
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Uncovering RL Integration in SSL Loss:
Objective-Specific Implications for Data-Efficient RL

Anonymous authors
Paper under double-blind review

Keywords: Data Efficient RL, Self Predictive RL, Self Supervised Learning

Summary
This paper presents a systematic analysis of the role of self-supervised learning (SSL) ob-

jectives and their modifications in data-efficient reinforcement learning. We investigate pre-
viously undocumented modifications in the Self-Predictive Representations (SPR) (Schwarzer
et al., 2020) framework that significantly impact agent performance. We demonstrate that fea-
ture decorrelation-based SSL objectives can achieve comparable performance without relying
on domain-specific modifications, and show that the impact of these modifications persists even
in more advanced models.

By conducting extensive experiments on the Atari 100k benchmark and DeepMind Con-
trol Suite, we provide insights into how different SSL objectives and their modifications af-
fect learning efficiency across diverse environments. Our findings reveal that the choice and
adaptation of SSL objectives play a crucial role in achieving data efficiency in self-predictive
reinforcement learning, with implications for the design of future algorithms in this space.

Contribution(s)
1. We demonstrate that previously undocumented SSL modifications in SPR (Schwarzer et al.,

2020) - terminal state masking and prioritized replay weighting - are crucial for perfor-
mance, with their removal leading to an 18% decrease in IQM score on Atari 100k
Context: These modifications were silently adopted by subsequent work (D’Oro et al.,
2023; Nikishin et al., 2022; Schwarzer et al., 2023) and their impact was not previously
analyzed

2. We show that the Barlow Twins SSL objective (Zbontar et al., 2021) can come within 5%
of SPR’s performance without using domain-specific modifications, and VICReg (Bardes
et al., 2021) can match PlayVirtual’s (Yu et al., 2021) performance in continuous control
tasks.
Context: Prior work on SSL in reinforcement learning relied heavily on problem-specific
modifications to achieve strong performance (Schwarzer et al., 2020; D’Oro et al., 2023;
Schwarzer et al., 2023).

3. We establish that the impact of SSL modifications remains proportionally consistent in more
sophisticated models, with unmodified versions of SR-SPR and BBF showing similar rela-
tive performance degradation despite having base IQM scores 3x and 2x higher than SPR
respectively.
Context: Previous work on SR-SPR (D’Oro et al., 2023; Nikishin et al., 2022) and
BBF (Schwarzer et al., 2023) did not investigate the role of these modifications in their
improved performance.

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Uncovering RL Integration in SSL Loss: Objective-
Specific Implications for Data-Efficient RL

Anonymous authors
Paper under double-blind review

Abstract

In this study, we investigate the effect of SSL objective modifications within the SPR1
framework, focusing on specific adjustments such as terminal state masking and pri-2
oritized replay weighting, which were not explicitly addressed in the original design.3
While these modifications are specific to RL, they are not universally applicable across4
all RL algorithms. Therefore, we aim to assess their impact on performance and ex-5
plore other SSL objectives that do not accommodate these adjustments like Barlow6
Twins and VICReg. We evaluate six SPR variants on the Atari 100k benchmark, in-7
cluding versions both with and without these modifications. Additionally, we test the8
performance of these objectives on the DeepMind Control Suite, where such modifi-9
cations are absent. Our findings reveal that incorporating specific SSL modifications10
within SPR significantly enhances performance, and this influence extends to subse-11
quent frameworks like SR-SPR and BBF, highlighting the critical importance of SSL12
objective selection and related adaptations in achieving data efficiency in self-predictive13
reinforcement learning.14

1 Introduction15

Self-supervised learning (SSL) has become increasingly popular in data-efficient reinforcement16
learning (RL) due to its benefits in enhancing both efficiency and performance (Schwarzer et al.,17
2023; Ye et al., 2021; Hafner et al., 2023; Srinivas et al., 2020; Tomar et al., 2021; Li et al., 2023;18
Cagatan & Akgun, 2023). However, the application of SSL methods is often problem/domain-19
specific to maximize the performance of the RL agents. Although this approach is rational given the20
nature of these methods, it raises questions about generalization and transferability.21

One of the key challenges in Deep RL is understanding the factors driving performance improve-22
ments, whether through hyperparameter tuning or novel algorithmic approaches (Obando-Ceron23
et al., 2024). The lack of transparency in hyperparameter selection often causes issues while algo-24
rithmic innovations are usually well-documented. However, our study of different SSL objectives25
within the Self-Predictive Representations (SPR) framework (Schwarzer et al., 2020) revealed that26
the SSL loss used in SPR differs from what is described in the original publication and its following27
works (Nikishin et al., 2022; D’Oro et al., 2023; Schwarzer et al., 2023) built upon it. This moti-28
vated us to investigate the effects of the undocumented modifications and further evaluate additional29
SSL objectives.30

Unlike conventional SSL methods in RL, which often follow vision pretraining approaches (Chen31
et al., 2020) and directly combine SSL and RL losses (Srinivas et al., 2020), SPR modifies the SSL32
loss before integrating it with the RL objective. To further clarify, SPR employs the BYOL/SimSiam33
(Grill et al., 2020; Chen & He, 2020) auxiliary objective and incorporates two algorithm-specific34
adjustments to the SSL objective: (i) masking SSL loss with a boolean non-terminal state matrix35
and (ii) applying prioritized replay weighting to the batch loss. Consequently, this poses an essential36
question: How do these modifications affect the base performance of SSL objectives in the RL agent,37

1

Under review for RLC 2025, to be published in RLJ 2025

and can they be effectively applied to other SSL techniques in the RL domain? In addition, could38
this be a recurring phenomenon across the following models (Nikishin et al., 2022; Schwarzer et al.,39
2023) that adopt SPR as their baseline?40

Concurrently, a plethora of novel self-supervised representation learning objectives has emerged41
(Zbontar et al., 2021; Bardes et al., 2021; Ozsoy et al., 2022; Caron et al., 2021), demonstrating42
performance improvements beyond image pretraining (Lee et al., 2023b; Goulão & Oliveira, 2023;43
Zhou et al., 2022; Ömer Veysel Çağatan, 2024). These objectives, based on feature decorrelation, do44
not inherently support the modifications used in SPR because the loss is computed along the feature45
dimension instead of the batch dimension, which we detail in Section 4.46

This divergence raises another important question: How do these alternative objectives perform rel-47
ative to the original SPR without SSL modifications? This inquiry is particularly significant because48
the information required to modify SSL objectives may not always be available in the environment.49
Understanding the performance of these unmodified objectives could provide valuable insights into50
the generalizability and robustness of different SSL approaches in RL contexts. Towards this end,51
we incorporate Barlow Twins and VICReg SSL objectives within SPR.52

In essence, we frame our investigation around the following questions:53

1. How do these modifications affect the performance of SPR, and do their impacts extend54
to SPR-based models such as SR-SPR and BBF? Additionally, how do these alternative55
objectives compare to the original SPR when no SSL modifications are implemented?56

Our findings reveal that modifications to SSL significantly affect SPR performance, leading to an57
18% decrease in IQM when these modifications are removed. Additionally, SR-SPR and BBF ex-58
hibit a similar decline in performance. Among these modifications, prioritized replay weighting59
stands out as the most influential. Notably, Barlow Twins achieves results comparable to those of60
the original SPR, while VICReg’s performance aligns with that of prioritized replay weighting.61
This indicates that these problem-specific modifications can be mitigated by employing alterna-62
tive SSL objectives.Overall, our results underscore the importance of SSL modifications in SPR,63
which persist in strong models that utilize SPR64

2. How effectively do these SSL objectives perform in an environment in which SPR modifi-65
cations are not applicable?66

To address this, we examine VICReg, Barlow Twins, and SPR (BYOL/SimSiam) within the67
DeepMind Control Suite, where the popular SAC agent does not utilize prioritized replay weight-68
ing and the environment lacks a terminal state. Unlike in the Atari 100k benchmark, our results69
show VICReg as the top performer, even outpacing PlayVirtual, a more sophisticated variant of70
SPR. Meanwhile, SPR and Barlow Twins exhibit comparable performance levels. These findings71
highlight that algorithms tailored for specific domains may not consistently excel across different72
problem sets. Therefore, transferability should be a key factor in the design of new Deep RL73
algorithms.74

