

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

JOURNEY TO THE CENTRE OF CLUSTER: HARNESSING INTERIOR NODES FOR A/B TESTING UNDER NETWORK INTERFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

A/B testing on platforms often faces challenges from network interference, where a unit’s outcome depends not only on its own treatment but also on the treatments of its network neighbors. To address this, cluster-level randomization has become standard, enabling the use of network-aware estimators. These estimators typically trim the data to retain only a subset of informative units, achieving low bias under suitable conditions but often suffering from high variance. In this paper, we first demonstrate that the interior nodes—units whose neighbors all lie within the same cluster—constitute the vast majority of the post-trimming subpopulation. In light of this, we propose directly averaging over the interior nodes to construct the mean-in-interior (MII) estimator, which circumvents the delicate reweighting required by existing network-aware estimators and substantially reduces variance in classical settings. However, we show that interior nodes are often not representative of the full population, particularly in terms of network-dependent covariates, leading to notable bias. We then augment the MII estimator with a counterfactual predictor trained on the entire network, allowing us to adjust for covariate distribution shifts between the interior nodes and full population. By rearranging the expression, we reveal that our augmented MII estimator embodies an analytical form of the point estimator within prediction-powered inference framework (Angelopoulos et al., 2023a;b). This insight motivates a semi-supervised lens, wherein interior nodes are treated as labeled data subject to selection bias. Extensive and challenging simulation studies demonstrate the outstanding performance of our augmented MII estimator across various settings.

1 INTRODUCTION

A/B testing has long been the gold standard for modern platforms in deciding whether to launch new product features. However, its basic procedures can easily fail and lead to misleading conclusions when interference exists—specifically when the classic Stable Unit Treatment Value Assumption (SUTVA) is violated, and a unit’s potential outcome is influenced by treatments received by adjacent neighbors. Since these influences typically propagate through network topology, such as friendship relations in social networks, we refer to this phenomenon as network interference.

In most industrial A/B testing scenarios, the estimand of interest is the global average treatment effect (GATE), defined as the difference between the mean outcomes under global treatment and global control. Under network interference, we position the estimation of GATE as a nontrivial extrapolation task. Rather than relying on graph-agnostic approaches that drastically reduce dimensionality to one or two dimensions, e.g., Yu et al. (2022b); Cortez-Rodriguez et al. (2024); Bayati et al. (2024), we argue that leveraging the known graph structure is much more appealing.

As the most basic approach, the difference-in-means estimator is graph-agnostic and thus suffers from severe bias in the presence of interference Karwa & Airola (2018). This issue is especially pronounced in early-stage experiments, where the treatment proportion typically falls below 10%. In such settings, treated units often have a high proportion of neighbors in the control group, meaning that the treatment vector in their 1-hop ego network can differ significantly from the global treatment.

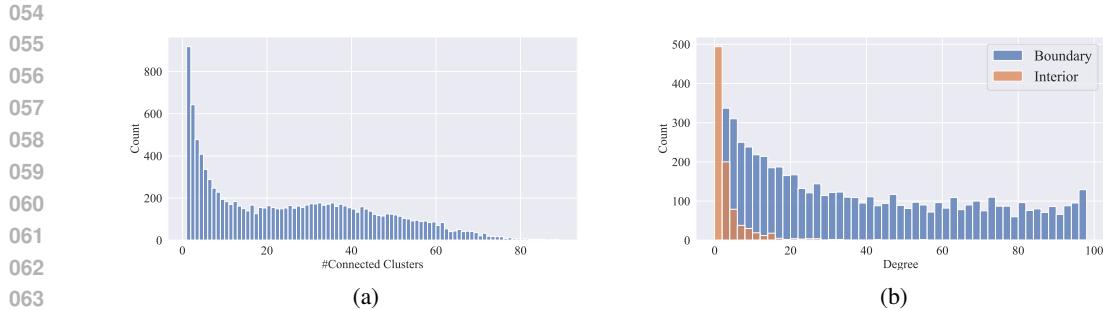


Figure 1: **(a)** Histogram of the number of distinct clusters each unit is connected to. **(b)** Histogram of degree for boundary and interior nodes. The network topology is derived from a Facebook network Gui et al. (2015), and clusters are generated through Louvain algorithm (Blondel et al., 2008).

To leverage the graph topology, the cornerstone methodology is graph cluster randomization Hudgens & Halloran (2008); Ugander et al. (2013), which ensures that all units within a cluster receive the same treatment. These clusters are typically pre-generated using graph clustering algorithms. Unlike classic unit-level randomization, graph cluster randomization introduces strong correlations among densely connected units. This allows interior nodes to experience an environment that closely approximates global treatment, thereby facilitating GATE estimation.

Moreover, a widely considered regime is the neighborhood interference assumption (NIA), which informally assumes that interference is restricted to a unit’s 1-hop neighbors. With NIA and graph cluster randomization, Horvitz-Thompson (HT) estimator with network exposure indicators Ugander et al. (2013); Ugander & Yin (2023), is proposed to achieve unbiasedness. This estimator includes only the outcomes of units that satisfy specific exposure conditions—e.g., having all neighbors receive the same treatment level. When no ambiguity arises, we refer to it simply as the HT estimator and defer its formal definition to Section 2.

Under graph cluster randomization, nodes located in the interior of clusters are always clean and thus are included in the HT estimator. However, these interior nodes represent only a small fraction of the overall population. In contrast, a much larger number of nodes lie along cluster boundaries, yet they are significantly less likely to be selected by the HT estimator. To illustrate this disparity, consider a unit connected to c different clusters, where independent Bernoulli randomization with treatment proportion p is conducted at the cluster level. The probability that this unit is a clean treated node is p^c , which can be vanishingly small. To build intuition, Figure 1a displays the distribution of c in our social network. We observe that interior nodes constitute only 8% of the total population. In contrast, boundary nodes often have large values of c , leading to extreme inverse probability weights of the form $(1/p)^c$ in the estimator, resulting in highly inflated variance.

There have been numerous efforts to address the issue of explosive variance in the HT estimator. On one hand, refined randomization schemes have been proposed to control the theoretical variance bound of the HT estimator (Ugander & Yin, 2023; Kandiros et al., 2024). However, due to the inherent density of practical social networks, even when sharp theoretical bounds are achieved, the realized variance in practice remains unsatisfactory. On the other hand, alternative estimators have emerged that introduce slight bias in exchange for significant variance reduction, such as the cluster-adaptive estimator (CAE) (Liu et al., 2024). CAE also uses exposure indicators to select clean nodes, but replaces inverse probability weighting with a bilevel averaging of outcomes—first within clusters, then across clusters. Nevertheless, we claim that practical clustering algorithms rarely satisfy the strong structural assumptions required by CAE, and that its bilevel averaging step can be further simplified to a single average—leading to substantial variance reduction.

In this paper, we first propose the mean-in-interior estimator, which mimics the difference-in-means estimator by assigning much more moderate weights to unit outcomes, in contrast to the exponential weights used in the HT estimator—the primary source of its extremely high variance. Our estimator is based on the extensive practice of cluster-level randomization and relies solely on the interior nodes of clusters to compute mean outcomes. Intuitively, these interior nodes tend to reside in a cleaner environment, closer to global treatment or control conditions. With similar assumptions to Liu et al. (2024), specifically that the interior nodes of each cluster are representative enough of the whole cluster, we prove the consistency of the MII estimator.

108 Furthermore, we observe that the HT, CAE, and MII estimators all exclude most boundary nodes,
 109 which inevitably introduces selection bias when there exists a systematic discrepancy between in-
 110 terior and boundary units. To address this challenge, we incorporate a counterfactual predictor
 111 trained on the entire network. Leveraging this predictor, we construct an adjustment term for the
 112 MII estimator that mitigates covariate mismatch between interior and boundary units. Moreover,
 113 by rearranging terms in the estimator, we provide an alternative interpretation through the lens of
 114 semi-supervised learning: interior nodes play the role of labeled data—albeit potential selection
 115 bias—while boundary nodes contribute representative covariates with partial label information.
 116

117 **Related Works** Causal inference under interference has been extensively studied in early
 118 works Sobel (2006); Rosenbaum (2007). A foundational methodology in this field is graph clus-
 119 ter randomization Hudgens & Halloran (2008); Ugander et al. (2013), which allocates treatments at
 120 the cluster level and ensures that all units within a cluster receive the same treatment. This approach
 121 enhances the statistical performance of several classic estimators, making it a common practice. Ad-
 122 ditionally, because general interference is often intractable, numerous structural assumptions have
 123 been proposed to simplify interference patterns and facilitate analysis.

124 A significant body of research has centered on the partial interference assumption Hudgens & Hallo-
 125 ran (2008); Bhattacharya et al. (2020); Forastiere et al. (2021); Candogan et al. (2023), which posits
 126 that the network can be partitioned into disjoint clusters, with interference occurring only within
 127 each cluster. While this assumption significantly simplifies the interference structure—allowing
 128 cluster-level randomization to produce unbiased estimates—it is somewhat restrictive, particularly
 129 in settings such as social networks and online marketplaces.

