
Published as a conference paper at ICLR 2023

DE NOVO MOLECULAR GENERATION VIA
CONNECTION-AWARE MOTIF MINING

Zijie Geng1∗, Shufang Xie2†, Yingce Xia3†, Lijun Wu3, Tao Qin3, Jie Wang1,4†,
Yongdong Zhang1, Feng Wu1, Tie-Yan Liu3

1 University of Science and Technology of China
ustcgzj@mail.ustc.edu.cn, {jiewangx, zhyd73, fengwu}@ustc.edu.cn
2 Gaoling School of Artificial Intelligence, Renmin University of China
shufangxie@ruc.edu.cn
3 Microsoft Research AI4Science
{yingce.xia, lijunwu, taoqin, tyliu}@microsoft.com
4 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

ABSTRACT

De novo molecular generation is an essential task for science discovery. Recently,
fragment-based deep generative models have attracted much research attention
due to their flexibility in generating novel molecules based on existing molecule
fragments. However, the motif vocabulary, i.e., the collection of frequent frag-
ments, is usually built upon heuristic rules, which brings difficulties to capturing
common substructures from large amounts of molecules. In this work, we propose
a new method, MiCaM, to generate molecules based on mined connection-aware
motifs. Specifically, it leverages a data-driven algorithm to automatically discover
motifs from a molecule library by iteratively merging subgraphs based on their
frequency. The obtained motif vocabulary consists of not only molecular motifs
(i.e., the frequent fragments), but also their connection information, indicating
how the motifs are connected with each other. Based on the mined connection-
aware motifs, MiCaM builds a connection-aware generator, which simultaneously
picks up motifs and determines how they are connected. We test our method on
distribution-learning benchmarks (i.e., generating novel molecules to resemble the
distribution of a given training set) and goal-directed benchmarks (i.e., generating
molecules with target properties), and achieve significant improvements over pre-
vious fragment-based baselines. Furthermore, we demonstrate that our method
can effectively mine domain-specific motifs for different tasks.

1 INTRODUCTION

Drug discovery, from designing hit compounds to developing an approved product, often takes more
than ten years and billions of dollars (Hughes et al., 2011). De novo molecular generation is a
fundamental task in drug discovery, as it provides novel drug candidates and determines the un-
derlying quality of final products. Recently, with the development of artificial intelligence, deep
neural networks, especially graph neural networks (GNNs), have been widely used to accelerate
novel molecular generation (Stokes et al., 2020; Bilodeau et al., 2022). Specifically, we can employ
a GNN to generate a molecule iteratively: in each step, given an unfinished molecule G0, we first
determine a new generation unit G1 to be added; next, determine the connecting sites on G0 and G1;
and finally determine the attachments between the connecting sites, e.g., creating new bonds (Liu
et al., 2018) or merging shared atoms (Jin et al., 2018). In different methods, the generation units
could be either atoms (Li et al., 2018; Mercado et al., 2021) or frequent fragments (referred to as
motifs) (Jin et al., 2020a; Kong et al., 2021; Maziarz et al., 2021).

For fragment-based models, building an effective motif vocabulary is a key factor to the success of
molecular generation (Maziarz et al., 2021). Previous works usually rely on heuristic rules or tem-

∗This work was done when Zijie Geng was an intern at Microsoft Research AI4Science.
†Corresponding author.

1

Published as a conference paper at ICLR 2023

Benzaldehyde
“O=Cc1ccccc1”

Trifluoromethylbenzene
“FC(F)(F)c1ccccc1”

(a)

-S(-)(=*)=* *#S#*

(b)

Figure 1: (a) Two substructures that occur frequently in ChEMBL. (b) Different connection modes
of sulfur atoms. The “*-S(-*)(-*)=*” is commonly seen while“*#S#*” does not appear in ChEMBL.

plates to obtain a motif vocabulary. For example, JT-VAE (Jin et al., 2018) decomposes molecules
into pre-defined structures like rings, chemical bonds, and individual atoms, while MoLeR (Maziarz
et al., 2021) separates molecules into ring systems and acyclic linkers or functional groups. Sev-
eral other works build motif vocabularies in a similar manner (Jin et al., 2020a; Yang et al., 2021).
However, heuristic rules cannot cover some chemical structures that commonly occur yet are a
bit more complex than pre-defined structures. For example, the subgraph patterns benzaldehyde
(“O=Cc1ccccc1”) and trifluoromethylbenzene (“FC(F)(F)c1ccccc1”) (as shown in Figure 1(a)) oc-
cur 398,760 times and 57,545 times respectively in the 1.8 million molecules in ChEMBL (Mendez
et al., 2019), and both of them are industrially useful. Despite their high frequency in molecules,
the aforementioned methods cannot cover such common motifs. Moreover, in different concrete
generation tasks, different motifs with some domain-specific structures or patterns are favorable,
which can hardly be enumerated by existing rules. Another important factor that affects the gener-
ation quality is the connection information of motifs. This is because although many connections
are valid under a valence check, the “reasonable” connections are predetermined and reflected by
the data distribution, which contribute to the chemical properties of molecules (Yang et al., 2021).
For example, a sulfur atom with two triple-bonds, i.e., “*#S#*” (see Figure 1(b)), is valid under a
valence check but is “unreasonable” from a chemical point of view and does not occur in ChEMBL.

In this work, we propose MiCaM, a generative model based on Mined Connection-aware Motifs.
It includes a data-driven algorithm to mine a connection-aware motif vocabulary from a molecule
library, as well as a connection-aware generator for de novo molecular generation. The algorithm
mines the most common substructures based on their frequency of appearance in the molecule li-
brary. Briefly, across all molecules in the library, we find the most frequent fragment pairs that are
adjacent in graphs, and merge them into an entire fragment. We repeat this process for a pre-defined
number of steps and collect the fragments to build a motif vocabulary. We preserve the connection
information of the obtained motifs, and thus we call them connection-aware motifs.

Based on the mined vocabulary, we design the generator to simultaneously pick up motifs to be
added and determine the connection mode of the motifs. In each generation step, we focus on a non-
terminal connection site in the current generated molecule, and use it to query another connection
either (1) from the motif vocabulary, which implies connecting a new motif, or (2) from the current
molecule, which implies cyclizing the current molecule.

We evaluate MiCaM on distribution learning benchmarks from GuacaMol (Brown et al., 2019),
which aim to resemble the distributions of given molecular sets. We conduct experiments on three
different datasets and MiCaM achieves the best overall performance compared with several strong
baselines. After that, we also work on goal directed benchmarks, which aim to generate molecules
with specific target properties. We combine MiCaM with iterative target augmentation (Yang et al.,
2020) by jointly adapting the motif vocabulary and network parameters. In this way, we achieve
state-of-the-art results on four different types of goal-directed tasks, and find motif patterns that are
relevant to the target properties.

