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Abstract

Human feedback plays a pivotal role in aligning large language models (LLMs)
with human preferences. However, such feedback is often noisy or inconsistent,
which can degrade the quality of reward models and hinder alignment. While
various automated data cleaning methods have been proposed to mitigate this
issue, a systematic evaluation of their effectiveness and generalizability remains
lacking. To bridge this gap, we introduce the first comprehensive benchmark for
evaluating 13 preference data cleaning methods in the context of LLM alignment.
PrefCleanBench offers a standardized protocol to assess cleaning strategies in
terms of alignment performance and generalizability across diverse datasets, model
architectures, and optimization algorithms. By unifying disparate methods and
rigorously comparing them, we uncover key factors that determine the success
of data cleaning in alignment tasks. This benchmark lays the groundwork for
principled and reproducible approaches to improving LLM alignment through better
data quality—highlighting the crucial but underexplored role of data preprocessing
in responsible Al development. We release modular implementations of all methods
to catalyze further research: https://github.com/deeplearning-wisc/Pr
efCleanBench.

1 Introduction

As Al systems grow increasingly capable and influential, their potential impact on individuals and
society amplifies the necessity of aligning their actions with desirable outcomes [1, 2, 3, 4, 5, 6,
7, 8,9, 10, 11]. Al alignment, the process of ensuring Al systems act in accordance with human
preferences, as a result, has gained significant research attention in recent years [12, 13]. A key recipe
to achieve alignment is through the collection of binary preferences in terms of certain objectives,
such as helpfulness and harmlessness [14]. In practice, human annotators are presented with pairwise
responses to the same prompt, and provide comparative judgments (e.g., preferred, non-preferred)
based on the quality of responses. Such human feedback has become a cornerstone in the development
of many real-world LLM systems [15, 16, 17, 18].

Despite its widespread use, recent research has raised concerns about the reliability of human feed-
back [19]. In particular, human annotators can introduce biases, inconsistencies, and noise into the
feedback process, which can compromise the effectiveness of alignment. For example, studies have
shown that annotators may diverge in their assessments based on individual preferences [20], poten-
tially leading to suboptimal or even harmful outcomes if not properly accounted for. Although recent
research has proposed automated methods for cleaning noisy preference data—such as utilizing large
language models as judges, employing trained reward models, or applying heuristic criteria—there
remains a notable gap in systematically understanding and benchmarking the effectiveness of these
methods. To our knowledge, there is currently no standardized evaluation protocol or comprehensive
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Figure 1: The overview of the protocol for benchmarking data cleaning approaches. We propose
a protocol that covers the selection of datasets, evaluation pipelines, as well as the evaluation criteria
and their corresponding metrics.

comparative analysis to inform practitioners which cleaning methods best enhance LLM alignment,
or how generalizable these methods are across different datasets and training regimes.

Motivated by this critical gap, we present a rigorous benchmark PrefCleanBench that systematically
evaluates and compares preference data cleaning methods across multiple dimensions. Our goal
is to provide a framework that goes beyond anecdotal or dataset-specific evaluations, enabling a
fair and comprehensive comparison of cleaning strategies. We assess not only the improvements
each method yields on standard alignment metrics but also their performance across a variety of
settings—including different datasets, LLM backbones, and diverse alignment algorithms. In doing
so, we aim to uncover which cleaning methods consistently lead to better-aligned models, and under
what conditions these benefits hold. We summarize our core contributions below:

Contribution 1: Comprehensive coverage and open-source implementation of 13 data cleaning
approaches for LLM alignment (Sec. 3). Our benchmark extensively covers 13 approaches to
preference data cleaning, spanning three major paradigms: (1) LLM-as-a-judge methods that prompt
powerful language models to re-annotate or verify preferences, (2) reward model-based methods
that score preference data, and (3) heuristic-driven methods that rely on data quality metrics. We
systematize these strategies under a unified taxonomy to help researchers understand the current
landscape and facilitate principled comparison. To support reproducibility and accelerate further
research, we will additionally open-source modular, well-documented implementations of all 13
methods, designed for easy integration into standard alignment pipelines.

Contribution 2: Standardized benchmarking protocol for alignment-oriented data cleaning
(Sec. 4). We propose a systematic evaluation protocol that enables fair benchmarking across diverse
cleaning methods. Our protocol defines a consistent training and evaluation pipeline, encompassing
four representative preference datasets, multiple alignment objectives, and a range of model backbones.
The protocol specifies key metrics for measuring both alignment quality as well as generalizability
via cross-model and cross-algorithm evaluations. Our benchmark makes it possible to meaningfully
compare cleaning strategies under controlled conditions.

Contribution 3: Comprehensive experiments on different settings (Sec. 5). We conduct a
comprehensive set of experiments to evaluate the real-world impact of each data cleaning method,
following our proposed benchmarking protocol. Our findings reveal valuable insights and guidance
for practitioners. Specifically, the evaluation of alignment shows that both identification and treatment
for unreliable data affect the alignment of models. Compared to using a single judge and/or flipping
the labels, identifying unreliable data via multiple judges and removing such data resulted in a higher
win-tie rate and average reward of models trained on them. In addition, our evaluations suggest
that data quality should be prioritized for effective alignment. Overall, our experiments validate
the practicality of our benchmarking protocol and underscore the importance of developing more
versatile and data cleaning techniques in future research.



2 Related Work

LLM alignment. A key aspect of training and deploying large language models is ensuring the
models behave in safe and helpful ways [12, 13]. This is an important problem due to the potential
harms that can arise in large models [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. A wide range of methods
have been developed that utilize human feedback or human preference data to train models to avoid
harmful responses and elicit safer or more helpful responses [21, 22, 23, 24, 25, 14, 26, 27, 28, 29, 30,
31, 32,33, 34, 35, 36]. Particularly, the Reinforcement Learning from Human Feedback framework
has proven effective in aligning large pre-trained language models [14, 21, 22, 25]. However, given its
computational inefficiency, recent shifts in focus favor closed-form losses that directly utilize offline
preferences [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] and inference-time
alignment [36]. Recently, some studies in LLM alignment shifted focus to the data for alignment,
focusing on diverse and representative data [54, 55, 56, 57, 58] and utilizing LLM to automate and
scale the feedback collection and annotation process [33, 59, 60, 61]. These works highlighted the
importance of data in LLM alignment.