130 Beyond this special regime, three main structural assumptions have been developed to restrict the
 131 form of interference. The first and most widely studied interference pattern in the literature is neigh-
 132 borhood interference Forastiere et al. (2022); Cortez et al. (2022); Ugander & Yin (2023); Liu et al.
 133 (2024), which assumes that interference is restricted to an individual’s direct neighbors. Under this
 134 assumption, a unit surrounded by neighbors receiving the same treatment level can be considered
 135 as being in a globally treated or control environment, making it well-suited for GATE estimation.
 136 With stronger parametric structure, exposure mapping Aronow & Samii (2017); Eckles et al. (2016);
 137 Ugander et al. (2013); Baird et al. (2018); Vazquez-Bare (2023) is proposed as a summary of the
 138 effect of the entire treatment vector on a specific unit through a predefined function or representa-
 139 tion. Furthermore, the potential outcome model is leveraged to develop more elaborate experimental
 140 design Basse & Airolidi (2018); Yu et al. (2022a); Harshaw et al. (2023); Chen et al. (2023).
 141

142 Additionally, there is a body of work that leverages graph neural networks (GNNs) as powerful
 143 regression models for performing counterfactual prediction on observational data Leung & Loupos
 144 (2024); Cai et al. (2024); Wu et al. (2025). Specifically, the GATE can be viewed as the difference
 145 between two counterfactuals at boundary points, i.e., the global treatment versus the global control.

2 BASIC SETTING

2.1 PRELIMINARY

150 We consider a finite population of n units interconnected through an interference network with a
 151 known topology. This network is represented as an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where the node
 152 set \mathcal{V} corresponds to the unit set $[n] = \{1, 2, \dots, n\}$, and the edges are described by the adjacency
 153 matrix A . We denote the degree of node i by \deg_i , and define the r -hop neighborhood of unit i as
 154 $\mathcal{N}(i, r) = \{j : \ell(i, j) = r\}$, where $\ell(i, j)$ is the shortest path distance between units i and j .

155 We adopt the Neyman–Rubin potential outcomes framework Rubin (1974). The treatment assign-
 156 ment is represented by the vector $\mathbf{z} = (z_1, z_2, \dots, z_n) \in \{0, 1\}^n$. We define the potential outcome
 157 for unit i as $Y_i = Y_i(\mathbf{z})$, where Y_i may depend on the treatment assignments of other units.

158 The parameter of interest is the global average treatment effect (GATE), defined as:
 159

$$160 \quad 161 \quad \tau := \frac{1}{n} \sum_{i \in [n]} (Y_i(\mathbf{1}) - Y_i(\mathbf{0})), \quad (1)$$

162 where $\mathbf{1}$ and $\mathbf{0}$ denote the n -dimensional vectors of ones and zeros, representing the global treatment
163 and global control conditions, respectively.

164 We now introduce our randomization scheme—cluster-level independent Bernoulli randomization.
165 First, we apply a community detection algorithm to generate clusters, which we take as given in this
166 paper. We denote the resulting clusters as C_1, C_2, \dots, C_K , forming a partition of the node set \mathcal{V} .

167 Second, in each experiment, treatment is assigned at the cluster level, meaning that all units within
168 the same cluster receive the same treatment. The treatment assignments for these clusters are inde-
169 pendently drawn from Bernoulli distributions.

170 Additionally, for a given cluster C_k , the interior set is defined as:

$$171 \quad \text{Int}_k = \{i : i \in C_k, \mathcal{N}(i, 1) \subseteq C_k\}. \quad (2)$$

172 That is, a node belongs to the interior if all of its 1-hop neighbors are also contained within the same
173 cluster. The boundary set is defined as the complement within the cluster: $\text{Bnd}_k = C_k \setminus \text{Int}_k$. To-
174 gether, the interior and boundary sets partition the cluster. Intuitively, interior nodes are particularly
175 valuable for estimating the GATE. Under cluster-level randomization, their 1-hop neighbors share
176 the treatment level, making their local environment closely resemble the global treatment or control.

177 We then formally introduce the neighborhood interference assumption (NIA), which confines inter-
178 ference effect to the 1-hop neighborhood of each unit.

179 **Assumption 2.1 (NIA)** *We have $Y_i(\mathbf{z}) = Y_i(\mathbf{z}')$ if $\mathbf{z}_j = \mathbf{z}'_j$ holds for all $j \in \mathcal{N}(i, 1)$.*

180 This assumption is prevalent in the literature, as it imposes a high-level structural constraint on inter-
181 ference while remaining agnostic to the specific form of the exposure function—that is, it does not
182 require a parametric model for how neighboring treatments are aggregated to influence outcomes.
183 Throughout the remainder of this work, we primarily operate under this assumption.

184 2.2 ALTERNATIVE ESTIMATORS

185 We now introduce three popular alternative estimators against which we will compare our method.
186 The first is the difference-in-means (DIM) estimator, which is interference-agnostic and simply com-
187 putes the difference in mean outcomes between treated and control units.

$$188 \quad \hat{\tau}_{DIM} = \frac{z_i Y_i}{\sum_{i \in [n]} z_i} - \frac{(1 - z_i) Y_i}{\sum_{i \in [n]} (1 - z_i)}. \quad (3)$$

189 The second estimator is the HT estimator with network exposure (Ugander & Yin, 2023).

$$190 \quad \hat{\tau}_{HT} = \frac{1}{n} \sum_{i \in [n]} \left(\frac{\delta_i(1)}{\mathbb{E}[\delta_i(1)]} - \frac{\delta_i(0)}{\mathbb{E}[\delta_i(0)]} \right) Y_i, \quad (4)$$

191 where δ_i is the exposure indicator: $\delta_i(z_0) = \mathbb{I}\{\sum_{j \in \mathcal{N}(i, 1)} z_j / \deg_i = z_0, z_i = z_0\}$. This definition
192 implies that the HT estimator relies solely on the outcomes of clean nodes—those whose neighbors
193 all receive the same treatment level as the node itself. This exposure condition is commonly re-
194 ferred to as full-neighborhood exposure (Ugander et al., 2013). Under the NIA, the HT estimator is
195 guaranteed to be unbiased, making it a theoretically appealing choice.

196 Finally, we introduce a more nuanced estimator, the CAE (Liu et al., 2024). Like the HT estimator
197 discussed earlier, CAE uses the same indicator to select clean nodes. However, instead of applying
198 inverse probability weights, it computes a bilevel average over the observed outcomes. As such, it
199 can be interpreted as a hybrid of the DIM and HT estimators. To define it, let t_k denote the treatment
200 assigned to cluster C_k . We first compute the within-cluster average:

$$201 \quad \hat{Y}_{k, z_0} = \sum_{i \in C_k} \frac{\delta_i(z_0) Y_i}{\sum_{j \in C_k} \delta_j(z_0)}. \quad (5)$$

202 Then, an outer average is taken across clusters, yielding the CAE:

$$203 \quad \hat{\tau}_{CAE} = \frac{\sum_{k \in [K]} t_k Y_{k, 1}}{\sum_{l \in [K]} t_l} - \frac{\sum_{k \in [K]} (1 - t_k) Y_{k, 0}}{\sum_{l \in [K]} (1 - t_l)}. \quad (6)$$

216 **3 HARNESSING THE INTERIOR NODES**
 217

218 **3.1 MEAN-IN-INTERIOR ESTIMATOR**
 219

220 Now we introduce our MII estimator, which is the difference between the outcomes of treated and
 221 control interior nodes. Here, $\text{Int} = \cup_{k \in [K]} \text{Int}_k$ denotes the union of the interior sets across clusters.

$$\hat{\tau}_{MII} = \frac{\sum_{i \in \text{Int}} z_i Y_i}{\sum_{j \in \text{Int}} z_j} - \frac{\sum_{i \in \text{Int}} (1 - z_i) Y_i}{\sum_{j \in \text{Int}} (1 - z_j)}. \quad (7)$$

225 As an estimator based on the difference-in-means approach, the MII estimator assigns moderate
 226 weights to observed outcomes. Empirically, we find that the bias of the CAE estimator is similar to
 227 that of the MII estimator, while the MII estimator exhibits substantially lower variance. Furthermore,
 228 under assumptions similar to those in Liu et al. (2024), we demonstrate that the MII estimator is
 229 consistent, with proof provided in Appendix B.1.

