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ABSTRACT

Traditional segmentation models, while effective in isolated tasks, often fail to
generalize to more complex and open-ended segmentation problems, such as free-
form, open-vocabulary, and in-the-wild scenarios. To bridge this gap, we propose
to scale up image segmentation across diverse datasets and tasks such that the
knowledge across different tasks and datasets can be integrated while improving
the generalization ability. QueryMeldNet, a novel segmentation framework, is
introduced and designed to scale seamlessly across both data size and task di-
versity. It is built upon a dynamic object query mechanism called query meld,
which fuses different types of queries using cross-attention. This hybrid approach
enables the model to balance between instance- and stuff-level segmentation, pro-
viding enhanced scalability for handling diverse object types. We further enhance
scalability by leveraging synthetic data-generating segmentation masks and cap-
tions for pixel-level and open-vocabulary tasks-drastically reducing the need for
costly human annotations. By training on multiple datasets and tasks at scale,
QueryMeldNet continuously improves performance as the volume and diversity
of data and tasks increase. It exhibits strong generalization capabilities, boosting
performance in open-set segmentation tasks SeginW by 7 points. These advance-
ments mark a key step toward universal, scalable segmentation models capable of
addressing the demands of real-world applications.

1 INTRODUCTION

Image segmentation is an important computer vision research direction with the goal of partition-
ing an image into discrete groups of pixels. This field encompasses various training tasks, includ-
ing semantic segmentation, instance segmentation, panoptic segmentation, foreground/background
segmentation, and referring segmentation, etc. The objective of a universal image segmentation
model is to exhibit robust generalization capabilities, performing effectively in real-world diverse
segmentation applications, such as open-vocabulary, free-form and in-the-wild segmentation re-
quirement Xu et al. (2023); Liu et al. (2023); Zou et al. (2023a). To achieve that, such a model is
expected to be trainable jointly across any segmentation datasets and tasks at scale such that the
knowledge across different tasks and datasets can be integrated. This integration is essential for im-
proving performance on complex, real-world problems, particularly when larger and more diverse
datasets are available. We say that a segmentation model is scalable if it can effectively improve
with the increase in both dataset size and task diversity. A scalable model can continuously evolve
by leveraging existing and future datasets, without requiring frequent redesign or retraining, making
development more efficient. In this way, simply gathering more diverse data can naturally enhance
the model’s capabilities.

Despite these benefits, numerous prior works were explored on specific tasks or datasets in iso-
lation He et al. (2017); Chen et al. (2017; 2019); Ronneberger et al. (2015); Long et al. (2015);
Xiong et al. (2019); Cheng et al. (2020). While these models have achieved significant success in
their respective areas, they often struggle to generalize to real-world scenarios, where versatility
and adaptability are critical. The limitations of task-specific models raise a key question: Can we
design a model that scales effectively across both tasks and datasets while improving generalization
in diverse, real-world applications?
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Figure 1: QueryMeldNet, a scalable segmentation model, is designed to train across a wide range of datasets and
segmentation tasks, including both existing and newly introduced ones. The model supports open-vocabulary
inference and excels in handling multiple segmentation tasks simultaneously, such as instance, panoptic, se-
mantic, and referring segmentation. The graph demonstrates the model’s strong generalization capabilities, as
indicated by its performance improvements on the SeginW benchmark, which scales efficiently with increasing
amounts of training data and tasks.

Several recent efforts have aimed to scale up segmentation training tasks and datasets by exploring
unified frameworks, seeking to address the joint training of multiple tasks and datasets, summarized
in Table 1. However, these existing works possess certain inherent limitations, far from achieving
true scalability across both tasks and datasets. Some of these works have made progress in dataset
scalability but remain restricted to a single task Lambert et al. (2020); Kim et al. (2022a). Oth-
ers Jain et al. (2023); Zhang et al. (2023) have demonstrated limited task scalability—addressing
only specific tasks such as semantic, instance, or panoptic segmentation—but cannot generalize
across datasets with different class structures. There is few attempt for both datasets and tasks scala-
bility Gu et al. (2023); Zou et al. (2023a). X-Decoder Zou et al. (2023a) offers a promising solution
with its learnable queries for jointly training on tasks and datasets. Nevertheless, its subpar perfor-
mance in instance-level segmentation reveals shortcomings in its architecture, indicating that its task
scalability is still constrained.

In this work, we conduct an in-depth analysis and identify a key limitation preventing effective scal-
ability: the design of object queries, a fundamental component in transformer-based segmentation
models. The learnable queries used in X-Decoder have shown promising results for semantic (stuff)
segmentation but struggle with instance (thing) segmentation1. To address this issue, we draw in-
spiration from the success of conditional queries in object detection Liu et al. (2022a); Li et al.
(2022); Zhu et al. (2020); Zhang et al. (2022a) and introduce them to enhance X-Decoder’s ability
in instance-level segmentation and broaden its scalability across both tasks and datasets. However,
while conditional queries excel at instance objects, they perform poorly with stuff objects. To har-
monize the strengths of both query types, we propose a novel object query mechanism called query
meld. This approach seamlessly melds learnable queries and conditional queries with a qual-query
cross attention mechanism. It enables sample and object-wise dynamic query selection, opposite to
traditional rigid assignment Rana et al. (2023); Athar et al. (2023); Zhang et al. (2023), and hier-
archical and interactive feature representation which improve the model’s ability to handle diverse
object types, enabling scalability across various tasks and datasets.