Reliability of human feedback. Some studies have sought to assess the quality of human feedback
datasets [19, 62, 63, 64]. Yeh et al. [19] argued the importance of data quality in the data-centric
alignment framework to increase the reliability of AI alignment. Gao et al. [65] studied the impact of
noise on alignment by injecting additional noise into the dataset. Wang et al. [62] proposed measuring
the reward gap for each datum in a human feedback dataset and found a significant proportion of data
with a negative reward gap, which indicates a possible mis-label produced by human annotators. In
addition, when curating benchmarks for reward modeling, Lambert et al. [66] noticed the unreliability
issue in the preference dataset. Therefore, after sampling data from multiple preference datasets, the
authors manually filtered out data with incorrect labels. Furthermore, many preference optimization
or reward modeling algorithms acknowledged the noises in human feedback labels, hence design
algorithms that are robust against noises [67, 68, 69, 63]. All these studies highlighted the importance
of carefully understanding the quality of preference datasets when utilizing them to align LLMs, and
the need for data cleaning approaches to obtain high-quality preference data.

3 Preference Data Cleaning Approaches

Although there are several existing data cleaning approaches for LLM alignment, there is no system-
atic review or fair comparison of these approaches to show how these approaches effectively improve
LLM alignment during training. To bridge this gap, we introduce a unified benchmarking framework
to systematically compare data cleaning strategies. In this section, we begin by reviewing 13 existing
data cleaning approaches for LLM alignment. In general, data cleaning approaches involve two core
steps: identifying unreliable data (e.g., via LLM-as-a-judge) and applying corrective treatments (e.g.,
filtering or flipping the label). We name each approach according to its identification strategy, while
the applied treatment creates variants within each strategy. As shown in Figure 2, we further catego-
rize these approaches into three groups based on their underlying criteria for identifying unreliability,
including the usage of LLM-as-a-Judge (Sec. 3.2), reward models (Sec. 3.3), and heuristic criteria
(Sec. 3.4).

3.1 Notations and Definitions

Definition 3.1 (Human preference data.) Consider two responses y., y. for an input prompt T, we
denote y. > y, if y. is preferred over y,. We call y. the chosen or preferred response and vy, the
rejected response. Each triplet (x,y.,y.) is referred to as a preference. Furthermore, the empirical

dataset D = {(x(i), ygi), yﬁl)) ©_, consists of n such triplets sampled from a preference distribution.

In practice, human preference data often contains noise and inconsistencies. Specifically, a portion of
triplets (), y&, y¥) may mistakenly indicate y&’ = 4/ despite y\") being genuinely preferable.
Training LLMs with such unreliable preference data can undermine alignment quality and potentially
yield harmful outcomes. Therefore, the task of preference data cleaning involves identifying these
incorrectly annotated triplets and either removing them from the dataset or correcting their labels.

Formally, preference data cleaning can be defined as below:
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Figure 2: The summarization of data cleaning approaches for LLM alignment. We categorize
data cleaning approaches into three groups based on the definition of unreliability they considered.
The three groups include LLM-as-a-judge, score of reward model, and heuristic criteria. /W indicates
unreliable data identified by each approach.

Definition 3.2 (Preference data cleaning.) Denote P be a distribution of high-quality preference
data, in which each data point d := (x,y1, ys, 1) consists of a high-quality prompt x, two response
candidates Yy, ya, and a reliable label | € {, <}, where > means y is better than ys and < means
Yo is better than y,. Also denote P_ be a distribution of low-quality preference data, in which
each data point d has the same structure (x,y1,Y2,l), while the prompt © (and/or both response
candidates y1,y2) are low quality and/or the label | is unreliable (e.g., | :=> when ys is better than
y1). We assume a noised preference dataset D consists of data sampled from a mixture distribution
P = (1 — a)P; + aP_. The task of preference data cleaning is to remove or correct data points in
D that are sampled from P_ such that the cleaned dataset D’ contains data purely sampled from P

3.2 Data Cleaning with LLM-as-a-Judge

Many studies have used LLMs as a proxy for human feedback [32, 59] or as a data quality asses-
sor [70]. This approach identifies incorrect preference labels by prompting LLMs to score two
response candidates given the input prompt. A label is considered incorrect if the rejected response
has a higher score predicted by the LLM judge. We create two versions of this approach: LLM-
Judge-R and LLM-Judge-F, which remove data or flip labels based on the predictions of an LLM (in
this case, GPT-40-2024-05-13 [71]). The prompt used for scoring responses is detailed in Appendix B.
Note that to mitigate the impact of positional bias [72], we input the two responses in the prompt
with a random order.

3.3 Data Cleaning with Reward Models

Reward gap. Wang et al. [62] proposed to train reward models on the target dataset and measured
the gap between the reward of chosen and rejected responses. Formally, given a pairwise preference
data d = (z, Y., yr), the reward gap w.r.t. a reward model r is defined as

RwGap, (d) = r(z,y.) — r(z, yr).

p% of the data with the smallest reward gap are considered to have incorrect labels. In experiments,
we report the optimal performance by choosing from p = {10, 20, 30,40} and additionally ablate
different percentages of data cleaned in Section 5.1. We create two variants: RwGap-R and RwGap-
F, which either remove or flip labels for these incorrect data. Following the original configuration
in Wang et al. [62], we train eight models with different random seeds on the target dataset as
reward models and average their reward gaps. Hyperparameters for training the models are listed in
Appendix E.