230 **Assumption 3.1** *Technical assumptions for consistency of MII estimator.*
 231

232 1. *The proportion of interior nodes becomes asymptotically uniform across all clusters:*

$$\max_{i \in [K]} \left| \frac{|\text{Int}_i|}{\sum_{k \in [K]} |\text{Int}_k|} - \frac{n_i}{\sum_{k \in [K]} n_k} \right| = o_p\left(\frac{1}{K}\right). \quad (8)$$

233 2. *The interior nodes provide a sufficiently representative sample of each cluster:*

$$\begin{aligned} \max_{k \in [K]} |\bar{Y}_k(\mathbf{1}) - \bar{Y}_{k,\text{Int}}(\mathbf{1})| &= o_p(1) \\ \max_{k \in [K]} |\bar{Y}_k(\mathbf{0}) - \bar{Y}_{k,\text{Int}}(\mathbf{0})| &= o_p(1). \end{aligned} \quad (9)$$

234 Here, $\bar{Y}_k(\mathbf{1})$ and $\bar{Y}_{k,\text{Int}}(\mathbf{1})$ denotes the mean outcome of within the cluster k and that within the
 235 interior nodes of cluster k , respectively. The asymptotics is w.r.t. the number of clusters, K .

236 **Theorem 3.1** *Suppose Assumption 2.1 and 3.1 hold, MII estimator is consistent, i.e.,*

$$\hat{\tau}_{MII} - \tau = o_p(1). \quad (10)$$

237 Compared to bias, analyzing variance is typically much more complicated due to intricate interde-
 238 pendence. We thus illustrate the variance of MII estimator with following potential outcome model:

$$Y_i(\mathbf{z}) = \beta z_i + h\left(\sum_{j \in \mathcal{N}(i,1)} z_j / \deg_i, v_i\right). \quad (11)$$

239 Here, β is the direct treatment effect, covariate v_i is i.i.d. across all units, and h is the interfe-
 240 rence function. This model incorporates the classic linear-in-means Aronow & Samii (2017) and
 241 polynomial interference model Cortez et al. (2022) as special cases.

242 An important property of this class of potential outcome models is that each interior node provides
 243 an unbiased estimate of the mean outcomes under global treatment or control, regardless of the
 244 complexity of h . This suggests simply averaging over all interior nodes with equal weights. Per
 245 the Cauchy-Schwarz inequality, equal weighting yields the minimum-variance unbiased estimator
 246 when only interior nodes are available. Adding (substantially few) boundary nodes can, in prin-
 247 ciple, further reduce variance. However, under network interference, doing so necessitates delicate
 248 weights—e.g., inverse-propensity weights for network exposure in HT estimator or bi-level cluster-
 249 relevant weights in CAE—which can actually introduce additional inefficiency.

264 **4 ADJUSTING FOR COVARIATE DISTRIBUTION DISCREPANCY**
 265

266 **4.1 MOTIVATION**
 267

268 To begin, we argue that structural assumptions imposed on clusters—such as the representativeness
 269 of interior nodes or a constant expectation for within-cluster mean outcomes Liu et al. (2024)—are
 often fragile, precisely because the clustering algorithms used in practice tend to be coarse.

270 In practice, a scalable algorithm for generating clusters is usually a heuristic one. Graph clustering
 271 for minimizing certain objectives is generally a challenging task, often involving NP-hard com-
 272 binatorial optimization problems, such as correlation clustering Pouget-Abadie et al. (2019) and
 273 balanced clustering Brennan et al. (2022). In practice, social platforms with hundreds of millions of
 274 users typically construct millions of clusters to meet the immense demand for A/B tests, which can
 275 number in the thousands weekly. This large-scale problem necessitates heuristic solutions or fast but
 276 heuristic algorithms, rendering more elaborate algorithms, such as causal clustering Viviano et al.
 277 (2025), which involves solving semi-definite programming, inapplicable.

278 Indeed, on a billion-scale social platform, we observe that certain user engagement metrics—among
 279 the primary outcome variables recorded in nearly all experiments—exhibit clear discrepancies be-
 280 tween interior and boundary subpopulations. Desensitized empirical evidence of this phenomenon is
 281 shown in Figure 3. However, as discussed in our introduction, most estimators without a regression
 282 component tend to rely heavily on interior nodes, e.g., referring back to Equations (4) and (6).

283

284 4.2 BRIDGING THE GAP WITH COUNTERFACTUAL PREDICTOR

285

286 Since our MII estimator also employs moderate weighting rather than inverse propensity weighting,
 287 it is similarly susceptible to the aforementioned selection bias. To address this, we propose training a
 288 counterfactual predictor over the entire graph. Specifically, we introduce the notion of counterfactual
 289 prediction: given a treatment vector \mathbf{z} , covariate matrix X , and network topology A , we define a
 290 function $f(\mathbf{z}, X, A)$ that predicts outcomes for all units under treatment assignment \mathbf{z} . The function
 291 f can be flexibly parameterized to fit the data; for example, it may be instantiated as a GNN.

292 Given the observed outcomes $\mathbf{Y}(\mathbf{z})$ under randomization, we train the function f via regression. We
 293 then shift the treatment regime to $\mathbf{z} = \mathbf{1}, \mathbf{0}$, and define the augmented MII estimator as:

$$294 \hat{\tau}_{AMII} = \hat{\tau}_{MII} + \left(\frac{1}{n} \sum_{j \in [n]} f(\mathbf{1}, X, A)_j - \frac{1}{s_1} \sum_{i \in \text{Int}} z_i f(\mathbf{1}, X, A)_i \right) \\ 295 - \left(\frac{1}{n} \sum_{j \in [n]} f(\mathbf{0}, X, A)_j - \frac{1}{s_0} \sum_{i \in \text{Int}} (1 - z_i) f(\mathbf{0}, X, A)_i \right). \quad (12) \\ 296 \\ 297 \\ 298 \\ 299 \\ 300$$

301 Here, s_1 (s_0) denotes the number of treated (control) units within the interior set. The adjustment
 302 term captures the difference between the average predicted outcomes for the full population and
 303 those for the treated (control) interior nodes. To illustrate the idea behind the AMII estimator,
 304 we consider the following potential outcome model, which includes an additional interaction term
 305 between the treatment and a covariate that can be network-dependent.

306

$$307 Y_i(\mathbf{z}) = (\beta + \alpha u_i) z_i + h\left(\sum_{j \in \mathcal{N}(i,1)} z_j / \deg_i, v_i\right). \quad (13) \\ 308$$

309 Here, the v_i are covariates that may be i.i.d., but we allow u_i to be network-dependent and thus
 310 non-i.i.d.; for example, u_i could represent the normalized degree $\deg_i / \bar{\deg}$, whose distribution
 311 differs between the boundary and interior subpopulations. Additionally, β and α are unknown scalar
 312 parameters, and h is an unknown interference function, which may be non-linear. Given this model
 313 and the form of the AMII estimator, we provide the following intuition: regression models with
 314 suitably chosen inputs can often capture the interaction term effectively. However, in early-stage
 315 experiments (small p), they may struggle to extrapolate the interference function h —precisely the
 316 component where the MII estimator demonstrates a comparative advantage.

317 More broadly, we identify the extrapolation of the interference term as the central challenge in
 318 estimating the GATE under network interference. In practice, we typically observe outcomes under
 319 low treatment proportions (e.g., $p = 0\%, 5\%, 10\%$), while our goal is to extrapolate to a fully treated
 320 scenario ($p = 100\%$). A key observation is that for boundary units i , the network exposure term
 321 $\sum_{j \in \mathcal{N}(i,1)} z_j / \deg_i$ tends to concentrate around p , which reflects a regime far from global treatment.
 322 This highlights that the main extrapolation challenge lies in recovering the interference function h .
 323 As also shown in Chen & Li (2024), the performance of naive regression-based estimators can
 324 degrade significantly when h is nonlinear (e.g., square root, quadratic), in contrast to the linear case.

324 Next, we provide a formal characterization of the intuition of AMII estimator, highlighting the
 325 bias reduction achieved by the adjustment term. To manage the complexity arising from network
 326 dependencies and the functional form of the regression, we impose parametric assumptions on f .
 327

328 **Assumption 4.1 (Regression Model)** *Given n samples $\{(u_i, v_i, z_i, Y_i)\}_{i=1}^n$, we assume the trained
 329 regression function f has the form:*

$$330 \quad f(\mathbf{z}, X, A)_i = (\hat{\beta}_n + \hat{\alpha}_n u_i) z_i + \text{MEAN}(\{g_\theta(z_j, v_j) \mid j \in \mathcal{N}(i, 1)\}). \quad (14)$$

331 Here, $\hat{\beta}_n, \hat{\alpha}_n$ denote the estimated coefficients of the linear part, g_θ is a learnable transformation
 332 function (e.g., a multi-layer perceptron), and MEAN denotes the mean pooling of a set of real values.
 333

334 This functional form mimics a partial linear model. We assume the linear part is correctly specified,
 335 while the non-linear part—the interference function—may be misspecified. For this non-linear part,
 336 we apply a form of one-layer graph convolution.

337 **Theorem 4.1** *Given Assumption 4.1, potential outcome model in Equation (13), and network topology \mathcal{G} , the biases of the MII estimator and the AMII estimator are given by:*

$$340 \quad \text{Bias}(\hat{\tau}_{MII}) = \alpha(\mu_{\text{Int}} - \mu) \\ 341 \quad \text{Bias}(\hat{\tau}_{AMII}) = (\mathbb{E}[\hat{\alpha}_n] - \alpha)(\mu - \mu_{\text{Int}}), \quad (15)$$

342 where $\mu = \mathbb{E}[u_i]$, $\mu_{\text{Int}} = \mathbb{E}[u_i \mid i \in \text{Int}]$.

