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Abstract—Response style (RS) is a tendency to choose specific
categories regardless of content, e.g. extreme or midpoint cate-
gories. It degrades the validity of the analysis of subjective ratings
such as correlation and variance-based analyses. However, the
computational removal of RS has received little attention from
the affective computing community. RS removal techniques have
been proposed in areas such as marketing research. However,
most of these techniques do not exploit the content-independence
of RS; i.e. it should be observed consistently in various tasks,
such as affective judgment tasks and standard psychological
questionnaires. Therefore, this paper proposes a multitask RS
removal method. An individual’s responses in multiple tasks
are modeled using task-independent RS parameters, and task-
dependent parameters, including the item and respondent’s
characteristic parameters based on item response models (IRM).
Through Bayesian modeling, we observed that: i) the proposed
model outperformed traditional IRMs in terms of predictive
accuracy; ii) our multitask framework estimated RS with higher
precision than previous single-task-based RS removal methods;
iii) our model replicated Japanese midpoint RS, which has
been demonstrated repeatedly in previous cross-cultural studies;
and iv) RS-removed predictive ratings showed higher inter-rater
agreement than those including RS in valence/arousal judgment
tasks.

I. I NTRODUCTION

Subjective affect rating still plays an important role in
the affective computing community. In fact, the development
of effective rating methods is an active research topic [1],
[2]. Response styles (RS) are of particular concern when
using subjective rating scales. RS is defined as “a systematic
tendency to respond to a range of questionnaire items on
some basis other than the specific item content (that is, what
the items were designed to measure)” [3]. Some of the most
common RSs are acquiescent/disacquiescent RSs (ARS/DRS),
in which an individual tends to use the upper/lower range of
the scale (e.g. yea-saying/nay-saying), and extreme/midpoint
RSs (ERS/MRS), in which a person prefers the ends/center
of the scale [4]. Traditionally, such RSs were quantized in
a simple manner. For example, extreme RSs are frequently
measured as the proportion of extreme choices compared with
the total number of items [4].

Using such simply calculated measures, researchers have
demonstrated how RS degrades the validity of analysis on
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subjective rating, such as correlation (e.g. correlation between
two scales) and variance-based analysis [4]. For example,
shared RSs inflate interrater agreement [5], and deflates it if
RSs differ between raters [6]. It is serious in cross-cultural
studies because of the cultural differences in RS. For example,
American college students tended to have more extreme RS
than Japanese students [7], [8]. Traditional methods provide
measurement about RS, but they cannot eliminate RS from
ratings.

Recently, several ways to remove RS have been proposed.
The first way is to obtain multiple ratings for the same target
and to aggregate them, assuming random independent noise
across the ratings. The target may be ratings from multiple
people to a visual/auditory stimulus, or ratings from a single
person to a set of items about a psychological construct
(e.g. psychological questionnaire). This type of studies covers
both simple aggregation methods, including averaging and
majority voting, and more advanced truth discovery methods
[9]–[11]. This technique is useful when the research target is
perceived emotion, i.e. emotion perceived by general popula-
tion. However, if the target is individual-level perception, such
as felt emotion (what the target person is actually feeling)
or how another specific individual perceives it, then such
techniques are difficult to apply because of their high cost
and/or reproducibility. The second method is to use anchors
in rating to correct individual differences in the criteria for
selecting a category. Example methods are ordinal rating [12],
and Anchoring Vignette method [6]. However, such anchors
should be carefully designed specific to the target task; the
designing per se remains a research topic.

The third way to eliminate RS is to build a rating process
model with RS as a latent variable and remove the effect of RS.
Several RS removal techniques have been proposed mainly in
the marketing research area [6], [13]. Most of them use a single
task. For example, when emotion judgment is the target task,
RS is estimated only by using ratings on the task. The main
weakness of this approach is that it is difficult to distinguish
RS from task-dependent response tendencies; the two types
are called dispositional and situational in [4]. For example,
depending on the item/stimulus and/or prepared categories to
choose, people may tend to select extreme responses in some
tasks (e.g. because of many exaggerated facial expressions in



an affect rating task), while middle category in other tasks (e.g.
as a consequence of the ambiguity of items). In such cases,
the single task framework yields different results of RS, which
unfortunately violates the definition of RS.