Building on this foundation, we introduce a scalable segmentation architecture called QueryMeld-
Net. QueryMeldNet can be trained on many different segmentation tasks and datasets at scale, as
shown in Figure 1, without being limited to specific datasets Kim et al. (2022a); Lambert et al.
(2020); Zhou et al. (2023) or tasks Jain et al. (2023); Zhang et al. (2021) as previous works. A
key advantage of QueryMeldNet’s scalable design is its ability to continuously improve segmenta-
tion performance by training on a wide variety of existing datasets and tasks. We demonstrate that
scaling up both the volume of training data and diversity of tasks consistently enhances the model’s
segmentation capabilities, particularly for real-world, free-form open-set segmentation tasks. As
shown in Figure 1 (right), when we scale the data and tasks from 0.1M to 0.6M and include more
diverse tasks, the open-set segmentation mask AP performance on the SeginW benchmark Zou et al.
(2023a) improves from 33.2 to 38.6. While current public datasets provide a good starting point,
we are eager to explore the limits of the model’s generalization capabilities by utilizing even more

1The term “thing” (referring to countable objects, usually in the foreground) and “stuff” (referring non-
object, uncountable elements, often in the background) are frequently employed to make a distinction between
objects with clearly defined geometry and quantifiability, such as people, dogs, and surfaces or areas lacking a
fixed geometry, primarily recognized by their texture or material, like sky, road Kirillov et al. (2019).
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Table 1: Summary of data and task scalability of related image segmentation works. Unlike previous works that
are only scalale to specific datasets or limited tasks, QueryMeldNet overcomes these constraints by enabling
joint data and task scalability.

Data Scalability Task Scalability
Instance Semantic Panoptic Referring Foreground Detection

MSeg Lambert et al. (2020) ✓ ✓
UniSeg Kim et al. (2022a) ✓ ✓
OneFormer Jain et al. (2023) ✓ ✓ ✓
OpenSeeD Zhang et al. (2023) ✓ ✓ ✓ ✓
X-Decoder Zou et al. (2023a) ✓ ✓ ✓ ✓ ✓
DataSeg Gu et al. (2023) ✓ ✓ ✓ ✓
Our QueryMeldNet ✓ ✓ ✓ ✓ ✓ ✓ ✓

diverse segmentation data. However, human annotation for segmentation is usually expensive, e.g.,
requiring a few minutes to annotate a single COCO image. To circumvent this data limitation, we
propose to harness synthetic data, i.e., synthetic segmentation masks for pixel-level segmentation
and synthetic segment captions for open-vocabulary semantic alignment. This is feasible as some
recent models can already generate impressive synthetic segmentation masks Kirillov et al. (2023);
Ke et al. (2023) and object-level captions Wang et al. (2022b); Zhang et al. (2022b), and the syn-
thetic data has been proven helpful for model improvement Cho et al. (2023); Gao et al. (2022). With
the low cost of generating synthetic data, we can easily scale up training. Incorporating synthetic
data not only mitigates the challenge of data scarcity but also strengthens the model’s robustness
and semantic understanding. By further scaling with synthetic data, QueryMeldNet pushes its per-
formance even higher, reaching 43.2, an additional improvement of 4.6 points. These advancements
represent a significant step toward developing a scalable and highly generalized image segmentation
model.

Overall, this paper has three major contributions. First, we introduce QueryMeldNet, a scalable
segmentation architecture that can be jointly trained and evaluated on any segmentation task and
dataset, breaking the constraints of task or dataset specific models, making it possible to scale up
image segmentation model across both datasets and tasks. Second, we demonstrate that scaling up
the model across diverse tasks and datasets consistently enhances its generalization ability. Third, by
incorporating synthetic data to further scale up the model, QueryMeldNet achieves state-of-the-art
performance on multiple open-set segmentation benchmarks.

2 RELATED WORK

Generic segmentation Given an input image, the goal of image segmentation is to output a group
of masks with class predictions. According to the scope of class labels and masks, image segmen-
tation can be divided into three major tasks, semantic, instance and panoptic segmentation Li et al.
(2023c). In the past, many task or dataset specialized models have been proposed, and they can
be trained and do inference only on a single task and dataset, including Mask R-CNN He et al.
(2017), Cascade Mask R-CNN Cai & Vasconcelos (2019), HTC Chen et al. (2019) on instance seg-
mentation, FCN Long et al. (2015), U-Net Ronneberger et al. (2015), DeepLab Chen et al. (2017)
on semantic segmentation, UPSnet Xiong et al. (2019), Panoptic-DeepLab Cheng et al. (2020) on
panoptic segmentation.