2 OUR APPROACH

2.1 CONNECTION-AWARE MOLECULAR MOTIF MINING

Our motif mining algorithm aims to find the common molecule motifs from a given training data
set D, and build a connection-aware motif vocabulary for the follow-up molecular generation. It

2

Published as a conference paper at ICLR 2023

Molecule

Graphs:

Merging

Graphs:

Statistics:

c:c

Br-c

C-c

O-c

12

1

1

1

c1ccccc1

Br-c:c:c:c

C-c:c:c:c

O-c:c

2

1

1

1

c:c:c:c

Br-c:c

C-c:c

O-c:c

6

1

1

1

(1) (2) (3)

(c) Motif Vocabulary:

(a) Merging-operation Learning Phase

Merging

Operations:

c:c

c:c:c:c

c1ccccc1

(b) Motif-vocabulary Construction Phase

BrBrBr

O

BrBrBr

O

BrBrBr

O

BrBrBr

O

BrBrBr

O

BrBrBr

*OC *
*

*Br

**

Figure 2: An example of connection-aware molecular motif mining. Given a training set D =
{“Brc1ccccc1”, “Cc1cccc(O)c1”}, it consists of two phases. (a) Merging-operation Learning Phase.
The merging graphs are initialized the same as the molecular graphs. In the first iteration, “c:c”
(marked in blue) is the most frequent pattern. We merge the patterns “c:c” in all the molecules
to update the merging graphs. In the second iteration, “c:c:c:c” (marked in yellow) is the most
frequent pattern, so we merge such patterns and update merging graphs. We repeat this process for 3
iterations and record the merging operations in order. (b) Motif-vocabulary Construction Phase. We
apply the recorded merging operations sequentially on all molecules. Then the two molecules are
fragmentized as motifs. We break the bonds between different motifs while preserving the broken
bonds. In this way we construct a connection-aware motif vocabulary as shown in (c).

processes D with two phases: the merging-operation learning phase and the motif-vocabulary con-
struction phase. Figure 2 presents an example and more implementation details are in Algorithm 1
in Appendix A.1.

Merging-operation Learning Phase In this phase, we aim to learn the top K most common
patterns (which correspond to rules indicating how to merge subgraphs) from the training data D,
where K is a hyperparameter. Each molecule in D is represented as a graph G(V, E) (the first row
in Figure 2(a)), where the nodes V and edges E denote atoms and bonds respectively. For each
G(V, E) ∈ D, we use a merging graph GM (VM , EM) (the second row in Figure 2(a)) to track the
merging status, i.e., to represent the fragments and their connections. In GM (VM , EM), each node
F ∈ VM represents a fragment (either an atom or a subgraph) of the molecule, and the edges
in EM indicate whether two fragments are connected with each other. We initialize each merging
graph from the molecule graph by treating each atom as a single fragment and inheriting the bond
connections from G, i.e., G(0)M (V(0)

M , E(0)M) = G(V, E).
We define an operation “⊕” to create a new fragment Fij = Fi ⊕ Fj by merging two fragments
Fi and Fj together. The newly obtained Fij contains all nodes and edges from Fi, Fj , as well as
all edges between them. We iteratively update the merging graphs to learn merging operations. In
the merging graph G(k)M (V(k)

M , E(k)M) at the kth iteration (k = 0, · · · ,K − 1), each edge represents
a pair of fragments, (Fi,Fj), that are adjacent in the molecule. It also gives out a new fragment
Fij = Fi ⊕ Fj . We traverse all edges (Fi,Fj) ∈ E(k)M in all merging graphs G(k)M to count the
frequency of Fij = Fi ⊕ Fj , and denote the most frequent Fij asM(k). 1 Consequently, the k-th
merging operation is defined as: if Fi ⊕ Fj ==M(k), then merge Fi and Fj together.2 We apply
the merging operation on all merging graphs to update them into G(k+1)

M (V(k+1)
M , E(k+1)

M). We repeat
such a process for K iterations to obtain a merging operation sequence {M(k)}K−1

k=0 .

1Different (Fi,Fj) can make same Fij . For example, both (CCC,C) and (CC,CC) can make “CCCC”.
2When applying merging operations, we traverse edges in orders given by RDKit (Landrum et al., 2006).

3

Published as a conference paper at ICLR 2023

(1) (5) (6)

···

(b) Generation Steps

[1] [2] (1) (5) (6)

···
{1} {2}{3}

𝑧

NNstart

Step 3

[1]

[2]

Step 0

𝑣0

Step 2

𝑣2

Step 1

[3]

𝑣1
[4]

[3] [4] (1) (5) (6)

···

[𝑧, ℎ𝒢𝑡 , ℎ𝑣𝑡]

NNquery

GNNpmolGNNmotif

(a) Motif Vocabulary

···
(1)

{1}

(4)

(2)

(3) {2}

NNkey

{1} {2}{3}

···ℎℱ∗

(1) (2) (3) (4) (5) (6)

···ℎ𝑣
[1] [2] [3] [4]

···

{3}

(5)

(6)

Figure 3: The Generation Steps. (a) The generation procedure is based on the connection-aware
motif vocabulary. We obtain the graph representations hF∗ (yellow) and the node representations
hv (dark blue) via GNNmotif. (b) In the tth generation step, we obtain the graph representation hGt

(dark green) and node representations hv (light blue) via GNNpmol. We focus on a connection site
vt and use [z,hGt ,hvt] to query another connection site either from the motif vocabulary (which
implies adding a motif) or from the partial molecule (which implies cyclizing). The right answers
of every steps are marked by red boxes.

Motif-vocabulary Construction Phase For each molecule G(V, E) ∈ D, we apply the merging
operations sequentially to obtain the ultimate merging graph GM (VM , EM) = G(K)

M (V(K)
M , E(K)

M).
We then disconnect all edges between different fragments and add the symbols “∗” to the discon-
nected positions (see Figure 2(b, c)). The fragments with “∗” symbols are connection-aware, and we
denote the connection-aware version of a fragment F as F∗. The motif vocabulary is the collection
of all such connection-aware motifs: Vocab = ∪GM (VM ,EM)∈D{F∗ : F ∈ VM}. During generating,
our model connects the motifs together by directly merging the connection sites (i.e., the “∗”s) to
generate new molecules.

Time Complexity The time complexity of learning merging operations is O(K|D|e), where K is
the number of iterations, |D| is the molecule library size, and e = maxG(V,E)∈D |E|. In practice,
the time cost decreases rapidly as the iteration step k increases. It takes less than 10 minutes and
about 90 minutes to run 3, 000 iterations on the QM9 (∼ 133K molecules) (Ruddigkeit et al., 2012)
and ZINC (∼ 219K molecules) (Irwin et al., 2012) datasets, respectively, using 6 CPU cores (see
Appendix A.1). The time complexity of fragmentizing an arbitrary molecule G(V, E) into motifs is
O(K|E|), linear with the number of bonds.

2.2 MOLECULAR GENERATION WITH CONNECTION-AWARE MOTIFS

The generation procedure of MiCaM is shown in Figure 3 and Algorithm 2 in Appendix A.2. Mi-
CaM generates molecules by gradually adding new motifs to a current partial molecule (denoted as
Gt, where t is the generation step), or merging two connection sites in Gt to form a new ring.

For ease of reference, we define the following notations. We denote the node representation of any
atom v (including the connection sites) as hv , and denote the graph representation of any graph G
(either a molecule or a motif) as hG . Let CG denote the connection sites from a graph G (either a
partial molecule or a motif), and let CVocab = ∪F∗∈VocabCF∗ be the set of all connection sites from
the motif vocabulary.

Generation Steps In the tth generation step, MiCaM modifies the partial molecule Gt as follows:

(1) Focus on a connection site vt from Gt. We use a queueQ to manage the the orders of connection
sites in CGt

. At the tth step, we pop the head of Q to get a connection site vt. The Q is maintained
as follows: after selecting a new motif F∗ to connect with Gt, we use the RDKit library to give a
canonical order of the atoms in F∗, and then put the connection sites into Q following this order.
After merging two connection sites together, we just remove them from Q.