2 Related Work75

Tomar et al. (2021) tackles a more challenging setting for representation learning within RL with76
background distractors, using a simple baseline approach that avoids metric-based learning, data77
augmentations, world-model learning, and contrastive learning. They analyze why previous methods78
may fail or perform similarly to the baseline in this tougher scenario and stress the importance of79
detailed benchmarks based on reward density, planning horizon, and task-irrelevant components.80
They propose new metrics for evaluating algorithms and advocate for a data-centric approach to81
better apply RL to real-world tasks.82

Li et al. (2023) explore whether SSL can enhance online RL from pixel data. By extending the83
contrastive reinforcement learning framework (Srinivas et al., 2020) to jointly optimize SSL and84
RL losses, and experimenting with various SSL losses, they find that the current SSL approaches85

2

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Encoder Latent RL Head RL Loss

Transition Model

Predicted Latent MLP

SSL Objective

ZA

ZBEncoder Ground Truth Latent MLP

Stop Gradient

Figure 1: General flow diagram of SPR based methods. An encoder is used to create representa-
tions used for reinforcement learning and predicting future representations via a transition model
and ground truth representations are created by the same encoder. MLPs differ when the predictor
layer is used as in the case of BYOL/SimSiam. While we show the kth step here, the actual loss
computation covers steps 1 to K. The SSL objective and RL loss changes between specific methods.

offer no significant improvement over baselines that use image augmentation alone, given the same86
data and augmentation. Even after evolutionary searches for optimal SSL loss combinations, these87
methods do not outperform carefully designed image augmentations. Their evaluation across various88
environments, including real-world robots, reveals that no single SSL loss or augmentation method89
consistently excels.90

2.1 Data Efficient RL in Atari 100k91

The introduction of the Atari 100k benchmark (Kaiser et al., 2019) has expedited the advancement of92
sample-efficient reinforcement learning algorithms. Model-based approach, SimPLe (Kaiser et al.,93
2019), outperformed Rainbow DQN (Hessel et al., 2017), showcasing superior performance. Build-94
ing on Rainbow’s framework, Hasselt et al. (2019) enhanced its efficacy through minor hyperpa-95
rameter adjustments, resulting in Data-Efficient Rainbow (DER), which achieved a higher score96
compared to SimPLe.97

DrQ (Kostrikov et al., 2020) employs a multi-augmentation strategy to regularize the value function98
during training of both Soft Actor-Critic (Haarnoja et al., 2018) and Deep Q-Network (Mnih et al.,99
2015). This approach effectively reduces overfitting and enhances training efficiency, leading to100
performance improvements for both algorithm101

Several prevalent methods adopt the Atari 100k dataset, and these can be classified as follows:102
Model-Based (Hafner et al., 2023; Robine et al., 2023; Micheli et al., 2022; Ayton & Asai, 2021;103
Robine et al., 2021), Pretraining (Goulão & Oliveira, 2022; Schwarzer et al., 2021b; Lee et al.,104
2023a; Liu & Abbeel, 2021), Model-Free (Schwarzer et al., 2023; Huang et al., 2022; Nikishin105
et al., 2022; Cetin et al., 2022a; Lee et al., 2023a; Liang et al., 2022)106

2.2 Representation Learning in Atari 100k107

Cetin et al. (2022b) presents a deep reinforcement learning method using hyperbolic space for latent108
representations. Their innovative approach tackles optimization challenges in existing hyperbolic109
deep learning, ensuring stable end-to-end learning through deep hyperbolic representations.110

Huang et al. (2022) proposes a Multiview Markov Decision Process (MMDP) with View-Consistent111
Dynamics (VCD), a method that enhances traditional MDPs by considering multiple state perspec-112
tives. VCD trains a latent space dynamics model for consistent state representations, achieved113
through data augmentation.114

3

Under review for RLC 2025, to be published in RLJ 2025

Srinivas et al. (2020) incorporate the InfoNCE (van den Oord et al., 2019) as an auxiliary component115
within DER. Cagatan & Akgun (2023) uses Barlow Twins (Zbontar et al., 2021) instead of a con-116
trastive objective to further improve results. This integration serves to enhance the learning process.117
SPR (Schwarzer et al., 2020) outperforms all previous model-free approaches by predicting its latent118
state representations multiple steps into the future with BYOL (Grill et al., 2020).119

PlayVirtual (Yu et al., 2021) introduces a novel transition model as an alternative to the simplis-120
tic module in SPR. The methodology enriches actual trajectories by incorporating a multitude of121
cycle-consistent virtual trajectories. These virtual trajectories, generated using both forward and122
backward dynamics models, collectively form a closed ’trajectory cycle.’ The crucial aspect is en-123
suring the consistency of this cycle, validating the projected states against real states and actions.124
This approach significantly improves data efficiency by acquiring robust feature representations with125
reduced reliance on real-world experiences. This method proves particularly advantageous for tasks126
where obtaining real-world data is costly or challenging.127

3 SPR128

SPR is a performant data-efficient agent and a baseline of many other performant agents (Schwarzer129
et al., 2023; Nikishin et al., 2022; D’Oro et al., 2023; Yu et al., 2021) and its general architecture130
is depicted in Figure 1. The approach trains an agent by having it predict the latent state based on131
the current state. It encodes the present state, forecasts the latent representation of the next state132
using a transition model, and calculates loss by measuring the mean squared error between normal-133
ized embeddings. Additionally, SPR adjusts its loss through terminal masking and prioritized replay134
weighting. These two modifications inject RL-specific information into the auxiliary self-supervised135
learning task. While the utilization of these ideas is not explicitly mentioned by Schwarzer et al.136
(2020), it is possible that these techniques were considered self-evident and consequently were in-137
cluded in their implementation (Schwarzer et al., 2021a). We mention them here so as to be able to138
better differentiate between SPR and other SPR variants.139

SSL loss matrix in SPR denoted as L, encompasses negative cosine similarities between predicted140
latent representations and ground truth latent representations, with dimensions of B×(K+1), where141
B is the batch size, and K is the prediction horizon with 1 coming from the current observation. The142
batch of interactions is drawn from the replay buffer, and their terminal status is known. The terminal143
mask matrix, M , is composed of 0s and 1s denoting terminal and non-terminal states. The process144
involves updating L through a Hadamard product with M , denoted as L ◦M , effectively modifying145
the loss matrix.146

The loss matrix is divided into two components: SPR loss and Model SPR loss. SPR loss is between147
the latent representations of the augmented views of the present state. Model SPR loss is between148
the latent representations of the augmented views of the future states and the predicted future latent149
representations, generated by the transition model. Model SPR is averaged across the temporal150
dimension and as a result, both components have N × 1 dimensionality.151

The loss of each transition is multiplied by the prioritized replay weight, determined by the temporal152
difference errors. Then the final loss is computed as the weighted sum of the average SPR loss and153
half the average of the Model SPR loss across a batch as follows:154

LSPR =
1

N

N∑
i=1

ωi(λSPRi + γModel SPRi) (1)

where N is the batch size, ωi is the priority weight (
∑

i ωi = 1), and i indexes individual transitions,155
where λ,γ are hyperparameters.156

4

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Median IQM Mean Opt.Gap
Barlow 0.324 0.320 0.605 0.593
VICReg 0.281 0.289 0.600 0.610

VICReg+Non 0.221 0.279 0.554 0.617
Barlow+Non -0.009 -0.011 -0.171 1.171

ZeroJump 0.270 0.262 0.528 0.636

Table 1: Human-normalized aggregate metrics in Atari
100k. Scores were collected from 10 random runs.