Scalable segmentation models Most early unified segmentation models lack scalability because
their architectures need modifications to accommodate different datasets and tasks Cheng et al.
(2021; 2022); Li et al. (2023a). For instance, in Mask DINO Li et al. (2023a), training on semantic
segmentation requires a one-stage encoder-decoder architecture, whereas instance and panoptic seg-
mentation demand a two-stage approach. This inconsistency limits scalability across tasks. Some
models achieve partial scalability, either for tasks Jain et al. (2023); Zhang et al. (2021); Qin et al.
(2023) or datasets Kim et al. (2022a); Lambert et al. (2020); Zhou et al. (2023), but not for both.
For example, OneFormer Jain et al. (2023) and OpenSeeD Zhang et al. (2023) handle task scalabil-
ity within instance/semantic/panoptic segmentation but struggle with dataset scalability. OneFormer
lacks the ability to unify class spaces across datasets, while OpenSeeD requires additional stuff/thing
annotations, which are impractical for most datasets. Few models attempt to address both data and
task scalability. X-Decoder Zou et al. (2023a) and DaTaSeg Gu et al. (2023) offer a sub-optimal
solution by relying on learnable queries, but they exhibit decreased performance in instance seg-
mentation. To the best of our knowledge, no segmentation model currently supports both data and
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task scalability while performing well across tasks and showing good generalization ability. In this
work, QueryMeldNet aims to solve this challenge. Table 1 compares each method.

Using synthetic data for stronger model Cho et al. (2023) uses an image captioning model to
generate pseudo captions on the cropped object regions for object detection, but it neglects the
context information during the object caption generation. Pseudo bounding boxes are also leveraged
to expand the training data size Gao et al. (2022). For image segmentation, PseudoSeg Zou et al.
(2020) designs a one-stage framework to generate pseudo masks from unlabeled data or image-
level labeled data for semantic segmentation. Another line producing and applying pseudo labels
to improve the model is under the teacher-student semi-supervised learning framework Chen et al.
(2021); Wang et al. (2022d); Liu et al. (2022b). OpenSeeD Zhang et al. (2023) also uses a pseudo
mask generator decoding from bounding boxes during training. However, we argue that all these
on-the-fly pseudo data generation methods will increase the training cost. In our work, inspired
by the recent segmentation models that can generate high-quality mask predictions Kirillov et al.
(2023); Ke et al. (2023) and have been shown to be a good pseudo label generator Jiang & Yang
(2023); Chen et al. (2023), we generate the synthetic data offline, which will be used during training
with no difference from ground truth.

3 METHOD
In this section, we first present an overview of the QueryMeldNet architecture. We then introduce
the novel query meld mechanism, a key component that drives effective scalability within the archi-
tecture. Next, we explain how QueryMeldNet scales across both data and tasks. Finally, we outline
our efforts to further enhance scalability using synthetic data.

3.1 QUERYMELDNET ARCHITECTURE

Image Encoder

Text 
Encoder

text prompts 
(e.g., class names 

or phrases)image

learnable 
queries

conditional 
queries

query meld

class, bounding box, mask predictions

Segmentation 
Encoder

Segmentation Decoder

Dual-query cross-attention

Figure 2: The overview of QueryMeldNet
architecture. The model takes an image and
a list of textual language prompts as in-
put and outputs their corresponding local-
ized segment masks.

Figure 2 shows the architecture of the proposed
QueryMeldNet. It has four major components, image and
text encoder, and segmentation encoder and decoder. The
image encoder encodes an input image to multi-scale im-
age features, and the text encoder encodes the text query
to obtain its semantic embedding. The multi-scale im-
age features are forwarded to the segmentation encoder
for further refinement. Next, the segmentation decoder
takes numbers of object queries and attends the image
features with query meld mechanism to predict the final
class, bounding box, and segment mask.

3.2 QUERY
DESIGN FOR SCALABLE SEGMENTATION

Object query is a key component in transformer-based ob-
ject detection and segmentation models, and has attracted
much attention from the community Liu et al. (2022a); Li et al. (2022); Zhu et al. (2020); Zhang
et al. (2022a); Wang et al. (2022c); Meng et al. (2021). In this section, we first review the mostly
common learnable object query strategy in segmentation architectures and introduce our new query
meld mechanism.