4

Published as a conference paper at ICLR 2023

(2) Encode vt and candidate connections. We employ a graph neural network GNNpmol to encode
the partial molecule Gt and obtain the representations of all atoms (including the connection sites)
and the graph. The node representations hvt of vt and the graph representation hGt

of Gt will be
jointly used to query another connection site. For the motifs F∗ ∈ Vocab, we use another GNN,
denoted as GNNmotif, to encode their atoms and connection sites. In this way we obtain the node
representations hv of all connection sites v ∈ CVocab

3. The candidate connections are either from
CVocab or from CGt \ {vt}.
(3) Query another connection site. We employ two neural networks, NNquery to make a query vec-
tor, and NNkey to make key vectors, respectively. Specifically, the probability Pv of picking every
connection sites is calculated by:

Pv = softmax
v∈CVocab∪CGt\{vt}

(NNquery ([z,hGt ,hvt]) · NNkey(hv)) , (1)

where z is a latent vector as used in variational auto-encoder (VAE) (Kingma & Welling, 2013).
Using different z results in diverse molecules. During training, z is sampled from a posterior distri-
bution given by an encoder, while during inference, z is sampled from a prior distribution.

For inference, we make a constraint on the bond type of picked v by only considering the connection
sites whose adjacent edges have the same bond type as vt. This practice guarantees the validity of
the generated molecules. We also implement two generation modes, i.e., greedy mode that picks the
connection as argmaxPv , and distributional mode that samples the connection from Pv .

(4) Connect a new motif or cyclize. After the model picks a connection v, it turns into a connecting
phase or a cyclizing phase, depending on whether v ∈ CVocab or v ∈ CGt . If v ∈ CVocab, and suppose
that v ∈ CF∗ , then we connect F∗ with Gt by directly merging vt and v. Otherwise, when v ∈ CGt ,
we merge vt and v together to form a new ring, and thus the molecule cyclizes itself. Notice that,
allowing the picked connection site to come from the partial molecule is important, because with
this mechanism MiCaM theoretically can generate novel rings that are not in the motif vocabulary.

We repeat these steps untilQ is empty and thus there is no non-terminal connection site in the partial
molecule, which indicates that we have generated an entire molecule.

Starting As in the beginning (i.e., the 0th step), the partial graph is empty, we implement this step
exceptionally. Specifically, we use another neural network NNstart to pick up the first motif from the
vocabulary as G0. The probability PF∗ of picking every motifs is calculated by:

PF∗ = softmax
F∗∈Vocab

(NNstart(z) · NNkey(hF∗)) , hF∗ = GNNmotif(F∗). (2)

2.3 TRAINING MICAM

We train our model in a VAE (Kingma & Welling, 2013) paradigm.4 A standard VAE has an encoder
and a decoder. The encoder maps the input molecule G to its representation hG , and then builds a
posterior distribution of the latent vector z based on hG . The decoder takes z as input and tries to
reconstruct the G. VAE usually has a reconstruction loss term (between the original input G and the
reconstructed Ĝ) and a regularization term (to control the posterior distribution of z).

In our work, we use a GNN model GNNmol as the encoder to encode a molecule G and obtain its
representation hG = GNNmol(G). The latent vecotr z is then sampled from a posterior distribution
q(·|G) = N (µ(hG), exp(Σ(hG))), where µ and Σ output the mean and log variance, respectively.
How to use z is explained in Equation (1) and (2). The decoder consists of GNNpmol, GNNmotif,
NNquery, NNkey and NNstart that jointly work to generate molecules.

The overall training objective function is defined as:

EG∼D [L(G)] = EG∼D [Lrec(G) + βprior · Lprior(G) + βprop · Lprop(G)] . (3)

In Equation (3): (1)Lrec(G) is the reconstruction loss as that in a standard VAE. It uses cross entropy
loss to evaluate the likelihood of the reconstructed graph compared with the input G. (2) The loss

3During inference, the motif representations can be calculated offline to avoid additional computation time.
4MiCaM can be naturally paired with other paradigms such as GAN or RL, which we plan to explore in

future works.

5

Published as a conference paper at ICLR 2023

Lprior(G) = DKL(q(·|G)∥N (0, I)) is used to regularize the posterior distribution in the latent
space. (3) Following Maziarz et al. (2021), we add a property prediction loss Lprop(G) to ensure
the continuity of the latent space with respect to some simple molecule properties. Specifically, we
build another network NNprop to predict the properties from the latent vector z. (4) βprior and βprop

are hyperparameters to be determined according to validation performances.

Here we emphasize two useful details. (1) Since MiCaM is an iterative method, in the training
procedure, we need to determine the orders of motifs to be processed. The orders of the intermediate
motifs (i.e., t ≥ 1) are determined by the queue Q introduced in Section 2.2. The only remaining
item is the first motif, and we choose the motif with the largest number of atoms as the first one.
The intuition is that the largest motif mostly reflects the molecule’s properties. The generation order
is then determined according to Algorithm 2. (2) In the training procedure, we provide supervisions
for every individual generation steps. We implement the reconstruction loss Lrec(G) by viewing the
generation steps as parallel classification tasks. In practice, as the vocabulary size is large due to
various possible connections, Lrec(G) is costly to compute. To tackle this problem, we subsample
the vocabulary and modify Lrec(G) via contrastive learning (He et al., 2020). More details can be
found in Appendix A.4.

2.4 DISCUSSION AND RELATED WORK

Molecular Generation A plethora of existing generative models are available and they fall into
two categories: (1) string-based models (Kusner et al., 2017; Gómez-Bombarelli et al., 2018;
Sanchez-Lengeling & Aspuru-Guzik, 2018; Segler et al., 2018), which rely on string representa-
tions of molecules such as SMILES (Weininger, 1988) and do not utilize the structual information
of molecules, (2) and graph-based models (Liu et al., 2018; Guo et al., 2021) that are naturally based
on molecule graphs. Graph-based approaches mainly include models that generate molecular graphs
(1) atom-by-atom (Li et al., 2018; Mercado et al., 2021), and (2) fragment-by-fragment (Kong et al.,
2021; Maziarz et al., 2021; Zhang et al., 2021; Guo et al., 2021). This work is mainly related to
fragment-based methods.

Motif Mining Our motif mining algorithm is inspired by Byte Pair Encoding (BPE) (Gage, 1994),
which is widely adapted in natural language processing (NLP) to tokenize words into subwords (Sen-
nrich et al., 2015). Compared with BPE in NLP, molecules have much more complex structures due
to different connections and bond types, which we solve by building the merging graphs. Another
related class of algorithms are Frequent Subgraph Mining (FSM) algorithms (Kuramochi & Karypis,
2001; Jiang et al., 2013), which also aim to mine frequent motifs from graphs. However, these al-
gorithms do not provide a “tokenizer” to fragmentize an arbitrary molecule into disjoint fragments,
like what is done by BPE. Thus we cannot directly apply them in molecular generation tasks. Kong
et al. (2021) also try to mine motifs, but they do not incorporate the connection information into the
motif vocabulary and they apply a totally different generation procedure, which are important to the
performance (see Appendix B.3). See Appendix D for more discussions.

Motif Representation Different from many prior works that view motifs as discrete tokens, we
represent all the motifs in the motif vocabulary as graphs, and we apply the GNNmotif to obtain
the representations of motifs. This novel approach has three advantages. (1) The GNNmotif obtains
similar representations for similar motifs, which thus maintains the graph structure information of
the motifs (see Appendix C.3). (2) The GNNmotif, combined with contrastive learning, can handle
large size of motif vocabulary in training, which allows us to construct a large motif vocabulary
(see Section 2.3 and Apppendix A.4). (3) The model can be easily transferred to another motif
vocabulary. Thus we can jointly tune the motif vocabulary and the network parameters on a new
dataset, improving the capability of the model to fit new data (see Section 3.2).

3 EXPERIMENTS

3.1 DISTRIBUTIONAL LEARNING RESULTS

To demonstrate the effectiveness of MiCaM, we test it on the benchmarks from GuacaMol (Brown
et al., 2019), a commonly used evaluation framework to assess de novo molecular generation mod-

6

Published as a conference paper at ICLR 2023

Table 1: Distributional results on QM9, ZINC, and GuacaMol. The higher the better for all metrics.
The results of JT-VAE, GCPN and GP-VAE are from Kong et al. (2021). For MoLeR, we use the
released code from Maziarz et al. (2021) with no changes.