Median IQM Mean Opt.Gap
Stop-Grad 0.271 0.303 0.615 0.577

No Stop-Grad 0.266 0.282 0.595 0.611

Table 2: Human-normalized aggregate
metrics in Atari 100k by VICReg-High.
Scores, collected from 10 random runs
to assess the efficacy of including stop-
gradient.

4 SPR-*157

Despite variations in SSL objectives and RL algorithms across different benchmarks, the architec-158
ture remains largely consistent, as depicted in Figure 1. SPR employs a BYOL (Grill et al., 2020)159
objective with a momentum of 1, essentially adopting the SimSiam (Chen & He, 2020) approach.160
The primary architectural distinction lies in the inclusion of an extra predictor layer in the online161
MLP of BYOL or SimSiam to prevent collapse, a feature omitted in the original Barlow Twins and162
VICReg formulations as their objectives inherently mitigate the risk of collapse.163

SPR-Nakeds While SPR demonstrates considerable efficacy, the fundamental question remains164
unanswered—what is the impact of pure self-supervised learning and potential adaptations leading165
to SPR? Consequently, we introduce SPR-Naked, representing pure SSL. To assess the effects of166
prioritized replay weighting and terminal masking, we further establish SPR-Naked+Prio and SPR-167
Naked+Non, respectively.168

In addition to the original SPR and its naked versions, we implement two additional types of agents169
with different SSL objectives.170

SPR-Barlow To extend the Barlow Twins to future predictions, we compute individual cross-171
correlation matrices for both the current and predicted latent representations at each time step. This172
results in a total of K + 1 matrices, each with dimensions d × d, where d denotes the embedding173
dimension within a single batch. Subsequently, we calculate the loss for each matrix and average174
the results. To make it easier to compare, we can define SPR Loss and Model SPR Loss analogously175
to their SPR counterparts, where the first is about the current state and the latter is about the future176
states. The final loss is then;177

LSPR−Barlow = SPR +
1

K

K∑
k=1

Model SPRk (2)

where K is the number of predicted future observations.178

SPR-VICRegs We employ a parallel procedure as in Barlow Twins for VICReg. We introduce179
two variations of VICReg-High and VICReg-Low, featuring high or low covariance weights in the180
VICReg loss (Equation 11), while maintaining consistency in other hyperparameters. The primary181
objective is to observe the impact of feature decorrelation without inducing model collapse.182

Why not employ replay weighting and terminal state masking in Barlow/VICReg? The key183
limitation preventing the use of replay weighting or terminal masking in feature decorrelation-based184
methods lies in their reliance on covariance regularization. These methods employ either a cross-185
correlation matrix or a covariance matrix, both with dimensions matching the feature dimension.186
This structure prohibits applying the weighting of a feature dimension matrix using a batch di-187
mension matrix. Consequently, these methods produce a unified loss for the entire batch, unlike188
approaches such as BYOL or SimSiam, which generate losses on a per-sample basis.189

Why use stop-gradient in Barlow/VICReg? Barlow Twins and VICReg effectively prevent col-190
lapse without resorting to symmetry-breaking architectural techniques such as predictor layers or191
stop-gradient mechanisms. While not strictly necessary in this scenario, we choose to include a192

5

Under review for RLC 2025, to be published in RLJ 2025

stop-gradient due to its empirically observed performance improvement, as depicted in Table 2. A193
more grounded reason stems from the architectural asymmetry introduced by the transition model.194
In the absence of a stop-gradient, gradients from the encoder’s upper branch flow through the transi-195
tion model, whereas gradients from the lower branch directly influence the encoder. This asymmetry196
can potentially lead to suboptimal encoder updates. Despite collapse avoidance in both cases, the197
inclusion of a stop-gradient is maintained for its superior performance outcomes.198

Why not other objectives? Even though there are newly proposed SSL objectives (Silva et al.,199
2024; Zhang et al., 2024; Weng et al., 2024), it is impractical to include all objectives in experiments200
due to limited computational resources and the need to prioritize rigorous evaluation to draw precise201
conclusions however, we attempt to cover the two main families of SSL methods within SPR. The202
first is self-distillation, represented by BYOL (Grill et al., 2020) or SimSiam (Chen & He, 2020),203
which are already incorporated into SPR. The second family includes canonical correlation methods,204
such as VICReg and Barlow. Another category is Deep Metric Learning, which includes contrastive205
learning variants (Balestriero et al., 2023). However, we do not separately test contrastive objectives,206
as they have already been shown to be ineffective in SPR (Schwarzer et al., 2020).207

Removing Features with Masking We discussed why post-loss-calculation modifications cannot208
be applied to objectives that involve components in the feature dimension rather than the batch209
dimension. However, non-terminal masking can be employed to exclude samples from the batch210
before calculating the SSL loss. Thus, we masked features during the training of the SPR-VICReg211
and SPR-Barlow agents, leading to unexpected results. As shown in Table 1, the SPR-Barlow agent212
performed even worse than the random agent. A likely explanation is that the Barlow Twins’ ob-213
jective relies on batch normalization to compute the cross-covariance matrix. Since masking causes214
the batch size to vary dynamically, the batch statistics become inconsistent, adversely affecting the215
batch normalization process.However, this degradation is not observed to the same extent in the216
SPR-VICReg agent, as the VICReg objective does not rely on batch normalization.217

Continuous Control Formulation Although SPR is created specifically for discrete control, delv-218
ing into the impact of SSL objectives solely within discrete control domains doesn’t provide a com-219
prehensive understanding. This is why we adopt a parallel setup to that of PlayVirtual (Yu et al.,220
2021), where they establish an SPR-like scheme referred to as SPR† as a baseline for continuous221
control. They utilize the soft actor-critic algorithm (Haarnoja et al., 2018), instead of q-learning222
due to the continuous nature of the actions. They do not use terminal state masking (since termi-223
nal states for control problems are target states) and prioritized replay weighting (since they use a224
uniform buffer). This shows the importance of generally applicable auxiliary tasks for data-efficient225
RL.226

We evaluate PlayVirtual and SPR† from scratch since we were not able to replicate Yu et al. (2021)’s227
results, potentially due to different benchmark versions. Furthermore, we assess the performance of228
VICReg-High and Barlow Twins within the SPR† configuration. We exclude VICReg-Low in this229
setting due to the minimal performance difference observed in Atari.230

Finally, we explore the potential impact of incorporating the predictor network into Barlow Twins231
and VICReg, even though they inherently do not need it to prevent dimension collapse. Although232
the addition of a predictor network is novel in Barlow Twins, VICReg becomes similar to the SPR233
with this addition like SPR with variance-covariance regularization. The decision to refrain from234
conducting similar experiments in Atari stems from the substantially higher experimental costs,235
which are at least 10 times greater than those in the control setting.236

5 Evaluation Setup237

5.1 Benchmarking: Rliable Framework238

Agarwal et al. (2021) discusses the limitations of using mean and median scores as singular estimates239
in RL benchmarks and highlights the disparities between conventional single-point estimates and240

6

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

the broader interval estimates, emphasizing the potential ramifications for benchmark dependability241
and interpretation. In alignment with their suggestions, we provide a succinct overview of human-242
normalized scores, furnished with stratified bootstrap confidence intervals, in Figures 2 and 3.243

5.2 Atari 100k244

We assess the SPR framework in a reduced-sample Atari setting, called the Atari 100k bench-245
mark (Kaiser et al., 2019). In this setting, the training dataset comprises 100,000 environment246
steps, which is equivalent to about 400,000 frames or slightly under two hours of equivalent hu-247
man experience. This contrasts with the conventional benchmark of 50,000,000 environment steps,248
corresponding to approximately 39 days of accumulated experience.249

The main metric for this setting, widely acknowledged for assessing performance in the Atari 100k250
context, is the human-normalized score. This measure is mathematically defined as in equation 3,251
where random score pertains to outcomes achieved through a random policy and the human score is252
derived from human players (Wang et al., 2015).253

scoreagent − scorerandom

scorehuman − scorerandom
(3)