Focusing on the task independence of RS, we propose
to use various tasks together to extract RS shared across
tasks. In fact, in many affective computing studies, Likert-type
psychological questionnaires are additionally used to examine
the relationship between the results of main task and the
summary statistics (primarily total score) of the additional
tasks. Modern test theories, including item response theory
(IRT), make it possible to estimate both individual’s charac-
teristics and each item’s characteristics jointly from answers
to such questionnaires. Therefore, we propose a multitask item
response model for RS removal.

To the best of our knowledge, this paper has two major
contributions. First, this is the first attempt in the affective
computing community to computationally remove RS in af-
fective ratings. Second, it is the first IRM-based multitask
framework for estimating/removing RS. This paper demon-
strates how our multitask framework works in one of the most
fundamental tasks in the affective computing area, namely
valence and arousal judgment tasks. The proposed framework
can potentially open new horizons for future affective com-
puting studies.

II. M ETHOD

Our model is an extension of item response models (IRMs)
that contain response style (RS) parameters for polytomous
ratings. This section first introduces basic IRMs which have
no RS terms, and more advanced IRM with RS. Next, our
model is explained.

A. Single task models

1) Basic item response models:IRM is a family of mul-
tivariate generalized linear mixed models (MGLMM) [14].
IRM consists of three parts: 1) distribution of data, 2) link
function, which determines what transformation of the mean
of the distribution to be modeled linearly, and 3) predictors.

In common IRMs, multivariate Bernoulli distribution,
namely a multinomial distribution with total count equal to
one, is used with an adjacent-categories logit. Such IRMs are
expressed as

log(
P (yij = s|XΘ)

P (yij = s− 1|XΘ)
) = XΘ (1)

where yij denotes the response of personj to item i, and
XΘ is a linear predictor that consists of a set of parameters
Θ including person (respondent) parameter and item (stimulus
for affective judgment or item in psychological questionnaire)
parameter.

One of the most fundamental item response model is Partial
Credit Model (PCM) [15], in whichXΘ is defined to be
θj − βis. θj is the trait of personj (such as ability in the
test theory domain), whileβis is the characteristics of itemi
for categorys (e.g. the difficulty of the item to obtain score

s or selection threshold/criterion for ratings). Generalized
PCM (GPCM) [16] is an extended version of PCM, where
the effect of person ability is assumed to be different across
items; namelyXΘ = αiθj−βis, whereα(> 0) is called slope
parameter (or discrimination parameter), because it determines
the slope of characteristic curve (a cumulative distribution) that
represents the relationship between the probability of obtaining
the category and the individual’s ability. Both models, like
many other IRMs, ignore any temporal structure, and assume
that the model does not change over time.

One of the key properties of PCM is that it inherits from
the specific objectivity property of the original Rasch model;
that is, the comparison of items does not depend on person
parameters, and the comparison of persons does not depend on
item parameters [13]. When two itemsi and i′ are compared
for the same personj, the difference of their logits has no
person term:

log(
P (yij = s|XΘ)

P (yij = s− 1|XΘ)
)− log(

P (yi′j = s|XΘ)

P (yi′j = s− 1|XΘ)
)

= (θj − βis)− (θj − βi′s) = βis − βi′s. (2)

This property also holds for the difference between two
persons for the same item. On the other hand, GPCM does
not preserve the property due to the interaction termαiθj .

2) Response style models for single task:Recently, several
researchers have proposed to incorporate RS into traditional
IRMs. One example was proposed by Tutz et al. [13] who
incorporated RS term̃γ into thresholdβis as β̃is = βis − γ̃js
(which this paper calls PCMRSt):

XΘ = θj − (βis − γ̃js), (3)

where γ̃js = (m − s + 1)γj , m is the midpoint category
(e.g. m = 2 when s ∈ {0, 1, 2, 3, 4} and m = 2.5 when
s ∈ {0, 1, 2, 3, 4, 5}). Positive γ represents midpoint RS,
while negativeγ means extreme RS. Ifγ is positive, the
intervals ofβ between categories expands around the middle
categorym, which means that the probability of categorym
increases (i.e. midpoint RS). Ifγ is negative, it has the opposite
effect, namely the intervals go toward the middle category, and
consequently the probability of extreme categories increases
(i.e. extreme RS).

