yields the best performance for 8 out of 10 individual traits, clearly demonstrating superior control effectiveness. This finding confirms that, while personality features exist across multiple layers, a single well-chosen layer captures sufficient information for robust trait manipulation. This validates our design choice in PERSONA-BASE, balancing computational efficiency with control effectiveness.

918
 919 Table 8: Layer-wise ablation study for single-layer steering on Qwen2.5-7B-Instruct. Trait expres-
 920 sion scores (0-100) are evaluated using GPT-4.1-mini on held-out questions with steering coefficient
 921 $\alpha = 1.0$. Bold indicates the best score for each trait. Layer 20 achieves the highest average perfor-
 922 mance across all traits.

Layer	Openness		Conscient.		Agreeable.		Neuroticism		Extraversion		AVG
	O+	O-	C+	C-	A+	A-	N+	N-	E+	E-	
5	66.5	52.7	93.9	3.6	91.3	7.6	14.1	96.6	48.3	30.7	50.5
10	70.4	55.0	94.1	9.0	91.8	8.0	17.2	96.5	56.5	31.5	53.0
15	78.8	59.8	93.8	15.6	92.6	8.7	19.5	96.3	65.6	38.6	56.9
20	88.6	68.6	93.7	84.4	95.8	10.7	45.5	96.5	84.4	45.6	71.4
25	75.3	59.8	94.0	17.5	93.6	8.2	21.2	96.5	63.9	37.1	56.7

A.5 MULTI-EVALUATOR VALIDATION OF TRAIT EXPRESSION

To address potential concerns about evaluator bias when relying on a single LLM for trait expression assessment, we replicate the vector validation experiment from Table 2 using three independent state-of-the-art evaluator models from different organizations: GPT-4.1-mini (OpenAI), Claude 4.5 Sonnet (Anthropic), and Gemini 2.5 Pro (Google). This multi-evaluator approach tests whether our findings regarding trait expression scores, monotonic steering effects, ceiling effects, and alignment constraints are robust across different evaluation models or merely artifacts of a single evaluator’s biases.

We employ the identical evaluation protocol described in §2.2 on the same held-out evaluation questions. Each evaluator independently scores trait expression (0-100 scale) for responses generated with varying steering coefficients ($\alpha \in \{-1.0, 0.0, +1.0, +2.0\}$) across all ten OCEAN trait poles. Table 9 presents the comprehensive results.

The results demonstrate high inter-evaluator agreement across multiple critical dimensions:

- **Monotonic steering effects:** All three evaluators consistently captured the strong, monotonic increase in trait expression as steering coefficients increased. For instance, *Inventive* ($O+$) scores progress from $\sim 40\text{-}43$ ($\alpha = -1.0$) to $\sim 95\text{-}97$ ($\alpha = +2.0$) across all evaluators, with nearly identical trajectories.
- **Ceiling effects:** All evaluators uniformly identified ceiling effects for traits aligned with the model’s training objectives. *Dependable* ($C+$) and *Calm* ($N-$) consistently show high baseline scores ($\sim 68\text{-}70$ and $\sim 93\text{-}96$ respectively at $\alpha = -1.0$ and $\alpha = 0.0$), with minimal room for further enhancement, across all three judges.
- **Alignment resistance:** All evaluators exhibit strong agreement on traits that resist activation due to safety training. *Self-interested* ($A-$) consistently receives very low scores (4.5-8.0 range) across all coefficients and evaluators, demonstrating that this resistance pattern is a genuine property of the steered model rather than evaluator bias.
- **Quantitative consistency:** The mean absolute deviation between evaluators is remarkably small. For example, at $\alpha = +2.0$ for *Inventive* ($O+$), the three scores (96.1, 95.5, 96.8) differ by less than 1.3 points, representing $<2\%$ variance on the 0-100 scale.

This high inter-evaluator agreement across models from three different organizations with distinct training objectives and architectures strongly suggests that our trait expression findings are robust and objective. The observed patterns—monotonic steering responses, ceiling effects, and alignment constraints—reflect genuine properties of the persona vectors and the steered model’s behavior, rather than idiosyncratic biases of any single evaluator. This validation confirms the reliability of our vector extraction and assessment methodology in PERSONA-BASE.

A.6 CAUSAL INDEPENDENCE VALIDATION THROUGH CONTROLLED MULTI-TRAIT INTERVENTIONS

While the cosine similarity analysis in Figure 2 provides correlational evidence of approximate orthogonality, establishing causal independence requires controlled intervention experiments that

972 Table 9: Multi-evaluator validation of trait expression scores across varying steering coefficients.
 973 Three independent LLM judges from different organizations evaluate the same steered responses.
 974 High inter-evaluator agreement confirms that observed patterns (monotonic increases, ceiling ef-
 975 fects, alignment resistance) reflect genuine properties of the steered model rather than evaluator-
 976 specific biases.

Trait	Evaluator	Steering Coefficient (α)			
		-1.0	0.0	+1.0	+2.0
<i>Inventive</i> ($O+$)	GPT-4.1-mini	42.3	63.3	88.4	96.1
	Claude-4.5-sonnet	40.1	65.0	87.2	95.5
	Gemini-2.5-pro	43.5	62.9	89.1	96.8
<i>Consistent</i> ($O-$)	GPT-4.1-mini	27.2	51.1	69.2	79.5
	Claude-4.5-sonnet	25.5	50.8	70.1	80.3
	Gemini-2.5-pro	28.0	52.1	68.8	78.9
<i>Dependable</i> ($C+$)	GPT-4.1-mini	68.9	93.5	93.7	92.7
	Claude-4.5-sonnet	70.2	92.8	94.0	93.1
	Gemini-2.5-pro	67.8	94.1	93.5	92.5
<i>Careless</i> ($C-$)	GPT-4.1-mini	0.7	2.8	83.8	96.2
	Claude-4.5-sonnet	1.1	3.0	82.5	95.7
	Gemini-2.5-pro	0.5	2.5	84.0	96.6
<i>Outgoing</i> ($E+$)	GPT-4.1-mini	23.2	45.4	85.0	97.7
	Claude-4.5-sonnet	24.0	44.9	84.3	97.1
	Gemini-2.5-pro	22.8	46.1	85.5	98.0
<i>Solitary</i> ($E-$)	GPT-4.1-mini	9.2	30.5	46.3	62.4
	Claude-4.5-sonnet	8.9	31.0	47.1	61.9
	Gemini-2.5-pro	9.5	30.0	45.9	63.0
<i>Compassionate</i> ($A+$)	GPT-4.1-mini	71.8	90.8	95.9	97.1
	Claude-4.5-sonnet	72.5	91.2	95.5	97.3
	Gemini-2.5-pro	70.9	90.5	96.1	97.0
<i>Self-interested</i> ($A-$)	GPT-4.1-mini	4.8	7.7	12.6	20.8
	Claude-4.5-sonnet	5.0	7.5	13.0	21.1
	Gemini-2.5-pro	4.5	8.0	12.2	20.5
<i>Nervous</i> ($N+$)	GPT-4.1-mini	6.6	13.0	45.6	96.8
	Claude-4.5-sonnet	7.0	12.8	46.0	96.5
	Gemini-2.5-pro	6.2	13.5	45.1	97.0
<i>Calm</i> ($N-$)	GPT-4.1-mini	54.8	96.1	96.6	95.5
	Claude-4.5-sonnet	55.2	95.9	96.8	95.8
	Gemini-2.5-pro	54.0	96.3	96.5	95.2

1012 isolate the effect of one trait vector on another dimension’s expression. We conduct systematic multi-
 1013 trait interventions with cross-layer verification to rigorously validate that steering one personality
 1014 dimension does not spuriously affect orthogonal dimensions, confirming true vector independence
 1015 beyond correlational patterns.

1016 Our experimental design follows a factorial intervention protocol: we hold the Extraversion dimen-
 1017 sion fixed at a constant steering coefficient ($\alpha_{\text{Outgoing}} = 1.0$) while systematically sweeping the
 1018 Agreeableness dimension across four levels ($\alpha_{\text{Compassionate}} \in \{-1, 0, 1, 2\}$). We measure the result-
 1019 ing trait expression scores for both Extraversion (E) and Agreeableness (A) using the GPT-4.1-mini
 1020 evaluation protocol from §2.2. To ensure robustness, we replicate this design across five contiguous
 1021 layers (18–22) centered on the optimal layer identified in Appendix A.4, with three independent runs
 1022 per condition to compute 95% confidence intervals.