343 The proof of Theorem 4.1 is provided in Appendix B.2. In summary, we observe that the bias in MII
 344 arises from the discrepancy between the interior and the entire population. Furthermore, when the
 345 linear component is correctly specified, the quantity $|\mathbb{E}[\hat{\alpha}_n] - \alpha|$ is typically much smaller than $|\alpha|$,
 346 indicating a substantial reduction in bias. Additionally, we find that the AMII estimator is a harmless
 347 adjustment in the absence of distributional differences between the interior and the full population;
 348 that is, it does not introduce any additional bias.

349 Since these results rely on parametric assumptions, we evaluate the performance of the AMII es-
 350 timator through a systematic simulation study where structural assumptions are violated in various
 351 ways. Despite this, the AMII estimator demonstrates robustness and outstanding performance.
 352

353 4.3 A TALE OF SEMI-SUPERVISION

355 We then present another interpretation of our method. For simplicity, we focus on estimating the
 356 mean outcome under global treatment. By rearranging the expression of AMII estimator, we obtain:

$$357 \quad \hat{\tau}_{AMII,1} = \frac{1}{n} \sum_{j \in [n]} f(\mathbf{1}, X, A)_j + \frac{1}{s_1} \sum_{i \in \text{Int}} z_i (Y_i - f(\mathbf{1}, X, A)_j). \quad (16)$$

360 This embodies a form of the point estimator in PPI Angelopoulos et al. (2023a;b), and we interpret
 361 our estimator within that sound framework. Specifically, we treat the outcomes of treated interior
 362 nodes as reliable labeled samples, while the outcomes of boundary nodes are used solely for train-
 363 ing the predictor f . The goal is to estimate the population mean outcome (i.e., the mean label),
 364 using a small subset of labeled data (interior units) alongside a large pool of unlabeled samples, for
 365 which only covariates are observed. One of the core ideas behind PPI is to correct the bias of pure
 366 model-based predictions using a small set of true labels, thereby mitigating estimation error. This
 367 perspective aligns with this reorganized form of our estimator. However, due to the complexity of
 368 network interference, the mean of “true labels” still incurs bias. Hence, our AMII estimator should
 369 be first positioned as **debiasing with prediction**, compared to the idea of debiasing the predictions
 370 in the PPI point estimator and the classic doubly-robust estimator.

371 5 SIMULATION STUDY

373 5.1 BASIC SETUP

375 First, since the point of our methodology is the reduction of mean squared error (MSE) rather than
 376 purely variance reduction, we must demonstrate the effect of bias reduction, especially for the pro-
 377 posed AMII estimator. However, due to the complex effect in real platform experiments, e.g., ex-
 378 istence of many parallel experiments, temporal effect, launch of other new traits, etc., we have no

378 access to the ground truth of GATE, which hinders the evaluation of bias. Therefore, we follow the
 379 convention of existing literature and conduct a Monte Carlo simulation with 1,000 repetitions, where
 380 randomness arises from treatment allocation (randomization) and exogenous noise in the potential
 381 outcomes. We then assess the bias, variance, and MSE based on these repetitions.
 382

383 **Data** We use a Facebook social network¹ consisting of 11,586 nodes and 568,309 edges. To
 384 generate clusters, we apply the Louvain algorithm and report results using a resolution parameter
 385 $\gamma = 5$, which yields 95 clusters. The resolution primarily affects the number of clusters and has a
 386 minor effect on the proportion of interior nodes (about 8%). Based on this clustering, we implement
 387 independent Bernoulli randomization at the cluster level and evaluate three treatment proportions,
 388 $p \in \{0.1, 0.3, 0.5\}$, corresponding to the three-stage experiments conducted prior to the launch.
 389

390 We focus on the estimation of the mean outcome under global treatment, and set $Y_i(\mathbf{0}) = 0$ for
 391 simplicity. When this assumption does not hold, a simple adjustment—subtracting the baseline
 392 level Yu et al. (2022a)—can transform the problem into this setting.
 393

394 **Potential outcome model** We adopt the 2-hop interference framework from Chen & Li (2024) and
 395 additionally include two covariates: degree and number of distinct clusters each unit is connected
 396 to, denoted by deg_i and c_i , respectively. The distributions of these covariates differ between interior
 397 and boundary nodes, thereby inducing a violation of the representativeness assumption.
 398

$$\mathbf{Y}(\mathbf{z}) = \beta\mathbf{z} + B\mathbf{z} + \frac{1}{2} \left(\frac{\text{deg}}{\text{deg}} + \frac{\mathbf{c}}{\mathbf{c}} \right) \odot \mathbf{z} + \sigma\epsilon. \quad (17)$$

399 Here, B is the interference matrix, defined as:
 400

$$B = (\mathbf{1}\mathbf{1}^\top - I_n) \odot \left(\sum_{l=1}^2 r_l (D^{-1} A)^l \right). \quad (18)$$

401 In this formulation, D is the diagonal degree matrix, and \odot denotes the element-wise product. This
 402 model naturally incorporates a linear 2-hop interference, with the intensity characterized by r_2 . The
 403 diagonal element of B is removed to avoid confusion with direct treatment effect.
 404

405 Moreover, two normalized covariates interact with the treatment vector \mathbf{z} . Finally, $\epsilon \sim \mathcal{N}(\mathbf{0}, I_n)$
 406 represents an exogenous Gaussian noise, and σ controls the intensity of this noise.
 407

408 **Parameter setting** We set $(\beta, r_1) = (1, 1)$, and consider two levels of 2-hop interference,
 409 $r_2 \in \{0, 1\}$, corresponding to the case that NIA holds and substantial 2-hop interference exists,
 410 respectively. Additionally, following Liu et al. (2024), we examine a setting with a relatively low
 411 signal-to-noise ratio by setting $\sigma = 2$. This scenario is particularly relevant in industrial practice,
 412 where most new product traits tend to have relatively minor effects on the outcomes of interest.
 413

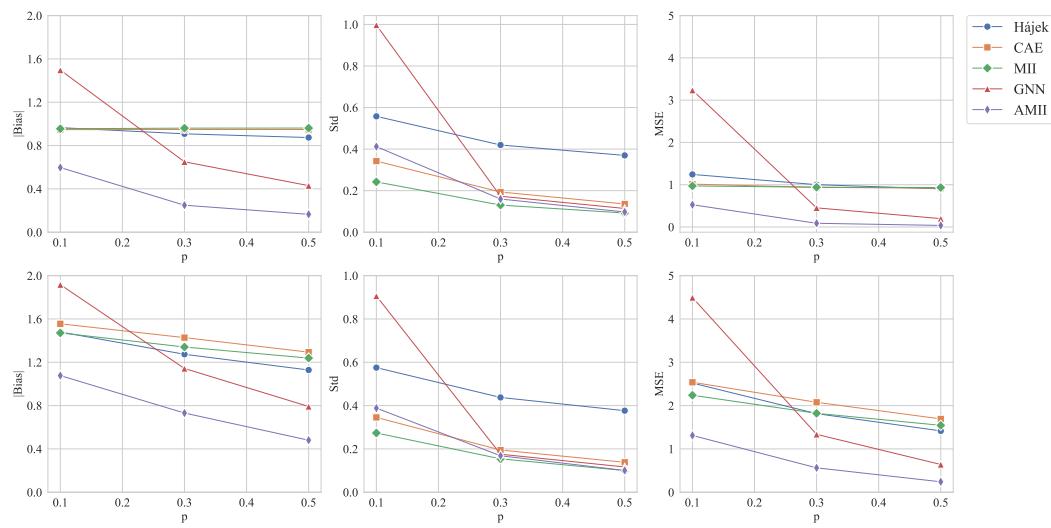
414 **Baselines** We evaluate five methods in total: the Hájek estimator, the cluster-adaptive estimator
 415 (CAE), the mean-in-interior (MII) estimator, the counterfactual prediction method using a graph
 416 neural network (GNN), and the augmented MII estimator (AMII).
 417

418 We now provide some additional notes. Since the variance of the HT estimator tends to be explosive
 419 in complex scenarios, we adopt its variant—the Hájek estimator Ugander & Yin (2023)—which
 420 applies self-normalization to the weights, substantially reducing variance at the cost of a small increase
 421 in bias. Given that the potential outcome model is fundamentally linear, we use three Chebyshev
 422 convolution layers Defferrard et al. (2016) to construct the GNN, without incorporating any non-
 423 linear activation functions. Overall, this is not intended to be a delicate architecture.
 424

425 5.2 RESULTS AND DISCUSSION

426 Due to space constraints, we present only the results using clustering resolution $\gamma = 5$ in the main
 427 paper, as shown in Figure 2. The complete experiments—including alternative **resolution levels**,
 428 different **covariate specifications**, different **network topology**, and a series of ablation studies—are
 429 reported in Appendix A. Here, we summarize the main conclusions from our results.
 430

431 ¹The network topology is available at <https://networkrepository.com/socfb-Stanford3.php>.