Dadaset Model Validity Uniqueness Novelty KL Div FCD

QM9

JT-VAE 1.0 0.549 0.386 0.891 0.588
GCPN 1.0 0.533 0.320 0.552 0.174

GP-VAE 1.0 0.673 0.523 0.921 0.659
MoLeR 1.0 0.940 0.355 0.969 0.931

MiCaM (Ours) 1.0 0.932 0.493 0.980 0.945

ZINC

JT-VAE 1.0 0.988 0.988 0.882 0.263
GCPN 1.0 0.982 0.982 0.456 0.003

GP-VAE 1.0 0.997 0.997 0.850 0.318
MoLeR 1.0 0.996 0.993 0.984 0.721

MiCaM (Ours) 1.0 0.998 0.997 0.988 0.791

GuacaMol MoLeR 1.0 1.000 0.991 0.964 0.625
MiCaM (Ours) 1.0 0.994 0.986 0.989 0.731

100 200 300 400 500 600 1000 2000 3000

Number of Merging Operations

0.90

0.92

0.94

0.96

0.98

K
L

D
iv

er
ge

n
ce

S
co

re
s MoLeR

GP-VAE
greedy

distributional

(a) KL Divergence

100 200 300 400 500 600 1000 2000 3000

Number of Merging Operations

0.90

0.91

0.92

0.93

0.94

F
C

D
S

co
re

s

MoLeR

greedy

distributional

(b) FCD

100 200 300 400 500 600 1000 2000 3000

Number of Merging Operations

0.35

0.40

0.45

0.50

0.55

0.60

0.65

N
ov

el
ty

MoLeR

GP-VAE

greedy

distributional

(c) Novelty

Figure 4: KL Divergence and FCD scores (higher is better) for different numbers of merging opera-
tions and different choices of generation modes.

els.5 We first consider the distribution learning benchmarks, which assess how well the models learn
to generate novel molecules that resemble the distribution of the training set.

Experimental Setup Following Brown et al. (2019), we consider five metrics for distribution
learning: validity, uniqueness, novelty, KL divergence (KL Div) and Fréchet ChemNet Distance
(FCD). The first three metrics measure if the model can generate chemically valid, unique, and
novel candidate molecules, while last two are designed to measure the distributional similarity be-
tween the generated molecules and the training set. For the KL Div benchmark, we compare the
probability distributions of a variety physicochemial descriptors. A higher KL Div score, i.e., lower
KL divergences for the descriptors, means that the generated molecules resemble the training set
in terms of these descriptors. The FCD is calculated from the hidden representations of molecules
in a neural network called ChemNet (Preuer et al., 2018), which can capture important chemiacal
and biological features of molecules. A higher FCD score, i.e., a lower Fréchet ChemNet Distance
means that the generated molecules have similar chemical and biological properties to those from
the training set.

We evaluate our method on three datasets: QM9 (Ruddigkeit et al., 2012), ZINC (Irwin et al., 2012),
and GuacaMol (a post-processed ChEMBL (Mendez et al., 2019) dataset proposed by Brown et al.
(2019)). These three datasets cover different molecule complexities and different data sizes. The
results across them demonstrate the capability of our model to handle different kinds of data.

5The code of MiCaM is available at https://github.com/MIRALab-USTC/AI4Sci-MiCaM.

7

https://github.com/MIRALab-USTC/AI4Sci-MiCaM

Published as a conference paper at ICLR 2023

Table 2: Goal directed generation results on five GuacaMol benchmarks. The higher the better for
all metrics. The results of other baselines are from Brown et al. (2019) and Ahn et al. (2020). The
benchmarks are: a. Celecoxib Rediscovery; b. Aripiprazole Similarity; c. C11H24 Isomers; d.
Ranolazine MPO; and e. Sitagliptin MPO.

Benchmark Dataset SMILES
GA

Graph
MCTS

Graph
GA

SMILES
LSTM MSO MiCaM

(Ours)

a. 0.505 0.732 0.355 1.000 1.000 1.000 1.000
b. 0.595 0.834 0.380 1.000 1.000 1.000 1.000
c. 0.684 0.829 0.410 0.971 0.993 0.997 0.999
d. 0.792 0.881 0.616 0.920 0.855 0.931 0.932
e. 0.509 0.689 0.458 0.891 0.545 0.868 0.914

Quantitative Results Table 1 presents our experimental results of distribution learning tasks. We
compare our model with several state-of-the-art models: JT-VAE (Jin et al., 2018), GCPN (You et al.,
2018), GP-VAE (Kong et al., 2021), and MoLeR (Maziarz et al., 2021). Since all the models are
graph-based, they obtain 100% validity by introducing chemical valence check during generation.
We can see that MiCaM achieves the best performances on the KL Divergence and FCD scores on
all the three datasets, which demonstrates that it can well resemble the distributions of training sets.
Meanwhile it keeps high uniqueness and novelty, comparable to previous best results. In this exper-
iment, we set the number of merging operations to be 1000 for QM9, due to the results in Figure 4.
For ZINC and GuacaMol, we simply set the number to be 500 and find that MiCaM has achieved
performances that outperform all the baselines. This indicates that existing methods tend to per-
form well on the sets of relatively simple molecules such as QM9, while MiCaM performs well on
datasets with variant complexity. We further visualize the distributions in Figure 7 of Appendix B.2.

Number of Merging Operations We conduct experiments on different choices of the number of
merging operations. Figure 4 presents the experimental results on QM9. It shows that FCD score
and KL Divergence score, which measure the similarity between the generated molecules and the
training set, increase as the number of merging operations grows. Meanwhile, the novelty decreases
as the number grows. Intuitively, the more merging operations we use for motif vocabulary con-
struction, the larger motifs will be contained in the vocabulary, and thus will induce more structural
information from the training set. We can achieve a trade-off between the similarity and novelty
by controlling the number of merging operations. Empirically, a medium number (about 500) of
operations is enough to achieve a high similarity.

Generation Modes We also compare two different generation modes, i.e., the greedy mode and
the distributional mode. With the greedy mode, the model always picks the motif or the connection
site with the highest probability. While the distributional mode allows picking motifs or connection
sites according to a distribution. The results show that the greedy mode leads to a little higher KL
Divergence and FCD scores, while the distributional mode leads to a higher novelty.

3.2 GOAL DIRECTED GENERATION RESULTS

We further demonstrate the capability of our model to generate molecules with wanted properties.
In such goal directed generation tasks, we aim to generate molecules that have high scores which
are predefined by rules.

Iteratively Tuning We combine MiCaM with iterative target augmentation (ITA) (Yang et al.,
2020) and generate optimized molecules by iteratively generating new molecules and tuning the
model on molecules with highest scores. Specifically, we first pick out N molecules with top scores
from the GuacaMol dataset and store them in a training buffer. Iteratively, we tune our model on the
training buffer and generate new molecules. In each iteration, we update the training buffer to store
the top N molecules that are either newly generated or from the training buffer in the last iteration.
In order to accelerate the model to explore the latent space, we pair MiCaM with Molecular Swarm
Optimization (MSO) (Winter et al., 2019) in each iteration to generate new molecules.

8

Published as a conference paper at ICLR 2023

(a) Generation trajectory

1 2 3 4 5 6

Generation Step

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Sim

logP

TPSA

Num Fs

Mean

(b) Scores of each properties

Figure 5: A generation trajectory for Ranolazine MPO benchmark. In each generation step, the
query connection is marked in red, and the newly added motif is marked in yellow.