RM voting. Instead of training reward models on the target dataset, Yeh et al. [19] form a committee
of publicly available reward models and use voting to decide incorrect labels. A reward model votes
for incorrect if it assigns a higher reward to the rejected response than the chosen one. Two decision



strategies can be considered: (1) when the whole committee votes for incorrect (VoteAll) and (2)
when more than half of the models in the committee votes for incorrect (VoteMaj). We thus create
four variants: VoteAll-R, VoteAll-F, VoteMaj-R, VoteMaj-F. We form the committee by selecting
six reward models from RewardBench leader board' that are highest-performing, publicly available,
non-generative, and non-contaminated. Details of these models can be found in Appendix C.

3.4 Data Cleaning with Heuristic Criteria

Apart from identifying incorrect preference labels, some approaches attempted to filter out data using
some heuristic criteria in terms of data quality.

Prompt quality. Lu et al. [73] introduced InsTag, a tagging method that utilized ChatGPT to
assign semantic tags for each prompt. They also proposed two data selection strategies: Complexity
(Tag-Cmp) and diversity (Tag-Div). The former one filters out prompts with fewer tags, while the
latter one filters out prompts whose associated tags are already present in the selected dataset. We
apply InsTagger” to assign tags for each prompt and keep the top 6K prompts in terms of higher
complexity and diversity, following exactly Lu et al. [73].

Difficulty of instruction following. Li et al. [74] introduced the Instruction Following Difficulty
(IFD) score of a prompt-response pair, where IFD(x, y) = ppl(y|z)/ppl(y). A prompt-response pair
a with IFD score > 1 means the given prompt provides no useful context for the prediction of the
response, while a low IFD score means the instruction is too easy for LLM to follow without further
training. We thus create IFD-R to measure IFD scores given prompts and the chosen responses. By
default, after removing data with IFD score > 1, p% of data with the smallest IFD score are removed
from each dataset. We also create two variants, IFD-Gap-R and IFD-Gap-F, where we measure
the difference between IFD(z, y.) and IFD(z,y,) and remove/flip p% of data with the smallest
difference, respectively. We use Llama3-8B to compute perplexity. Note that similar to RwGap, in
the experiment we choose the removing/flipping ratio among 10, 20, 30, and 40 that gives the optimal
performance. We also ablate different percentages of data cleaned in Section 5.1.

4 Evaluation Protocol

In this section, we introduce the evaluation protocol to systemically evaluate different data cleaning
approaches for LLM alignment. Our protocol include three core components: the selection of datasets
(Sec. 4.1), evaluation pipeline (Sec. 4.2), and evaluation criteria (Sec. 4.3). Figure | summarizes the
overview of the evaluation framework.

4.1 Target Datasets

We benchmark data cleaning methods using four widely adopted preference datasets, including
Anthropic-HH [14], UltraFeedback [60], PKU-SafeRLHF [75], and HelpSteer2 [76]. These
datasets encompass both human-annotated and LLM-generated labels and represent diverse per-
spectives of preferences. The detailed statistics and descriptions of these datasets are provided in
Appendix D.

4.2 Evaluation Pipeline

We benchmark data cleaning approaches by applying these approaches on each dataset, and evaluate
how the performance changes between models trained on the cleaned version and on the original
version of the dataset. Specifically, we follow the standard preference optimization pipeline. For both
cleaned and original data, we first train base LLMs with SFT by inputting prompts and the chosen
responses. We then apply preference optimization algorithms to further tune the SFTed model. We
defer the discussion on the selection of base models and preference optimization algorithms to Sec. 5.
At the end, we evaluate the performance of preference-optimized models by criteria introduced in the
next subsection.

'"RewardBench: https://huggingface.co/spaces/allenai/reward-bench
YInsTagger: https://huggingface.co/0FA-Sys/InsTagger
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Table 1: Alignment performance of Llama3-8B tuned on data cleaned with different approaches
using DPO. Results are reported across four preference datasets (Anthropic-HH, UltraFeedback,
PKU-SafeRLHF, and HelpSteer2), using evaluation metrics: win-tie rate (WinTie) and average reward
(Avg. Rwd). Methods are grouped into three categories: LLM-as-a-Judge, reward model-based, and
heuristic-based. The best score in each column is shown in bold, and the second-best is underlined.

Anthropic-HH UltraFeedback PKU-SalfRLHF HelpSteer2
Approach WinTie Avg. Rwd WinTie Avg. Rwd WinTie Avg. Rwd WinTie Avg. Rwd
Vanilla (no clean) - 6.001 - 4.109 - 6.318 - 6.509

LLM-as-a-Judge
LLM-Judge-R 0.490 6.113 0.675 4.189 0.730 6.928 0.470 5.657
LLM-Judge-F 0.570 5.766 0.585 3.991 0.625 5.745 0.515 5.300

Reward Model-based

RwGap-R 0.680 6.333 0.680 3.889 0.665 6.482 0.635 6.534
RwGap-F 0.520 5.248 0.690 4.114 0.645 6.125 0.465 5.207
VoteAll-R 0.615 6.278 0.630 4.050 0.525 3.273 0.520 5.211
VoteAll-F 0.625 6.842 0.630 4.020 0.555 3.201 0.420 5.371
VoteMaj-R 0.705 7.287 0.650 4.253 0.770 8.478 0.750 6.834
VoteMaj-F 0.695 7.010 0.635 4.028 0.550 3.179 0.495 5.458
Heuristic-based
Tag-Cmp 0.760 6.720 0.635 4.001 0.780 7.034 0.550 6.518
Tag-Div 0.695 6.770 0.635 3.905 0.710 7.174 0.625 6.682
IFD-R 0.385 3.972 0.580 3.843 0.675 6.244 0.530 5.826
IFD-Gap-R 0.730 5.817 0.690 3.992 0.770 7.105 0.650 6.750
IFD-Gap-F 0.565 5.327 0.650 4.065 0.660 5.228 0.475 5.496

4.3 Evaluation Criteria

We consider two main criteria, including (1) whether the data cleaning approach improves the
alignment of preference-optimized models, and (2) whether the cleaned data generalizes well in
different settings. In this subsection, we focus on discussing high-level ideas about how these criteria
should be defined, and we defer the detailed implementations and settings to Sec. 5.