5.3 Deep Mind Control Suite254

In the Deep Mind Control Suite (Tassa et al., 2018), the agent is configured to function solely255
based on pixel inputs. This choice is justified by several reasons: the environments involved offer a256
reasonably challenging and diverse array of tasks, the sample efficiency of model-free reinforcement257
learning algorithms is notably low when operating directly from pixels in these benchmarks and the258
performance on the DM control suite is comparable to the context of robot learning in real-world259
benchmarks.260

We use the following six environments (Yarats et al., 2020) for benchmarking: ball-in-cup, finger-261
spin, reacher-easy, cheetah-run, walker-walk and cartpole-swingup, for 100k steps each.262

6 Results and Discussion263

6.1 Atari 100k264

We mainly investigate the following new SPR models, along with the original SPR: (i) SPR-265
Naked, featuring no modifications, (ii) SPR-Naked+Non, incorporating terminal masking, (iii) SPR-266
Naked+Prio, integrating prioritized replay weighting, (iv) SPR-Barlow, (v) SPR-VICReg-High,267
characterized by a high covariance weight, and (vi) SPR-VICReg-Low, characterized by a low co-268
variance weight. Moreover, we discuss SR-SPR and BBF with their no modifications versions.269

Figure 2 shows the performance of the seven agents in the Atari 100k benchmark, calculated us-270
ing the rliable framework (Agarwal et al., 2021). The individual game performances are given in271
Appx. 11 and we describe evaluation setup in Section 5.272

SPR and SSL Modifications. The original SPR-agent performs the best (top row of Fig. 2). The273
modifications to the SPR’s SSL objective (see Section 3) have significant impact on the performance274
but they are not mentioned in the relevant papers (SPR (Schwarzer et al., 2020), SR-SPR (D’Oro275
et al., 2023; Nikishin et al., 2022), or BBF (Schwarzer et al., 2023)). The no modifications ver-276
sion, SPR-Naked, performs the worst with a nearly 20% performance drop based on the IQM score277
(last row of Fig. 2). This is crucial because such modifications may not be suitable for all problem278
domains, which limits their transferability and generalizability. On the other hand, the role of ter-279
minal masking and prioritized replay weighting in SPR is especially interesting, as they help boost280
performance in situations where pure representation learning struggles.281

Incorporating prioritized replay weights has a positive effect on SPR (5th row of Fig. 2). These282
weights act as markers for Bellman errors that mirror the agent’s Q-value approximation perfor-283

7

Under review for RLC 2025, to be published in RLJ 2025

0.24 0.30 0.36 0.42
Naked

Naked+Non
Naked+Prio
VICReg-Low

VICReg-High
Barlow

SPR
Median

0.275 0.300 0.325 0.350

IQM

0.52 0.56 0.60 0.64

Mean

0.58 0.60 0.62

Optimality Gap

Human Normalized Score

Figure 2: Mean, median, interquartile mean human normalized scores and optimality gap (lower
is better) computed with stratified bootstrap confidence intervals in Atari 100k. 50 runs for SPR-
Barlow, SPR-VICReg-High, SPR-VICReg-Low, SPR-Naked+Prio, SPR-Naked+Non,SPR-Naked,
100 runs for SPR from (Agarwal et al., 2021).

0.66 0.72 0.78
Barlow
VICReg

SPR
Barlow+Pred
VICReg+Pred

Virtual
Median

0.65 0.70 0.75 0.80

IQM

0.60 0.65 0.70 0.75

Mean

0.25 0.30 0.35 0.40

Optimality Gap

Max Normalized Score

Figure 3: Mean, median, interquartile mean max normalized scores and optimality gap (lower is
better) computed with stratified bootstrap confidence intervals in Deep Mind Control Suite 100k, 10
runs for all agents.

mance on particular transitions. Introducing these weights into the representation loss intensifies the284
emphasis on refining representations that the agent struggles with.285

Empirically, terminal state masking shows negligible positive effects, unlike replay weighting, (6th286
row of Fig. 2). The limited impact of masking might be attributed to the episode lengths, where287
the agent encounters many regular states but only a single terminal state. The SSL loss may be288
primarily influenced by intermediate states, which could reduce the effectiveness of masking in289
these scenarios.290

On the other hand, there is a clear synergy between these modifications within SPR. Masking termi-291
nal states might be advantageous when agents encounter frequent failures during the initial stages292
of training or due to the nature of the games. In such cases, terminal states may dominate the replay293
buffer, which could introduce biased representations that become challenging to correct later on and294
make it harder for the agent to adapt and improve as it progresses295

SPR-Barlow. The performance of the Barlow Twins agent is close to the SPR’s (2nd row of Fig. 2),296
with only a 5% difference, where as SPR-Naked has a 20% gap. As described in Section 4, mod-297
ifications related to SSL do not directly apply to Barlow Twins, VICReg, or any other method298
regularization in the feature dimension. As such, performing similar to a method with RL specific299
modifications suggests that Barlow Twins has the potential to serve as a substitute, indicating its300
promise as a versatile SSL objective for data-efficient RL.301

The performance gap between SPR-naked and the feature decorrelation methods (Barlow and VI-302
CReg) in this context is somewhat surprising since BYOL or Simsiam outperform them in image303
classification. In vision pretraining, the goal is to obtain embeddings with well-defined clusters304
based on the training corpora, enhancing classification performance, where feature decorrelation305
may be of hindrance. In RL, it is important to differentiate between states (good, bad, or promising306
if they have not been explored yet) which may not be too different in the image space. As such,307
methods that emphasize the use of the entire embedding space potentially have a better chance of308
state separation.309

To test this, we evaluate the rank (Kumar et al., 2021) of the advantage and value heads, as well310
as the output of the convolution head, which is shared by both the RL and SSL objectives. We311
evaluated multiple methods like Barlow Twins and VICReg, in addition to a variant without SSL312

8

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

SPR SR-SPR BBF
0.2

0.4

0.6

0.8

1.0

IQ
M

17.5%

0.337

0.278

17.7%

0.631

0.519

16.7%

1.045

0.871

Original
Naked

Figure 4: Comparison of IQM performance for the SPR, SR-SPR, and BBF agents alongside their
corresponding naked versions. Naked results of SR-SPR and BBF are averaged out across 10 differ-
ent runs

loss. We found that the rank converges similarly across different games and even if they don’t, this313
does not correlate with performance. We also measured dormant neurons (Sokar et al., 2023) and314
observed that the results were consistent with the rank findings. These evaluations are detailed in315
Appx. 9.316

SPR-VICRegs. Initially, we used the default VICReg hyperparameters given in the original pa-317
per (Bardes et al., 2021). Surprisingly, VICReg exhibits a 13% lower performance (4th row of318
Fig. 2) compared to SPR although it surpasses SPR-Naked. It also falls short of Barlow Twins. This319
outcome is not immediately evident given that it has a high similarity to the Barlow Twins’ objective.320
One plausible explanation could be the presence of multiple loss components, possibly undermin-321
ing covariance. To address this, we explore alternative hyperparameters, selecting the set with the322
highest covariance hyperparameter that avoids collapse and denote it as SPR-VICReg-High, while323
the previous one is referred to as SPR-VICReg-Low. However, the performance only marginally in-324
creases by 2% (3rd row of Fig. 2), lacking behind Barlow Twins once again. The underlying reasons325
for this performance gap remain subject to further exploration. Nonetheless, it still showcases the326
effectiveness of feature decorrelation based objectives since both types outperform SPR-Naked.327

BBF and SR-SPR. It could be argued that modifications to SPR significantly influence performance,328
particularly due to its relatively low score on Atari 100k, where such changes may have an amplified329
effect, whereas they might have a more limited impact on stronger models. BBF, the leading value-330
based agent achieving human-level results on Atari 100k, is built upon SR-SPR, a variant of SPR.331
Notably, both SR-SPR and BBF exhibit IQM values nearly 3x and 2x higher than SPR, respectively.332
Thus, their unmodified results will provide insight into whether modifications still play a significant333
role, even when the model is highly efficient and performing at a human level.334