Learnable query relies on a single set of object queries trained from scratch which interact with
the image features to encode object location and class information (illustrated in Figure 3 (a)). Due
to its simplicity, this approach has been widely adopted in the object detection and segmentation
literature Wang et al. (2022a); Zou et al. (2023a); Cheng et al. (2021); Gu et al. (2023). For example,
X-Decoder Zou et al. (2023a) uses learnable queries in an attempt to achieve data and task scalability.
However, several studies have demonstrated that learnable queries perform suboptimally in object
detection Zhu et al. (2020); Liu et al. (2022a); Li et al. (2022). Our experiments reveal similar
findings in image segmentation: while learnable queries perform well for semantic segmentation,
they fall short in instance-level tasks such as instance segmentation. As shown in Table 2, there is
a noticeable performance gap compared to more advanced query designs. This limitation hampers
X-Decoder’s ability to scale up across diverse and complex data and tasks, restricting its broader
scalability.
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To address the shortcomings of learnable queries in instance-level segmentation, we explore more
advanced query designs that have proven successful in object detection. One such approach is the
conditional query Liu et al. (2022a); Li et al. (2022); Zhu et al. (2020); Zhang et al. (2022a),
initially proposed in Zhu et al. (2020) and further refined in Liu et al. (2022a); Li et al. (2022);
Zhang et al. (2022a). Conditional queries aim to mimic the proposal generation mechanism found
in traditional two-stage object detection frameworks Ren et al. (2015), but adapted for transformer-
based detectors. Unlike learnable queries, which are independently trained, conditional queries
are derived directly from the transformer encoder, as illustrated in Figure 3 (b). The transformer
encoder is trained to predict region proposals, from which high-confidence proposals are selected
and fed into the transformer decoder as object queries for final predictions, such as bounding boxes
or segmentation masks.

Conditional queries align more closely with the objects likely to be present in an image and have
consistently demonstrated superior performance in object detection tasks Zhu et al. (2020). How-
ever, our experiments reveal that this strategy does not universally benefit all segmentation tasks.
As shown in Table 2, the performance on semantic segmentation is significantly worse compared
to learnable queries. This is because, in semantic segmentation, many classes (often referred to as
“stuff” classes) represent background regions with undefined shapes and spatial extents. Conditional
queries, derived from local image features, struggle to capture these characteristics effectively, lead-
ing to suboptimal results. This is different from learnable query that is learned from scratch, not
conditional on an encoder output that usually derived from a local patch feature. Since stuff classes
are prevalent in real-world datasets, relying solely on conditional queries also limits the scalability
of models across diverse tasks and datasets.

Both learnable and conditional queries have their respective strengths: learnable queries excel at han-
dling large, amorphous background regions, while conditional queries specialize in capturing local,
instance-level features. However, their individual limitations restrict their scalability across a wider
range of datasets and tasks. This raises a simple yet powerful idea: can we combine the strengths of
both to enhance scalability? Following this line of thinking, we propose a query meld strategy (Fig-
ure 3 (c)). In this approach, the object query set consists of both learnable and conditional queries,
which interact with each other through a deep fusion mechanism via dual-query cross-attention. For
loss computation, Hungarian matching is applied across all object queries, without differentiating
between query types, allowing the model to seamlessly integrate both types of queries for improved
scalability across diverse segmentation datasets and tasks.

With dual-query cross-attention mechanism, the query meld seamlessly integrates learnable queries
with conditional queries, offering several key advantages. First, dynamic query selection. Without
rigid assignment, two types of queries can dynamically choose their preferred objects to detect for
each example. And since they are complementary each other for global background feature and lo-
cal instance feature, this property broadens the scope of the trainable dataset and tasks and therefore
improves the scalability of the model. Second, hierarchical and interactive feature representation.
Dual-query cross-attention can lead to a hierarchical feature representation where learnable queries
capture the overall structure and semantics of the objects in the scene. On the other hand, conditional
queries refine these global features by attending to specific parts of the image. This interaction al-
lows the model to dynamically adjust focus, using conditional queries to zero in on hard-to-segment
objects while still retaining the global understanding provided by learnable queries. This can im-
prove the model’s ability to handle both coarse and fine segmentation tasks. For complex objects or
occluded regions, query meld could also provide complementary perspectives on the same object.
Overall, the introduction of query meld enables the architecture to handle a broader range of seg-
mentation tasks and data in a flexible manner. The system can dynamically prioritize either query
type based on the complexity and nature of the task, benefiting better generalization ability of the
model. We will see the benefits in experiment section.

3.3 SCALABLE SEGMENTATION ACROSS DATA AND TASKS

Under our QueryMeldNet architecture, we are ready to scale up image segmentation both for
datasets and tasks. This thanks to a neat and unified input data format of training QueryMeld-
Net. For any segmentation datasets of different tasks, the training set can always be reformulated
to a unified format D = {(xi,yi)}Ni=1 where xi is the image and yi = {(cj ,bj ,mj)}Bj=1 its B
annotations. (cj ,bj ,mj) is a triplet depicts a single mask annotation on the image. cj is the se-
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Figure 3: The comparison of different query strategies. Square with diagonal slashes: learnable query; solid
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the stool is wooden; the stool is brown; the stool 
is wood;  a wooden bar stool; a wooden stool

the dog is brown; this is a dog; a dog in a 
basket; a dog in the basket; a brown dog

Figure 4: Synthetic data visualization. Left: synthetic masks by SAM; Right: synthetic captions by OFA-akin
model.