Criteria 1: Alignment. We utilize the following two commonly used metrics to measure the
alignment of preference-tuned models.

* Win-tie rate (WinTie): The win-tie rate of the responses generated by models tuned on the clean
data against those generated by models tuned on the original data. The preferences can be judged
via human annotators, LLMs, or reward models. Models trained on clean data should have a high
win-tie rate against models trained on the original data.

* Average gold reward (Avg. Rwd): The average score of responses generated by a model,
evaluated by a gold reward model. Models trained on clean data should have a higher average gold
reward than models trained on the original data.

Criteria 2: Generalizability. We evaluate generalizability by measuring alignment metrics with
different settings. In particular, we consider the following aspects:

« Different base models: Data cleaning approach should improve alignment of models with
different sizes and from different model families.

* Diverse optimization algorithms: Data cleaning approach should improve alignment of models
trained using different preference optimization algorithms.

S Experimental Results

Following the pipeline introduced in Sec. 4.2, we train models on both cleaned and original datasets to
evaluate the data-cleaning approaches. We consider Llama3-8B [77] as the base model and DPO [37]



as the preferenceoptimization algorithm in our main experimental setting, and perform extensive
ablations using various LLMs and preference optimization methods in Section 5.2. We include the
training configurations and details in Appendix E.

5.1 Benchmarking Alignment

Implementation. We implement the three metrics for benchmarking alignment as follows. For
WinTie, we utilize GPT-40-2024-05-13 as the LLM judge and use the same prompt as shown in
Sec. 3.2. Note that different from the usage of data cleaning, to mitigate the positional bias, here we
INput Yeiean and Yorigin to the prompt two times, with different orders respectively. We then average the
scores generated by the two prompts as the final score. Also note that due to the cost of running LLM-
as-a-judge, we randomly select 200 samples from the test set to calculate WinTie. For Avg. Rwd,
we measure rewards by LxzGordon/URM-LLaMa-3.1-8B [78], which is a held-out reward model
apart from the models used for data cleaning in Sec. 3.3. To ensure robustness of our evaluation,
we additionally report performance under alternative gold reward models in Appendix F. We also
conduct a human evaluation to ensure the WinTie rate measured by the LLM-as-a-judge is reliable.
Specifically, we sample 50 data points from the Anthropic-HH dataset, and compare the responses
generated by Llama3-8B trained with DPO on the original dataset and on the dataset cleaned by
VoteMaj-R. We conduct both human annotation and LLM-judge with GPT-40, and compute the
Cohen’s kappa inter-annotator agreement score. The result shows a high Cohen’s kappa value,
suggesting a significant agreement between human judgments and GPT-40 assessments. Note that
WinTie and Avg. Rwd require generating Yciean and Yorigin USINE Telean aNd Torigin T€SPECtively, where
the generation configurations are detailed in Appendix E.

Should we remove the data or flip the label? In Sec. 3, we consider two corrective treatments:
either removing the preference data, or flipping the preference label. In Table |, we find that the
choice of corrective treatment largely affects the performance of alignment. In particular, removing
unreliable data generally performs a better alignment than flipping labels, as evidenced by higher
win-tie rates and average reward model scores. This suggests that mitigating unreliability of feedback
is more complicated than simply flipping labels. As shown by Yeh et al. [19], there are at least six
sources of unreliability in preference data, while flipping labels only addresses cases where annotators
mislabel responses. For other cases, such as having harmful suggestions in both responses, even
though a reward model or LLM thinks a rejected response is better than the chosen one, label flipping
fails to mitigate unreliability. In contrast, removing such data enhances dataset quality, thereby
enhancing the alignment of trained models.

To better illustrate this idea, we examined 50 data points on HelpSteer2, which are marked as
unreliable by VoteMaj, as well as another 50 data points that were retained. We observed a significant
gap in the quality of the input prompt between the unreliable and retrained data. The retrained
data tends to have a prompt with a clear instruction or a specific question, leading to high-quality
response candidates and reliable preference annotations. In contrast, a large amount of unreliable
data marked by VoteMaj has low-quality prompts. For example, simply greeting LLMs, posting a
vague question, or asking LLMs to generate a list of product descriptions without providing any data.
LLMs prompted on them usually generate responses that are generic or hallucinated. In this case,
VoteMaj-F, i.e., flipping the labels of unreliable data, can not mitigate the unreliability because it is
due to the prompt. In fact, flipping the labels even degrades the performance because some marked
data have a correct label. On the other hand, VoteMaj-R removes all the unreliable data, cleaning up
data with a low-quality prompt and preventing the risk of wrongly correcting labels.

Multiple judges resulted in better alignment than a single judge. As shown in Table 1, models
trained with VoteMaj-R consistently performs well across all datasets, achieving top scores in avg.
reward. Unlike LLM-Judge and RwGap, VoteMaj identifies unreliable data based on agreement
across multiple judges, underscoring the value of judge diversity. By incorporating diverse evaluators,
the identification of unreliable data becomes less susceptible to the biases of any single model or
dataset [79]. To further investigate why LLM-as-a-Judge methods underperform, we analyze 50
data points sampled from the Anthropic-HH dataset that are marked as unreliable by LLM-Judge
but reliable by VoteMaj, and another 50 data points that are marked as unreliable by VoteMaj but
reliable by LLM-Judge. We found that the discrepancy between LLM-Judge and VoteMaj usually
happens when the two response candidates have a similar quality. Specifically, when both responses



Table 2: Alignment performance of Llama3-8B tuned on data cleaned with different data
filtering proportion using DPO. We vary the filtering threshold from 10% to 40% for RwGap-R
and IFD-Gap-R.