A novelty of our approach is that when tuning on a new dataset, we jointly update the motif vo-
cabulary and the network parameters. We can do this because we apply a GNNmotif to obtain motif
representations, which can be transferred to a newly built motif vocabulary. The representations of
the new motifs are calculated by GNNmotif, and we then optimize the network parameters using both
new data and newly constructed motif vocabulary.

Experimental Setup We test MiCaM on several goal directed generation tasks from GuacaMol
benchmarks. Specifically, we consider four different categories of tasks: a Rediscovery task (Cele-
coxib Rediscovery), a Similarity task (Aripiprazole Similarity), an Isomers task (C11H24 Isomers),
and two multi-property objective (MPO) tasks (Ranolazine MPO and Sitagliptin MPO). We compare
MiCaM with several strong baselines.

Quantitative Results For each benchmark, we run 7 iterations. In each iteration, we apply MSO
to generate 80, 000 molecules, and store 10, 000 molecules with highest scores in the training buffer
to tune MiCaM. We tune the model pretrained on the GuacaMol dataset and Table 2 presents the
results. MiCaM achieves 1.0 scores on some relatively easy benchmarks. It achieves high scores on
several difficult benchmarks such MPO tasks, outperforming the baselines.

Case Studies There are some domain-specific motifs that are beneficial to the target properties
in different goal directed generation tasks, which are likely to be the pharmacophores in drug
molecules. We conduct case studies to demonstrate the ability of MiCaM to mine such favorable
motifs for domain-specific tasks.

In Figure 5 we present cases for the Ranolazine MPO benchmark, which tries to discover molecules
similar to Ranolazine, a known drug molecule, but with additional requirements on some other prop-
erties. This benchmark calculates the geometric mean of four scores: Sim (the similarity between
the molecule and Ranolazine), logP, TPSA, and Num Fs (the number of fluorine atoms). We present
a generation trajectory as well as the scores in each generation step. Due to the domain-specific
motif vocabulary and the connection query mechanism, it requires only a few steps to generate such
a complex molecule. Moreover, we can see that the scores increase as some key motifs are added to
the molecule, which implies that the picked motifs are relevant to the target properties. See Figure 8
in Appendix B.4 for more case studies.

4 CONCLUSION

In this work, we proposed MiCaM, a novel model that generates molecules based on mined
connection-aware motifs. Specifically, the contributions include (1) a data-driven algorithm to mine
motifs by iteratively merging most frequent subgraph patterns and (2) a connection-aware generator
for de novo molecular generation. It achieve state-of-the-art results on distribution learning tasks
and on three different datasets. Combined with iterative target augmentation, it can learn domain-
specific motifs related to some properties and performs well on goal directed benchmarks.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

The authors would like to thank all the anonymous reviewers for their insightful comments. This
work was supported in part by National Nature Science Foundations of China grants U19B2026,
U19B2044, 61836011, 62021001, and 61836006, and the Fundamental Research Funds for the
Central Universities grant WK3490000004.

REFERENCES

Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration. Advances in neural information processing systems, 33:12008–12021,
2020.

Camille Bilodeau, Wengong Jin, Tommi Jaakkola, Regina Barzilay, and Klavs F Jensen. Gener-
ative models for molecular discovery: Recent advances and challenges. Wiley Interdisciplinary
Reviews: Computational Molecular Science, pp. e1608, 2022.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Binghong Chen, Tianzhe Wang, Chengtao Li, Hanjun Dai, and Le Song. Molecule optimization by
explainable evolution. In International Conference on Learning Representation (ICLR), 2021.

Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compil-
ing and using’drug-like’chemical fragment spaces. ChemMedChem: Chemistry Enabling Drug
Discovery, 3(10):1503–1507, 2008.

Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, 1994.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.

Minghao Guo, Veronika Thost, Beichen Li, Payel Das, Jie Chen, and Wojciech Matusik. Data-
efficient graph grammar learning for molecular generation. In International Conference on Learn-
ing Representations, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott. Principles of early drug
discovery. British journal of pharmacology, 162(6):1239–1249, 2011.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling, 52
(7):1757–1768, 2012.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for
the exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph mining algorithms.
The Knowledge Engineering Review, 28(1):75–105, 2013.

10

Published as a conference paper at ICLR 2023

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International Conference on Machine Learning, pp. 4839–4848.
PMLR, 2020a.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures. In International conference on machine learning, pp. 4849–4859.
PMLR, 2020b.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Xiangzhe Kong, Zhixing Tan, and Yang Liu. Graphpiece: Efficiently generating high-quality molec-
ular graph with substructures. arXiv preprint arXiv:2106.15098, 2021.

Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In Proceedings 2001
IEEE international conference on data mining, pp. 313–320. IEEE, 2001.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoen-
coder. In International conference on machine learning, pp. 1945–1954. PMLR, 2017.

Greg Landrum et al. Rdkit: Open-source cheminformatics, 2006.

Xiao Qing Lewell, Duncan B Judd, Stephen P Watson, and Michael M Hann. Recap retrosynthetic
combinatorial analysis procedure: a powerful new technique for identifying privileged molecular
fragments with useful applications in combinatorial chemistry. Journal of chemical information
and computer sciences, 38(3):511–522, 1998.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional
graph generative model. Journal of cheminformatics, 10(1):1–24, 2018.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph varia-
tional autoencoders for molecule design. Advances in neural information processing systems, 31,
2018.

Krzysztof Maziarz, Henry Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schneider,
Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molecular scaffolds
with structural motifs. arXiv preprint arXiv:2103.03864, 2021.

David Mendez, Anna Gaulton, A Patrı́cia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
Marı́a Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał Nowotka, et al. Chembl:
towards direct deposition of bioassay data. Nucleic acids research, 47(D1):D930–D940, 2019.

Rocı́o Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2(2):025023, 2021.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. Journal
of chemical information and modeling, 58(9):1736–1741, 2018.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical informa-
tion and modeling, 50(5):742–754, 2010.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design using machine
learning: Generative models for matter engineering. Science, 361(6400):360–365, 2018.

11

Published as a conference paper at ICLR 2023

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):
120–131, 2018.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909, 2015.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Robin Winter, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, and Djork-Arné Clev-
ert. Efficient multi-objective molecular optimization in a continuous latent space. Chemical
science, 10(34):8016–8024, 2019.

Kevin Yang, Wengong Jin, Kyle Swanson, Regina Barzilay, and Tommi Jaakkola. Improving molec-
ular design by stochastic iterative target augmentation. In International Conference on Machine
Learning, pp. 10716–10726. PMLR, 2020.

Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead discov-
ery with explorative rl and fragment-based molecule generation. Advances in Neural Information
Processing Systems, 34:7924–7936, 2021.

Naruki Yoshikawa, Kei Terayama, Masato Sumita, Teruki Homma, Kenta Oono, and Koji Tsuda.
Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters,
47(11):1431–1434, 2018.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in neural information processing
systems, 31, 2018.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
supervised learning for molecular property prediction. Advances in Neural Information Process-
ing Systems, 34:15870–15882, 2021.