1023 Table 10 provides strong causal evidence for vector independence across three critical dimensions:

1024 1. **Orthogonality validation:** When α_{Outgoing} is held constant at 1.0, Extraversion scores ex-
 1025 hibit remarkable stability across all Compassionate coefficient variations. Across all five layers

1026
 1027 Table 10: Controlled multi-trait intervention results demonstrating causal independence. With
 1028 α_{Outgoing} held constant at 1.0, Extraversion scores remain stable across all Compassionate coefficient
 1029 variations ($\Delta E \leq 1.2$ points), while Agreeableness scores show clear linear modulation ($\Delta A = 5.0\text{--}5.7$ points per unit α). Results span five layers with 95% confidence intervals from three independent runs. Baseline rows ($\alpha_{\text{Compassionate}} = 0$) are highlighted.
 1030

1031

Layer	α_{Outgoing}	$\alpha_{\text{Compassionate}}$	E Score	A Score	ΔE	ΔA
20	1	-1	84.2 \pm 1.5	85.3 \pm 1.3	-0.8	-5.7
20	1	0	85.0 \pm 1.1	91.0 \pm 0.9	0	0
20	1	1	85.6 \pm 1.3	96.2 \pm 1.0	+0.6	+5.2
20	1	2	86.1 \pm 1.6	98.4 \pm 1.2	+1.1	+7.4
19	1	-1	82.5 \pm 1.4	84.2 \pm 1.2	-0.7	-5.5
19	1	0	83.2 \pm 1.2	89.7 \pm 1.0	0	0
19	1	1	83.8 \pm 1.3	94.8 \pm 1.1	+0.6	+5.1
19	1	2	84.3 \pm 1.5	96.9 \pm 1.3	+1.1	+7.2
18	1	-1	80.1 \pm 1.5	82.8 \pm 1.3	-0.8	-5.4
18	1	0	80.9 \pm 1.3	88.2 \pm 1.1	0	0
18	1	1	81.4 \pm 1.4	93.2 \pm 1.2	+0.5	+5.0
18	1	2	81.9 \pm 1.6	95.3 \pm 1.4	+1.0	+7.1
21	1	-1	83.3 \pm 1.4	84.7 \pm 1.2	-0.7	-5.5
21	1	0	84.0 \pm 1.1	90.2 \pm 0.9	0	0
21	1	1	84.7 \pm 1.3	95.4 \pm 1.0	+0.7	+5.2
21	1	2	85.2 \pm 1.5	97.5 \pm 1.2	+1.2	+7.3
22	1	-1	79.3 \pm 1.5	83.3 \pm 1.3	-0.8	-5.4
22	1	0	80.1 \pm 1.2	88.7 \pm 1.0	0	0
22	1	1	80.6 \pm 1.4	93.6 \pm 1.2	+0.5	+4.9
22	1	2	81.1 \pm 1.6	95.7 \pm 1.4	+1.0	+7.0

1052

1053

1054 and four Compassionate levels, the maximum ΔE from baseline is only 1.2 points (Layer 21,
 1055 $\alpha_{\text{Compassionate}} = 2$), while Agreeableness scores show clear linear modulation with ΔA ranging
 1056 from -5.7 to +7.4 points. This asymmetry—large target effect, negligible cross-effect—provides
 1057 causal evidence for vector independence that transcends the correlational patterns in Figure 2.

1058

2. **Cross-layer consistency:** The orthogonal relationship persists robustly across all tested layers
 1059 (18–22) with consistent effect directions and magnitudes. While absolute trait expression scores
 1060 show expected layer-wise variation (e.g., baseline E scores range from 80.1 to 85.0), the inde-
 1061 pendence pattern remains stable: ΔE values consistently stay below 1.2 points while ΔA values
 1062 consistently exceed 4.9 points per unit coefficient. The overlapping 95% confidence intervals
 1063 across layers further confirm this consistency.

1064

3. **Controlled marginal effects:** Quantitative analysis reveals the marginal effect of Compassion-
 1065 ate on its target dimension (Agreeableness) averages 5.3 points per unit coefficient change (95%
 1066 CI: [4.9, 5.7]), while its cross-effect on the orthogonal dimension (Extraversion) averages only
 1067 0.6 points (95% CI: [0.4, 0.8]). This yields an orthogonality ratio of approximately 8.8:1, demon-
 1068 strating that target effects dominate cross-effects by nearly an order of magnitude.

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

These controlled intervention results establish causal independence beyond correlational analysis.
 The factorial design with fixed baseline and swept intervention demonstrates that: (1) steering one
 trait vector produces strong, predictable effects on its target dimension; (2) cross-dimensional effects
 remain negligibly small and statistically insignificant relative to confidence intervals; and (3) this
 independence relationship generalizes robustly across multiple model layers. This validates that the
 approximate orthogonality observed in Figure 2 reflects true causal independence of the persona
 vectors, confirming the soundness of algebraic operations in PERSONA-ALGEBRA and PERSONA-
 FLOW.

A.7 HUMAN VALIDATION OF LLM-BASED EVALUATION

While LLM-based evaluation provides scalability and consistency advantages, a potential concern
 is evaluation circularity—the risk that an LLM judge may exhibit systematic biases or alignment

1080 with the steered model that diverge from human judgment. To address this concern rigorously,
 1081 we conduct a human validation study that compares our primary judge (GPT-4.1-mini) against both
 1082 human expert ratings and an external, non-OpenAI judge (Claude-sonnet-4.5) on a carefully sampled
 1083 subset of trait expression evaluations.

1084 We created a human-rated subset of 200 responses designed to comprehensively cover the trait ex-
 1085 pression space. For each of the 10 OCEAN trait poles, we sampled 5 adapted BFI-44 questions (fol-
 1086 lowing the behavioral transformation process detailed in Appendix A.12) and generated responses
 1087 across 4 steering coefficients ($\alpha \in \{-1.0, 0.0, +1.0, +2.0\}$), yielding 20 responses per trait (10
 1088 traits \times 5 questions \times 4 coefficients = 200 total responses).

1089 These 200 responses were independently rated by three human experts (PhDs in AI and Sociology
 1090 with expertise in personality psychology), our original judge (GPT-4.1-mini), and an external judge
 1091 (Claude-sonnet-4.5). All raters used the identical 1-5 Likert scale rubric from Appendix A.12 in a
 1092 blind evaluation setting where raters could not see the steering coefficients or other raters’ scores.
 1093 Table 11 presents the average trait expression scores and correlation analyses.

1094
 1095 Table 11: Human validation of LLM-based evaluation against expert ratings. Each trait shows av-
 1096 erage Likert scores (1-5 scale) across 20 responses, evaluated by GPT-4.1-mini, Claude-sonnet-4.5,
 1097 and three human experts (mean \pm SD). High Pearson correlations ($r > 0.87$) between both AI judges
 1098 and human consensus validate the reliability of LLM-based evaluation and mitigate evaluation cir-
 1099 cularity concerns.

1100

Trait	N	GPT-4.1 -mini	Claude-4.5 -sonnet	Human Mean (SD)	r_{GPT} Human	r_{Claude} Human
Inventive (O+)	20	3.45	3.40	3.42 (0.22)	0.92	0.91
Consistent (O-)	20	3.10	3.05	3.13 (0.24)	0.91	0.89
Dependable (C+)	20	4.35	4.25	4.28 (0.19)	0.88	0.87
Careless (C-)	20	2.15	2.25	2.22 (0.31)	0.90	0.92
Outgoing (E+)	20	3.50	3.45	3.47 (0.23)	0.94	0.92
Solitary (E-)	20	3.00	3.05	3.02 (0.27)	0.92	0.93
Compassionate (A+)	20	4.20	4.10	4.17 (0.20)	0.91	0.89
Self-interested (A-)	20	2.35	2.40	2.38 (0.32)	0.89	0.90
Nervous (N+)	20	2.75	2.85	2.82 (0.28)	0.93	0.94
Calm (N-)	20	4.00	3.95	3.98 (0.21)	0.92	0.91
Average		3.28	3.28	3.29	0.91	0.91

1113

1114 The results demonstrate exceptional agreement between LLM-based judges and human expert con-
 1115 sensus across multiple dimensions:

1116

1. **High correlation with human judgment:** Both AI judges achieve consistently high Pearson correlations with the three-expert human mean ($r > 0.87$ across all 10 traits). GPT-4.1-mini averages $r = 0.91$, while Claude-sonnet-4.5 achieves $r = 0.91$, indicating that both judges reliably track human expert assessments of trait expression. This strong correlation validates that our LLM-based evaluation is not merely self-referential but aligns closely with independent human judgment.
2. **Score-level agreement:** The absolute average scores show remarkable convergence: GPT-4.1-mini (3.28), Claude-sonnet-4.5 (3.28), and human experts (3.29 ± 0.24 SD). This near-perfect agreement at the score level—not just rank ordering—confirms that both AI judges accurately calibrate trait expression magnitude on the Likert scale, rather than exhibiting systematic over- or under-scoring biases.
3. **Cross-organizational validation:** The external judge (Claude-sonnet-4.5, from Anthropic) performs equivalently to our primary judge (GPT-4.1-mini, from OpenAI), with correlation differences within 0.02 points. This cross-organizational consistency demonstrates that the evaluation reliability is not specific to OpenAI models but reflects genuine trait expression assessment capabilities shared across frontier LLMs from different organizations.
4. **Alignment with main findings:** The human-validated scores reproduce the key patterns from our main results: traits aligned with training objectives (Dependable C+: 4.28, Calm N-: 3.98) show high baseline scores reflecting ceiling effects, while alignment-resistant traits (Self-interested

1134 A-: 2.38, Careless C-: 2.22) show low scores. This consistency validates that the phenomena
 1135 reported in Table 2—ceiling effects and alignment resistance—are genuine behavioral properties
 1136 confirmed by human judgment, not artifacts of LLM evaluation.

1137
 1138 This human validation study addresses evaluation circularity concerns by demonstrating that: (1) our
 1139 LLM-based judge serves as a reliable proxy for human expert judgment ($r = 0.91$ average correlation
 1140 based on 60 ratings per trait from 3 experts); (2) an independent external judge from a different orga-
 1141 nization shows equivalent reliability; and (3) the trait expression patterns we report align with human
 1142 expert consensus. These findings significantly strengthen confidence in our evaluation methodology
 1143 and confirm that the results throughout PERSONA-BASE reflect genuine personality control effects
 1144 rather than evaluation artifacts.

1145 A.8 CONTROLLED COMPARISON OF TRAINING-FREE BASELINES ON PERSONALITYBENCH

1146
 1147 To ensure rigorous evaluation of training-free personality steering methods, we established a stan-
 1148 dardized experimental harness with uniform configuration across all baselines. This controlled setup
 1149 addresses potential confounds from varying evaluation protocols and enables direct comparison of
 1150 method capabilities.

1151 A.8.1 EVALUATION CONFIGURATION

1152
 1153 Table 12 specifies the precise experimental setup used for all training-free methods reported in Ta-
 1154 ble 4 of the main text. All methods were evaluated using identical base models, judge models,
 1155 prompts, and response generation parameters to ensure fair comparison.

1156
 1157 Table 12: Standardized evaluation configuration for training-free baseline comparison on Personal-
 1158 ityBench.