Figure 2: Statistical performance with $r_2 = 0$ (first row) and $r_2 = 1$ (second row).

First, we observe the outstanding performance of the AMII estimator: it achieves substantially lower bias while maintaining variance comparable to that of the three estimators without a regression component. These correspond to a much lower MSE, even when $p = 0.1$ and GNN perform poorly. Notably, the bias reduction becomes even more pronounced in the presence of 2-hop interference (i.e., $r_2 = 1$). Furthermore, as the coefficient of the interaction term increases from 0.5 to 1, the advantage of AMII becomes even more distinct.

Second, we examine the performance of the GNN estimator. A notable pattern is its strong dependence on a relatively high treatment proportion, under which substantially more units become informative for estimating outcomes under global treatment.

Next, we investigate the performance of the MII estimator. It consistently achieves the lowest variance across all settings, while exhibiting a similar level of bias as the Hájek estimator and CAE. This bias is expected due to the influence of covariates \deg_i and c_i . In the absence of the interaction term and 2-hop interference (Table 10), we find that MII is nearly unbiased—similar to CAE—while still maintaining the lowest variance, making it the best one there. Nonetheless, the AMII estimator also performs well. This demonstrates a form of harmlessness property of the adjustment term.

Last, we discuss an additional ablation study that examines whether training f on the entire graph or only on the boundary nodes yields better performance. The latter is a natural idea of sample split, but we note that the complex dependency in network data makes it hard to tease out a clear story from this choice. Empirically, we find that when the treatment proportion is low (e.g. $p = 0.1$) training with the full population is much better. When p increases, the performance of these two approaches becomes similar. The intuition behind this is that boundary nodes become much more informative as p increases; for instance, $\mathbb{E}(\delta_i(1)) = p^{c_i}$ increases polynomially in p .

6 CONCLUSION

In this paper, based on extensive practice of cluster-level randomization, we systematically identify the limitations of existing estimators in GATE estimation and propose the mean-in-interior estimator to eliminate unnecessary reweighting, achieving further variance reduction. Recognizing the heavy reliance on the interior nodes and potential selection bias, we further propose an adjustment term and enhance its position through a semi-supervision perspective. Through a challenging simulation study, we demonstrate the outstanding performance of our methodology, especially in the early-stage experiment. A natural direction for future work is to analyze the AMII estimator under appropriate structural assumptions, which will provide deeper insights into its underlying mechanism.

486 ETHICS STATEMENT
487488 This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, personally
489 identifiable information, or sensitive data. All datasets used are publicly available and widely
490 adopted in the research community, and we followed recommended practices to ensure fairness,
491 privacy, and reproducibility. The methods we propose are intended solely for academic research
492 and are not designed to cause harm or enable misuse. We are not aware of any conflicts of interest,
493 sponsorship concerns, or ethical risks associated with this work.
494495 REPRODUCIBILITY STATEMENT
496497 We have made extensive efforts to ensure the reproducibility of our results. All code and scripts nec-
498 essary to reproduce the experiments are provided in the supplementary material. Complete proofs
499 of theoretical results are also included in the appendix. Together, these resources are intended to
500 enable independent verification and facilitate future research building upon our work.
501502 USAGE OF LARGE LANGUAGE MODEL (LLM)
503504 The authors employed LLMs solely to refine wording and correct grammatical errors in the final
505 manuscript. All ideas, analysis, and conclusions are the authors' own.
506507 REFERENCES
508509 Anastasios N Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana Zrnic.
510 Prediction-powered inference. *Science*, 382(6671):669–674, 2023a.
511
512 Anastasios N Angelopoulos, John C Duchi, and Tijana Zrnic. Ppi++: Efficient prediction-powered
513 inference. *arXiv preprint arXiv:2311.01453*, 2023b.
514
515 Peter M Aronow and Cyrus Samii. Estimating average causal effects under general interference,
516 with application to a social network experiment. *Annals of Applied Statistics*, 11(4):1912–1947,
517 2017.
518 Sarah Baird, J Aislinn Bohren, Craig McIntosh, and Berk Özler. Optimal design of experiments in
519 the presence of interference. *Review of Economics and Statistics*, 100(5):844–860, 2018.
520
521 Guillaume W Basse and Edoardo M Airoldi. Model-assisted design of experiments in the presence
522 of network-correlated outcomes. *Biometrika*, 105(4):849–858, 2018.
523
524 Mohsen Bayati, Yuwei Luo, William Overman, Sadegh Shirani, and Ruoxuan Xiong. Higher-
525 order causal message passing for experimentation with complex interference. In *The Thirty-
526 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=3vJbgcjgvd>.
527
528 Rohit Bhattacharya, Daniel Malinsky, and Ilya Shpitser. Causal inference under interference and
529 network uncertainty. In *Uncertainty in Artificial Intelligence*, pp. 1028–1038. PMLR, 2020.
530
531 Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
532 of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008
533 (10):P10008, 2008.
534
535 Jennifer Brennan, Vahab Mirrokni, and Jean Pouget-Abadie. Cluster randomized designs for one-
536 sided bipartite experiments. *Advances in Neural Information Processing Systems*, 35:37962–
537 37974, 2022.
538
539 Chencheng Cai, Xu Zhang, and Edoardo Airoldi. Independent-set design of experiments for esti-
540 mating treatment and spillover effects under network interference. In *The Twelfth International
Conference on Learning Representations*, 2024.

540 Ozan Candogan, Chen Chen, and Rad Niazadeh. Correlated cluster-based randomized experiments:
 541 Robust variance minimization. *Management Science*, 2023.

542

543 Qianyi Chen and Bo Li. Just ramp-up: Unleash the potential of regression-based estimator for a/b
 544 tests under network interference. *arXiv preprint arXiv:2410.12740*, 2024.

545 Qianyi Chen, Bo Li, Lu Deng, and Yong Wang. Optimized covariance design for ab test on social
 546 network under interference. *Advances in Neural Information Processing Systems*, 36:37448–
 547 37471, 2023.

548

549 Mayleen Cortez, Matthew Eichhorn, and Christina Yu. Staggered rollout designs enable causal
 550 inference under interference without network knowledge. In *Advances in Neural Information
 551 Processing Systems*, 2022.

552 Mayleen Cortez-Rodriguez, Matthew Eichhorn, and Christina Lee Yu. Combining rollout
 553 designs and clustering for causal inference under low-order interference. *arXiv preprint
 554 arXiv:2405.05119*, 2024.

555 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
 556 graphs with fast localized spectral filtering. *Advances in neural information processing systems*,
 557 29, 2016.

558

559 Dean Eckles, Brian Karrer, and Johan Ugander. Design and analysis of experiments in networks:
 560 Reducing bias from interference. *Journal of Causal Inference*, 5(1):20150021, 2016.

561

562 Laura Forastiere, Edoardo M Airoldi, and Fabrizia Mealli. Identification and estimation of treatment
 563 and interference effects in observational studies on networks. *Journal of the American Statistical
 564 Association*, 116(534):901–918, 2021.

565

566 Laura Forastiere, Fabrizia Mealli, Albert Wu, and Edoardo M Airoldi. Estimating causal effects
 567 under network interference with bayesian generalized propensity scores. *Journal of Machine
 568 Learning Research*, 23(289):1–61, 2022.

569

570 Huan Gui, Ya Xu, Anmol Bhavin, and Jiawei Han. Network a/b testing: From sampling to estimation.
 571 In *24th International Conference on World Wide Web, WWW 2015*, pp. 399–409. Association
 572 for Computing Machinery, Inc, 2015.

573

574 Christopher Harshaw, Fredrik Sävje, David Eisenstat, Vahab Mirrokni, and Jean Pouget-Abadie.
 575 Design and analysis of bipartite experiments under a linear exposure-response model. *Electronic
 576 Journal of Statistics*, 17(1):464–518, 2023.

577

578 Michael G Hudgens and M Elizabeth Halloran. Toward causal inference with interference. *Journal
 579 of the American Statistical Association*, 103(482):832–842, 2008.

580

581 Vardis Kandiros, Charilaos Pipis, Constantinos Daskalakis, and Christopher Harshaw. The conflict
 582 graph design: Estimating causal effects under arbitrary neighborhood interference. *arXiv preprint
 583 arXiv:2411.10908*, 2024.

584

585 Vishesh Karwa and Edoardo M Airoldi. A systematic investigation of classical causal inference
 586 strategies under mis-specification due to network interference. *arXiv preprint arXiv:1810.08259*,
 587 2018.

588

589 Michael P Leung and Pantelis Loupos. Graph neural networks for causal inference under network
 590 confounding. *arXiv preprint arXiv:2211.07823*, 2024.

591

592 Yang Liu, Yifan Zhou, Ping Li, and Feifang Hu. Cluster-adaptive network a/b testing: From ran-
 593 domization to estimation. *Journal of Machine Learning Research*, 25(170):1–48, 2024.