As shown in Figure 4, we observe that modifications result in a fairly consistent performance decline335
across all models. Due to computational constraints, we did not conduct experiments to determine336
which modifications have the greatest impact or whether certain SSL objectives could reduce the337
need for modifications. However, our findings further support and strengthen our earlier conclusions338
regarding the impact of modifications on SPR.339

6.2 DMControl340

We further evaluate the SSL objectives with the DMControl suite, described in Section 5) since this341
domain can provide additional insights into the efficacy of SSL objectives in RL. However, since342
there is no terminal state in this environment and a uniform replay buffer is used, modifications343
to the SPR loss are not feasible. As such, this evaluation will focus on the generalization of used344
objectives across domains without targeted optimization for specific problems.345

9

Under review for RLC 2025, to be published in RLJ 2025

Moreover, SPR is not explicitly designed for continuous control. As such, we use a different set of346
agents modified for continuous control as described in Section 4 but keep the same SSL hyperparam-347
eters from the Atari benchmark. We pick SPR-VICReg-High due to its better performance over the348
lower covariance version. We additionally evaluate SPR-Barlow and SPR-Vicreg with an MLP layer349
as an additional predictor, reflecting Bardes et al. (2021)’s findings on the enhanced performance of350
BYOL with variance regularization. We build upon the PlayVirtual (Yu et al., 2021) methodology,351
which is an SPR equipped with an improved transition model, and use it as our baseline.352

We observe from Fig. 3 that the Barlow Twins objective exhibits the lowest performance, although353
it closely aligns with SPR, with IQM scores of 0.656, and 0.677 respectively. An interesting obser-354
vation is that VICReg with an IQM of 0.75 is as good as PlayVirtual (Yu et al., 2021) with 0.744.355
This underscores the potential of SSL objectives in continuous control. While their impact is vi-356
tal in discrete control as well, the overall effect, especially when considering the maximum score357
(representing human performance), is relatively modest. Nevertheless, a substantial improvement358
is evident in continuous control, even when compared to the highest achievable score. We also see359
that adding a predictor network has a minimal but positive impact on the IQM performances of both360
Barlow and VICReg.361

7 Conclusion362

Our study demonstrates the significant impact of SSL objective modifications within the SPR frame-363
work for reinforcement learning, particularly in data-efficient scenarios. We show that specific ad-364
justments like terminal state masking and prioritized replay weighting substantially improve per-365
formance on the Atari 100k benchmark, with benefits extending to derivative frameworks such as366
SR-SPR and BBF. However, our experiments on the DeepMind Control Suite reveal that these en-367
hancements are not universally applicable across all RL environments. Investigation of alternative368
SSL objectives (e.g., Barlow Twins, VICReg) further elucidates the nuanced relationship between369
objective choice and RL task characteristics. These findings emphasize the critical role of carefully370
tailored SSL objectives in achieving data efficiency in self-predictive reinforcement learning, high-371
lighting the need for a context-sensitive approach to SSL modification in RL algorithm development.372
Our work provides valuable insights for researchers and practitioners seeking to optimize RL algo-373
rithms across diverse applications, potentially leading to more efficient and effective reinforcement374
learning systems.375

References376

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-377
mare. Deep reinforcement learning at the edge of the statistical precipice. In Neural Information378
Processing Systems, 2021.379

Benjamin J. Ayton and Masataro Asai. Width-based planning and active learning for atari. In380
International Conference on Automated Planning and Scheduling, 2021. URL https://api.381
semanticscholar.org/CorpusID:238226837.382

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Flo-383
rian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gor-384
don Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash,385
Yann LeCun, and Micah Goldblum. A cookbook of self-supervised learning, 2023.386

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization387
for self-supervised learning. ArXiv, abs/2105.04906, 2021.388

Omer Veysel Cagatan and Baris Akgun. Barlowrl: Barlow twins for data-efficient reinforcement389
learning, 2023.390

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.391
Unsupervised learning of visual features by contrasting cluster assignments, 2021.392

10

https://api.semanticscholar.org/CorpusID:238226837
https://api.semanticscholar.org/CorpusID:238226837
https://api.semanticscholar.org/CorpusID:238226837

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Edoardo Cetin, Philip J. Ball, Steve Roberts, and Oya Çeliktutan. Stabilizing off-policy deep rein-393
forcement learning from pixels. In International Conference on Machine Learning, 2022a. URL394
https://api.semanticscholar.org/CorpusID:250265109.395

Edoardo Cetin, Benjamin Paul Chamberlain, Michael M. Bronstein, and Jonathan J. Hunt. Hy-396
perbolic deep reinforcement learning. ArXiv, abs/2210.01542, 2022b. URL https://api.397
semanticscholar.org/CorpusID:252693361.398

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework399
for contrastive learning of visual representations. ArXiv, abs/2002.05709, 2020. URL https:400
//api.semanticscholar.org/CorpusID:211096730.401

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. 2021 IEEE/CVF402
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15745–15753, 2020.403

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and404
Aaron C. Courville. Sample-efficient reinforcement learning by breaking the replay ratio bar-405
rier. In International Conference on Learning Representations, 2023. URL https://api.406
semanticscholar.org/CorpusID:259298604.407

Manuel Goulão and Arlindo L. Oliveira. Pretraining the vision transformer using self-supervised408
methods for vision based deep reinforcement learning. ArXiv, abs/2209.10901, 2022. URL409
https://api.semanticscholar.org/CorpusID:252439214.410

Manuel Goulão and Arlindo L. Oliveira. Pretraining the vision transformer using self-supervised411
methods for vision based deep reinforcement learning, 2023.412

Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H. Richemond, Elena413
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi414
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own415
latent: A new approach to self-supervised learning. ArXiv, abs/2006.07733, 2020. URL https:416
//api.semanticscholar.org/CorpusID:219687798.417

Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-418
mum entropy deep reinforcement learning with a stochastic actor. ArXiv, abs/1801.01290, 2018.419
URL https://api.semanticscholar.org/CorpusID:28202810.420

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains421
through world models. arXiv preprint arXiv:2301.04104, 2023.422

H. V. Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in reinforcement423
learning? ArXiv, abs/1906.05243, 2019. URL https://api.semanticscholar.org/424
CorpusID:186206746.425

Matteo Hessel, Joseph Modayil, H. V. Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan426
Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining im-427
provements in deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2017.428
URL https://api.semanticscholar.org/CorpusID:19135734.429

Tao Huang, Jiacheng Wang, and Xiao Chen. Accelerating representation learning with view-430
consistent dynamics in data-efficient reinforcement learning. ArXiv, abs/2201.07016, 2022. URL431
https://api.semanticscholar.org/CorpusID:246035501.432

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,433
K. Czechowski, D. Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiud-434
din, Ryan Sepassi, G. Tucker, and Henryk Michalewski. Model-based reinforcement learning435
for atari. ArXiv, abs/1903.00374, 2019. URL https://api.semanticscholar.org/436
CorpusID:67856232.437

11

https://api.semanticscholar.org/CorpusID:250265109
https://api.semanticscholar.org/CorpusID:252693361
https://api.semanticscholar.org/CorpusID:252693361
https://api.semanticscholar.org/CorpusID:252693361
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:259298604
https://api.semanticscholar.org/CorpusID:259298604
https://api.semanticscholar.org/CorpusID:259298604
https://api.semanticscholar.org/CorpusID:252439214
https://api.semanticscholar.org/CorpusID:219687798
https://api.semanticscholar.org/CorpusID:219687798
https://api.semanticscholar.org/CorpusID:219687798
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:186206746
https://api.semanticscholar.org/CorpusID:186206746
https://api.semanticscholar.org/CorpusID:186206746
https://api.semanticscholar.org/CorpusID:19135734
https://api.semanticscholar.org/CorpusID:246035501
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:67856232

Under review for RLC 2025, to be published in RLJ 2025

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing438
deep reinforcement learning from pixels. ArXiv, abs/2004.13649, 2020. URL https://api.439
semanticscholar.org/CorpusID:216562627.440

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization441
inhibits data-efficient deep reinforcement learning, 2021. URL https://arxiv.org/abs/442
2010.14498.443