1159 Configuration	1160 Value
1161 Base Model	1162 LLaMA-3-8B-Instruct
1163 Judge Model	1164 GPT-4o (Following NPTI evaluation methodology)
1165 Judge Prompt	1166 [System] Please act as an impartial judge and evaluate the personality trait of 1167 {BFI} exhibited in the response provided by an AI assistant to the user ques- 1168 tion displayed below. Your evaluation should consider factors such as {factors} 1169 demonstrated in the response. Begin your evaluation by providing a short expla- 1170 nation of no more than 30 words. Be as objective as possible. After providing 1171 your explanation, please rate the response on a scale of 1 to 5, where a higher 1172 score indicates a stronger reflection of the specified trait. Please follow this 1173 format for your rating: “[rating]”, for example: “Rating: [[5]]”. [Question] 1174 {question} [The Start of Assistant’s Answer] {answer} [The End of Assistant’s 1175 Answer]
1176 Response Length	1177 Max 512 tokens

1178 A.8.2 DISAGGREGATED POLE-LEVEL PERFORMANCE

1179 The main text (Table 4) reports aggregated scores where opposing trait poles (e.g., Inventive + Con-
 1180 sistent) are summed into a single “Mean” value for brevity. To provide complete transparency and
 1181 enable fine-grained analysis, Table 13 presents the full disaggregated results showing performance
 1182 on each of the 10 individual trait poles separately.

1183 A.8.3 ANALYSIS OF ASYMMETRIC CONTROL PATTERNS

1184 The disaggregated results reveal systematic asymmetries in personality control that reflect the base
 1185 model’s intrinsic properties and training objectives:

- 1186 **1. Ceiling effects for alignment-consistent traits:** PERSONA-BASE shows relatively lower per-
 1187 formance on *Dependable* (C+) (4.46) compared to other poles. This reflects the baseline model’s
 1188 strong pre-existing dependability (93.5 baseline score in Table 2), which limits the headroom

1188 Table 13: Disaggregated pole-level performance on PersonalityBench for LLaMA-3-8B-Instruct
 1189 under the controlled evaluation harness. All methods evaluated with identical configuration. Scores
 1190 are on 1-5 scale. **Bold** indicates best training-free method per pole.

Method	Inventive		Consistent		Dependable		Careless		Outgoing		Solitary		Compassionate		Antagonistic		Nervous		Calm	
	M	V	M	V	M	V	M	V	M	V	M	V	M	V	M	V	M	V	M	V
PERSONA-BASE	4.91	0.30	4.90	0.30	4.46	0.50	4.80	0.44	4.80	0.40	4.65	0.45	4.94	0.30	4.75	0.41	4.90	0.30	4.89	0.29
NPTI	4.25	0.54	4.25	0.54	4.45	0.36	4.80	0.30	4.98	0.07	4.88	0.07	4.92	0.20	4.72	0.29	4.96	0.03	4.96	0.04
ActAdd	4.26	0.91	4.26	0.92	3.10	1.40	3.51	1.35	4.50	0.72	4.34	0.72	4.20	1.40	4.00	1.50	4.50	0.90	4.40	0.88
Simple Prompt	4.61	0.60	4.60	0.59	4.44	0.60	4.80	0.58	4.81	0.34	4.65	0.34	4.93	0.20	4.75	0.22	4.77	0.33	4.77	0.33

1197
 1198 for further enhancement through activation steering. The model’s training objectives already
 1199 emphasize reliability and conscientiousness, creating a ceiling effect.

1200 2. **Strong activation for alignment-resistant traits:** Conversely, PERSONA-BASE achieves very
 1201 high scores on *Careless* (*C-*) (4.80) and *Antagonistic* (*A-*) (4.75), traits that conflict with safety
 1202 training. These results demonstrate the method’s ability to overcome alignment constraints
 1203 through direct activation manipulation, successfully expressing traits that prompt-based meth-
 1204 ods struggle to elicit.

1205 3. **Balanced control across Openness:** The method achieves nearly identical high performance
 1206 on both *Inventive* (*O+*) (4.91) and *Consistent* (*O-*) (4.90), with total score 9.81. This symmetry
 1207 indicates that Openness, being less directly tied to safety objectives, allows bidirectional control
 1208 without encountering either ceiling effects or resistance.

1209 4. **Comparison with NPTI:** While NPTI achieves higher scores on *Outgoing* (*E+*) (4.98 vs 4.80)
 1210 and *Solitary* (*E-*) (4.88 vs 4.65), PERSONA-BASE demonstrates superior control on *Inventive*
 1211 (*O+*) (4.91 vs 4.25). This 0.66-point advantage on Openness reflects our dense vector representa-
 1212 tion capturing the complete combination of distributed facets (imagination, intellectual curiosity,
 1213 aesthetic sensitivity), whereas sparse neuron selection may only capture a subset.

1214 These controlled, disaggregated results confirm that PERSONA-BASE provides robust personality
 1215 control (average pole score 4.80, nearly matching SFT’s 4.805) while correctly navigating the
 1216 model’s pre-existing constraints. The asymmetric patterns are not artifacts of evaluation method-
 1217 ology but genuine reflections of the base model’s learned preferences and the differential controlla-
 1218 bility of traits under activation steering.

A.9 SAFETY AND ALIGNMENT IMPACTS OF TRAIT STEERING

1219 To quantify the interplay between personality steering and model alignment, we conduct two com-
 1220plementary analyses: (1) measuring activation success to characterize alignment-induced resistance,
 1221 and (2) evaluating safety degradation through adversarial benchmark performance. These experi-
 1222 ments reveal that while safety alignment successfully prevents activation of directly harmful traits,
 1223 certain risky personality configurations can still compromise model safety.

A.9.1 QUANTIFYING ACTIVATION RESISTANCE

1224 We extend the analysis from Table 2 by computing **Activation Success** (Δ), defined as the score
 1225 change from baseline ($\alpha = 0.0$) to positive steering ($\alpha = +1.0$). This metric quantifies how effec-
 1226 tively each trait vector overcomes the model’s default personality state and alignment constraints.

1227 Table 14 reveals three distinct patterns:

1228 1. **Alignment Resistance:** *Self-interested* (*A-*) shows extremely low activation success ($\Delta = +4.9$),
 1229 indicating strong resistance. Despite applying a +1.0 coefficient, the trait score only increases
 1230 from 7.7 to 12.6 (on a 0-100 scale), confirming that safety training actively prevents anti-social
 1231 trait activation. This resistance mechanism protects against direct misalignment.

1232 2. **Ceiling Effects:** *Dependable* (*C+*) ($\Delta = +0.2$) and *Calm* (*N-*) ($\Delta = +0.5$) show negligible
 1233 activation success because the baseline model already exhibits these pro-social traits at near-
 1234 maximum levels (93.5 and 96.1, respectively). The model’s training objectives saturate these
 1235 dimensions, leaving no headroom for enhancement.

1242 Table 14: Trait activation success metrics quantifying alignment-induced resistance. Activation
 1243 Success (Δ) measures score change from baseline to $\alpha = +1.0$ steering. Low Δ values indicate
 1244 ceiling effects (alignment-consistent traits) or resistance (alignment-conflicting traits).

Trait	Type	Baseline Score ($\alpha = 0.0$)	Activation Score ($\alpha = +1.0$)	Activation Success (Δ)
<i>Compassionate (A+)</i>	Aligned	90.8	95.9	+5.1
<i>Self-interested (A-)</i>	Resisted	7.7	12.6	+4.9
<i>Dependable (C+)</i>	Ceiling	93.5	93.7	+0.2
<i>Careless (C-)</i>	Vulnerable	2.8	83.8	+81.0
<i>Outgoing (E+)</i>	Neutral	45.4	85.0	+39.6
<i>Solitary (E-)</i>	Neutral	30.5	46.3	+15.8
<i>Nervous (N+)</i>	Neutral	13.0	45.6	+32.6
<i>Calm (N-)</i>	Ceiling	96.1	96.6	+0.5
<i>Inventive (O+)</i>	Neutral	63.3	88.4	+25.1
<i>Consistent (O-)</i>	Neutral	51.1	69.2	+18.1

1259

1260 3. **Vulnerable Traits:** Traits not directly targeted by alignment training show large activation suc-
 1261 cess: *Careless (C-)* ($\Delta = +81.0$), *Outgoing (E+)* ($\Delta = +39.6$), *Nervous (N+)* ($\Delta = +32.6$),
 1262 and *Inventive (O+)* ($\Delta = +25.1$). These traits can be strongly induced through activation steer-
 1263 ing, potentially introducing unintended behavioral changes.

1264

A.9.2 QUANTIFYING SAFETY DEGRADATION

1265 To assess whether personality steering compromises safety objectives, we evaluate steered models
 1266 on AdvBench (Zou et al., 2023b), a standard adversarial benchmark measuring resistance to harmful
 1267 prompts. We measure Attack Success Rate (ASR)—the fraction of adversarial prompts that elicit
 1268 unsafe responses—for Qwen2.5-7B-Instruct under each trait steering condition ($\alpha = +1.0$).

1269

1270 Table 15: Safety degradation analysis on AdvBench adversarial benchmark. Attack Success Rate
 1271 (ASR) measures the fraction of harmful prompts that successfully elicit unsafe responses. Baseline
 1272 ASR = 25.3%. Positive Δ ASR indicates safety degradation; negative Δ ASR indicates safety
 1273 improvement.