10% Filtering 20% Filtering 30% Filtering 40% Filtering
Approach WinTie Avg. Rwd WinTie Avg. Rwd WinTie Avg. Rwd WinTie Avg. Rwd
Anthropic-HH
Vanilla (no clean) - 6.001 - 6.001 - 6.001 - 6.001
RwGap-R 0.570 6.143 0.665 5.931 0.680 6.333 0.660 6.057
IFD-Gap-R 0.620 6.060 0.660 5.784 0.730 5.817 0.660 5.798
UltraFeedback
Vanilla (no clean) - 4.109 - 4.109 - 4.109 - 4.109
RwGap-R 0.580 3.992 0.680 3.889 0.615 3.842 0.620 3.731
IFD-Gap-R 0.625 4.165 0.625 3.719 0.650 3.708 0.690 3.992
PKU-SafeRLHF
Vanilla (no clean) - 6.318 - 6.318 - 6.318 - 6.318
RwGap-R 0.650 5.998 0.665 6.482 0.670 5.884 0.705 5.870
IFD-Gap-R 0.770 7.105 0.685 6.322 0.680 6.929 0.750 6.719
HelpSteer2
Vanilla (no clean) - 6.509 - 6.509 - 6.509 - 6.509
RwGap-R 0.460 5.657 0.635 6.534 0.600 6.401 0.615 6.544
IFD-Gap-R 0.495 5.814 0.645 6.561 0.650 6.750 0.620 6.705

were suggesting harmful behaviors, since LLM-Judge is forced to decide which response is better, it
has around a 1/2 probability of choosing the “chosen one” and keeping the data point in the dataset.
In contrast, the decision of VoteMaj is made by multiple models, so these data tend to get mixed
votes and are more likely to be removed. Since these low-quality data are harmful for aligning LLMs,
training on them will degrade the performance.

Impact of data quantity. We further investigate how the proportion of data removed during the
cleaning process affects alignment performance. Specifically, we vary the filtering threshold from
10% to 40% for two representative methods: RwGap-R (reward gap-based filtering) and IFD-Gap-R
(instruction following difficulty-based filtering)—both of which require an explicit specification of
the removal ratio. In contrast, other cleaning methods like LLM-Judge-R, VoteAll-R, and VoteMaj-R
do not require a fixed proportion of data to be filtered. Results in Table 2 reveal a nuanced tradeoff. A
mild filtering rate improves alignment metrics such as win-tie rate and average reward—indicating
that removing unreliable data can enhance model quality. The optimal filtering rate is achieved
somewhere between 20% to 30%, which aligns with the amount of noise known in datasets such as
Anthropic-HH [62].

5.2 Benchmarking Generalizability

Following the protocol we proposed in Sec. 4, we evaluate the generalizability of preference data
cleaning in the aspects of (1) optimization algorithm and (2) base LLM model. For the aspects of
base model and optimization algorithm, we show the generalizability of the top two data cleaning
approaches that best perform in alignment evaluation, i.e., VoteMaj-R and Tag-Cmp. While for the
aspect of dataset, we evaluate all the data cleaning approaches.

Performance across preference optimization algorithms. Beyond using DPO, we extend our
evaluation to other preference optimization algorithms, including CPO [80], SLiC [52], KTO [81],
AOT [82], IPO [83], rDPO [67], and ORPO [84]. These algorithms represent different strategies for
aligning model outputs with human preferences, allowing for a broader assessment of our cleaning
methods. We train the base model—Llama3-8B—with these different algorithms on the four target
datasets, respectively.

Results in Table 3 show that both models trained with VoteMaj-R and Tag-Cmp maintain a high
win-tie rate and avg. reward across different preference optimization algorithms in most settings,



Table 3: Generalizability of data cleaning approaches across different preference optimization
algorithms. We train Llama3-8B with cleaned data using different preference optimization algorithm.

Anthropic-HH UltraFeedback PKU-SalfRLHF HelpSteer2
Approach WinTie Avg. Rwd WinTie Avg. Rwd WinTie Avg. Rwd WinTie Avg. Rwd
DPO
Vanilla (no clean) - 6.001 - 4.109 - 6.318 - 6.509
VoteMaj-R 0.705 7.287 0.650 4.253 0.770 8.478 0.750 6.834
Tag-Cmp 0.760 6.720 0.635 4.001 0.780 7.034 0.550 6.518
CPO
Vanilla (no clean) - 5.309 - 3.480 - 3.568 - 6.920
VoteMaj-R 0.675 6.197 0.645 3.821 0.705 4.449 0.705 4.305
Tag-Cmp 0.660 6.719 0.635 3.440 0.740 5.137 0.665 6.508
SLiC
Vanilla (no clean) - 5.483 - 3.700 - 5.697 - 6.055
VoteMaj-R 0.625 6.770 0.735 3.895 0.705 6.882 0.710 6.293
Tag-Cmp 0.660 5.872 0.650 3.727 0.735 6.561 0.615 6.530
KTO
Vanilla (no clean) - 4.688 - 3.745 - 3.826 - 6.188
VoteMaj-R 0.570 5.047 0.665 3.775 0.635 3.369 0.610 6.258
Tag-Cmp 0.520 4.045 0.705 3.835 0.665 4.264 0.645 6.389
AOT
Vanilla (no clean) - 4.883 - 3.723 - 6.086 - 5.851
VoteMaj-R 0.725 6.191 0.715 3.869 0.695 7.602 0.655 6.236
Tag-Cmp 0.625 5.107 0.610 3.798 0.690 6.237 0.650 6.258
PO
Vanilla (no clean) - 5.570 - 3.424 - 4.805 - 6.581
VoteMaj-R 0.715 6.495 0.685 3.715 0.590 7.209 0.600 6.760
Tag-Cmp 0.780 6.828 0.585 3.391 0.605 6.845 0.620 6.775
rDPO
Vanilla (no clean) - 4.240 - 3.656 - 4.900 - 5.811
VoteMaj-R 0.745 5.390 0.645 3.789 0.680 6.036 0.630 6.155
Tag-Cmp 0.645 4951 0.680 3.821 0.750 5.949 0.665 6.298
ORPO
Vanilla (no clean) - 4.841 - 4.040 - 5.181 - 6.864
VoteMaj-R 0.635 5.154 0.935 6.512 0.645 5.470 0.635 7.086
Tag-Cmp 0.630 5.123 0.635 3.907 0.695 5.280 0.650 6.833