594

595 Jean Pouget-Abadie, Kevin Aydin, Warren Schudy, Kay Brodersen, and Vahab Mirrokni. Variance
 596 reduction in bipartite experiments through correlation clustering. *Advances in Neural Information
 597 Processing Systems*, 32, 2019.

598

599 Paul R Rosenbaum. Interference between units in randomized experiments. *Journal of the american
 600 statistical association*, 102(477):191–200, 2007.

594 Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 595 *Journal of educational Psychology*, 66(5):688, 1974.
 596

597 Michael E Sobel. What do randomized studies of housing mobility demonstrate? causal inference
 598 in the face of interference. *Journal of the American Statistical Association*, 101(476):1398–1407,
 599 2006.

600 Johan Ugander and Hao Yin. Randomized graph cluster randomization. *Journal of Causal Inference*,
 601 11(1):20220014, 2023.
 602

603 Johan Ugander, Brian Karrer, Lars Backstrom, and Jon Kleinberg. Graph cluster randomization:
 604 Network exposure to multiple universes. In *Proceedings of the 19th ACM SIGKDD international
 605 conference on Knowledge discovery and data mining*, pp. 329–337, 2013.

606 Gonzalo Vazquez-Bare. Identification and estimation of spillover effects in randomized experiments.
 607 *Journal of Econometrics*, 237(1):105237, 2023.
 608

609 Davide Viviano, Lihua Lei, Guido Imbens, Brian Karrer, Okke Schrijvers, and Liang Shi.
 610 Causal clustering: design of cluster experiments under network interference. *arXiv preprint
 611 arXiv:2310.14983*, 2025.

612 Anpeng Wu, Haiyi Qiu, Zhengming Chen, Zijian Li, Ruoxuan Xiong, Fei Wu, and Kun Zhang.
 613 Causal graph transformer for treatment effect estimation under unknown interference. In *The
 614 Thirteenth International Conference on Learning Representations*, 2025.

615 Christina Lee Yu, Edoardo M Airoldi, Christian Borgs, and Jennifer T Chayes. Estimating the total
 616 treatment effect in randomized experiments with unknown network structure. *Proceedings of the
 617 National Academy of Sciences*, 119(44):e2208975119, 2022a.
 618

619 Christina Lee Yu, Edoardo M Airoldi, Christian Borgs, and Jennifer T Chayes. Graph agnostic
 620 randomized experimental design. *arXiv preprint arXiv:2205.12803*, 2022b.
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A DETAILED SIMULATION RESULTS**
 649

650 In this section, we provide detailed numerical results. The default setting has been introduced in the
 651 main paper; specifically, the clustering resolution is set to $\gamma = 5$, and the potential outcome model
 652 follows Equation (17).
 653

654 **A.1 IMPACT OF CLUSTERING RESOLUTION**
 655

656 We first examine the influence of the clustering resolution γ , as all five methods rely on cluster-level
 657 randomization. Broadly speaking, γ controls the modularity gain required for merging during the
 658 hierarchical clustering process. A higher value of γ corresponds to a lower modularity gain, which
 659 tends to preserve more small clusters.
 660

661 We report the basic statistics for three levels of γ , including the number of clusters, the proportion
 662 of interior nodes, and the proportion of within-cluster edges.
 663

664 Table 1: The statistics of different clustering schemes.
 665

γ	#clusters	%interior	%within-clusters
2	30	8.4	41.6
5	95	7.9	31.7
10	192	7.2	26.6

666 We then report the results for $\gamma \in \{2, 5, 10\}$ from Table 2 to Table 7. As a reminder, the default
 667 setting reported in the main paper is $\gamma = 5$, which represents a moderate level. The main takeaway
 668 here is that clustering resolution has only a minor effect on the performance of our methodology,
 669 suggesting that the choice of γ can be flexibly guided by other considerations.
 670

671 **A.2 IMPACT OF COVARIATE SPECIFICATION**
 672

673 In this subsection, we examine the impact of different covariate specifications and the weight of the
 674 interaction term. Before presenting the detailed results, we clarify that the input features of the GNN
 675 consist only of node degree deg_i and treatment assignment z_i . This implies that, under the default
 676 setting, the GNN explicitly includes one of the covariates—degree—as part of its input. Accord-
 677 ingly, we first investigate the following potential outcome model, which removes the normalized
 678 degree from the potential outcome model:
 679

$$680 \mathbf{Y}(\mathbf{z}) = \beta\mathbf{z} + B\mathbf{z} + \frac{\mathbf{c}}{c} \odot \mathbf{z} + \sigma\epsilon. \quad (19)$$

681 In this model, the GNN no longer has direct access to the covariate that interacts with the treat-
 682 ment assignment. The parameter setting remains the same as in the main paper, and we report the
 683 results in Table 8 and Table 9. Compared to Table 3 and Table 6, we find that the impact of this
 684 covariate specification is also minor. This suggests that even when the GNN does not explicitly
 685 leverage covariates derived solely from network topology, its performance remains largely unaf-
 686 fected. Nonetheless, we note that demographic features, which cannot be inferred from the network
 687 structure, should be provided as input covariates for regression.
 688

689 Next, we consider varying the weight of the interaction term, which is set to 0.5 in the default
 690 configuration. From the results in Table 3 and Table 6, we observe that the CAE, Hájek, and MII es-
 691 timators all struggle to effectively address covariate distribution discrepancies, even as the treatment
 692 proportion increases. This suggests that, as the interaction weight increases, the advantage of the
 693 AMII estimator becomes more pronounced. Therefore, we omit experiments with higher weights
 694 and instead turn to the opposite scenario—zero weight—where the interaction term is absent.
 695

696 The potential outcome model used in this setting is as follows, and the corresponding results are
 697 reported in Table 10 and 11.
 698

$$699 \mathbf{Y}(\mathbf{z}) = \beta\mathbf{z} + B\mathbf{z} + \sigma\epsilon. \quad (20)$$

700 When NIA holds (i.e., $r_2 = 0$), we observe that the CAE, Hájek and MII estimator all achieve
 701 near-unbiasedness, consistent with theoretical expectations. In this setting, the MII estimator attains

substantially lower variance, making it the best-performing method in this case. In contrast, the GNN estimator does not benefit significantly from the simplicity of this setting—it still requires a larger volume of high-quality data (or a higher treatment proportion) to perform well. Interestingly, despite the poor performance of the GNN estimator, the AMII estimator achieves results comparable to MII. This phenomenon demonstrates a form of harmlessness property, further validating the robustness of our methodology.

In the scenario where $r_2 = 1$, we observe substantial bias across all five estimators. Nonetheless, the MII estimator attains the lowest bias and maintains the lowest variance, reinforcing its position as the most effective method in this setting. This observation further validates our choice of assigning moderate and balanced weights to the outcome components. Moreover, AMII continues to achieve performance comparable to MII, even when paired with a GNN architecture that is not carefully designed.

In conclusion, we find that MII performs best when there is no interaction term and thus no associated discrepancy issue. In addition, AMII demonstrates competitive performance even with a simple GNN. Since real-world scenarios almost always involve complex interaction effects, and the clean structure of Equation (20) is idealized, we recommend using AMII in practice whenever it is feasible to train a counterfactual predictor.

A.3 IMPACT OF TRAINING SAMPLE SELECTION

In this subsection, we investigate whether training the counterfactual predictor on the full population or solely on the boundary units yields better performance. This question naturally arises from the idea of sample splitting, although the intricate interdependencies within the data cannot be fully eliminated by this approach. We report the results in Table 12 and 13, and compare them to Table 3 and Table 6. We observe that training the counterfactual predictor solely on boundary nodes performs worse when $p = 0.1$, but becomes slightly better when $p = 0.3, 0.5$. The underlying intuition is that boundary nodes become more informative as p increases, since the exposure—e.g., the proportion of treated neighbors—shifts toward the global treatment regime. Nevertheless, the difference between these two approaches remains minor.

A.4 IMPACT OF NETWORK TOPOLOGY

Finally, we conduct an additional experiment on a different network topology² with a comparable scale but sparser connectivity—specifically, its average degree is approximately half that of the network used in our earlier experiments. Although the potential outcome model remains the primary focus of our simulation study, we include this experiment for completeness. The detailed results are presented in Tables 14 and 15, alongside comparisons with Tables 3 and 6.

We observe that the performance of the other three estimators—which lack a regression component—remains largely unaffected by changes in the network topology. Additionally, the GNN-based counterfactual prediction estimator demonstrates improved performance on this sparser graph, and this enhancement consistently translates to better performance for the AMII estimator as well.

Table 2: Statistical performance ($r_2 = 0, \gamma = 2$)

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	0.925	0.405	1.020	0.871	0.289	0.842	0.828	0.197	0.725
CAE	0.942	0.455	1.094	0.940	0.237	0.940	0.923	0.159	0.878
MII	0.947	0.302	0.987	0.944	0.130	0.908	0.940	0.092	0.892
GNN	1.796	1.070	4.369	0.632	0.216	0.446	0.429	0.126	0.199
AMII	0.694	0.465	0.699	0.265	0.169	0.099	0.187	0.100	0.045

²The network data is available at <https://networkrepository.com/socfb-USF51.php>.