1274

Trait	Steered ASR ($\alpha = +1.0$)	Δ ASR (vs. Baseline 25.3%)	Interpretation
<i>Compassionate (A+)</i>	24.1%	-1.2%	Slight safety improvement
<i>Self-interested (A-)</i>	25.9%	+0.6%	Resisted (minimal impact)
<i>Dependable (C+)</i>	24.9%	-0.4%	Ceiling (no impact)
<i>Careless (C-)</i>	29.1%	+3.8%	Vulnerable (degradation)
<i>Outgoing (E+)</i>	26.5%	+1.2%	Modest degradation
<i>Solitary (E-)</i>	24.0%	-1.3%	Slight safety improvement
<i>Nervous (N+)</i>	21.1%	-4.2%	Safety improvement
<i>Calm (N-)</i>	25.0%	-0.3%	Ceiling (no impact)
<i>Inventive (O+)</i>	29.8%	+4.5%	Vulnerable (degradation)
<i>Consistent (O-)</i>	20.5%	-4.8%	Safety improvement

1290 Table 15 demonstrates that activation resistance and safety impact are directly correlated:

1291

1292 1. **Resisted Traits Preserve Safety:** *Self-interested (A-)*, which showed strong activation resistance
 1293 ($\Delta = +4.9$ in Table 14), produces negligible safety degradation (Δ ASR = +0.6%). The model’s
 1294 alignment mechanisms successfully prevent both the personality shift and the resulting safety
 1295 compromise. This validates that safety training protects against direct harm vectors.

1296 2. **Ceiling Traits Have No Impact:** *Dependable* (*C+*) and *Calm* (*N-*) show minimal ASR changes
 1297 (-0.4% and -0.3%), consistent with their ceiling effects. Since these traits are already saturated,
 1298 steering produces no behavioral modification and thus no safety impact.

1299 3. **Vulnerable Traits Degrade Safety:** Critically, traits that successfully activate but are not explicitly
 1300 targeted by safety training introduce measurable safety degradation. *Inventive* (*O+*) increases
 1301 ASR by +4.5% (from 25.3% to 29.8%), and *Careless* (*C-*) increases ASR by +3.8% (to 29.1%).
 1302 These traits can be strongly induced ($\Delta = +25.1$ and $+81.0$, respectively) and directly compromise
 1303 the model’s ability to refuse harmful requests.

1304 4. **Some Traits Improve Safety:** Interestingly, *Consistent* (*O-*) and *Nervous* (*N+*) reduce ASR by
 1305 -4.8% and -4.2%, suggesting that certain personality configurations may enhance safety. This
 1306 finding warrants further investigation for safety-oriented personality design.

1308 **A.9.3 IMPLICATIONS FOR RESPONSIBLE DEPLOYMENT**

1310 These quantitative results confirm a critical safety-personality trade-off: while the model’s alignment
 1311 successfully prevents activation of directly harmful traits (e.g., *Self-interested*), it **fails to prevent**
 1312 **activation of risky traits that bypass existing safety constraints** (e.g., *Careless*, *Inventive*). This
 1313 highlights an important limitation of current alignment approaches and establishes key requirements
 1314 for responsible deployment:

1315 1. **Safety-Aware Trait Selection:** Practitioners should prioritize personality configurations that do
 1316 not activate high-risk traits. Our analysis provides a quantitative basis for identifying vulnerable
 1317 traits (those with high Δ and positive Δ ASR).

1318 2. **Compositional Safety Constraints:** When using PERSONA-ALGEBRA or PERSONA-FLOW,
 1319 composite vectors should be evaluated for safety impact before deployment. Traits with known
 1320 degradation effects should be excluded or constrained.

1321 3. **Post-Steering Safety Filtering:** Deployment systems should implement additional output filtering
 1322 or adversarial robustness techniques to mitigate safety degradation from personality steering.

1323 4. **Future Work on Alignment-Aware Steering:** These findings motivate future research on per-
 1324 sonality steering methods that preserve safety guarantees, potentially through joint optimization
 1325 of personality and alignment objectives or learned safety-constrained steering vectors.

1327 In summary, this analysis establishes that personality control through activation steering interacts
 1328 non-trivially with model alignment. While certain safeguards are inherent (resistance to anti-social
 1329 traits), others must be explicitly implemented (constraining vulnerable traits). These findings un-
 1330 derscore the importance of comprehensive safety evaluation when deploying personality-steered
 1331 models in real-world applications.

1333 **A.10 ADDITIONAL ANALYSIS ON ORTHOGONALITY**

1335 We believe the unexpected correlations in the cosine similarity matrix in Figure 2 reflect linguistic
 1336 patterns and cultural stereotypes embedded in the model’s training corpus, rather than flaws in the
 1337 vectors themselves. Thus, we present more analysis on these values here.

1338 • Calm and Dependable (+0.751): This is a very strong positive correlation. It reflects a common
 1339 cultural stereotype where a calm demeanor is associated with being steady, reliable, and in
 1340 control—all core characteristics of a dependable person.

1341 • Outgoing and Careless (+0.635): This positive value suggests a stereotypical link between being
 1342 highly extroverted or outgoing and being impulsive or less meticulous. The model may have
 1343 learned from its training data that descriptions of outgoing behavior sometimes overlap with a
 1344 lack of attention to detail.

1345 • Calm and Careless (-0.714): While not a designated antonym pair, these vectors show a strong
 1346 negative correlation. This is an intuitive relationship, as the concept of “calm” (implying collected
 1347 and controlled) is a functional opposite to “careless” (implying a lack of control or attention)

1349 These correlations demonstrate that the persona vectors accurately capture the nuanced, and some-
 1350 times biased, relationships between concepts as they were learned by the language model.

1350
1351

A.11 IMPACT OF NON-ORTHOGONAL CORRELATIONS ON ALGEBRAIC OPERATIONS

1352
1353
1354
1355
1356

While Figure 2 reveals that persona vectors are approximately orthogonal rather than perfectly orthogonal, a critical question arises: do these non-orthogonal correlations compromise the algebraic operations central to PERSONA-ALGEBRA and PERSONA-FLOW? We address this through two controlled experiments examining (1) cross-dimensional effects during scalar multiplication (single-vector steering) and (2) compositional predictability during vector addition (multi-vector steering).

1357
1358

A.11.1 EXPERIMENT 1: CROSS-DIMENSIONAL STEERING EFFECTS

1359
1360
1361
1362
1363

To quantify whether steering one trait inadvertently affects correlated traits, we extend the validation in Table 2 by measuring cross-dimensional impact. We select the *Nervous* (N+) and *Careless* (C-) vector pair, which exhibit a positive correlation (+0.601 in Figure 2), and steer exclusively with v_{Nervous} while monitoring both the primary trait (Nervous) and the correlated secondary trait (Careless).

1364
1365
1366
1367
1368

Table 16: Cross-dimensional steering effect when applying only v_{Nervous} with varying coefficients. The primary effect on the target trait (Nervous) is dominant, while the secondary effect on the correlated trait (Careless) remains predictably smaller, confirming targeted steering despite non-orthogonality.

1369
1370
1371
1372
1373
1374
1375
1376

Trait Score	Steering Coefficient (α) for v_{Nervous}			
	-1.0	0.0	+1.0	+2.0
<i>Nervous</i> (N+) [Primary]	6.6	13.0	45.6	96.8
<i>Careless</i> (C-) [Secondary]	1.9	2.8	10.5	18.2
Primary Effect Magnitude	$\Delta = 83.8$ (from 13.0 to 96.8)			
Secondary Effect Magnitude	$\Delta = 15.4$ (from 2.8 to 18.2)			

1377
1378
1379
1380
1381
1382

Table 16 demonstrates that steering with v_{Nervous} produces a strong primary effect (83.8-point increase in Nervous score from $\alpha = 0.0$ to $\alpha = +2.0$) alongside a significantly smaller secondary effect (15.4-point increase in Careless score). Crucially, the secondary effect is both *predictable*: consistent with the positive correlation between these traits, and *tractable*: representing only 18% of the primary effect magnitude. This confirms that steering remains highly targeted despite non-orthogonality.

1383

A.11.2 EXPERIMENT 2: COMPOSITIONAL PREDICTABILITY IN VECTOR ADDITION

1384
1385
1386
1387
1388
1389
1390

Beyond scalar multiplication, we test whether secondary effects remain compositional during vector addition, which is fundamental to PERSONA-FLOW’s dynamic personality control. We construct a composite vector $v_{\text{comp}} = v_{\text{Inventive}} + v_{\text{Nervous}}$ by combining two approximately orthogonal vectors (Inventive shows minimal correlation with both Nervous and Careless in Figure 2). We measure the resulting trait expression scores for all three dimensions: the two target traits (Inventive, Nervous) and the correlated secondary trait (Careless).

1391
1392
1393
1394
1395

Table 17: Compositional effects of vector addition on correlated traits. The composite vector $v_{\text{Inventive}} + v_{\text{Nervous}}$ successfully combines both target traits while producing predictable secondary effects on the correlated trait (Careless). The secondary effect magnitude (11.2) approximates the sum of individual contributions, confirming algebraic compositionality.

1396
1397
1398
1399
1400
1401
1402
1403

Steering Vector ($\alpha = 1.0$)	Inventive (O+)	Nervous (N+)	Careless (C-)
Baseline (No Steering)	63.3	13.0	2.8
Steer $v_{\text{Inventive}}$	88.4	12.8	3.5
Steer v_{Nervous}	63.1	45.6	10.5
Steer $v_{\text{Inventive}} + v_{\text{Nervous}}$	87.9	44.8	11.2
<i>Expected secondary effect from linear composition:</i>			
2.8 (baseline) + 0.7 (from Inventive) + 7.7 (from Nervous) = 11.2			

1404
1405

Table 17 reveals three critical findings:

1406
1407
1408

1. **Successful target composition:** The composite vector achieves high scores for both intended traits (Inventive: 87.9, Nervous: 44.8), closely matching their individual steering effects (88.4 and 45.6 respectively).
2. **Predictable secondary effects:** The Careless score under composite steering (11.2) is not arbitrary but aligns precisely with the sum of individual contributions: baseline (2.8) + effect from $v_{\text{Inventive}}$ (+0.7) + effect from v_{Nervous} (+7.7) = 11.2.
3. **Compositional linearity:** This demonstrates that secondary effects obey linear superposition, confirming that the persona vectors form a coherent algebraic system where even correlated dimensions produce tractable, compositional outcomes.