mantic class label (e.g., “apple”, “road” for semantic/instance/panoptic/foreground segmentation),
or a text description (e.g., “a person wearing a red shirt” for referring segmentation), to describe
the semantic information characterized with the binary mask region mj . bj is the bounding box
annotation of this region which can be derived from the mask annotation. Note that cj could be any
natural language description without demanding extra annotation and the training data is fed to the
model without extra assignment or discrimination. This is unlike some literature Rana et al. (2023);
Athar et al. (2023); Zhang et al. (2023); Li et al. (2024) that make the hard assignment for each
query to different tasks or classes, for instance, OpenSeeD Zhang et al. (2023) that requires extra
stuff/things discrimination annotations for each class. This limitation restricts its dataset and task
scalability because such annotation is not available for most of public datasets like Objects365 Shao
et al. (2019), OpenImages Kuznetsova et al. (2020), Visual Genome Krishna et al. (2017) since there
is no clear boundary between stuff and thing classes. For example, “window” and “table” classes
are labeled as thing in ADE20K Zhou et al. (2017) but as stuff in COCO Lin et al. (2014). For some
segmentation tasks like referring segmentation, it even can not classify its free-form annotation into
stuff/things.

The whole model thus can be trained with loss function as follows (for clarity, we omit the weight
for each loss term),

L=
∑

(xi,yi)∈D
∑

(cj,bj ,mj)∈yi
Lc(P

c(xi),H(cj))+Lb(P
b(xi),bj)+Lm(Pm(xi),mj), (1)

where Lc, Lb, Lm are the class, bounding box (bbox) and mask loss, respectively. They are ap-
plied to class, bbox and segment mask embeddings, Pc,Pb,Pm, from the decoder outputs and text
embedding H, for supervision. The class loss is the focal loss Lin et al. (2017) applied on the dot-
product between the class embedding and text embedding. The bbox loss is generalized IoU and L1
loss Rezatofighi et al. (2019) between the bounding box embedding and ground truth. The mask loss
is calculated with generalized dice loss Sudre et al. (2017) on the mask prediction which is derived
from the mask embedding and a pixel encoder. Since all semantic class labels are in the form of
textual description, and will be encoded by the text encoder, as shown in Figure 2. So the model is
capable of dealing open-vocabulary and free-form scenarios and there is no need for sophisticated
label space alignment across datasets with different semantic labels. The unified data and training
format of QueryMeldNet and soft constraint on the annotation of training data lead QueryMeldNet
is scalable to wider diverse datasets and tasks.

3.4 SCALABILTY TO MORE DATA AND TASKS

To push the boundaries of the scalable image segmentation model, we aim to scale it up to encom-
pass more diverse datasets and tasks. However, the sizes of well curated segmentation datasets are
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Table 2: The performance comparison of different query strategies.
Scalability Instance Panoptic Semantic Open-vocabulary

Query strategy Training data COCO COCO ADE SeginW
#Dataset #Task Mask AP PQ mIoU Mask AP

learnable 2 2 COCO pano+ADE sem 48.1 54.3 50.4 27.8
4 4 COCO pano+ADE sem+VG+refer 48.6 54.1 50.1 32.1

conditional 2 2 COCO pano+ADE sem 49.8 56.5 43.2 29.4
4 4 COCO pano+ADE sem+VG+refer 49.5 56.2 43.9 34.7

query meld 2 2 COCO pano+ADE sem 49.6(+1.5) 56.5(+2.2) 51.7(+8.5) 30.6(+2.4)
4 4 COCO pano+ADE sem+VG+refer 49.9(+1.3) 56.8(+2.7) 52.1(+8.2) 38.4(+6.3)

usually relatively small 2 because pixel-wise mask annotation is expensive, which poses a significant
limitation in exploring the full potential of scalability. To circumvent this challenge, we propose to
use synthetic data, which is cheap to generate, easy to scale up and has been proven effective to
strengthen the model, for instance, in object detection Cho et al. (2023); Gao et al. (2022) image
captioning Davide et al. (2023). Given that some recent models can generate high-quality synthetic
segmentation masks (e.g SAM Kirillov et al. (2023)) and synthetic captions (e.g., OFA Wang et al.
(2022b), GLIPv2 Zhang et al. (2022b)), we believe that the synthetic segmentation data can play
a crucial role in exploring the scalability of our model. In this work, we leverage two types of
synthetic data to expand both the training set and the range of tasks.

Synthetic segmentation mask: Instead of generating synthetic segmentation masks directly on
unlabeled image, it is a much easier task to segment the mask given an object bounding box because
some recent works have shown that they are pretty good at this task Kirillov et al. (2023); Ke et al.
(2023); Zou et al. (2023b). The size of object detection dataset is usually more than dozen times
larger than that of segmentation, e.g., Objects365 Shao et al. (2019) of 1.7M images v.s. COCO Lin
et al. (2014) of 120K images. With the generated synthetic masks, we can convert every object
detection dataset to a segmentation dataset to have more diverse training data.