On the other hand, Jonas and Markon [6] incorporated ex-
treme/midpoint RS and positive/negative bias into the GPCM
(which this paper calls GPCMRSj) as

XΘ = αiθj − γj(βis − γ′
j). (4)

γ represents extreme/midpoint RS, as in Tutz et al.’s model (al-
though in Jonas & Markon’s model,γ > 0 and smaller/larger
value means extreme/midpoint RS), whileγ′ represents a
bias toward positive/negative category representing acquies-
cent/disacquiescent RS. Tutz et al.’s model satisfies the specific
objectivity property because it has no interaction between
person and item parameters. On the other hand, Jonas &
Markon model does not satisfy it due to the interaction term.



TABLE I
L IST OF FAMILY OF ITEM RESPONSE MODELS

Model PredictorsXΘ

Models w/o response style
Baseline models

PCM [15] θjk − βiks

GPCM [16] αikθjk − βiks

Models w/ response style
Baseline models

PCM RSt [13] θjk − (βiks + γ̃jks)
GPCM RSj [6] αikθjk − γjk(βiks + γ′

jk)

Proposed models
mtPCM RSt θjk − (βiks + γ̃js)

mtGPCM RSt αikθjk − (βiks + γ̃js)
mtPCM RSj θjk − γj(βiks + γ′

j)

mtGPCM RSj αikθjk − γj(βiks + γ′
j)

All model use adjacent-categories logit as link function.β is an item
parameter subscripted with item indexi (and category indexs for some

cases).θ is a person parameter subscripted with person indexj (and
category indexs for some cases).α is a scale parameter subscripted with
item indexi. k is a task index. Note that we include task indexk also to

baselines for comparison.

B. Proposed multitask models

We extend Tutz et al.’s [13] and Jonas & Markon’s [6]
models to a multitask framework. We incorporate a set of tasks
all together using task-independent parameters that describe
RS. Our multitask version of Tutz et al.’s model (mtPCMRSt)
is defined as:

XΘ = θjk − (βiks + γ̃js), (5)

for wherek is a task index. Note that̃γ excludes subscriptk.
Our extension of Jonas & Markon’s model (mtGPCMRSj)
is:

XΘ = αikθjk − γj(βiks + γ′
j). (6)

We also built GPCM version of mtPCMRSt and PCM ver-
sion of mtGPCMRSj by replacingθjk and αikθjk (called
mtGPCM RSt and mtPCMRSj, respectively). The models
based on Tutz et al.’s model (namely mtPCMRSt and mt-
GPCM RSt) satisfy the specific objectivity property, while
those based on Jonas & Markon’s model (mtPCMRSj and
mtGPCM RSj) do not. Table I compares all four proposed
models with the baseline models.

After estimating model parameterΘ, we can predict the
ratings that are likely to be drawn from the model. Predictive
rating ŷ is estimated as:

ŷijk ∼ categorical(π) (7)

πs = P (y = s|XΘ) (8)

In addition, the RS-removed ratings are estimated by ex-
cluding the RS term̃γ from the predictor in Eq. 8. This can
be expressed as:

πs = P (y = s|XΘ′) (9)

whereXΘ′ = θjk − βiks for the PCM families andXΘ′ =
αikθjk − βiks for the GPCM families.
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Fig. 1. Main task: valence-arousal judgment task. First, a fixation cross was
displayed at the center for 500 msec. Next, a target face was shown for
1,000. Then, it disappeared for 500 msec. Finally, valence or arousal scale
was displayed until participant selected one of the answers.

III. E XPERIMENTAL DATA

In order to evaluate the proposed framework, we performed
valence and arousal judgment tasks using computer-generated
static emotional faces as main tasks. We also used psycholog-
ical questionnaires as subtasks.