756
757Table 3: Statistical performance ($r_2 = 0, \gamma = 5$)

<i>p</i> Metric Estimators	Bias	0.1 Std	0.1 MSE	Bias	0.3 Std	0.3 MSE	Bias	0.5 Std	0.5 MSE
Hájek	0.965	0.558	1.243	0.908	0.420	1.001	0.874	0.370	0.901
CAE	0.947	0.342	1.014	0.948	0.193	0.937	0.948	0.136	0.917
MII	0.955	0.242	0.971	0.961	0.130	0.940	0.961	0.092	0.933
GNN	1.497	0.997	3.235	0.650	0.173	0.452	0.430	0.114	0.198
AMII	0.597	0.412	0.526	0.249	0.160	0.088	0.165	0.097	0.037

761
762
763
764
765
766Table 4: Statistical performance ($r_2 = 0, \gamma = 10$)

<i>p</i> Metric Estimators	Bias	0.1 Std	0.1 MSE	Bias	0.3 Std	0.3 MSE	Bias	0.5 Std	0.5 MSE
Hájek	0.954	0.593	1.261	0.929	0.466	1.081	0.890	0.400	0.952
CAE	0.982	0.349	1.086	0.981	0.192	0.999	0.968	0.140	0.956
MII	0.975	0.241	1.010	0.974	0.129	0.965	0.971	0.098	0.952
GNN	1.608	1.009	3.603	0.678	0.169	0.489	0.448	0.110	0.213
AMII	0.642	0.401	0.572	0.242	0.147	0.080	0.153	0.101	0.034

767
768
769
770
771
772
773
774
775
776
777Table 5: Statistical performance ($r_2 = 1, \gamma = 2$)

<i>p</i> Metric Estimators	Bias	0.1 Std	0.1 MSE	Bias	0.3 Std	0.3 MSE	Bias	0.5 Std	0.5 MSE
Hájek	1.396	0.428	2.133	1.202	0.310	1.541	1.061	0.217	1.173
CAE	1.466	0.459	2.360	1.352	0.243	1.888	1.227	0.168	1.533
MII	1.422	0.329	2.131	1.294	0.149	1.697	1.200	0.103	1.451
GNN	2.247	1.170	6.418	1.101	0.228	1.263	0.770	0.157	0.618
AMII	1.150	0.492	1.563	0.713	0.192	0.545	0.486	0.124	0.251

778
779
780
781
782
783
784
785
786
787
788Table 6: Statistical performance ($r_2 = 1, \gamma = 5$)

<i>p</i> Metric Estimators	Bias	0.1 Std	0.1 MSE	Bias	0.3 Std	0.3 MSE	Bias	0.5 Std	0.5 MSE
Hájek	1.480	0.575	2.520	1.274	0.438	1.814	1.129	0.377	1.416
CAE	1.555	0.345	2.538	1.428	0.195	2.076	1.293	0.138	1.692
MII	1.471	0.274	2.239	1.341	0.154	1.822	1.239	0.100	1.544
GNN	1.917	0.906	4.494	1.142	0.175	1.336	0.792	0.117	0.641
AMII	1.077	0.388	1.311	0.731	0.168	0.563	0.480	0.100	0.241

789
790
791
792
793
794
795
796
797
798
799Table 7: Statistical performance ($r_2 = 1, \gamma = 10$)

<i>p</i> Metric Estimators	Bias	0.1 Std	0.1 MSE	Bias	0.3 Std	0.3 MSE	Bias	0.5 Std	0.5 MSE
Hájek	1.493	0.605	2.597	1.319	0.476	1.965	1.164	0.408	1.522
CAE	1.628	0.353	2.775	1.486	0.193	2.246	1.334	0.141	1.798
MII	1.514	0.264	2.362	1.379	0.141	1.921	1.271	0.103	1.625
GNN	1.979	0.897	4.722	1.184	0.176	1.433	0.824	0.111	0.691
AMII	1.131	0.395	1.434	0.753	0.150	0.590	0.489	0.100	0.249

800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
Table 8: Statistical performance **with one covariate** ($r_2 = 0, \gamma = 5$)

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	0.958	0.557	1.228	0.905	0.416	0.992	0.870	0.366	0.890
CAE	0.935	0.342	0.992	0.936	0.193	0.913	0.933	0.136	0.889
MII	0.949	0.242	0.959	0.957	0.130	0.933	0.958	0.092	0.927
GNN	1.428	0.991	3.023	0.639	0.173	0.439	0.425	0.116	0.195
AMII	0.578	0.394	0.490	0.274	0.160	0.101	0.197	0.100	0.049

821
822
Table 9: Statistical performance **with one covariate** ($r_2 = 1, \gamma = 5$)

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	1.472	0.572	2.493	1.271	0.431	1.800	1.124	0.371	1.401
CAE	1.544	0.345	2.502	1.415	0.195	2.040	1.279	0.138	1.654
MII	1.465	0.270	2.218	1.337	0.151	1.811	1.236	0.099	1.536
GNN	1.857	0.876	4.215	1.139	0.160	1.322	0.785	0.108	0.627
AMII	1.076	0.377	1.301	0.754	0.161	0.595	0.507	0.097	0.267

832
833
Table 10: Statistical performance **without covariates** ($r_2 = 0, \gamma = 5$)

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	0.019	0.558	0.312	0.001	0.415	0.172	0.013	0.369	0.136
CAE	0.023	0.342	0.118	0.016	0.193	0.038	0.008	0.136	0.019
MII	0.011	0.242	0.059	0.003	0.130	0.017	0.002	0.092	0.009
GNN	1.708	0.555	3.224	0.561	0.148	0.337	0.389	0.089	0.159
AMII	0.011	0.264	0.070	0.058	0.177	0.035	0.034	0.118	0.015

843
844
Table 11: Statistical performance **without covariates** ($r_2 = 1, \gamma = 5$)

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	0.533	0.572	0.611	0.366	0.427	0.316	0.268	0.371	0.209
CAE	0.586	0.345	0.463	0.463	0.194	0.252	0.338	0.138	0.133
MII	0.504	0.270	0.327	0.377	0.151	0.165	0.275	0.099	0.086
GNN	2.397	0.792	6.373	1.098	0.150	1.227	0.771	0.109	0.607
AMII	0.552	0.284	0.385	0.464	0.176	0.247	0.309	0.120	0.110

854
855
Table 12: Statistical performance **with regression on boundary** ($r_2 = 0, \gamma = 5$)

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	0.965	0.558	1.243	0.908	0.420	1.001	0.874	0.370	0.901
CAE	0.947	0.342	1.014	0.948	0.193	0.937	0.948	0.136	0.917
MII	0.955	0.242	0.971	0.961	0.130	0.940	0.961	0.092	0.933
GNN	2.281	1.030	6.265	0.662	0.167	0.466	0.446	0.118	0.213
AMII	0.740	0.421	0.725	0.144	0.204	0.062	0.092	0.131	0.026

864

865

866

867

868

Table 13: Statistical performance with **regression on boundary** ($r_2 = 1, \gamma = 5$)

869

870

871

872

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	1.480	0.575	2.520	1.274	0.438	1.814	1.129	0.377	1.416
CAE	1.555	0.345	2.538	1.428	0.195	2.076	1.293	0.138	1.692
MII	1.471	0.274	2.239	1.341	0.154	1.822	1.239	0.100	1.544
GNN	2.463	1.211	7.535	1.167	0.190	1.398	0.812	0.117	0.673
AMII	1.080	0.492	1.408	0.625	0.222	0.440	0.386	0.136	0.167

873

874

875

876

877

878

879

880

881

882

883

884

885

886

Table 14: Statistical performance on FB-USF ($r_2 = 0, \gamma = 5$)

887

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	0.906	0.646	1.238	0.794	0.508	0.889	0.710	0.435	0.694
CAE	0.954	0.311	1.007	0.925	0.165	0.883	0.896	0.109	0.815
MII	0.944	0.241	0.950	0.943	0.131	0.906	0.943	0.101	0.899
GNN	0.821	0.381	0.819	0.559	0.187	0.347	0.346	0.094	0.128
AMII	0.302	0.256	0.157	0.158	0.138	0.044	0.144	0.101	0.031

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

Table 15: Statistical performance on FB-USF ($r_2 = 1, \gamma = 5$)

906

907

908

909

<i>p</i> Metric Estimators	0.1			0.3			0.5		
	Bias	Std	MSE	Bias	Std	MSE	Bias	Std	MSE
Hájek	1.432	0.651	2.475	1.188	0.511	1.672	0.989	0.442	1.173
CAE	1.549	0.314	2.498	1.400	0.171	1.988	1.253	0.117	1.583
MII	1.483	0.250	2.261	1.364	0.138	1.881	1.259	0.106	1.597
GNN	1.457	0.366	2.258	1.001	0.142	1.021	0.714	0.094	0.518
AMII	0.879	0.281	0.851	0.633	0.137	0.419	0.504	0.105	0.265

910

911

912

913

914

915

916

917

918 **B PROOF**919 **B.1 PROOF OF THEOREM 3.1**

920 First, we introduce the basic notations: $m_k = |\text{Int}_k|$ denotes the size of the interior set of k -th cluster, $n_k = |C_k|$ denotes the size of k -th cluster. Moreover, we use $\bar{Y}_{k,\text{Int}}(\mathbf{1}), \bar{Y}_{k,\text{Int}}(\mathbf{0})$ denotes the mean outcome of the interior nodes of the k -th cluster, under global treatment and control, respectively. Correspondingly, $\bar{Y}_k(\mathbf{1}), \bar{Y}_k(\mathbf{0})$ denotes the mean outcome of the nodes of the k -th cluster, under global treatment and control, respectively. At last, we use t_k as the treatment assignment indicator for the k -th cluster.