Synthetic segmentation caption: The standard segmentation/detection datasets usually lack rich
textual descriptions, e.g., 80 fixed category names for COCO. This is a big challenge for open-
vocabulary segmentation model, especially for the task of referring segmentation. The widely
used referring segmentation datasets are RefCOCO, RefCOCO+ and RefCOCOg as well as Ref-
Clef Kazemzadeh et al. (2014); Yu et al. (2016), whose combination has only about 50K images.
The reason to this small dataset size is because annotating a caption description to every individual
object segment is expensive. In order to enrich the semantic information of the training data and
improve the generalization ability of the model, we train a OFA-akin Wang et al. (2022b) model on
the task of object captioning, i.e., generating synthetic caption for each object given the bounding
box. With this object captioning model, we generate five synthetic captions with the highest confi-
dences for each object, and use them to expand the training data size. One of the synthetic captions
is randomly selected per object at each training iteration.

4 EXPERIMENTS

To verify the dataset and task scalabilty of QueryMeldNet, we experiment on a variety of datasets
proposed for different tasks: COCO Lin et al. (2014) and ADE20K Zhou et al. (2017) for compre-
hensive semantic/instance/panoptic annotations; LVIS Gupta et al. (2019) for instance segmentation;
RefCOCO, RefCOCO+, RefCOCOg Kazemzadeh et al. (2014); Yu et al. (2016) for referring seg-
mentation; HRSOD Zeng et al. (2019), DIS Qin et al. (2022), and other five datasets Cheng et al.
(2015); Mansilla & Miranda (2016); Liew et al. (2021); Xie et al. (2022); Wang et al. (2017) for
foreground segmentation; Objects365 Shao et al. (2019) and Visual Genome Krishna et al. (2017)
for object detection. In addition, we generate synthetic captions on COCO, denoted as “COCO-syn”
for referring segmentation. We also create synthetic masks for Visual Genome and Objects365, de-
noted as “Objects365-syn-m” for instance segmentation, and further generate synthetic captions on
Objects365 for referring segmentation, “Objects365-syn”.

To validate the real-world generalization ability of the model, several datasets or benchmarks are
employed. Pascal Context Mottaghi et al. (2014) and BDD Yu et al. (2018) are used for open-set
evaluation. SeginW benchmark which has 25 datasets is used for open-vocabulary in-the-wild seg-

2Although SA-1B Kirillov et al. (2023) is large, it relies on machine predictions and does not have semantic
labels.
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‘table’‘sky’

Input image Prompt Output mask

‘floor’ ‘car’

Input image Prompt Output mask

Objects predicted by conditional queries Objects predicted by learnable queries

Figure 5: The counter prediction of examples by query meld. Left: the stuff objects are predicted with condi-
tional queries instead of learnable queries; Right: the thing objects are predicted with learnable queries instead
of conditional queries.
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Figure 6: The performance improvement with data and task scaling up. The open-vocabulary (Mask AP
of SeginW) and free-form segmentation (mIoU of RefCOCOg) ability keeps increasing with dataset and task
scalability (the size of the training data (M)/ number of different training tasks). From left to right: only scaling
up dataset for referring segmentation, only scaling up dataset for open-vocabulary segmentation, only scaling
up task for open-vocabulary segmentation, scaling up both dataset and task for referring segmentation and
scaling up both dataset and task for open-vocabulary segmentation.

mentation evaluation Zou et al. (2023a). RefCOCOg Yu et al. (2016) is used for free-form referring
segmentation. We use mIoU as the evaluation metric for semantic and referring segmentation, Mask
AP for instance segmentation, PQ Kirillov et al. (2019) for panoptic segmentation, following Li
et al. (2023a); Zou et al. (2023a); Zhang et al. (2023); Kim et al. (2022b). The hyperparameters
of the architecture and training follow Mask DINO Li et al. (2023a). The pretrained Swin Trans-
former Liu et al. (2021) and CLIP language encoder Radford et al. (2021) are adopt as the vision
and text encoder, respectively, but it is noted that any vision or language backbone encoders can be
used by QueryMeldNet. The query meld set consists of 100 learnable and 300 conditional queries,
following some popular settings Li et al. (2023a); Zhang et al. (2023). For more details, please refer
to the supplementary materials.

4.1 QUERY ABLATION

We begin by comparing three query strategies when used for scalable image segmentation. The
model is scaled up to both datasets and tasks at two scales: (1) “two datasets and two tasks”
where the training set comprises COCO with panoptic segmentation annotations (“COCO pano”)
and ADE20K with semantic segmentation annotations (“ADE sem”); (2) “four datasets and four
tasks” where we add two additional training sets and tasks, Visual Genome with instance segmen-
tation (“VG”) and referring segmentation RefCOCO/RefCOCO+/RefCOCOg (“refer”). The eval-
uation uses ADE and COCO for closed-set performance, while SeginW is utilized to assess the
open-set generalization capabilities of the models.