A. Observers

Fifty Japanese university students (25F) participated in
the experiment. This homogeneity facilitates the verification
of whether the estimated RS parameters really match the
Japanese midpoint RS, which is repeatedly reported in pre-
vious studies [7], [8].

B. Main tasks: affective rating

The participants were asked to rate the valence and arousal
level of artificial faces. This was a blocked design: one block
for valence judgment and the other block for arousal judgment.
Each was a forced choice on a 5-point scale: the extremes were
labeled “Positive” and “Negative” in the valence block, while
“High” and “Low” in the arousal block. Figure 1 shows the
timeline of each trial. Each block consisted of 150 trials. In
120 of 150 trials, totally 120 original faces were displayed.
The remaining 30 trials were repetition of 30 trials that were
randomly selected out of the 120 trials. This was aimed at
calculating the test-retest reliability, i.e. the frequency with
which participants gave the same rating to exactly the same
face in different trials. The block order was counter-balanced,
and the stimulus order and the 30 repeated faces in each block
were randomized across the participants. All the labeling was
done in isolation, and all the observers successfully completed
both tasks.

Various mixed facial expressions were included to see inter-
individual differences in perceptions among respondents. The
120 stimulus faces were created using FaceGen modeler.
The faces consisted of 29 facial expressions (neutral and 28
non-neutral expressions) from 8 different artificial identities.
Specifically, 15 expressions (neutral and 14 non-neutral ex-
pressions) from 4 virtual identities (called Face Set 1), and



TABLE II
SUMMARY OF USED TASKS

Task #items/trials #points
Main tasks

1. Valence judgment 150 5
2. Arousal judgment 150 5

Sub-tasks
3. EQ [17] 60 4
4. SQ [17] 60 4
5. AQ [18] 50 4
6. IRI [19] 28 3
7. ESCQ [20] 28 4
8. B5 [21] 60 5
9. TEG [22] 53 7

Sum 639

neutral and the remaining 14 non-neutral expressions (totally
15 expressions) from the other 4 identities (called Face Set 2)
were extracted. Expressions were manipulated by changing the
modeler’s expression-specific parameters (angry, disgust, fear,
sad, surprise, and closed- and open-mouth smiles; totally seven
categories). Of the non-neutral expressions in Face Set 1, four
were pure angry, fear, surprise and open-mouth smile, and the
remaining 10 were combinations of the seven categories. Three
of the non-neutral expressions of Face Set 2 were pure disgust,
sad and closed-mouth smile, and the remaining 11 were other
combinations of the seven categories. The eight identities were
from Caucasians, Africans, Indians and Asians: each of which
consists of both masculine and feminine faces. This procedure
yielded 120 (=15×4+15×4) faces.

C. Subtasks: psychological questionnaires

The participants were also asked to answer seven psy-
chological questionnaires after the main tasks: Empathizing
Quotient (EQ) [17], Systemizing Quotient (SQ) [17], Autism-
Spectrum Quotient (AQ) [18], Interpersonal Reactivity Index
(IRI) [19], Emotional Skills and Competence Questionnaire
(ESCQ) [20], Neo-FFI or Big Five (B5) [21], and Tokyo
University Egogram (TEG) [22]. EQ, AQ, IRI and ESCQ are
commonly used to measure empathy-related traits, while B5
and TEG are for more general personality traits. They are
not completely independent of each other, nor are they fully
independent of valence/arousal decision tasks. However, the
entire questionnaire set reasonably covers various types of
traits and the number of points (ranging from 3-point scale
to 7-point scale, and including both even and odd points).

Table II summarizes the number of items and the number of
points of the questionnaires. The total number of ratings was
579 items× 50 respondents= 31, 950. There was no missing
data. However, our models accept missing data in the current
form, thanks to Bayesian generative modeling as described in
IV-A.