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-Young444
Yun, and Chulhee Yun. Enhancing generalization and plasticity for sample efficient reinforcement445
learning. ArXiv, abs/2306.10711, 2023a. URL https://api.semanticscholar.org/446
CorpusID:259203876.447

Hojoon Lee, Koanho Lee, Dongyoon Hwang, Hyunho Lee, Byungkun Lee, and Jaegul Choo. On448
the importance of feature decorrelation for unsupervised representation learning in reinforcement449
learning, 2023b.450

Xiang Li, Jinghuan Shang, Srijan Das, and Michael S. Ryoo. Does self-supervised learning re-451
ally improve reinforcement learning from pixels?, 2023. URL https://arxiv.org/abs/452
2206.05266.453

Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander T. Ihler, P. Abbeel, and454
Roy Fox. Reducing variance in temporal-difference value estimation via ensemble of deep455
networks. ArXiv, abs/2209.07670, 2022. URL https://api.semanticscholar.org/456
CorpusID:250341019.457

Hao Liu and P. Abbeel. Aps: Active pretraining with successor features. In International Conference458
on Machine Learning, 2021. URL https://api.semanticscholar.org/CorpusID:459
235825462.460

Vincent Micheli, Eloi Alonso, and Franccois Fleuret. Transformers are sample efficient world461
models. ArXiv, abs/2209.00588, 2022. URL https://api.semanticscholar.org/462
CorpusID:251979354.463

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-464
mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig465
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,466
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforce-467
ment learning. Nature, 518:529–533, 2015. URL https://api.semanticscholar.org/468
CorpusID:205242740.469

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron C. Courville. The470
primacy bias in deep reinforcement learning. In International Conference on Machine Learning,471
2022. URL https://api.semanticscholar.org/CorpusID:248811264.472

Johan Obando-Ceron, João G. M. Araújo, Aaron Courville, and Pablo Samuel Castro. On the473
consistency of hyper-parameter selection in value-based deep reinforcement learning, 2024. URL474
https://arxiv.org/abs/2406.17523.475

Serdar Ozsoy, Shadi S. Hamdan, Sercan Ö. Arik, Deniz Yuret, and Alper Tunga Erdogan. Self-476
supervised learning with an information maximization criterion. ArXiv, abs/2209.07999, 2022.477

Jan Robine, Tobias Uelwer, and Stefan Harmeling. Smaller world models for reinforcement learning,478
2021.479

Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-480
els are happy with 100k interactions. ArXiv, abs/2303.07109, 2023. URL https://api.481
semanticscholar.org/CorpusID:257496038.482

12

https://api.semanticscholar.org/CorpusID:216562627
https://api.semanticscholar.org/CorpusID:216562627
https://api.semanticscholar.org/CorpusID:216562627
https://arxiv.org/abs/2010.14498
https://arxiv.org/abs/2010.14498
https://arxiv.org/abs/2010.14498
https://api.semanticscholar.org/CorpusID:259203876
https://api.semanticscholar.org/CorpusID:259203876
https://api.semanticscholar.org/CorpusID:259203876
https://arxiv.org/abs/2206.05266
https://arxiv.org/abs/2206.05266
https://arxiv.org/abs/2206.05266
https://api.semanticscholar.org/CorpusID:250341019
https://api.semanticscholar.org/CorpusID:250341019
https://api.semanticscholar.org/CorpusID:250341019
https://api.semanticscholar.org/CorpusID:235825462
https://api.semanticscholar.org/CorpusID:235825462
https://api.semanticscholar.org/CorpusID:235825462
https://api.semanticscholar.org/CorpusID:251979354
https://api.semanticscholar.org/CorpusID:251979354
https://api.semanticscholar.org/CorpusID:251979354
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:248811264
https://arxiv.org/abs/2406.17523
https://api.semanticscholar.org/CorpusID:257496038
https://api.semanticscholar.org/CorpusID:257496038
https://api.semanticscholar.org/CorpusID:257496038

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and483
Philip Bachman. Data-efficient reinforcement learning with self-predictive representations.484
In International Conference on Learning Representations, 2020. URL https://api.485
semanticscholar.org/CorpusID:222163237.486

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip487
Bachman. Repository published by the spr. https://github.com/mila-iqia/spr,488
2021a.489

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, De-490
von Hjelm, Philip Bachman, and Aaron C. Courville. Pretraining representations for data-491
efficient reinforcement learning. In Neural Information Processing Systems, 2021b. URL492
https://api.semanticscholar.org/CorpusID:235377401.493

Max Schwarzer, Johan S. Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh Agar-494
wal, and Pablo Samuel Castro. Bigger, better, faster: Human-level atari with human-level ef-495
ficiency. ArXiv, abs/2305.19452, 2023. URL https://api.semanticscholar.org/496
CorpusID:258987895.497

Thalles Silva, Helio Pedrini, and Adín Ramírez Rivera. Learning from memory: Non-parametric498
memory augmented self-supervised learning of visual features. In Ruslan Salakhutdinov, Zico499
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp500
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of501
Proceedings of Machine Learning Research, pp. 45451–45467. PMLR, 21–27 Jul 2024. URL502
https://proceedings.mlr.press/v235/silva24c.html.503

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-504
nomenon in deep reinforcement learning, 2023. URL https://arxiv.org/abs/2302.505
12902.506

A. Srinivas, Michael Laskin, and P. Abbeel. Curl: Contrastive unsupervised representa-507
tions for reinforcement learning. ArXiv, abs/2004.04136, 2020. URL https://api.508
semanticscholar.org/CorpusID:215415964.509

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-510
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-511
miller. Deepmind control suite, 2018.512

Manan Tomar, Utkarsh A. Mishra, Amy Zhang, and Matthew E. Taylor. Learning representations513
for pixel-based control: What matters and why?, 2021. URL https://arxiv.org/abs/514
2111.07775.515

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-516
tive coding, 2019.517

Ziyun Wang, Tom Schaul, Matteo Hessel, H. V. Hasselt, Marc Lanctot, and Nando de Freitas.518
Dueling network architectures for deep reinforcement learning. In International Conference519
on Machine Learning, 2015. URL https://api.semanticscholar.org/CorpusID:520
5389801.521

Xi Weng, Yunhao Ni, Tengwei Song, Jie Luo, Rao Muhammad Anwer, Salman Khan, Fahad Shah-522
baz Khan, and Lei Huang. Modulate your spectrum in self-supervised learning, 2024. URL523
https://arxiv.org/abs/2305.16789.524

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-525
ing sample efficiency in model-free reinforcement learning from images, 2020.526

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games527
with limited data, 2021.528

13

https://api.semanticscholar.org/CorpusID:222163237
https://api.semanticscholar.org/CorpusID:222163237
https://api.semanticscholar.org/CorpusID:222163237
https://github.com/mila-iqia/spr
https://api.semanticscholar.org/CorpusID:235377401
https://api.semanticscholar.org/CorpusID:258987895
https://api.semanticscholar.org/CorpusID:258987895
https://api.semanticscholar.org/CorpusID:258987895
https://proceedings.mlr.press/v235/silva24c.html
https://arxiv.org/abs/2302.12902
https://arxiv.org/abs/2302.12902
https://arxiv.org/abs/2302.12902
https://api.semanticscholar.org/CorpusID:215415964
https://api.semanticscholar.org/CorpusID:215415964
https://api.semanticscholar.org/CorpusID:215415964
https://arxiv.org/abs/2111.07775
https://arxiv.org/abs/2111.07775
https://arxiv.org/abs/2111.07775
https://api.semanticscholar.org/CorpusID:5389801
https://api.semanticscholar.org/CorpusID:5389801
https://api.semanticscholar.org/CorpusID:5389801
https://arxiv.org/abs/2305.16789

Under review for RLC 2025, to be published in RLJ 2025

Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, and Zhibo Chen. Playvirtual:529
Augmenting cycle-consistent virtual trajectories for reinforcement learning. Advances in Neural530
Information Processing Systems, 34, 2021.531