12

Published as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

A.1 MOTIF MINING ALGORITHM

Algorithm 1: Connection-awared Motif Mining
Input: A set of molecule graphs D = {G1,G2, · · · ,G|D|}, the number K of iterations.
Output: The merging operations {M(k)}k−1

k=0 and the motif vocabulary Vocab = {F∗}.
1 D(0)

M ← {}; // Merging-operation learning phase
2 for G(V, E) ∈ D do
3 G(0)M (V(0)

M , E(0)M)← G(V, E);
4 D(0)

M ← D(0)
M ∪ {G

(0)
M };

5 for k = 0 to K − 1 do
6 Reset Count() to 0;
7 for G(k)M (V(k)

M , E(k)M) ∈ D(k)
M do

8 for (Fi,Fj) ∈ E(k)M do
9 M← Fi ⊕Fj ;

10 Count(M)← Count(M) + 1;
11 M(k) ← argmaxCount(M);
12 D(k+1)

M ← {};
13 for G(k)M (V(k)

M , E(k)M) ∈ D(k)
M do

14 G(k+1)
M (V(k+1)

M , E(k+1)
M)← G(k)M (V(k)

M , E(k)M);
15 for (Fi,Fj) ∈ E(k)M do
16 if (Fi,Fj) ∈ E(k+1)

M &&Fi ⊕Fj ==M(k) then
17 Merge Fi and Fj in G(k+1)

M ;
18 D(k+1)

M ← D(k+1)
M ∪ {G(k+1)

M };
19 Vocab← {}; // Motif-vocabulary construction phase
20 for G(V, E) ∈ D do
21 G(0)M (V(0)

M , E(0)M)← G(V, E);
22 for k = 0 to K − 1 do
23 G(k+1)

M (V(k+1)
M , E(k+1)

M)← G(k)M (V(k)
M , E(k)M);

24 for (Fi,Fj) ∈ E(k)M do
25 if (Fi,Fj) ∈ E(k+1)

M &&Fi ⊕ Fj ==M(k) then
26 Merge Fi and Fj in G(k+1)

M ;
27 Vocab← Vocab ∪ {F∗ for F ∈ V(K)

M };

Our connection-aware motif mining algorithm is in Algorithm 1. In the merging graph
GM (VM , EM), each node F ∈ VM represents a fragment F(V̂, Ê) of the molecule graph G(V, E),
where V̂ ⊂ V and Ê ⊂ E are atoms and bonds in F , respectively. The edge set EM is defined by: for
any two fragments Fi(Vi, Ei), Fj(Vj , Ej) ∈ VM , (Fi,Fj) ∈ EM ⇐⇒ ∃a ∈ Vi, b ∈ Vj , (a, b) ∈ E .
The merging operation “⊕” is defined to create Fij(Vij , Eij) = Fi ⊕Fj by merging two fragments
Fi(Vi, Ei) and Fj(Vj , Ej). Formally,

Vij = Vi ∪ Vj , Eij = Ei ∪ Ej ∪ {(a, b) ∈ E|a ∈ Vi, b ∈ Vj},
which means the new fragment Fij contains all nodes and edges from Fi, Fj and the edges between
them. Notice that when we traverse the edges of graphs, we always follow the orders determined
by RDKit. In the motif-vocabulary construction phase, we disconnect bonds between different frag-
ments and add “*” atoms to create connection-aware motifs. Specifically, for each F(V̂, Ê) ∈ VM ,
we define its corresponding connection-aware motif F∗(V̂∗, Ê∗) as

V̂∗ = V̂ ∪ {a∗|a ∈ V,∃b ∈ V̂, (a, b) ∈ E},
Ê∗ = {(a, b) ∈ E|a ∈ V̂∗, b ∈ V̂∗},

13

Published as a conference paper at ICLR 2023

where “a∗” denotes that we change the label of the atom a to “∗”. The symbol “∗” can be seen as
a dummy atom or a connection site, which indicates that the bond is non-terminal and we will grow
the molecule here.

Efficiency Figure 6 presents the time costs of learning operations from QM9, which demonstrates
that our algorithm is fast, and the time cost of each iteration decreases rapidly as the motif frequency
decreases.

0 1000 2000 3000

Iteration

2

4

6

8

10

M
in

u
te

s

(a) Accumulative time costs

0 100 200 300 400 500

Iteration

10−3

10−2

10−1

100

M
in

u
te

s

(b) Time costs of each iteration

0 100 200 300 400 500

Iteration

102

103

104

105

106

F
re

q
u

en
cy

(c) Frequencies

Figure 6: Time costs of learning merging operations on QM9. (a) and (b) show the accumulative
time costs and time costs of each iteration, respectively. (c) shows the frequencies of the learnt
merging operations.

Sequential Merging Operations The merging operations are useful as they work as a “tokenizer”
that can be applied to fragmentize an arbitrary molecule, which is unavailable for other methods
like Frequent Subgraph Mining. Another choice of using the merging operations is not applying
them sequentially, but traversing the molecule edges to find if there are patterns that appear in the
learnt frequent motifs. However, this is sub-optimal as it does not work reasonably on any arbitrary
molecule outside the dataset to learn the operations. For example, consider a trivial dataset D =
{CC, CN, CNN, CN=O, CC=O}. When we run two iterations, the learnt merging operations are
{CN, CC}. Then we use them to fragmentize a new molecule “CCN”. If we apply the merging
operations sequentially, the molecule will be decomposed into {C, CN}. However, if we traverse
the molecule edges to find the patterns, the molecule will be decomposed into {CC, N}, which is
sub-optimal because “CN” appears with a higher frequency in the dataset.

A.2 GENERATING PROCEDURE

Algorithm 2 presents the pseudo code of our generation procedure. For ease of reference, let CG
denote the connection sites from a graph G (either a partial molecule or a motif), and let CVocab =
∪F∗∈VocabCF∗ be the set of all connection sites from the motif vocabulary.

A.3 NETWORKS

The backbone of MiCaM is VAE. The encoder is GNNmol, followed by three MLPs: µ and Σ for
resampling, and NNprop for property prediction. The decoder consists of GNNpmol, GNNmotif, which
are GNNs, and NNstart, NNquery, NNkey, which are MLPs. All MLPs have 3 layers and use ReLU as
the activation function. The latent size and the hidden size are both 256.

We employ GINE (Hu et al., 2019) as the GNN structures, and in each GNN layer we employ a 3-
layer MLP for messaage aggregation. For all GNNs, we use five atom-level features as inputs: atom
symbol, is aromatic, formal charge, num explicit Hs, num implicit Hs. The features are embedded
with the dimension 192, 16, 16, 16, 16, respectively, and thus the node embedding size is 256. Four
edges, we consider four types of bonds (single bonds, double bonds, triple bonds and aromatic
bond), and the embedding size is 256. GNNmol and GNNpmol have 15 layers and GNNmotif has 6
layers. You can see our released code for more details.

14

Published as a conference paper at ICLR 2023

Algorithm 2: Generating a molecule
Input: A connection-aware motif vocabulary Vocab = {F∗}. A latent vector z.
Output: A molecule graph G.

1 CVocab ←
⋃

F∗∈Vocab CF∗ ;
2 Calculate PF∗ by Equation 2 and sample F∗ ∼ PF∗ ;
3 G ← F∗, Q ← ∅; // Pick the starting motif
4 for v ∈ CF∗ do
5 Q.put(v);
6 while Q ≠ ∅ do // Connection querying step
7 vt ← Q.get();
8 C ← CVocab ∪ CG \ {vt};
9 Calculate Pv over C by Equation 1 and sample v ∼ Pv;

10 if v ∈ CVocab and v in F∗ ∈ Vocab then
11 G ← G.AddMotif(F∗); // Connecting a new motif
12 G ← G.Merge(vt, v);
13 for v′ ∈ CF∗ \ {v} do
14 Q.put(v′);
15 else
16 Assert v ∈ CG \ {vt};
17 G ← G.Merge(vt, v); // Cyclizing itself
18 Q ← Q \ {v}

A.4 EXPERIMENT DETAILS

Learning Merging Operations For QM9, we apply 1000 merging operations due to the compara-
tive results in 4. For ZINC and GuacaMol, we simply use 500 merging operations without elaborate
searching, and find that it has achieved good results. Due to the large size of GuacaMol dataset,
we randomly sample 100, 000 molecules from it to learn merging operations, and then apply these
merging operations on all molecules to obtain the motif vocabulary.