The query meld strategy is compared against the two other strategies, all using a total of 400 queries.
As shown in Table 2, across both scaling scenarios, the learnable query exhibits weak performance
on instance-level segmentation tasks, with a notable drop of around 2 points on COCO and SeginW.
Even more significant, the conditional query shows a degradation of over 7 points in semantic seg-
mentation performance (mIoU) on ADE. These results suggest that neither of the individual query
strategies is an optimal choice for scalable image segmentation. In contrast, the query meld demon-
strates superior performance across all evaluation tasks, highlighting its scalability to diverse tasks
and datasets without suffering performance loss. Moreover, query meld exhibits stronger gener-
alization ability, as evidenced by substantial performance improvements on SeginW, driven by its
dual-query cross-attention mechanism.
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Figure 7: Qualitative results of QueryMeldNet on each tasks. For every pair of images, the left is the input
image and the right is the prediction. The text prompts for the three examples in (b) are “otter”, “Cardinal” and
“Samoyed”; “children sitting in the grass”, “right Golden Retriever”, “person wearing a blue shirt” in (c) and
the two prompts for (d) are “left horse” and “woman wearing a blue mask”.

The superior performance of the query meld stems from its sample-wise dynamic query selection
mechanism. We analyze the ratio of thing and stuff objects predicted by the conditional and learnable
queries, respectively. Thing objects typically correspond to foreground instances, such as “person”
or “book”, while stuff objects generally represent background regions like “sky” or “road”. On
COCO, we find that conditional queries capture 99.6% of thing objects, while learnable queries
detect 53.3% of stuff objects. A similar trend is observed in ADE panoptic segmentation, with
conditional queries accounting for 99.8% of thing objects and learnable queries handling 61.4% of
stuff objects. This suggests that, in most cases, thing objects are predicted by conditional queries,
whereas stuff objects are handled by learnable queries. However, this is not always the case. Fig-
ure 5 illustrates counterexamples where, despite “sky” and “floor” being classified as stuff classes,
conditional queries are used because these features behave more like local instances in the images.
Similarly, in images containing “table” and “car”, which are typically thing classes, learnable queries
are triggered since these objects appear more as background features. These findings demonstrate
that query selection in the query meld is dynamic and adaptive to each image, contrasting with some
approaches in the literature Rana et al. (2023); Athar et al. (2023); Zhang et al. (2023) that rely on
hard assignments based on classes or tasks, limiting scalability.

4.2 ABLATION ON DATA AND TASK SCALING UP

We next verify the scalability of QueryMeldNet across both datasets and tasks. The left two figures
in Figure 6 demonstrate the model’s dataset scalability. In the first figure, we evaluate the model
on referring segmentation tasks, starting with training on RefCOCO/+/g datasets. By scaling up
the training set to include additional COCO-sync data, the performance on RefCOCOg validation
set improves from 57.8 to 60.8. Further scaling up to include 30% of Objects365-syn dataset in-
creases the performance to 62.6. A similar trend is observed for open-vocabulary tasks when the
model is trained on instance segmentation and the dataset is scaled from COCO to COCO+ADE,
and then to COCO+ADE+30% of Objects365-syn-m, as shown in the second figure. The middle
figure illustrates task scalability. Training on a fixed 100K COCO images, we progressively scale
the tasks from panoptic segmentation to include instance segmentation and referring segmentation

9
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with synthetic description. The open-vocabulary performance increases steadily from 29.6 to 32.7
and then to 35.2. The last two figures validate the simultaneous scalability of both datasets and
tasks. When scaling up both dimensions together, the referring and open-vocabulary segmentation
tasks show consistent improvements. Notably, compared to the non-scalable OpenSeeD framework,
which cannot benefit from additional training resources, QueryMeldNet demonstrates significant
advantages. Furthermore, X-Decoder, due to its suboptimal learnable query strategy, underperforms
QueryMeldNet on the same datasets and tasks.

4.3 COMPARISON WITH THE STATE-OF-THE-ART

We scale up our model with a larger set of datasets and tasks. We train it on
around 2.2M distinct images examples from COCO, LVIS, Visual Genome, Objects365, Re-
fCOCO/+/g and several foreground datasets and 57M mask annotations on six tasks (in-
stance/semantic/panoptic/referring/foreground segmentation and object detection). The compari-
son is conducted on various open-set segmentation benchmarks considering open-set evaluation
stands as a critical metric for assessing the generalization ability of a model, providing insights
into its adaptability and performance in real-world applications. We evaluate the zero-shot perfor-
mance on ADE20K for panoptic/semantic/instance segmentation, Pascal Context 59 (PC-59) with
59 common classes and PC-459 with full 459 classes Mottaghi et al. (2014) for semantic segmen-
tation, and BDD Yu et al. (2018) for panoptic segmentation. The results are presented in Table 3.
QueryMeldNet improves the state-of-the-art open-vocabulary segmentation on each benchmark. In
order to further evaluate the generalization ability of QueryMeldNet, we evaluate it on the in-the-
wild benchmark SeginW Zou et al. (2023a). The evaluation is conducted under the zero-shot setting.
The comparison results are given in the last column, where our model has a significant improvement
(7.3 points) over the prior art. This benefits from its scalability so that more diverse data and task
are included during training, leading better knowledge integration and fusion, enabling a model of
stronger generalization.