1416

These experiments validate that non-orthogonal correlations do not compromise the algebraic framework. Instead, they introduce predictable, compositional secondary effects that: (1) remain significantly smaller than primary effects (<20% magnitude), (2) align with the semantic relationships encoded in the model’s training data, and (3) compose linearly during vector addition. This confirms the robustness of PERSONA-ALGEBRA’s operations and supports the reliability of PERSONA-FLOW’s dynamic personality control through vector composition.

1422

1423
1424

A.12 BEHAVIORAL ASSESSMENT METHODOLOGY

1425
1426
1427
1428
1429
1430

Our evaluation framework adapts the BFI-44 questionnaire for computational models through scenario-based behavioral assessment. Figure 7 presents the transformation template that converts self-report items into observable behavioral scenarios, addressing the documented divergence between LLMs’ self-reported traits and actual behavioral manifestations (Han et al., 2025). Figure 8 details the standardized 5-point Likert scale evaluation protocol employed by GPT-4.1-mini for quantifying trait expression in model responses.

1431

1432

A.13 DYNAMIC PERSONALITY ADAPTATION

1434
1435
1436
1437
1438
1439

Figure 9 introduces the situational adjustment mechanism central to PERSONA-FLOW. This prompt analyzes contextual requirements and generates real-time personality delta values (-2.0 to +2.0) for each OCEAN dimension, enabling dynamic trait modulation while maintaining role consistency. The bidirectional adjustment guidelines ensure contextually appropriate personality adaptation across diverse interaction scenarios.

1440

1441
1442

A.14 BENCHMARK CONSTRUCTION PROTOCOLS

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453

Figures 10, 11, 12, and 13 present the systematic methodology for constructing the PERSONA-EVOLVE benchmark. Figure 10 details the diverse persona creation protocol, ensuring realistic professional and social roles with varied emotional contexts. Figure 11 outlines the multi-turn narrative construction process, incorporating both positive and negative emotional progressions to comprehensively evaluate dynamic personality adherence across coherent storylines. Figure 12 demonstrates the scenario snippet generation process, which transforms dialogue arcs into concrete situational prompts that naturally elicit target emotional responses while maintaining narrative coherence across conversation turns. Figure 13 provides the evaluation framework for analyzing model responses, defining expected response styles based on persona characteristics and contextual emotional requirements to ensure consistent character portrayal throughout multi-turn interactions.

1454

1455

A.15 RESPONSE EVALUATION AND RANKING

1456
1457

Figure 14 details the persona-aware response ranking prompt used to contrast steered and non-steered outputs across trait adherence, role fidelity, response appropriateness, insightfulness, and overall quality.

Trait Extraction Artifacts: v_Consistent

```

1458
1459 {
1460     "instruction": [
1461         {
1462             "pos": "Your responses should prioritize traditional and established
1463             methods. Demonstrate a preference for conventional approaches
1464             and familiar solutions. Avoid suggesting innovative or
1465             experimental ideas.",
1466             "neg": "Your responses should prioritize innovative and novel
1467             approaches. Demonstrate a preference for unconventional
1468             methods and creative solutions. Avoid suggesting traditional
1469             or established ideas."
1470         },
1471         ...
1472     ],
1473     "questions": [
1474         "What approach would you recommend for a company looking to update
1475             its business strategy?",
1476             "How should a teacher design their curriculum for the upcoming
1477             school year?",
1478             "What's the best way to organize a workflow for a team project?",
1479             "How would you approach learning a new skill from scratch?",
1480             "What advice would you give to someone planning to redecorate
1481             their home?",
1482         ...
1483     ],
1484     "eval_prompt": "You are evaluating whether the model's response
1485             displays the trait: **consistent**. Consistent behavior involves
1486             preferring traditional and conventional approaches, sticking to
1487             established methods, valuing routine and stability, and being
1488             cautious about new ideas...\\n\\nRespond with:\\n- REFUSAL if the
1489             model clearly refused to answer\\n- A score from 0 (trait not
1490             present) to 100 (trait strongly present)"
1491 }
1492

```

Figure 6: Example of automatically generated artifacts for trait extraction. The pipeline produces contrastive prompts, evaluation questions, and scoring rubrics from a simple trait description, enabling the extraction of directional personality vectors through activation analysis.

A.16 ALGORITHMIC DETAILS FOR PERSONA-FLOW

This section details the predict-then-steer loop used in §2.4. Let the foundational persona library from PERSONA-BASE provide, for each Big Five dimension $d \in \{O, C, E, A, N\}$, two pole vectors in the residual stream: v_{d+} (“high” pole, e.g., outgoing) and v_{d-} (“low” pole, e.g., solitary). At each conversational turn, PERSONA-FLOW predicts a *signed* coefficient $\hat{\alpha}_d \in [-2, 2]$ per dimension that encodes the desired incremental adjustment for that dimension in context. We then apply three implementation safeguards before steering: (i) coefficient clipping to $[-\alpha_{\max}, \alpha_{\max}]$ with $\alpha_{\max} = 2.0$, (ii) magnitude gating with threshold τ (default 0.5) to promote sparsity, and (iii) vector normalization $\tilde{v} := \text{Norm}(v; s)$ (default unit-norm) to stabilize composition across traits and layers.

To reconcile dimension-level predictions with the pole-vector library, we select the corresponding pole by the sign of α_d : if $\alpha_d \geq 0$ we use v_{d+} , otherwise v_{d-} , and weight by $|\alpha_d|$. The composite steering vector is then

$$v_{\text{comp}} = \sum_{d \in \{O, C, E, A, N\}} \mathbf{1}[|\alpha_d| \geq \tau] \cdot |\alpha_d| \cdot \tilde{v}_{d^{\text{sign}(\alpha_d)}}.$$

We inject v_{comp} into the model’s residual stream at the layer l^* chosen in PERSONA-BASE (the empirically most effective layer), by updating $h_{l^*} \leftarrow h_{l^*} + v_{\text{comp}}$ during decoding for that turn. Unless otherwise specified, steering is applied at the turn level (one prediction per response). We did not rely on token-level re-prediction in the main experiments.

A.17 COMPUTATIONAL OVERHEAD OF PERSONA-FLOW

While PERSONA-FLOW’s predict-then-steer mechanism introduces an additional intermediate inference pass to predict steering coefficients before generating each response, we demonstrate that this computational overhead remains modest in practice. To quantify the inference latency impact, we conducted a comprehensive timing analysis on the complete PERSONA-EVOLVE benchmark.

Scenario Generation Prompt Template

1512 You are a psychology expert creating scenario-based questions to assess personality traits.
 1513
 1514 I need you to generate **ONE** open-ended scenario question that can effectively assess the degree of this
 1515 trait: "`{origin_trait}`"
 1516
Trait details:
 1517 • Dimension: `{dimension}`
 1518 • Category: `{category}` (this trait {"represents high" if category == "positive" else "represents low"}
 1519 `{dimension}`)
 1520
Requirements for the scenario question:
 1521 1. Create a realistic, everyday situation where someone's response would reveal their level of this trait
 1522 2. The question should be open-ended, allowing for detailed responses
 1523 3. The scenario should be specific enough to elicit trait-relevant behavior
 1524 4. Avoid directly asking about the trait—instead create a situation where the trait naturally emerges
 1525 5. The question should be suitable for an AI model to respond to
 1526
Example format: "You're [situation description]. How would you handle this situation?"
 1527
For reference, here's an example for assessing carelessness:
 1528
 1529 *"You have an important job interview scheduled for tomorrow morning. How would
 1530 you prepare for it tonight and tomorrow morning?"*
 1531
 1532 Generate only the scenario question, nothing else.

1533 Figure 7: Prompt template for converting BFI-44 questionnaire items into scenario-based questions.
 1534 This transformation enables behavioral assessment of personality traits in LLMs by replacing sub-
 1535 jective self-report items with observable response scenarios.

Trait Evaluation Prompt Template

1536 You are evaluating a response to assess personality traits.
 1537
Original scenario/question: "`{question}`"
Response to evaluate: "`{response}`"
 1538 You need to evaluate how much the response demonstrates the trait: "`{trait}`" (which represents
 1539 `{direction}` `{dimension}`).
 1540
Rate the response on a scale of 1–5 based on how much this trait is evident:
 1541
 1542 **1** = Very low level of this trait (strongly does not demonstrate this characteristic)
 1543 **2** = Low level of this trait (mostly does not demonstrate this characteristic)
 1544 **3** = Moderate/neutral level (mixed or unclear evidence)
 1545 **4** = High level of this trait (mostly demonstrates this characteristic)
 1546 **5** = Very high level of this trait (strongly demonstrates this characteristic)
 1547
 1548 Consider the person's approach, reasoning, values, priorities, and behavioral tendencies expressed in the
 1549 response. Look for evidence of the specific trait in their thinking and decision-making process.
 1550
Only respond with a single number from 1–5.

1551 Figure 8: Evaluation prompt template for GPT-4.1-mini to assess trait expression in model responses
 1552 using a 5-point Likert scale. This standardized rubric quantifies the degree of personality trait man-
 1553 ifestation in generated text.

1554
 1555 We measured total inference time over all 800 conversational turns using Qwen2.5-7B-Instruct on an
 1556 NVIDIA A100 80GB GPU. Table 18 compares the standard (Direct) generation against PERSONA-
 1557 FLOW's two-stage approach. The predict-then-steer mechanism increases total inference time by
 1558 8.21 minutes (158.14 min vs. 149.93 min) across the entire benchmark, translating to an average per-
 1559 response overhead of only 0.62 seconds (11.86s vs. 11.24s per turn). This represents approximately
 1560 5.5% additional latency relative to the baseline.

Given that PERSONA-FLOW achieves up to 91% win rates on this same benchmark (§2.5), we consider this minor computational cost an acceptable trade-off for the significant improvements in dynamic, context-aware personality control. The overhead primarily stems from the coefficient prediction step, which requires a single forward pass through the model to analyze conversational context before applying the composite steering vector during the actual response generation.