suggesting that both data cleaning methods generalize well across algorithms. Notably, we found that
some preference optimization algorithms work particularly well with a specific data cleaning method.
For AOT and ORPO, models trained with VoteMaj-R outperform models trained with Tag-Cmp in
most cases; while for KTO and rDPO, models trained with Tag-Cmp generally perform better. These
findings suggest that the interaction between data cleaning strategies and preference optimization
algorithms is non-trivial and may depend on the algorithm’s inductive biases. Specifically, AOT and
ORPO are designed to be more distribution-aware and sensitive to noise in preference signals, which
may explain why they benefit more from VoteMaj-R—a method that explicitly filters out examples
with high disagreement among reward models, thus reducing label noise. In contrast, KTO and rDPO
are designed to be more robust against noise. Tag-Cmp selects data based on prompt complexity and
diversity, which may provide KTO and rDPO with more informative training signals for modeling
preferences. This suggests that aligning the strengths of a data cleaning method with the learning
dynamics of a preference optimization algorithm can lead to better overall alignment outcomes.

Performance across different base models. Apart from Llama3-8B, we consider 4 additional
base models with different sizes and from different families, including Llama3.2-1B [85], Qwen2.5-
7B [86], Mistral-7B [87], and phi-2 [88]. We fine-tune these models on all four datasets using DPO.
Results in Table 4 show that models trained with VoteMaj-R maintain a high win-tie rate and avg.



Table 4: Generalizability of data cleaning approaches across different base LLM models.

Anthropic-HH UltraFeedback PKU-SalfRLHF HelpSteer2
Approach WinTie Avg. Rwd WinTie Avg. Rwd WinTie Avg. Rwd WinTie Avg. Rwd
Llama3-8B
Vanilla (no clean) - 6.001 - 4.109 - 6.318 - 6.509
VoteMaj-R 0.705 7.287 0.650 4.253 0.770 8.478 0.750 6.834
Tag-Cmp 0.760 6.720 0.635 4.001 0.780 7.034 0.550 6.518
Qwen2.5-7B
Vanilla (no clean) - 5.460 - 3.283 - 5.487 - 6.176
VoteMaj-R 0.605 6.551 0.750 3.390 0.745 8.132 0.695 6.015
Tag-Cmp 0.570 6.000 0.615 3.252 0.720 6.342 0.720 6.187
Mistral-7B
Vanilla (no clean) - 4218 - 2.996 - 5.304 - 4,722
VoteMaj-R 0.740 5.640 0.635 2.943 0.760 6.732 0.600 4.726
Tag-Cmp 0.690 5.264 0.570 2.902 0.625 5.137 0.585 4.436
phi-2
Vanilla (no clean) - 5.626 - 2.712 - 7.570 - 4.492
VoteMaj-R 0.590 6.287 0.650 2.644 0.715 9.204 0.585 4.187
Tag-Cmp 0.395 4.382 0.605 2.767 0.780 5.511 0.645 4.338
Llama3.2-1B
Vanilla (no clean) - 4.441 - 3.031 - 4.720 - 4.012
VoteMaj-R 0.655 5.857 0.625 3.081 0.735 7.431 0.590 3.891
Tag-Cmp 0.580 4.485 0.515 2.569 0.665 6.043 0.600 3.894

reward across different base models in most settings. In contrast, models trained with Tag-Cmp fail
to have a win-tie rate > 0.5 in some settings and have an average. reward lower than models trained
with uncleaned datasets. This suggests that VoteMaj-R has a higher generalizability than Tag-Cmp.

6 Conclusion and Limitations

Our work addresses a fundamental yet usually overlooked component of LLM alignment pipeline:
the quality of the preference data for alignment. Improved data cleaning methods can lead to
more reliable alignment outcomes, reducing the risk of models exhibiting unsafe behaviors, or
misaligning with user intent. By providing a standardized benchmark for evaluating a diverse set of
data cleaning techniques, we aim to foster more rigorous and reproducible practices in alignment
research. Our results underscore the importance of both accurately identifying unreliable feedback
and applying effective treatment strategies—such as removal over flipping labels—and show that
cleaner, smaller datasets can outperform larger but noisier ones. Moreover, by highlighting the
varying generalizability and effectiveness of different cleaning strategies across datasets, models,
and optimizers, our benchmark encourages the development of more robust alignment pipelines that
perform well in diverse settings. We hope our benchmark serves as a foundation for future work in
data-centric alignment and enables more principled development of reliable and aligned Al systems.

One challenge of estimating the effectiveness of data cleaning approaches for preference data is that
there is no ground truth to determine the quality or the correctness of preference data. Therefore,
to quantify the performance of data cleaning, we evaluate the alignment of models trained with
the cleansed data. Although such an evaluation can indicate whether models trained with cleansed
data achieve a better alignment, it can not quantify the recall and false positive rate of identifying
unreliable data. Future work could explore cost-effective yet reliable ways of identifying noise in
preference data with human oversight. A curated benchmark with partially verified labels would
enable direct evaluation of data cleaning accuracy. Such efforts could advance both the science of
benchmarking and the broader goal of data-centric alignment.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in Abstract and Introduction are aligned with the content in
Section 3, 4, and 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed experimental settings in Section 3, 5, and Ap-
pendix B, C, D, E.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the link to our released code in the Abstract. In addition, the
dataset we used are cited in Section 4.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed experimental settings in Appendix B, C, and E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average rewards calculated by different reward models (Ap-
pendix F).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details on computing resources in Appendix E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics, and confirmed that our work does
not deviate from it.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader societal impacts in Appendix A
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite relevant works in Section 3, 5, and Appendix F.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The link to the released code is presented in the abstract. The related details
are documented in Section 3, 4, 5, and Appendix B, E, F.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLM for core method development.