Training MiCaM We preprocess all the molecules to provide supervision signals for decoder to
rebuild the molecules. We provide the true indices of picked connections in every steps so that the
model can learn the ground truth. In each optimization step, we update the network parameters by
optimizing the loss function on a batch B of molecules:

LB = EG∼B [βprior · Lprior(G) + Lrec(G) + βprop · Lprop(G)] .

Specifically, the reconstruction loss Lrec is written as a sum over the negative log probabilities of
the partial graphs Gt at each step t, conditioned on z and the last steps:

Lrec(G) = −Ez∼q(·|G)

[
log p(G0|z) +

∑
t

log p(Gt+1|z,Gt)
]

= −Ez∼q(·|G)

[
log p(F∗

0 |z) +
∑
t

log p(ut|z,Gt, vt)
]
,

where F∗
0 , vt and ut are the first motif, the focused query connection site and the picked connec-

tion at the tth step, respectively. In practice, since the motif vocabulary is large due to different
connections, we modify the loss via contrastive learning for efficient training:

log p(F∗
0 |z)← log

exp(NNstart(z) · NNkey(hF∗
0
))∑

F∗∈IF∗ exp(NNstart(z) · NNkey(hF∗))
,

log p(ut|z,Gt, vt)← log
exp(NNquery([z,hGt

,hvt]) · NNkey(hut
))∑

v∈Iv
exp(NNquery([z,hGt

,hvt]) · NNkey(hv))
,

where IF∗ and Iv are the sets of motifs and connections, respectively, containing a positive sample
and negative samples from the batch B.

15

Published as a conference paper at ICLR 2023

We find that a proper choice of βprior is essentially important to the performances on distribution
learning benchmarks, especially for FCD scores. For QM9, we use a short warm-up (3, 000 steps),
and use a long sigmoid schedule (400, 000 steps) (Bowman et al., 2015) to let βprior to reach 0.4.

For property prediction, we predict four simple properties of molecules, including molecular weight,
synthetic accessibility (SA) score, octanol-water partition coefficient (logP) and quantitative esti-
mate of drug-likeness (QED). The target values are computed using the RDKit library. Empirically,
for distribution learning benchmarks, a small βprop (about 0.3) is beneficial.

A.5 VALIDITY CHECK

We conduct a validity check during generation to avoid the model generating invalid aromatic rings
(e.g., merging two “*:c:c:c:c:*”s into “c1ccccccc1”). Specifically, when the model tries to generate
such an invalid aromatic ring, we simply remove the aromaticity of this ring so that the molecule
is still valid (e.g., “c1ccccccc1” will be replaced with “C1CCCCCCC1”). Without this chemical
validity check, the validity rates on QM9, ZINC, and GuacaMol are 99.68%, 98.6%, and 98.28%,
respectively. The high validity rates indicate that MiCaM learns to generate valid aromatic rings.

B ADDITIONAL RESULTS

B.1 EFFICIENCY

Thanks to the mined motifs and the connection-aware decoder, MiCaM is very efficient. We measure
the training and sampling speed on a single GeForce RTX 3090. For training, it trains on 325.7
molecules per second. For inference, it generates 54.4 molecules per second.

B.2 DISTRIBUTION VISUALIZATION

−100 −75 −50 −25 0 25 50 75 100
−100

−75

−50

−25

0

25

50

75

100

QM9 ref

ZINK ref

GuacaMol ref

(a) Training sets
−100 −75 −50 −25 0 25 50 75 100

−100

−75

−50

−25

0

25

50

75

100

QM9 ref

QM9 gen

(b) Results on QM9
−100 −75 −50 −25 0 25 50 75 100

−100

−75

−50

−25

0

25

50

75

100

ZINK ref

ZINK gen

(c) Results on ZINC
−100 −75 −50 −25 0 25 50 75 100

−100

−75

−50

−25

0

25

50

75

100

GuacaMol ref

GuacaMol gen

(d) Results on GuacaMol

Figure 7: Visualization of the probability distributions of training sets (QM9, ZINC and GuacaMol)
and the generated molecules. The postfix “ ref” means reference, i.e., the training sets (shown in
green, blue and red, respectively), and the postfix “ gen” means the sets of molecules generated
by our model (shown in grey). We obtain the representations of molecules by calculating their
molecular fingerprints, and we then apply t-SNE dimensionality reduction for visualization. The
curves represent the contour lines of the probability distributions of the datasets. (a) shows the
distributional shift over the three training sets. (b), (c) and (d) demonstrate that our generative
model can properly fit the different distributions respectively.

We visualize the distributional results on the three datasets in Figure 7. Specifically, we first cal-
culate the Morgan fingerprints of all molecules. Morgan fingerprint has been used for a long time
in drug discovery, as it can represents the structual information of molecules (Rogers & Hahn,
2010). For visualization, we apply the t-distributed stochastic neighbor embedding (t-SNE) algo-
rithm (Van der Maaten & Hinton, 2008)—a nonlinear dimensionality reduction technique to keep
the similar high-dimensional vectors close in lower-dimensional space—to represent molecules in
the two-dimensional plane, and then plot the distributions of molecules.

16

Published as a conference paper at ICLR 2023

B.3 ABLATION STUDY

Trade-off Among Metrics As KL Divergence and FCD negatively correlate with Uniqueness and
Novelty, there is a trade-off among the metrics in distribution learning tasks. We can achieve this
trade-off via some hyperparameters. For example, on QM9, if we conduct 500 merging operations,
and use distributional mode (sampling from top 5 choices) for sampling, MiCaM achieves higher
uniqueness and novelty and outperforms MoLeR in terms of all the metrics. The results are in
Table 3.

Table 3: MiCaM can achieve a trade-off among the distribution learning metrics. With 1000 merging
operations and greedy mode, MiCaM significantly outperforms MoLeR in terms of KL Divergence
and FCD. While with 500 merging operations and distribution mode, MiCaM outperforms MoLeR
in terms of all the metrics.

Model Validity Uniqueness Novelty KL Div FCD
MoLeR 1.0 0.940 0.355 0.969 0.931

MiCaM-100-greedy 1.0 0.932 0.493 0.980 0.945
MiCaM-500-distr 1.0 0.941 0.495 0.978 0.940

Motif Vocabulary We conduct two more experiments on QM9 to verify the effect of the motif vo-
cabulary. Specifically, we use the generation procedure of MiCaM, but replace the motif vocabulary
with the vocabularies in MoLeR (Maziarz et al., 2021) and MGSSL (Zhang et al., 2021), respec-
tively. For a fair comparison, we preserve the connection information (i.e., the “*”s) in the two new
vocabularies. We name the two models MiCaM-moler and MiCaM-brics, respectively, as MGSSL
applies BRICS (Degen et al., 2008) with further decomposition. The results are in Table 4.

Table 4: Ablation studies on different motif vocabularies on QM9.
Model Validity Uniqueness Novelty KL Div FCD

MiCaM-moler 1.0 0.926 0.468 0.973 0.934
MiCaM-brics 1.0 0.927 0.485 0.978 0.938

MiCaM 1.0 0.932 0.493 0.980 0.945

Generating Procedure Besides the molecule fragmentation strategy, two components contribute
to the performance of MiCaM. First is the connection information preserved in the motif vocabulary
and corresponding connection-aware decoder. Second is the GNNmotif, which captures the graph
structures of motifs, and allows efficient training on a large motif vocabulary via contrastive learning.
We conduct ablation studies to demonstrate the importance of the two components. Specifically, we
implement three different versions of MiCaM. MiCaM-v1 does not apply NNmotif and does not use
connection information for generation. In each step, it first picks up the motif (without connection
information) by viewing them as discrete tokens, and then determines the connecting points and
bonds. MiCaM-v2 employs the NNmotif to pick up motifs, but does not directly query the connection
sites. The results demonstrate that leveraging connection information and employing the GNNmotif
actually bring performance improvements.