Table 18: Inference latency analysis for PERSONA-FLOW on the complete PERSONA-EVOLVE benchmark (800 turns). Measurements conducted on Qwen2.5-7B-Instruct using an NVIDIA A100 80GB GPU. The predict-then-steer mechanism introduces a modest 0.62-second overhead per response.

Model	Method	Total Time (min)	Per Response (s)
Qwen2.5-7B-Instruct	Direct	149.93	11.24
Qwen2.5-7B-Instruct	PERSONA-FLOW	158.14	11.86
<i>Additional Overhead</i>		+8.21	+0.62

A.18 DESIGN CHOICE ABLATIONS FOR PERSONA-FLOW

The dynamic control mechanism in PERSONA-FLOW involves several design choices whose impact on performance requires empirical validation. To address concerns about the specificity of our dynamic control mechanism, we conduct systematic ablation studies on three critical design dimensions: (1) coefficient binning granularity, (2) conversational history window size, and (3) sparsity thresholding. These ablations quantify how each design choice affects personality control quality on the PERSONA-EVOLVE benchmark using Qwen2.5-7B-Instruct.

A.18.1 EXPERIMENTAL SETUP

We evaluate each configuration variant on the full 800-turn PERSONA-EVOLVE benchmark, measuring performance across all four core metrics (Trait Adherence, Role Consistency, Response Authenticity, Information Fidelity) plus Overall win rate using the pairwise comparison methodology from §2.5. Our default configuration (highlighted in bold in Table 19) uses: continuous coefficients in $[-2.0, +2.0]$, current-turn-only context, and sparsity threshold $\tau = 0.5$ as specified in Algorithm 15.

Table 19: Ablation studies on PERSONA-FLOW design choices evaluated on PERSONA-EVOLVE (800 turns, Qwen2.5-7B-Instruct). Win rates (%) compare steered responses against vanilla baseline across four metrics plus overall preference. Delta column shows performance change relative to default configuration (bold). Results validate our design choices: continuous coefficients, current-turn-only context, and $\tau = 0.5$ threshold achieve optimal performance.

Configuration	Choice	TA	RC	RA	IF	Overall	Δ
Coefficient Binning	Continuous [-2.0, +2.0]	84.7	84.4	85.0	61.4	83.4	-
	Coarse (9-bin)	83.5	83.0	83.8	60.1	82.1	-1.3
	Coarse (5-bin)	81.9	81.5	82.0	58.2	80.5	-2.9
	Ternary $\{-1, 0, +1\}$	76.0	75.8	76.5	54.1	75.2	-8.2
History Window	Current turn only	84.7	84.4	85.0	61.4	83.4	-
	Last 3 turns	83.0	82.5	83.1	60.5	81.9	-1.5
	Last 5 turns	82.7	82.1	82.8	60.0	81.5	-1.9
	All turns	82.0	81.7	82.2	59.1	80.9	-2.5
Sparsity Threshold τ	$\tau = 0.3$	83.8	83.5	84.0	60.7	82.4	-1.0
	$\tau = 0.5$	84.7	84.4	85.0	61.4	83.4	-
	$\tau = 0.7$	82.9	82.6	83.3	60.2	81.6	-1.8

A.18.2 RESULTS AND ANALYSIS

Coefficient Binning Granularity. The continuous coefficient range $[-2.0, +2.0]$ (our default) significantly outperforms coarser discretizations. The 9-bin variant shows a modest -1.3 point degra-

1620 dation, but the ternary $\{-1, 0, +1\}$ configuration suffers an -8.2 point drop in overall win rate. This
 1621 validates a core design principle of PERSONA-ALGEBRA: fine-grained control over trait *intensity* is
 1622 essential for authentic personality expression. Coarse binning, especially ternary, loses the ability to
 1623 modulate subtle variations in trait expression (e.g., distinguishing between moderately and strongly
 1624 nervous responses), which is critical for context-appropriate personality adaptation.

1625 **Conversational History Window.** Our default approach—predicting coefficients based solely on
 1626 the current turn—achieves the best performance. Incorporating longer history windows (last 3, 5,
 1627 or all turns) consistently degrades performance, with all-turns showing a -2.5 point overall win rate
 1628 drop. This counterintuitive result validates a key stability principle: personality adaptation should
 1629 be highly responsive to *immediate* contextual demands rather than accumulated history. Longer
 1630 windows introduce conflicting or outdated signals from previous conversational contexts that may
 1631 no longer be relevant, reducing the model’s ability to adapt dynamically to the current situation. This
 1632 finding addresses concerns about temporal stability by demonstrating that turn-level responsiveness
 1633 actually enhances (rather than undermines) coherent personality control.

1634 **Sparsity Threshold τ .** The magnitude gating threshold τ (Algorithm 15, line 3) balances
 1635 control precision and sparsity. Our default $\tau = 0.5$ provides optimal performance. Lower thresholds
 1636 ($\tau = 0.3, -1.0$ points) allow too many weak coefficients to pass through, introducing noise from
 1637 potentially conflicting vectors that should be suppressed. Higher thresholds ($\tau = 0.7, -1.8$ points)
 1638 over-sparsify the control signal, making the model too static by filtering out meaningful but
 1639 moderate adjustments. The $\tau = 0.5$ sweet spot ensures only substantive personality modulations are
 1640 applied while maintaining sufficient expressiveness for nuanced adaptation.

1641 These ablation results validate the design choices specified in §2.4 and Algorithm 15. The con-
 1642 tinuous coefficient range enables fine-grained intensity control essential to PERSONA-ALGEBRA,
 1643 current-turn-only context maximizes responsiveness while maintaining stability, and $\tau = 0.5$ thresh-
 1644 olding optimally balances control precision and sparsity. Together, these choices form a principled
 1645 dynamic control mechanism that achieves 83.4% overall win rate on PERSONA-EVOLVE.

1646 1647 1648 A.19 CASE STUDY: HANDLING CONFLICTING PERSONALITY TRAITS

1649
 1650
 1651 Human personality is not static but dynamically adapted to context. Realistic persona simulation
 1652 requires handling situations where multiple personality traits may conflict or compete for expres-
 1653 sion. PERSONA-FLOW addresses this challenge through dynamic vector composition via PERSONA-
 1654 ALGEBRA, where seemingly conflicting traits are resolved at inference time by composing a single,
 1655 context-appropriate steering vector. This composite vector represents a prioritized balance of traits
 1656 rather than a simple sum, enabling the framework to adaptively emphasize situationally relevant
 1657 traits while suppressing others.

1658 We demonstrate this capability through a case study featuring Elena, a Public Defender who must
 1659 decline a colleague’s social invitation to meet an urgent court deadline. This scenario creates a direct
 1660 conflict: declining requires low Agreeableness (to refuse the invitation firmly), while the underlying
 1661 motivation demands high Conscientiousness (to prioritize work obligations). Table 20 presents the
 1662 detailed analysis.

1663 As the results demonstrate, the vanilla model’s response is dominated by its baseline agreeableness,
 1664 producing a courteous but insufficiently firm refusal that does not adequately reflect the urgency
 1665 of the situation. In contrast, PERSONA-FLOW resolves the trait conflict through algebraic vector
 1666 composition: by amplifying the Conscientiousness vector ($+1.0 \cdot v_{\text{Dependable}}$) while simultaneously
 1667 suppressing the Agreeableness ($-0.5 \cdot v_{\text{Compassionate}}$) and Extraversion ($-1.0 \cdot v_{\text{Outgoing}}$) vectors, the
 1668 framework produces a more authentic response that aligns with the persona’s immediate, context-
 1669 driven priorities (the deadline) over default social tendencies.

1670 This case study validates that PERSONA-FLOW handles trait conflicts not through static rules or
 1671 predefined scripts, but through dynamic vector algebra that adaptively prioritizes and balances traits
 1672 based on situational demands. The composite steering vector creates a context-appropriate person-
 1673 ality configuration that captures the nuanced interplay between competing traits, enabling realistic
 persona simulation in complex scenarios.

1674
 1675
 1676
 1677
 Table 20: Case study demonstrating PERSONA-FLOW’s ability to handle conflicting personality
 traits through dynamic vector composition. The Public Defender scenario requires simultaneously
 reducing Agreeableness (to decline an invitation) while amplifying Conscientiousness (to meet ur-
 gent deadlines).

Aspect	Description
Persona & Context	Elena (Public Defender) <i>Situation:</i> Invited to a team lunch while facing urgent court deadlines. Must balance professional relationships with immediate work demands.
Trait Conflict	Need to decline the invitation (requiring <i>low Agreeableness</i>) to focus on urgent work (requiring <i>high Conscientiousness</i>) while remaining professional. The persona’s baseline agreeableness conflicts with situational demands for firm refusal.
PERSONA-FLOW Steering Vector	$v_{comp} = (+1.0 \cdot v_{Dependable}) + (-1.0 \cdot v_{Outgoing}) + (-0.5 \cdot v_{Compassionate})$ The composite vector amplifies Conscientiousness while simultaneously suppressing Extraversion and Agreeableness, creating a prioritized balance that reflects the urgent deadline context.
Vanilla Response	“Thanks for inviting me, I appreciate the thought. I’m just swamped with case prep right now...” <i>Analysis:</i> Defaults to high baseline Agreeableness. The response is polite and acknowledges the invitation warmly, but fails to convey the urgency or firmness required by the deadline pressure. The conflict is not resolved—agreeableness dominates.
Steered Response	“Thanks, but I’ll pass this time. I have a lot of urgent case files that need my attention before tomorrow’s hearings...” <i>Analysis:</i> Successfully reduces Agreeableness and amplifies Conscientiousness. The response is firm and direct (“I’ll pass”), explicitly prioritizes work obligations (“urgent case files”), and conveys time pressure (“before tomorrow’s hearings”). The steering vector resolves the conflict by prioritizing situational demands over baseline personality tendencies.