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impact

As large language models continue to be integrated into high-stakes applications, ensuring their
alignment with human values and preferences becomes increasingly critical. Our work tackles a
key gap in the alignment literature by systematically benchmarking a diverse set of data cleaning
approaches for preference feedback datasets. By providing a standardized benchmark for evaluating
data cleaning techniques, we aim to foster more rigorous and reproducible practices in alignment
research. We acknowledge that automated data cleaning methods may themselves introduce biases
or remove minority viewpoints, especially if not carefully designed. Thus, we hope our benchmark
encourages the community to develop data cleaning strategies that are not only effective but also
equitable and inclusive. Ultimately, we believe that improving the effectiveness and robustness of
data cleaning approaches is a key step toward responsible Al development. Our contributions aim
to support both academic research and practical deployment efforts by providing tools to critically
evaluate and improve the data foundations of human-aligned Al systems.

B Prompts of LLM

Table 5 presents the prompts we provided to GPT-40 for data cleaning, adopted from [36]. Each
GPT-4 request comprises both a system and a user prompt. The system prompt delineates the proxy’s
attributes and its specific task, while the user prompt poses a question and provides responses from the
two methods. These prompts are also used in measuring the win-tie rate for benchmarking alignment.

C Reward Models for RM Voting

Table 6 shows the list of our selected gold RMs for RM voting, as well as their performance. The
six RMs are selected based on their performance on RewardBench [66]. Specifically, these RMs
cover a wide range of reward model architectures, including InfoRM [89], QRM [90], GRM [91],
and ArmoRM [92].

D Details of Datasets

We consider the following four preference datasets as targets to benchmark data cleaning approaches.
Table 7 shows the statistics of each dataset.

Anthropic-HH [14]. The authors recruited crowdworkers to have conversations with their three
models, and select a preferred response from two candidates. The dataset contains two splits:
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Table 5: Sample prompt for the GPT-4 evaluation. Text highlighted in orange represents the question,
while text in blue represents the responses under comparison.

System prompt

[System]
You are a helpful, harmless, and precise assistant for checking the quality of the answer. We would like to request your
feedback on the performance of two Al assistants in response to the user question displayed above.

Please rate the harmlessness, helpfulness, and level of detail of their responses. Your evaluation should consider
factors such as the helpfulness, harmlessness, relevance, accuracy, depth, creativity, and level of detail of the response.
Each assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better overall
performance. Please first output a single line containing only two values indicating the scores for Assistant 1 and 2,
respectively. The two scores are separated by a space. In the subsequent line, please provide a comprehensive
explanation of your evaluation, avoiding any potential bias and ensuring that the order in which the responses were
presented does not affect your judgment.

User prompt

[Question]
###Human: What are some symptoms of caffeine withdrawel? ###Assistant:

[The Start of Assistant 1’s Answer]

When caffeine is removed from someone who has habitually consumed it, the body has a natural reaction to produce
more adrenaline, in order to reduce the need for caffeine. This increased adrenaline production causes many different
symptoms, ranging from jitteriness and restlessness, to lethargy and drowsiness.

[The End of Assistant 1’s Answer]

[The Start of Assistant 2's Answer]

You might feel an overall sense of mental tiredness, a decreased ability to concentrate, and problems sleeping. You
may also experience headaches and a sense of jitteriness or edginess. There are also some physical symptoms that
can appear, such as muscle pain and vomiting.

[The End of Assistant 2's Answer]

Table 6: Selected RMs for RM voting and their scores on RewardBench.

Reward Model Score Chat Hard Safety Reason
infly/INF-ORM-Llama3.1-70B 95.1 96.6 91.0 93.6 99.1
ShikaiChen/LDL-Reward-Gemma-2-27B-v0.1 95.0 964 90.8 9338 99.0
nicolinho/QRM-Gemma-2-27B 944 96.6 90.1 92.7 98.3

Skywork/Skywork-Reward-Gemma-2-27B-v0.2 943 96.1 899 93.0 98.1
Ray2333/GRM-Llama3.2-3B-rewardmodel-ft 90.9 91.6 849 927 94.5
RLHFlow/ArmoRM-Llama3-8B-v0.1 904 969 76.8 90.5 97.3

helpfulness and harmlessness. For helpfulness, crowdworkers were instructed to ask models for
help, advice, or to accomplish tasks. Workers then chose a response that was more helpful. For
harmlessness, workers were asked to attempt to elicit harmful responses from models, and to choose
the less harmful one. We combine the two splits in both training and evaluation phases.

UltraFeedback [60]. The prompts in this dataset were sampled from several QA and instruction-
following datasets, including Truthful QA [93], UltraChat [94], and ShareGPT [95]. The authors
generated candidate responses using 17 models, and prompt GPT-4 to score each response in four
aspects: instruction-following, truthfulness, honesty, and helpfulness. Each aspect is assessed on a
Likert-5 scale. Note that in order to fit the definition of preference data in Sec. 3, we use its binarized
version processed by Bartolome et al. [96]. In addition, since UltraFeedback does not provide a test
set, we randomly split it into a train (90%) and a test (10%) set.

PKU-SafeRLHF [75]. The authors utilized LLMs to generate harmful prompts with 19 harm
categories, and adopted other LLMs to generate responses for each prompt. The authors then
conducted a human+AI annotation process to label harm category, severity, as well as preferences
in terms of helpfulness and harmlessness. They released the dataset in both single-preference and
dual-preference versions, where we utilize the single-preference version in our experiment.
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Table 7: Statistics of the four target datasets.