IV. EVALUATION SETTINGS

A. Bayesian parameter estimation

All the models were implemented using the free and open-
source software Stan and its interface to the R (Stan De-
velopment Team, 2015a, b), and the edstan (v1.0.6; Furr,

2017) package. The model parameters were estimated using
Stan’s No-U-Turn Sampler (NUTS). As weak priors, zero-
mean normal distributions were used forβ, θ andγ (for Tutz et
al’s families), unit-mean lognormal distributions were used for
α andγ (for Jonas & Markon families). Four MCMC chains
were run from random start values. The chain convergence
was assessed by thêR statistic (̂R < 1.1). The first 2,400
iterations were discarded as warm-up, and then 2,400 iterations
were obtained and stored from each chain, yielding 9,600
iterations that served to empirically approximate the posterior
distribution.

Predictive RS-inclusive ratings and RS-removed ratings (ŷ)
were obtained as follows. The ratings for all respondents and
items (31,950 samples) were generated (simulated) according
to Eq. 7 and Eq. 8 for RS-inclusive ratings, and Eq. 9 for RS-
removed ratings. This procedure was repeated 9,600 times.
This yielded the posterior distribution consisting of 9,600
random samples for eacĥy for both types of predictive ratings.
A point estimate was further determined for eachŷ by majority
voting by the 9,600 samples. The following analysis used the
point estimates unless otherwise specified.

B. Performance measure

As evaluation criteria for model comparison, the ap-
proximate widely applicable information criterion (WAIC)
[23] and Pareto smoothed importance sampling leave-one-
out cross-validation (PSIS-LOO) [24] (an approximated LOO)
were calculated using the loo package (v.2.0.0; https://mc-
stan.org/loo/). Both measures penalize model complexity, and
a smaller value indicates a better model. We also report the
following four measures for the main valence and arousal
tasks to indicate how well each model explains the observed
ratings: accuracy (percent agreement,κ), Pearson’s correlation
coefficient (r), mean absolute error (MAE), and intra-class cor-
relation coefficient (ICC), following [25], which recommend
the use of multiple measures jointly.

V. RESULTS

This section reports various validation results, including
model comparison, and prediction performance evaluation. All
the results support the validity of our proposed framework.

A. Rating results

1) Basic statistics:The proportion of the rating categories
(the marginal distribution of ratings) was (09, .32, .35, .20,
.04) (from negative to positive) for valence, and (.09, .25, .31,
.28, .07) (from low to high) for arousal.

The test-retest reliability (calculated in a manner similar to
accuracy)κ was .525 for valence and .475 for arousal. This
is a percent agreement, meaning that the participants gave the
same rating between the test and retest pairs at a rate ofκ.
Fleiss’ generalizedκ, κF , a chance-corrected agreement, was
.345 and .300 for valence and arousal rating. Pearson’sr was
.556 for valence and .550 for arousal. This value is comparable
to that reported in the literature, e.g. [26]. The ICC(2,1) was
.48 for valence and .35 for arousal. Both are considered to be
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Fig. 2. (a)Correlation of estimatedγ within single tasks (using GPCMRSt)
and those between single tasks (using GPCMRSt) and multitask (using
mtGPCM RSt). (b) Mean of SEM ofγ’s posterior distribution: GPCMRSt
vs mtGPCM RSt. Error bar indicates SEM.

between poor and fair [27], [28]. These well demonstrate how
differently people rate affective faces.

However, it is uncertain whether it is caused by the indi-
vidual difference of perception or by the RS. Therefore, we
investigate the impact of RS on these reliability measures in
V-D.

B. Model comparison

Table III summarizes model performance. PCMRSj [6]
and mtGPCMRSj did not converge on learning (R̂ > 4),
thus were excluded from the following analyses. In terms of
all the criteria, our best model (mtGPCMRSt) outperformed
the baselines (PCM and GPCM)1. As the base model, GPCM
was preferred to PCM; mtGPCMRSt was slightly better than
mtPCM RSt (78,008 vs 78,069 for WAIC, and 78,212 vs
78,274 for LOO).

There found severe bugs in the source codes in multitask
models. 1) The numbe of betas is much larger than necessary
number. 2) Theta should be task-dependent! Currently, it is
assumed to be task independent.The vertical axis of Figure 2
(b) is wrong. It should be Mean SEM etc.Cohen’s d cannot
be used for one-sample t-test.