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-532
supervised learning via redundancy reduction. ArXiv, abs/2103.03230, 2021. URL https:533
//api.semanticscholar.org/CorpusID:232110471.534

Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran Huang, and Yang Yuan. Matrix information theory535
for self-supervised learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian536
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st537
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning538
Research, pp. 59897–59918. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.539
press/v235/zhang24bi.html.540

Jinghao Zhou, Li Dong, Zhe Gan, Lijuan Wang, and Furu Wei. Non-contrastive learning meets541
language-image pre-training, 2022. URL https://arxiv.org/abs/2210.09304.542

Ömer Veysel Çağatan. Unsee: Unsupervised non-contrastive sentence embeddings, 2024. URL543
https://arxiv.org/abs/2401.15316.544

14

https://api.semanticscholar.org/CorpusID:232110471
https://api.semanticscholar.org/CorpusID:232110471
https://api.semanticscholar.org/CorpusID:232110471
https://proceedings.mlr.press/v235/zhang24bi.html
https://proceedings.mlr.press/v235/zhang24bi.html
https://proceedings.mlr.press/v235/zhang24bi.html
https://arxiv.org/abs/2210.09304
https://arxiv.org/abs/2401.15316

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Supplementary Materials545

The following content was not necessarily subject to peer review.546
547

8 Background548

8.1 Barlow Twins549

The Barlow Twins (Zbontar et al., 2021) employs a symmetric network with twin branches, each550
processing a different augmented perspective of input data. It aims to minimize off-diagonal com-551
ponents and align diagonal elements of a cross-covariance matrix derived from the representations552
of these branches. The process involves generating two altered views (Y A and Y B) using data553
augmentations, inputting them into a function fθ to produce embeddings (ZA and ZB).554

The Barlow Twins loss is defined as:555

LBT ≜
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+ λ
∑
i

∑
j ̸=i

Cij2︸ ︷︷ ︸
redundancy reduction term

(4)

where λ > 0 balances the invariance (diagonal elements) and redundancy reduction (off-diagonal)556
in the loss function. C is the cross-correlation matrix from embedding outputs of identical networks557
in the batch. A matrix element is defined as:558

Cij ≜
∑

b z
A
b,iz

B
b,j√∑

b (z
A
b,i)

2
√∑

b (z
B
b,j)

2
(5)

where b represents the samples in the batch, and i and j represent dimension indices of the networks’559
output. Each dimension of the square covariance matrix, C, is the same as the embedding dimension560
(output dimensionality of the networks). Its values range between -1 (indicating complete anti-561
correlation) and 1 (representing perfect correlation).562

8.2 VICReg563

VICReg (Bardes et al., 2021) is a method designed to tackle the challenge of collapse directly.564
It achieves this by introducing a straightforward regularization term that specifically targets the565
variance of the embeddings along each dimension independently. In addition to addressing the566
variance, VICReg includes a mechanism to diminish redundancy and ensure decorrelation among567
the embeddings, accomplished through covariance regularization.568

The variance regularization term is a hinge function on the standard deviation of the embeddings569
along the batch dimension:570

v(Z) =
1

d

d∑
j=1

max(0, γ − S(zj , ϵ)) (6)

where S is the regularized standard deviation defined by:571

S(x; ϵ) =
√

Var(x) + ϵ (7)

Covariance matrix of Z is defined as:572

C(Z) =
1

n− 1

n∑
i=1

(zi − z̄)(zi − z̄)T (8)

15

Under review for RLC 2025, to be published in RLJ 2025

where z̄ = 1
n

∑n
i=1 zi. Covariance regularization is defined as:573

c(Z) =
1

d

∑
i

∑
j ̸=i

Cij2 (9)

where d is the feature dimension. The invariance criterion between Z and Z ′ is the mean-squared574
Euclidean distance between each pair of vectors, without any normalization.575

s(Z,Z ′) =
1

n

n∑
i=1

||zi − z′i||2 (10)

The overall loss function is a weighted average of the invariance, variance, and covariance terms:576

l(Z,Z ′) = αv(Z) + βc(Z) + γs(Z,Z ′) (11)

where α, λ, and γ hyper-parameters control the importance of each term in the loss.577

VICReg is quite similar to Barlow Twins in terms of its loss formulation. However, instead of578
decorrelating the cross-correlation matrix directly, it regularizes the variance along each dimension579
of the representation, reduces correlation and minimizes the difference of embeddings. This prevents580
dimension collapse and also forces the two views to be encoded similarly. Additionally, reducing581
covariance encourages different dimensions of the representation to capture distinct features.582

9 Rank and Dormant Neuron583

Kumar et al. (2021) introduced the concept of *effective rank* for representations, represented as584
srankδ(ϕ), with δ being a threshold parameter, set to 0.01 as per their study. They proposed that585
effective rank is linked to the expressivity of a network, where a decrease in effective rank implies586
an implicit under-parameterization. The study provides evidence indicating that bootstrapping is the587
primary factor contributing to the collapse of effective rank, which in turn degrades performance.588

To investigate how SSL objectives might mitigate rank collapse, we computed the rank of the con-589
volution output and the outputs of the penultimate layers from the advantage and value heads of590
three different agents: SPR-VICReg, SPR-Barlow, and ZeroJump (SPR without a transition model),591
scores in 1. Our observations indicate that, although there are some rank differences among the592
agents, they often converge to the same rank, and these differences do not correlate with the perfor-593
mance scores. Figure 5, 7 and 6 include ranks across all games.594

To explore this further, we examined the proportion of dormant neurons, which are neurons that have595
near-zero activations. Sokar et al. (2023) showed that deep reinforcement learning agents experience596
a rise in the number of dormant neurons within their networks. Additionally, a higher prevalence of597
dormant neurons is associated with poorer performance.598

We also do not observe a clear pattern in the fractions of dormant neurons, in Figure 8 that could599
account for the disparities in performance scores, similar to what was seen in the case of neuron600
ranks. Unlike rank-based observations, where patterns may emerge, the distribution of dormant601
neurons does not offer an explanation for the differences in the scores across models. This suggests602
that the relationship between neuron activity and performance metrics might be more complex and603
not directly attributable to the proportion of inactive neurons.604

10 Experimental Details605

We retain all hyperparameters of SPR, SR-SPR, and BBF, except for SPR-Barlow and SPR-VICReg,606
where we adjust the SPR loss weight and increase the batch size from 32 to 64. The official reposi-607
tories of the models are used, and all experiments are conducted on a Tesla T4 GPU.608

16

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

11 Full Results on Atari 100k609

Table 3: Returns on the 26 games of Atari 100k after 2 hours of real-time experience, and human-
normalized aggregate metrics. (VR: VICReg, results with 5 integral digits are rounded to the first
integer to fit the table)