921 Since we employ cluster-level randomization, the treatment assignments of units within the same
922 cluster are highly correlated. Under the neighborhood interference assumption, we begin by rear-
923 ranging our estimator as follows:

$$\begin{aligned}
 \hat{\tau}_{MII} &= \frac{\sum_{i \in \text{Int}} z_i Y_i}{\sum_{j \in \text{Int}} z_j} - \frac{\sum_{i \in \text{Int}} (1 - z_i) Y_i}{\sum_{j \in \text{Int}} (1 - z_j)} \\
 &= \frac{\sum_{i \in \text{Int}} z_i Y_i(\mathbf{1})}{\sum_{j \in \text{Int}} z_j} - \frac{\sum_{i \in \text{Int}} (1 - z_i) Y_i(\mathbf{0})}{\sum_{j \in \text{Int}} (1 - z_j)} \\
 &= \frac{\sum_{k \in [K]} \sum_{i \in \text{Int}_k} z_i Y_i(\mathbf{1})}{\sum_{j \in \text{Int}} z_j} - \frac{\sum_{k \in [K]} \sum_{i \in \text{Int}_k} (1 - z_i) Y_i(\mathbf{0})}{\sum_{j \in \text{Int}} (1 - z_j)} \\
 &= \frac{\sum_{k \in [K]} t_k m_k \bar{Y}_{k,\text{Int}}(\mathbf{1})}{\sum_{k \in [K]} t_k m_k} - \frac{\sum_{k \in [K]} (1 - t_k) m_k \bar{Y}_{k,\text{Int}}(\mathbf{0})}{\sum_{k \in [K]} (1 - t_k) m_k}.
 \end{aligned} \tag{21}$$

924 The second equality holds due to NIA (Assumption 2.1) and cluster-level randomization. The third
925 equality is transforming the summation over all interior units to that first over interior of k -th cluster,
926 then over clusters. The fourth equality is definition.

927 By applying Slutsky's lemma, we eliminate the randomness in treatment assignments, yielding:

$$\hat{\tau}_{MII} = \frac{\sum_{k \in [K]} m_k \bar{Y}_k(\mathbf{1})}{\sum_{k \in [K]} m_k} - \frac{\sum_{k \in [K]} m_k \bar{Y}_k(\mathbf{0})}{\sum_{k \in [K]} m_k} + o_p(1). \tag{22}$$

928 Assumption 3.1 is adapted from the Assumptions 4.1.1 and 4.1.2 from the original paper of CAE Liu
929 et al. (2024), while ours are weaker partly because we only pursue consistency. Given Assump-
930 tion 3.1, we can substitute the component of interior nodes into that of the whole cluster, yielding:

$$\begin{aligned}
 \hat{\tau}_{MII} &= \frac{\sum_{k \in [K]} n_k \bar{Y}_{k,\text{Int}}(\mathbf{1})}{\sum_{k \in [K]} n_k} - \frac{\sum_{k \in [K]} n_k \bar{Y}_{k,\text{Int}}(\mathbf{0})}{\sum_{k \in [K]} n_k} + o_p(1) \\
 &= \frac{\sum_{k \in [K]} n_k \bar{Y}_k(\mathbf{1})}{\sum_{k \in [K]} n_k} - \frac{\sum_{k \in [K]} n_k \bar{Y}_k(\mathbf{0})}{\sum_{k \in [K]} n_k} + o_p(1) \\
 &= \tau + o_p(1).
 \end{aligned} \tag{23}$$

931 **B.2 PROOF OF THEOREM 4.1**

932 First, we define $h(e) = \mathbb{E}_v[h(e, v)]$. Recall that the potential outcome model is:

$$Y_i(\mathbf{z}) = (\beta + \alpha u_i) z_i + h\left(\sum_{j \in \mathcal{N}(i, 1)} z_j / \deg_i, v_i\right). \tag{24}$$

933 Thus, the true GATE is given by:

$$\tau = \beta + \alpha \mu + h(1) - h(0). \tag{25}$$

934 Next, with this model, the expectation of MII estimator is given by:

$$\hat{\tau}_{MII} = \beta + \alpha \mu_{\text{Int}} + h(1) - h(0). \tag{26}$$

972 These together give:

$$973 \quad \text{Bias}(\hat{\tau}_{MII}) = \alpha(\mu - \mu_{Int}). \quad (27)$$

975 Next, we examine the AMII estimator. We define:

$$976 \quad \hat{h}(p) = \mathbb{E}_{\mathbf{z} \sim \text{Ber}(p), v} [\text{MEAN}(\{g(z_j, v_j) \mid j \in \mathcal{N}(i, 1)\})]. \quad (28)$$

978 This represents the expectation of the estimate of the interference part given the treatment proportion
979 of randomization equal to p . Notice that the randomness lies in both treatment assignment and the
980 covariate v . Nonetheless, the former diminish when $p = 0$ or $p = 1$, since wherein $\mathbf{z} = \mathbf{0}, \mathbf{1}$ holds,
981 respectively.

982 An important trait of the functional form of regression function lies in:

$$984 \quad \hat{h}(1) = \mathbb{E}_v \left[\frac{1}{|\text{Int}|} \sum_{i \in \text{Int}} \text{MEAN}(\{g(1, v_j) \mid j \in \mathcal{N}(i, 1)\}) \middle| \mathcal{G} \right]. \quad (29)$$

987 This holds because one can swap the MEAN and expectation \mathbb{E}_v , given the degree deg_i fixed. On
988 the other hand, one can easily verify:

$$989 \quad \hat{h}(1) = \mathbb{E}_v \left[\frac{1}{n} \sum_{i \in [n]} \text{MEAN}(\{g(1, v_j) \mid j \in \mathcal{N}(i, 1)\}) \middle| \mathcal{G} \right]. \quad (30)$$

993 Thus, we have:

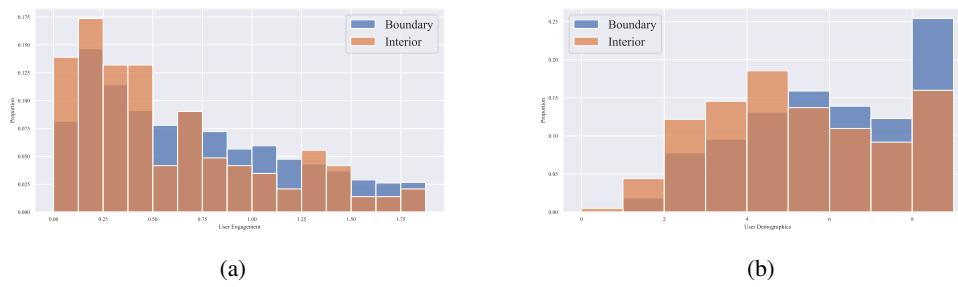
$$994 \quad \mathbb{E}[\hat{\tau}_{AMII}] = \beta - \mathbb{E}[\hat{\beta}_n] + (\alpha - \mathbb{E}[\hat{\alpha}_n])\mu_{Int} + h(1) - \hat{h}(1) + \mathbb{E}[\hat{\beta}_n] + \mathbb{E}[\hat{\alpha}_n]\mu + \hat{h}(1) \\ 995 \quad - (h(0) - \hat{h}(0) + \hat{h}(0)) \\ 996 \quad = \beta + (\alpha - \mathbb{E}[\hat{\alpha}_n])\mu_{Int} + \mathbb{E}[\hat{\alpha}_n]\mu + h(1) - h(0). \quad (31)$$

999 This gives the bias of AMII estimator:

$$1001 \quad \text{Bias}(\hat{\tau}_{AMII}) = (\mathbb{E}[\hat{\alpha}] - \alpha)(\mu - \mu_{Int}). \quad (32)$$

1003 C SUPPLEMENTARY MATERIAL

1005 C.1 SUPPLEMENTARY FIGURES



1018 Figure 3: Distribution of (a) an outcome variable (user engagement) and (b) a demographic attribute
1019 across interior and boundary units. Data are collected from a billion-scale social platform.

1020
1021
1022
1023
1024
1025