1The accuracy of mtGPCMRSt was higher than the test-retest reliability.
It may sound strange, but it is possible. Theupper boundof the prediction
accuracy is estimated to be .83 for valence and .81 for arousal. The upper
bounds were obtained as follows. Our data contains two types of data and they
should be considered separately. Of the 120 images (the 150 trials), 30 (60)
were shown twice, and the remaining 90 (90) were used only once. For the
60% (=90/150) samples, the perfect accuracy is possible if a very complex
model is used (although probably overfitting). This is because the training
and test sets were identical. For the 40% (=60/150) samples,κF percent of
samples, where the test and retest ratings are identical (not by chance), the
perfect accuracy is also possible. The remaining1− κF percent of samples
were however rated differently between a pair of trials, and thus the perfect
accuracy is not possible. This is because the proposed models (as well as the
baselines) give the same predictive rating for each pair of trials. If random
sampling of rating from the marginal distribution is assumed for the samples,
the maximum chance level (pmax) is .35 and .31 for valence and arousal
tasks, respectively. Therefore, the estimated upper bound for the 40% data is
κF × 1+ (1−κF )× pmax = .574 for valence and.517 for arousal. Taken
together, the overall upper bound is expected to be.574×40%+1×60% =
0.83 for valence, and.517 × 40% + 1 × 60% = 0.81 for arousal. The
observed accuracies are within the range.
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Fig. 3. Histogram ofγ estimated using mtGPCMRSt. Positive and negative
values mean midpoint and extreme response style.

C. Single-task vs multitask

In Table III, PCM RSt [13] outperformed our
mt(G)PCM RSt. This means that if the objective is to
describe the observed ratings as accurately as possible,
PCM RSt should be selected. However, as mentioned in
I, single task framework confuses task-dependent response
tendencies with RS. To further illustrate the need for the
multitask framework quantitatively, Fig. 2 (a) shows the
pairwise correlation of estimatedγ (a 50-d vector) within the
9 single tasks using GPCMRSt (yielding a within-single-task
correlation for each of9C2 = 36 pairs of tasks). It also
includes the correlation between theγ values and those
obtained using our mtGPCMRSt. The estimatedγ in single
task was closer to the estimate in the multitask than that
in a different single task. It reasonably demonstrates the
task-independence of RS.

In addition, Fig. 2 (b) shows another benefit of using
multiple tasks; the multitask framework gave more precise
estimate. The posterior distribution ofγ was narrower in
the multitask scenario (mtGPCMRSt) than in the single
scenarios (GPCMRSt). This is an important property because
γ parameters are interconnected with the other parameters
and thus precise estimate ofγ is expected to lead to precise
estimates of the remaining parameters.

D. Estimated parameters and response style removal

Figure 3 shows a histogram of estimatedγ across 50
participants using GPCMRSt. Here we use GPCMRSt, not
the best model, becauseγ of PCM RSj has no clear threshold
between extreme and midpoint RSs. The mean value was
positive (M = 0.42 (±0.07 SEM), p< .001, d = .81), indicating
that the participants had midpoint RS overall. The midpoint
RS of Japanese people is in line with previous studies [7],
[8]. Furthermore, the estimatedγ values were reasonably
correlated with the traditional measure of extreme RS, i.e.
the proportion of extreme choices out of the whole items
[4] (Spearman’sρ = −.91, p < .001). These results validate
our method. Moreover,γ of GPCM RSt andγ of PCM RSj
showed strong correlation;ρ = .78, p < .001.