Table 5: Ablation studies on different versions of MiCaM. The results are from a set of 100, 000
molecules randomly sampled from GuacaMol.

Model Validity Uniqueness Novelty KL Div FCD
MiCaM-v1 1.0 1.000 0.993 0.926 0.685
MiCaM-v2 1.0 0.989 0.989 0.965 0.617

MiCaM 1.0 0.998 0.995 0.957 0.754

17

Published as a conference paper at ICLR 2023

Iter 1:

Iter 3:

score=0.868

Iter 5:

score=1.000score=0.750score=0.663

score=0.750score=0.364score=0.299

score=0.628score=0.364score=0.220score=0.156 score=0.753

Figure 8: Generation trajectories for Celecoxib Rediscovery. We show the trajectories of the best
molecules in three different iterations. In each generation step, the query connection is marked in
red, and the newly added motif is marked in yellow.

B.4 CASE STUDIES

Figure 8 presents cases for the Celecoxib Rediscovery task, which aims to discover molecules similar
to Celecoxid, a known drug molecule. Specifically, we present the trajectories to generate molecules
with the highest scores in the 1st, 3rd and 5th iterations. As the number of iteration increases, the
motifs learnt by MiCaM tend to be more specific and more adaptive to the target, leading to the
model to generate molecules with higher scores while costing fewer generation steps.

B.5 GENERATED MOLECULES

Some examples of the generated molecules are in Figure 9. For further comparison, we visualize
the probability distributions of GuacaMol, the molecules generated by MiCaM and MoLeR, respec-
tively, in Figure 10. We can see that MiCaM fits the reference distribution better than MoLeR.
Moreover, from the visualization, we find that the outermost contour line of MiCaM covers more
area than MoLeR and fits that of the reference data better. This indicates that some reasonable
chemical spaces are explored more by MiCaM than MoLeR. We then find that such cases include
molecules with large rings or complex ring systems. See Figure 11 for some concrete examples.

18

Published as a conference paper at ICLR 2023

Figure 9: Samples from molecules randomly generated by a MiCaM model, trained on GuacaMol.

−100 −75 −50 −25 0 25 50 75 100
−100

−75

−50

−25

0

25

50

75

100

GuacaMol ref

MiCaM gen

(a) Results of MiCaM
−100 −75 −50 −25 0 25 50 75 100

−100

−75

−50

−25

0

25

50

75

100

GuacaMol ref

MoLeR gen

(b) Results of MoLeR
−100 −75 −50 −25 0 25 50 75 100

−100

−75

−50

−25

0

25

50

75

100

MiCaM gen

MoLeR gen

(c) Comparison

Figure 10: Visualization of the distributions of the molecule sets. We obtain the representations
of molecules by calculating their molecular fingerprints, and we then apply t-SNE dimensionality
reduction for visualization. (a) and (b) visualize the contour lines of the probability distributions
of the molecule sets. Red represents the GucaMol datasets, while gray represents the generated
molecules. (c) shows the samples from MiCaM and MoLeR in orange and blue, respectively. Each
point represents a molecule.

Figure 11: Molecules with large rings or complex ring systems generated by MiCaM, which are not
likely from MoLeR.

19

Published as a conference paper at ICLR 2023

C MOTIF VOCABULARY

C.1 MERGING OPERATIONS

We present the learnt merging operations from QM9 and GuacaMol in Figure 12. The merging
operations can efficiently merge molecules into a few disjoint units. For statistics, each molecule
in GuacaMol has 27.899 atoms on average. After applying 500 merging operations, each of they
is represented as only 8.499 subgraphs on average. After applying 1000 merging operations, the
number is 8.282. As a comparison, MoLeR decomposes each molecule into 9.667 fragments on
average, when taking 4096 as the vocabulary size.

(a) Learnt merging operations for QM9.

(b) Learnt merging operations for GuacaMol.

Figure 12: Merging operations. Note that instead of kekulizing all molecules, we maintain the
aromaticity of atoms and bonds. Therefore some of the patters seem half-baked.

20

Published as a conference paper at ICLR 2023

C.2 MINED MOTIFS

Our algorithm is able to mine common graph motifs with high frequency in a large number of
molecules, including some motifs with complex structures and domain specific motifs. We present
some mined motifs in Figure C.2.

(a) Mined motifs for QM9.

(b) Mined motifs for GuacaMol.

(c) Mind motifs in the last iteration for Ranolazine MPO benchmark.

Figure 13: Some mined motifs.

C.3 MOTIF REPRESENTATIONS

Since we apply GNNmotif to encode motif representations, instead of viewing motifs as discrete
tokens, the learnt motif representations can maintain structural information in the sense that sim-
ilar motifs have close representations. To show this, we visualize some motif representations in
Figure 14.

21

Published as a conference paper at ICLR 2023

−15 −10 −5 0 5 10 15

−20

−10

0

10

20

Oc1ccccc1

Cc1ccccc1

CCNC

Cc1ccnn1

c1ccc2ncccc2c1

Figure 14: The t-SNE visualization of Motif representations. Each color represents a collection of
motifs with a common structure but different connections. Each point represents a motif.

D DISCUSSION AND RELATED WORK

Motif Vocabulary Construction Many previous works explored motif construction methods. JT-
VAE (Jin et al., 2018) decomposes molecules into rings, chemical bonds, and individual atoms.
HierVAE (Jin et al., 2020a) and MoLeR (Maziarz et al., 2021) decompose molecules into ring sys-
tems and acyclic linkers or functional groups. MGSSL (Zhang et al., 2021) first uses BRICS (Degen
et al., 2008), which is built upon chemical rules, to split molecules into fragments. After that, it
manually designs another two rules to further decompose the molecules into rings and chains. Some
molecule fragmentation tools such as BRICS and RECAP (Lewell et al., 1998) are also well de-
veloped, though outside the ML community. However, as the motif vocabulary obtained by those
methods is large and long-tail, the combination of the methods with ML models is nontrivial. The
aforementioned methods are mainly based upon pre-defined rules and templates. Guo et al. (2021)
proposed DEG, which learns graph grammars to generate molecules and is similar to motif-based
methods. However, as DEG applies REINFORCE and MCTS to search grammars, the learned gram-
mars are only for specific metrics, and DEG cannot mine motifs from large datasets. MiCaM mines
the most frequent motifs directly from the dataset. The built motif vocabulary is promising to be
used in more tasks such as large-scale pre-training, which we leave as future works.

Goal Directed Generation Many frameworks have been developed for goal-directed generation
tasks, including iterative methods such as ITA (Yang et al., 2020), genetic methods such as SMILES
GA (Yoshikawa et al., 2018) and Graph GA (Jensen, 2019), and latent space optimization meth-
ods such as MSO (Winter et al., 2019). RationaleRL (Jin et al., 2020b) proposes to extract ratio-
nales from a collection of molecules, and then learns to expand the rationales into full molecules.
MolEvol (Chen et al., 2021) then proposes a novel EM-like evolution-by-explanation algorithm bsed
on rationales. Such frameworks designed for goal-directed learning tasks can be naturally combined
with our proposed generative procedure, which we leave as future works.

22

	Introduction
	Our Approach
	Connection-aware Molecular Motif Mining
	Molecular Generation with Connection-aware Motifs
	Training MiCaM
	Discussion and Related Work

	Experiments
	Distributional Learning Results
	Goal Directed Generation Results

	Conclusion
	Implementation Details
	Motif Mining Algorithm
	Generating Procedure
	Networks
	Experiment Details
	Validity Check

	Additional Results
	Efficiency
	Distribution Visualization
	Ablation Study
	Case Studies
	Generated Molecules

	Motif Vocabulary
	Merging Operations
	Mined Motifs
	Motif Representations

	Discussion and Related Work