Game Rand. Human Naked Non Prio VR-L VR-H Barlow SPR

Alien 227.8 7127.7 868.9 881.7 872.7 902.9 922.4 891.8 841.9
Amidar 5.8 1719.5 165.6 179.1 164.2 181.1 176.4 177.1 179.7
Assault 222.4 742.0 544.5 564.6 589.2 536.4 575.7 581.4 565.6
Asterix 210 8503.3 972.0 951.0 977.8 955.4 1021.7 981.2 962.5
BankHeist 14.2 753.1 61.6 70.1 60.2 79.9 82.9 73.5 345.4
BattleZone 2360 37188 7552.4 9424.2 13102 12557 14892 14954 14834
Boxing 0.1 12.1 27.3 30.4 36.4 31.3 33.9 35.1 35.7
Breakout 1.7 30.5 16.7 18.0 18.2 16.9 16.3 17.0 19.6
ChopComm 811 7387.8 906.8 949.8 901.0 832.9 929.9 938.9 946.3
CrzyClmbr 10781 35829 30056 32667 35829 27035 29023 29229 36701
DemonAtt 152.1 1971.0 514.7 511.0 522.9 461.2 547.2 519.2 517.6
Freeway 0.0 29.6 17.4 13.71 16.3 28.0 27.7 29.5 19.3
Frostbite 65.2 4334.7 1137.2 1010.9 1014.2 1353.0 1181.4 1191.3 1170.7
Gopher 257.6 2412.5 585.0 660.1 548.4 737.9 713.5 691.2 660.6
Hero 1027 30826 6937.8 6497.8 5686.6 5495.1 5559.6 5746.8 5858.6
Jamesbond 29 302.8 327.2 359.9 349.1 357.6 384.3 404.2 366.5
Kangaroo 52 3035.0 2970.9 2812.1 3016.5 2290.6 1998.3 1771.2 3617.4
Krull 1598 2665.5 3980.4 4061.8 4213.1 4166.6 4513.9 4363.2 3681.6
KFMaster 258.5 22736 13126 14595 15757 1488.4 15548 15998 14783
MsPacman 307.3 6951.6 1262.1 1162.6 1324.6 1366.8 1588.2 1388.2 1318.4
Pong -20.7 14.6 -1.8 -6.0 -7.2 -6.3 -10.1 -6.7 -5.4
PrivateEye 24.9 69571 85.6 77.0 88.0 100.9 96.6 99.6 86.0
Qbert 163.9 13455 847.2 758.6 759.8 796.9 687.6 765.8 866.3
RoadRunner 11.5 7845.0 12595 12713 11211 10683 9531.5 12412 12213
Seaquest 68.4 42055 524.0 524.2 523.2 576.3 651.0 669.1 558.1
UpNDown 533.4 11693 9569.3 8130.6 10331 7952.7 9415.3 10818 10859

#Sprhmn(↑) 0 N/A 4 3 3 4 4 4 6
Mean (↑) 0.00 1.000 0.542 0.555 0.608 0.558 0.585 0.608 0.616
Median (↑) 0.00 1.000 0.225 0.221 0.308 0.297 0.280 0.312 0.396
IQM (↑) 0.00 1.000 0.273 0.278 0.298 0.292 0.298 0.321 0.337
Opt. Gap (↓) 1.00 0.000 0.617 0.615 0.603 0.609 0.605 0.587 0.577

17

Under review for RLC 2025, to be published in RLJ 2025

12 Full Results on DMControl 100k610

Table 4: Returns on the of DMControl 100k, and Max-normalized aggregate metrics.

Environment Virtual VICReg+Pred Barlow+Pred SPR VICReg Barlow

FINGER, SPIN 896.2 760.6 781.0 755.9 730.0 861.8
CARTPOLE, SWINGUP 815.1 791.6 784.0 826.0 780.1 778.6
REACHER, EASY 827.0 790.7 589.6 671.5 736.1 526.5
CHEETAH, RUN 489.6 504.3 461.6 435.2 493.5 478.6
WALKER, WALK 404.7 622.8 521.7 404.7 765. 182.2
BALL IN CUP, CATCH 835.4 891.6 622.8 835.4 937.5 924.9

Mean (↑) 0.705 0.738 0.673 0.660 0.740 0.625
Median (↑) 0.803 0.772 0.703 0.726 0.750 0.652
IQM (↑) 0.744 0.773 0.670 0.677 0.750 0.656
Optimality Gap (↓) 0.294 0.260 0.326 0.339 0.29 0.374

18

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

13 Rank and Dormant Neuron Results611

Figure 5: Rank of the output from the penultimate layer of the value head, measured every 10,000
steps and averaged across 10 different runs for every game.

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240
Ra

nk
 o

f v
al

ue

alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 100002000030000400005000060000700008000090000100000
Iteration

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

0 100002000030000400005000060000700008000090000100000
Iteration

227.5

230.0

232.5

235.0

237.5

240.0

242.5

245.0

Ra
nk

 o
f v

al
ue

assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 100002000030000400005000060000700008000090000100000
Iteration

200

210

220

230

240

Ra
nk

 o
f v

al
ue

asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

battle_zone
Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 100002000030000400005000060000700008000090000100000
Iteration

210

220

230

240

Ra
nk

 o
f v

al
ue

boxing

Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 100002000030000400005000060000700008000090000100000
Iteration

60

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

breakout

Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 100002000030000400005000060000700008000090000100000
Iteration

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

chopper_command
Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 100002000030000400005000060000700008000090000100000
Iteration

0

20

40

60

80

100

120

140

Ra
nk

 o
f v

al
ue

crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 100002000030000400005000060000700008000090000100000
Iteration

225

230

235

240

245

Ra
nk

 o
f v

al
ue

demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

freeway

Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

gopher
Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

205

210

215

220

225

230

235

240

245

Ra
nk

 o
f v

al
ue

jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

kangaroo
Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

50

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

pong

Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f v

al
ue

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f v

al
ue

up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

19

Under review for RLC 2025, to be published in RLJ 2025

Figure 6: Rank of the output from the convolution encoder, measured every 10,000 steps and aver-
aged across 10 different runs for every game.

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

Alien
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

Ra
nk

 o
f c

on
v_

ou
t

Alien
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1800

2000

2200

2400

2600

2800

Ra
nk

 o
f c

on
v_

ou
t

assault

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1000

1200

1400

1600

1800

2000

Ra
nk

 o
f c

on
v_

ou
t

asterix
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

0

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

bank_heist
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

battle_zone
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1000

1200

1400

1600

1800

2000

Ra
nk

 o
f c

on
v_

ou
t

boxing

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

100

200

300

400

500

600

700

800

Ra
nk

 o
f c

on
v_

ou
t

breakout
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

chopper_command
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

50

100

150

200

250

Ra
nk

 o
f c

on
v_

ou
t

crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 100002000030000400005000060000700008000090000100000
Iteration

1800

1900

2000

2100

2200

2300

2400

2500

2600
Ra

nk
 o

f c
on

v_
ou

t

demon_attack

Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

freeway

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

gopher
Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 100002000030000400005000060000700008000090000100000
Iteration

200

300

400

500

600

700

800

900

Ra
nk

 o
f c

on
v_

ou
t

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

1400

1600

1800

2000

2200

Ra
nk

 o
f c

on
v_

ou
t

jamesbond

Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

100

150

200

250

300

350

400

Ra
nk

 o
f c

on
v_

ou
t

kangaroo

Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

100

200

300

400

500

600

Ra
nk

 o
f c

on
v_

ou
t

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

300

400

500

600

700

800

900

Ra
nk

 o
f c

on
v_

ou
t

pong
Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

1600

1800

Ra
nk

 o
f c

on
v_

ou
t

up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

20

Uncovering RL Integration in SSL Loss: Objective-Specific Implications for Data-Efficient RL

Figure 7: Rank of the output from the penultimate layer of the advantage head, measured every
10,000 steps and averaged across 10 different runs for every game.

0 100002000030000400005000060000700008000090000100000
Iteration

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

0 100002000030000400005000060000700008000090000100000
Iteration

234

236

238

240

242

244

246

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 100002000030000400005000060000700008000090000100000
Iteration

210

215

220

225

230

235

240

245

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

battle_zone

Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 100002000030000400005000060000700008000090000100000
Iteration

215

220

225

230

235

240

245

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

boxing

Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

breakout

Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 100002000030000400005000060000700008000090000100000
Iteration

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

chopper_command

Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 100002000030000400005000060000700008000090000100000
Iteration

234

236

238

240

242

244

246

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220
Ra

nk
 o

f a
dv

an
ta

ge
_h

id
de

n

freeway

Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

220

225

230

235

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

40

60

80

100

120

140

160

180

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

kangaroo

Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

60

80

100

120

140

160

180

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

pong

Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

160

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

up_n_down

Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

21

Under review for RLC 2025, to be published in RLJ 2025

Figure 8: Fraction of dormant neurons averaged across 10 different runs for every game.

0 20000 40000 60000 80000 100000
Iteration

5

10

15

20

25

30

35

40

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Chopper_command
Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Freeway
Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Pong
Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

55

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Breakout
Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

55

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Battle_zone
Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1
Gopher

Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Boxing
Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 20000 40000 60000 80000 100000
Iteration

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Kangaroo
Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

22