An ICC(2,1) of the estimated posterior ratings obtained by
Eqs. 7 and 8 for the whole 9,600 samples (not their point
estimates), namely a recovered ICC, was M = .49 (95% CI
[.47, .51]) for valence and M = .36 (95% CI [.34, .38] for



TABLE III
PREDICTIVE PERFORMANCE OF THE PROPOSED MODELS AND BASELINES FOR THE WHOLE NINE TASKS

Model WAIC ↓ LOO ↓ Valence task Arousal task
Mean SEM Mean SEM κ ↑ r ↑ MAE ↓ ICC ↑ κ ↑ r ↑ MAE ↓ ICC ↑

PCM [15] 78,771 272 78,957 277 .583 .643 .484 .637 .452 .528 .692 .523
GPCM [16] 77,016 277 77,273 283 .585 .644 .481 .637 .453 .537 .688 .533
PCM RSt [13] 73,683 284 73,870 289 .630 .664 .443 .661 .499 .567 .646 .566
GPCM RSt 72,438 287 72,698 292 .630 .664 .443 .661 .499 .567 .646 .566
mtPCM RSt 76,589 279 76,773 284 .601 .650 .468 .645 .470 .546 .674 .543
mtGPCM RSt 75,126 283 75,361 288 .601 .650 .468 .645 .470 .546 .674 .543
mtPCM RSj 72,117 245 72,345 248 .601 .652 .467 .647 .472 .551 .670 .548
mtGPCM RSj 74,881 240 74,949 241 .582 .646 .480 .638 .450 .531 .686 .525

“↑” and “↓” denote higher and lower performance. Note that although achieving the best performance in terms of the predictive performance
of ratings, PCM RSt [13], a single task framework, confuses task-dependent response tendencies with RS, as mentioned in I.

arousal. The observed ICCs (.48 and .35, respectively) were
successfully replicated.

The RS-removed ratings were estimated following Eqs. 7
and 9. This slightly but statistically significantly increased
recovered ICC; .51 (95% CI [.49, .54]) for valence and .41
(95% CI [.38, .44]) for arousal. This suggests that in our
participant set, the observed ICCs were deflated because many
participants had midpoint RS while some had extreme RS.
This supports the need for RS correction.

VI. D ISCUSSION

We have provided a variety of evidence in support of our
multitask framework. However, several issues still remain.

First, our multitask framework successfully found Japanese
midpoint RS. However, this was an indirect evaluation, and a
more direct evaluation is needed. One way is to use an an-
choring vignette technique, such as [6], in which respondents
are also asked to judge imaginary character(s) asanchor that
are assumed to cause the same judgment across people, in
order to normalize each respondent’s judgment based on their
judgment on the anchor.

Second, our model is probably not thebest modelto
eliminate RS in a multitask fashion. First, although we use
the same base model (PCM or GPCM) for all tasks, we can
use different models for different tasks in our framework. It is
reasonable to use a simple model (e.g. PCM) for psychological
questionnaires, since they are basically designed to measure a
single construct. However, it would be interesting to find the
best, or at least better, model for affective judgment tasks.

Thirdly, this study employed a discrete annotation procedure
for both time and emotion space. To apply our work to
continuous annotations, as with the recent trend in the affective
community, e.g. [1], [2], our model must be extended. It is
also interesting to investigate whether the rating process is
time invariant or not, as mentioned in [12].

Finally, this paper focused on decoder or receiver in emo-
tional communication, i.e. affective judgment to other people.
It is also interesting to target coder’s or sender’s judgment,
i.e. self-report of emotional states. This is an important step
because self-report is available only from the individual.
Therefore, the impact of RS on their ratings is expected to
be stronger than that of decoder. It would be interesting to

incorporate our framework with physiological signals, as used
in felt-emotion studies [29]–[31].

VII. C ONCLUSION

This paper proposed a multitask RS removal framework,
where individual’s responses in multiple tasks are modeled
using task-independent RS terms, and task-dependent terms,
including item and respondent’s characteristic parameters
based on item response model (IRM). Through a Bayesian
modeling, we observed that i) the proposed model outper-
formed traditional IRMs in terms of predictive accuracy; ii) our
multitask framework estimated RS with higher precision than
previous single-task-based RS removal methods; iii) our model
replicated Japanese midpoint RS, which has been repeatedly
shown in previous cross-cultural studies; and iv) RS-removed
predictive ratings showed higher inter-rater agreement than
those including RS in valence/arousal judgment task. The
proposed RS removal technique has a potential to reveal
stronger/new results that previous methods could not find in
the affective computing community. Validating the potential is
one of the next steps.
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