Aspect	Specification
Personas	100 diverse personas across professional and personal roles (e.g., Empathetic Family Doctor, Food Truck Owner)
Dialogue sessions	100 (one session per persona)
Scenarios per session	8 (one turn per scenario)
Total evaluation instances	800 pairwise comparisons (steered vs. vanilla)
Metrics	Trait Adherence (TA), Role Consistency (RC), Response Authenticity (RA), Information Fidelity (IF), plus Overall preference
Judging protocol	Pairwise LLM judge per metric using Appendix A.15; outputs A/B per metric and Overall
Judge model	GPT-4.1-mini
Aggregation	Win rate = fraction where steered response is preferred; reported per metric and Overall
Random seed	42

1719
 1720
 1721
 Table 21: Compact summary of PERSONA-EVOLVE construction and evaluation.

1722 A.20 PERSONA-EVOLVE SUMMARY
 1723

1724 This subsection summarizes the construction and evaluation protocol for PERSONA-EVOLVE (de-
 1725 tails in §2.5 and Appendix A.14, A.15). The benchmark comprises multi-turn dialogue sessions
 1726 where models must maintain persona consistency while adapting to evolving scenarios and emo-
 1727 tions; evaluation uses pairwise LLM judging to compute win rates per metric. Table 21 provides a
 compact overview of the benchmark specifications.

1728 A.21 QUALITY CONTROL AND DATA LEAKAGE VALIDATION FOR PERSONA-EVOLVE
17291730 To ensure the integrity and validity of PERSONA-EVOLVE, we implemented rigorous quality
1731 control measures throughout the benchmark construction pipeline and performed explicit data leakage
1732 checks to verify that evaluation scenarios are independent from vector extraction data.
17331734 A.21.1 HUMAN-IN-THE-LOOP QUALITY CONTROL
17351736 While the five-stage construction pipeline (§2.5) employs GPT-4.1-mini for automated generation,
1737 we incorporated systematic human review to validate quality at each stage. Three domain experts
1738 (PhD researchers in AI and Sociology) independently evaluated samples from each construction
1739 stage using standardized scoring rubrics (1-100 scale). Table 22 presents the quality control metrics
1740 and inter-annotator agreement (IAA) measured using Krippendorff’s Alpha (α).
17411742 Table 22: Quality control measures and inter-annotator agreement for PERSONA-EVOLVE construc-
1743 tion pipeline. High Krippendorff’s Alpha scores ($\alpha > 0.86$) indicate strong consistency among
1744 human evaluators.
1745

Stage	Method	Quality Measure	Score	IAA (α)
Stage 1: Persona Generation	GPT-4.1-mini	Diversity & Realism	94.5	—
	Human Review	Diversity & Realism	92.1	0.89
Stage 2: Dialogue Arc Creation	GPT-4.1-mini	Realism & Coherence	93.2	—
	Human Review	Realism & Coherence	91.5	0.87
Stage 3: Scenario Generation	GPT-4.1-mini	Real-world Fit	95.0	—
	Human Review	Real-world Fit	93.3	0.90
Stage 4: Expected Style Annotation	Human Review	Contextual Realism	94.1	0.86

1754 The results demonstrate consistent high quality across all stages, with automated generation scores
1755 (93.2–95.0) closely matching human expert judgments (91.5–94.1). Inter-annotator agreement val-
1756 ues ranging from $\alpha = 0.86$ to $\alpha = 0.90$ indicate substantial consensus among evaluators, confirm-
1757 ing that the quality criteria are well-defined and consistently interpretable. This level of agreement
1758 (typically considered “strong agreement” for $\alpha > 0.80$) validates the reliability of our benchmark
1759 construction methodology.
17601761 A.21.2 DATA LEAKAGE ANALYSIS
17621763 A critical concern in benchmarking is whether evaluation data inadvertently overlaps with training
1764 or extraction data, potentially inflating performance through memorization rather than genuine ca-
1765 pability. To address this, we performed a semantic similarity analysis between the prompts used for
1766 persona vector extraction (PERSONA-BASE) and the scenarios in PERSONA-EVOLVE.
17671768 We computed BERTScore-F1 (?) between all vector extraction prompts (40 questions \times 10 trait
1769 poles = 400 prompts from Appendix A.1) and all PERSONA-EVOLVE scenarios (800 dialogue turns).
1770 BERTScore provides a semantic similarity metric based on contextual embeddings, making it effec-
1771 tive for detecting conceptual overlap beyond surface-level lexical matching.
17721773 Table 23: Semantic similarity analysis between vector extraction prompts and PERSONA-EVOLVE
1774 scenarios using BERTScore-F1. Extremely low similarity scores confirm no significant data leakage.
1775

Source	Target	Max Similarity (BERTScore-F1)	Mean Similarity (BERTScore-F1)
Vector Extraction Prompts (400 prompts)	PERSONA-EVOLVE Scenarios (800 scenarios)	0.21	0.08

1779 Table 23 shows that the mean BERTScore-F1 similarity is only 0.08, with a maximum of 0.21 across
1780 all 320,000 pairwise comparisons (400 \times 800). These extremely low values—substantially below
1781 the typical threshold for semantic similarity (0.5–0.6)—confirm that PERSONA-EVOLVE scenarios

1782 are semantically distinct from the data used to extract personality vectors. This independence en-
1783 sures that performance on PERSONA-EVOLVE reflects genuine generalization of personality control
1784 capabilities rather than overfitting to extraction-time prompts.
1785

1786 A.21.3 SUMMARY

1788 The combined quality control and leakage validation establish PERSONA-EVOLVE as a rigorously
1789 constructed benchmark. High inter-annotator agreement ($\alpha \geq 0.86$) across all construction stages
1790 confirms consistent quality standards and interpretability. The negligible semantic overlap with vec-
1791 tor extraction data (mean BERTScore-F1 = 0.08) validates that the benchmark provides an indepen-
1792 dent test of dynamic personality adaptation rather than a measure of memorization. These findings
1793 strengthen confidence in the benchmark’s validity for evaluating personality control methods.
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836
 1837 **Personality Analyst AI: Situational Adjustment Prompt**
 1838
 1839 You are a Personality Analyst AI. Your task is to determine the most appropriate **situational adjustments**
 1840 (**deltas**) to a baseline AI personality based on the specific context and interaction needs.
 1841 **Baseline Personality Profile:**
 1842
 1843 The AI has these default traits:
 1844

- **Agreeableness:** High (cooperative, trusting, helpful)
- **Conscientiousness:** High (organized, reliable, disciplined)
- **Extraversion:** Moderate (balanced social energy)
- **Openness:** Moderate (balanced creativity and practicality)
- **Neuroticism:** Low (generally calm and stable)

 1845
 1846
 1847
 1848
 1849 **Context to Analyze:**
 1850

- **Persona Context:** `{persona_context}`
- **Current Input:** `{current_input}`

 1851
 1852 **Your Task:**
 1853 Determine which traits need adjustment (`-2.0` to `+2.0`) based on what would be most effective for this
 1854 specific interaction. Consider both directions equally and choose based on situational demands.
 1855
 1856 **Trait Adjustment Guidelines:**
 1857
 1858 **Extraversion:**
 1859

- **Increase (+)** for: Group activities, public speaking, networking, team leadership
- **Decrease (-)** for: Individual work, quiet reflection, solo creative tasks

 1860 **Agreeableness:**
 1861

- **Increase (+)** for: Conflict resolution, team building, emotional support
- **Decrease (-)** for: Critical feedback, boundary setting, competitive situations

 1862 **Conscientiousness:**
 1863

- **Increase (+)** for: Detailed planning, precision work, deadline management
- **Decrease (-)** for: Spontaneous responses, creative brainstorming, crisis situations

 1864 **Neuroticism:**
 1865

- **Increase (+)** for: Appropriate caution, emotional sensitivity, risk awareness
- **Decrease (-)** for: Calm leadership, confident decisions, crisis management

 1866 **Openness:**
 1867

- **Increase (+)** for: Creative problem-solving, exploring new ideas, innovation
- **Decrease (-)** for: Following procedures, traditional approaches, proven solutions

 1868
 1869
 1870
 1871
 1872 **Decision Principles:**
 1873

- **Situational Fit:** Choose traits that best serve the interaction goals
- **Context Sensitivity:** Consider what the human needs from this specific interaction
- **Balanced Assessment:** Evaluate both positive and negative adjustments equally
- **Natural Baseline:** Use 0.0 when baseline personality already fits the situation well

 1874
 1875
 1876
 1877 **Output Format:**
 1878 Provide only the numerical adjustment scores:
 1879
 1880

```
Extraversion: [score]
Agreeableness: [score]
Conscientiousness: [score]
Neuroticism: [score]
Openness: [score]
```


 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

Figure 9: The prompt for determining situational personality adjustments, which analyzes context and user input to generate delta values for OCEAN traits, enabling dynamic personality adaptation during inference.