Split  Anthrpoic-HH  UltraFeedback PKU-SafeRLHF  HelpSteer2

Train 160,800 54,825 72,996 8,677
Test 8,552 6,092 8,109 448
Total 169,352 60,917 81,105 9,125

Table 8: Training hyperparameters for SFT and  Table 9: Configurations of generating responses.
PEFT models.

Parameter Value
Parameter Value Max new token 256
Number of epochs 1 Do sample True
Learning rate 1x107° Temperature 1.0
Batch size 96 Top K 100

SFT Gradient accumulation steps 1
Maximum sequence length 512

DeepSpeed Zero stage 2

Weight decay 0

LoRA rank 0
Number of epochs 1
Learning rate 5x107°
B8 0.1

Batch size 64

PEFT  Gradient accumulation steps 1
Maximum sequence length 512

DeepSpeed Zero stage 2
Weight decay 1x107*
LoRA rank 16

HelpSteer2 [76]. The prompts in this dataset were mainly sampled from ShareGPT. For each
prompt, two responses were generated from diverse sources, including different LLMs and human
annotators. Three to five annotators were hired to annotate one response in five aspects (helpfulness,
correctness, coherence, complexity, and verbosity) on a Likert-5 scale. In this paper, we utilize
HelpSteer2-Preference [97], where each response pair was further labeled by crowdworkers with 7
preference options.

E Hyperparameters, Configurations, and Computational Details

Models training. Table 8 shows the summary of hyperparameters we used for training SFT and
PEFT models. All models are trained on 4 Nvidia H200 GPUs. For SFT, each model takes less than
2 hours for training; for PEFT, it takes less than 1.5 hours to train a model. Note that for ORPO, we
skip the SFT stage as it already includes the SFT term in the loss.

Response generation. Table 9 shows the summary of configurations we used for generating
responses.

Computational cost. We summarize all computational resources/API costs for each data cleaning
approach, using the Anthropic-HH dataset (N=160k) as reference.

e LLM-Judge-R/LLM-Judge-R: Given the GPT-40 API pricing ($2/1M input tokens and $8/1M
output tokens), the total API cost on Anthropic-HH is approximately 350USD (<1000 input tokens
and <20 output tokens for each data point).

*  RwGap-R/RwGap-F: Training 8 DPO models takes under 12 hours on 4xH200 GPUs. Computing
rewards of the 8 DPO models for the entire dataset takes additional <4 hours on 4xH200 GPUs.
In total, it takes less than 16 hours on 4xH200 GPUs to clean the dataset.
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Table 10: Avg. Rwd measured by different reward models. We report the Avg. Rwd of each data
cleaning approach measured by QRM and OffsetBias respectively.

Anthropic-HH UltraFeedback PKU-SalfRLHF HelpSteer2
Approach QRM OffsetBias QRM OffsetBias QRM OffsetBias QRM OffsetBias
Vanilla (no clean) 0.656  -4.961 0563 -4.714 0.670  -6.424 0.730  -3.889

LLM-as-a-Judge
LLM-Judge-R  0.670  -4.934 0.558 4712 0.688  -6.202 0.702  -4.321
LLM-Judge-F 0.649  -5.021 0.552  -4.783 0.654  -6.743 0.689  -4.466

Reward Model-based

RwGap-R 0.662 -4.815 0.552 -4.792 0.666 -6.531 0.684 -4.511
RwGap-F 0.624 -5.165 0.557 -4.751 0.674 -6.604 0.686 -4.525
VoteAll-R 0.672 -4.861 0.554 -4.792 0.580 -7.484 0.685 -4.537
VoteAll-F 0.685 -4.721 0.553 -4.791 0.574 -7.433 0.691 -4.511
VoteMaj-R 0.707 -4.652 0.560 -4.658 0.748 -5.541 0.746 -3.653
VoteMaj-F 0.693 -4.737 0.554 -4.787 0.563 -7.396 0.694 -4.444
Heuristic-based
Tag-Cmp 0.694 -4.901 0.551 -4.756 0.705 -6.161 0.736 -3.844
Tag-Div 0.695 -4.884 0.547 -4.791 0.704 -6.036 0.742 -3.845
IFD-R 0.556 -5.688 0.546 -4.846 0.769 -6.373 0.708 -4.184
IFD-Gap-R 0.666 -4.801 0.556 -4.687 0.697 -6.087 0.707 -4.251
IFD-Gap-F 0.635 -5.219 0.555 -4.765 0.619 -6.773 0.694 -4.435

* VoteAll-R/VoteAll-F/VoteMaj-R/VoteMaj-F: Each reward model takes <1 hour on 4xH200 GPUs
to compute reward for the entire dataset. In total, it takes less than 6 hours on 4xH200 GPUs to
clean the dataset.

e Tag-Cmp/Tag-Div: Generate tags and clean the full dataset takes >24 hours using HuggingFace’s
AutoModelForCausalLM. The process could be significantly faster with optimized backends like
vLLM".

* IFD-R/IFD-Gap-R/IFD-Gap-F: It takes less than 6 hours to compute IFD score with Llama3-8B
on 4xH200 GPUs for the entire dataset.

Overall, VoteMaj-R and IFD-Gap-R offer strong trade-offs between cleaning effectiveness and
computational efficiency.

F Additional Experimental Results

In Sec. 5.1, we measure average gold rewards by LxzGordon/URM-LLaMa-3.1-8B [78]. To ensure
robustness of our evaluation, we additionally measure rewards using nicolinho/QRM-Llama3.1-
8B-v2 [90] and NCSOFT/Llama-3-0ffsetBias-RM-8B [98]. Table 10 shows that although different
reward models compute rewards with different scale, they follow a consistent trend that VoteMaj-R
achieves the highest rewards in most cases.

3VLLM: https://github.com/vllm-project/vllm
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