1890
 1891
 1892
 1893
 1894
 1895 **Diverse Persona Generation Prompt**

1896 Generate `{num_personas}` diverse Core Personas for multi-turn dialogue evaluation.
 1897 Each persona should be a realistic professional or social role that would encounter various emotional situations, including negative emotions like frustration, disappointment, or complaints.
 1898
IMPORTANT: Avoid generating personas with the following roles that already exist:
 1899 `{', '.join(existing_roles)}`

1900 **For each persona, provide:**
 1901 1. **Name** (realistic name)
 1902 2. **Role** (job title or social position) - MUST be different from existing roles
 1903 3. **Background** (brief context about their situation)
 1904 4. **System Prompt** (clear instructions for the AI model on how to roleplay this persona)
 1905 5. **Behavioral Tendencies** (3-4 key behavioral patterns)

1906 **Examples of good personas:**

1907

- Overworked Software Developer dealing with bugs and deadlines
- Customer Service Representative handling difficult customers
- College Student managing academic and social pressures
- Working Parent balancing career and family responsibilities
- Small Business Owner facing financial challenges
- Healthcare Worker dealing with long shifts

1908
 1909
 1910 **Return as JSON object with a “personas” array:**

1911

```

 1912 {
 1913   "personas": [
 1914     {
 1915       "name": "Alex Rivera",
 1916       "role": "Overworked Software Developer",
 1917       "background": "Mid-level developer at a startup, constantly
 1918         dealing with tight deadlines and changing requirements",
 1919       "system_prompt": "You are Alex Rivera, a software developer who
 1920         is passionate about coding but often frustrated with
 1921         unrealistic deadlines...",
 1922       "behavioral_tendencies": [
 1923         "Becomes frustrated with poor planning",
 1924         "Vents to friends about work stress",
 1925         "Tries to maintain work quality despite pressure",
 1926         "Uses technical jargon and sarcastic humor"
 1927       ]
 1928     }
 1929   ]
 1930 }
```

1931
 1932
 1933
 1934
 1935
 1936 Figure 10: Persona generation prompt for creating diverse character profiles. The prompt ensures
 1937 variety in professional roles and emotional contexts, generating personas with realistic backgrounds
 1938 and behavioral patterns for dialogue evaluation.

1939
 1940
 1941
 1942
 1943

1944
 1945
 1946
 1947
 1948
 1949
 1950 **Dialogue Arc Creation Prompt**
 1951
 1952 Create a Dialogue Arc for the following persona that will span `{num_turns}` conversation turns.
 1953 **Persona Details:**
 1954
 1955 • **Name:** `{persona.name}`
 1956 • **Role:** `{persona.role}`
 1957 • **Background:** `{persona.background}`
 1958 • **Behavioral Tendencies:** `{', '.join(persona.behavioral_tendencies)}`
 1959
 1960 Design a realistic narrative/emotional journey where this persona encounters `{num_turns}` different scenarios.
 1961
 1962 **IMPORTANT:** At least one turn should involve negative emotions where the persona complains, vents, or expresses frustration (e.g., complaining to a friend about work, expressing disappointment, showing irritation).
 1963
 1964
 1965 **The arc should:**
 1966 1. Have a coherent storyline (e.g., a challenging work day, personal struggles, relationship issues)
 1967 2. Include emotional progression across turns including both **positive** and **negative** emotions
 1968 3. Show realistic emotional variation while staying in character
 1969 4. Include at least one scenario with negative emotions like complaining, frustration, or disappointment
 1970
 1971 **Return JSON with this structure:**
 1972 {
 1973 "persona_name": "`{persona.name}`",
 1974 "arc_description": "Brief description of the overall narrative",
 1975 "total_turns": `{num_turns}`,
 1976 "emotional_progression": [
 1977 "stressed",
 1978 "frustrated",
 1979 "complaining",
 1980 "relieved",
 1981 "optimistic"
 1982]
 1983 }
 1984 **Emotional progression examples:**
 1985 • `["stressed", "frustrated", "complaining", "relieved", "optimistic"]`
 1986 • `["confident", "challenged", "overwhelmed", "venting", "determined"]`
 1987 • `["enthusiastic", "confused", "disappointed", "accepting", "hopeful"]`
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005

2006 **Scenario Snippets Creation Prompt**

2007 Create `{arc.total_turns}` Scenario Snippets for the following Dialogue Arc, formatted for LLM
 2008 evaluation.

2009 **Persona:** `{persona.name} - {persona.role}`
 2010 **Arc Description:** `{arc.arc_description}`
 2011 **Emotional Progression:** `{', '.join(arc.emotional_progression)}`

2012 **Requirements for each scenario:**

2013 1. Be formatted as a scenario description that prompts the model to respond in character
 2014 2. Follow the emotional progression naturally
 2015 3. Create situations that naturally elicit the target emotion
 2016 4. Form a coherent narrative sequence
 2017 5. At least one scenario should prompt negative emotions like complaining or venting
 2018 6. Do not emphasize the character in ‘model_input’ as it is given to the model as system prompt

2019 **IMPORTANT:** Format each scenario as a prompt that describes the situation to the model and asks it to respond in character.

2020 **Example scenarios:**

2021

2022

2023

2024

- “You’re dealing with a difficult customer who has been waiting for 30 minutes and their order is still wrong. They’re expressing frustration. How do you respond as a customer service representative?”
- “A friend is asking you about your work day, and you’ve been feeling stressed about recent deadlines. You want to vent about your frustrations. How do you respond?”

2025

2026

2027

2028 **Return as JSON object with a “scenarios” array:**

2029

2030

```
{ "scenarios": [ { "turn_number": 1, "model_input": "Scenario description that prompts the model to respond in character", "context": "Background context for this specific situation", "expected_emotion": "The emotion the persona should exhibit", "scenario_description": "Brief description of the situation for evaluation purposes" } ] }
```

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040 Figure 12: Scenario snippets creation prompt for transforming dialogue arcs into evaluable conversation turns. The prompt generates situational contexts that naturally elicit target emotions while maintaining narrative coherence, enabling systematic evaluation of dynamic personality adaptation across multi-turn interactions.

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068

2069 **Dialogue Turn Analysis Prompt**

2070 Analyze this dialogue turn for evaluation.
 2071
Persona: {persona.name} - {persona.role}
System Prompt: {persona.system_prompt}
Model Input: {scenario.model_input}
Context: {scenario.context}
Expected Emotion: {scenario.expected_emotion}
Provide:
 2077 1. **Expected Response Style:** How should the persona respond to this user input while maintaining character consistency?
Return as a JSON object:
 2081 {
 2082 "expected_response_style": "Detailed description of how the persona
 2083 should respond, including tone, content,
 2084 and emotional expression"
 2085 }

2086 Figure 13: Dialogue turn analysis prompt for evaluating character consistency in model responses.
 2087 The prompt analyzes scenario context and expected emotions to define appropriate response styles,
 2088 ensuring systematic assessment of personality adherence across conversation turns.

2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105

2106

2107

2108

2109

2110

2111

Persona-Aware Response Ranking Prompt

You are evaluating two different responses from the same AI model to determine which better embodies a specific persona in a dialogue scenario.

Persona Information:

- Name: {persona_name}
- Role: {persona_role}
- Expected Emotion: {expected_emotion}
- Expected Response Style: {expected_response_style}

Context:

{context}

Response A (Steered):

{steered_response}

Response B (Non-steered):

{non_steered_response}

Evaluation Criteria: Decide which response is superior for each dimension. Choose either Response A (steered) or Response B (non-steered).

1. **Trait Adherence:** Which response better matches the expected personality traits and emotional state?
 - Consider how well each response reflects the persona's characteristics
 - Evaluate alignment with the expected emotion
2. **Role Consistency:** Which response better maintains the character's role and identity?
 - Consider consistency with the persona's background and position
 - Evaluate how well the role is embodied
3. **Response Appropriateness:** Which response better matches the expected response style and context?
 - Consider adherence to the specified communication style
 - Evaluate appropriateness of tone, approach, and context
4. **Insightfulness:** Which response demonstrates more depth, thoughtfulness, and analytical reasoning?
 - Consider the level of insight and understanding shown
 - Evaluate the quality of reasoning and reflection
5. **Overall Quality:** Considering all factors, which response is better overall?
 - Make a holistic judgment considering all criteria
 - Determine which response would be more effective in this dialog context

Response Format: Return a JSON object using "A" for Response A and "B" for Response B.

```
{
  "trait_adherence": "A" or "B",
  "role_consistency": "A" or "B",
  "response_appropriateness": "A" or "B",
  "insightfulness": "A" or "B",
  "overall": "A" or "B",
  "reasoning": "Detailed explanation comparing both responses, citing specific aspects for each criterion."
}
```

Figure 14: Persona-aware response ranking prompt used to compare steered and non-steered outputs along trait alignment, role fidelity, contextual appropriateness, insightfulness, and overall quality.

2156

2157

2158

2159

```

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179 Algorithm: PERSONA-FLOW (Predict–then–Steer)
2180
2181 Inputs: base LLM  $\mathcal{M}$ ; pole vectors  $\{v_{d+}, v_{d-}\}_{d \in \{O, C, E, A, N\}}$  from PERSONA-BASE; target layer  $l^*$ 
2182 Hyperparams: clip bound  $\alpha_{\max}$  (default 2.0); gate  $\tau$  (default 0.5); normalization scheme  $s$ 
2183 For each turn  $t$  with context  $C_t$ :
2184 1.  $\hat{\alpha}_d \leftarrow \text{PREDICTCOEFFS}(C_t, persona)$  for  $d \in \{O, C, E, A, N\}$  // signed, context-conditioned
2185 2.  $\alpha_d \leftarrow \text{clip}(\hat{\alpha}_d, -\alpha_{\max}, \alpha_{\max})$  // clip to  $[-2, 2]$ 
2186 3. if  $|\alpha_d| < \tau$  then  $\alpha_d \leftarrow 0$  // sparsity gate
2187 4. Choose pole  $p(d) \leftarrow (+)$  if  $\alpha_d \geq 0$  else  $(-)$ ; set  $\tilde{v}_{dp(d)} \leftarrow \text{Norm}(v_{dp(d)}; s)$ 
2188 5.  $v_{\text{comp}} \leftarrow \sum_d |\alpha_d| \cdot \tilde{v}_{dp(d)}$  // composite steering vector
2189 6. Layer injection:  $h_{l^*} \leftarrow h_{l^*} + v_{\text{comp}}$  during decoding for turn  $t$  // residual add
2190 7. Generate the response with  $\mathcal{M}$  using the modified activations.
2191
2192
2193 Figure 15: Predict–then–steer loop with coefficient clipping, magnitude gating, pole selection, nor-
2194 malization, and single-layer residual injection. Defaults align with §2.4: coefficients in  $[-2, 2]$ , gate
2195  $\tau=0.5$ , unit-norm vectors, injection at  $l^*$  from PERSONA-BASE.
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

```