4.4 QUALITATIVE RESULTS AND APPLICATION

Table 3: The comparison to state of the arts on open-set bench-
marks. ‘−’ represents no results reported in the original pa-
per. We bold the best entry in each column. For ADE, we re-
port the average number of PQ, mask AP and mIoU for panop-
tic/instance/semantic segmentation.

ADE PC-59 PC-459 BDD SeginW
Method Avg. mIoU mIoU PQ Mask AP
LSeg+ Ghiasi et al. (2022) - 46.5 7.8 - -
SPNet Xian et al. (2019) - 24.3 - - -
ZS3Net Bucher et al. (2019) - 19.4 - - -
MaskCLIP Ding et al. (2022) 14.9 45.9 10.0 - -
GroupViT Xu et al. (2022) - 25.9 4.9 - -
OpenSeg Ghiasi et al. (2022) - 42.1 9.0 - -
ODISE Xu et al. (2023) 20.7 57.3 14.5 - -
X-Decoder Zou et al. (2023a) 20.5 64.0 16.1 17.8 32.3
OpenSeeD Zhang et al. (2023) 19.0 - - 19.4 36.1
DaTaSeg Gu et al. (2023) - 51.4 11.1 - -
QueryMeldNet 20.9 65.0 18.1 29.3 43.4

Finally, we present qualitative results
in Figure 7, demonstrating QueryMeld-
Net’s strong performance across var-
ious segmentation tasks. A notable
application of QueryMeldNet is show-
cased in image matting, as illustrated
in Figure 7(d). Most current image
matting methods are class-agnostic Li
et al. (2023b; 2021); Liu et al. (2024),
which means they do not allow control
over which object is segmented. How-
ever, with QueryMeldNet, we integrate
a refinement module based on AEMat-
ter Liu et al. (2024), enabling control-
lable image matting. This marriage al-
lows QueryMeldNet to refine instance
segmentation to a more precise level,
capturing intricate details such as the fur of a horse and the hair of a woman.

5 CONCLUSION

In this paper, we have introduced QueryMeldNet, a scalable image segmentation model that can be
trained on diverse datasets and tasks at scale. Our experiments have validated the effectiveness of
QueryMeldNet in improving segmentation performance as data volume and task diversity increase,
particularly in open-set and real-world applications. Moreover, we showed that incorporating syn-
thetic data further boosts the model’s generalization capabilities while reducing the reliance on ex-
pensive human annotations. QueryMeldNet marks a significant step toward universal segmentation
models, opening the door for future research to explore even larger and more complex segmentation
tasks.
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A APPENDIX

In this supplement, we show some other additional experimental results and details that are not
present in the main paper due to the page limitation.

A.1 SUPPLEMENTARY EXPERIMENTAL RESULTS

A.1.1 FULL RESULTS OF TABLE 3

In Section 4.3 of the main paper, in order to investigate the generalization ability of QueryMeldNet
for segmentation, we conduct a zero-shot evaluation of our model on the Segmentation in the Wild
(SeginW) benchmark Zou et al. (2023a), which comprises 25 datasets, and report the average mAP
of all the datasets. In this supplementary material, we report other additional results including me-
dian mAP and individual mAP on each dataset. The results detailed in Table 4 show the superiority
of QueryMeldNet over X-Decoder Zou et al. (2023a) and OpenSeeD Zhang et al. (2023) across all
datasets. This indicates that the importance of scalability across both datasets and tasks in enhancing
the generalization ability of models, a capability unique to QueryMeldNet. In Table 5, we present
the complete set of results on the ADE dataset.

A.1.2 EXPLICIT RESULTS OF FIGURE 6

In Table 6, we report the numerical results used to generate the five subfigures in Figure 6.

A.1.3 ABLATION STUDY

Enhancement by Synthetic Data Complementing Section 4.2, here we present more results for
demonstrating the significance of synthetic data. 30% images are sampled from Objects365 Shao
et al. (2019) training set and synthetic mask is generated for each object with Ke et al. (2023).
This subset is denoted as “Objects365-syn-m”. We jointly train a model on COCO with instance
annotation (“COCO ins”) and Objects365-syn-m and compare with the baseline trained on “COCO
ins” only. As shown in Table 7, the improvement is clear, suggesting the benefit of using synthetic
masks.

Similarly, synthetic object captions are generated for all COCO instances, denoted as “COCO-syn”.
We trained a model jointly on it with RefCOCOg. The comparison in Table 8 with the baseline
shows that the improvement is significant (more than 4 points), indicating the benefits of synthetic
captions.

The Impact of Query Numbers In this section, we ablate the impact of the number of queries.
By default, we use mixture of 100 learnable and 300 conditional queries. This setting is derived
from MaskDINO, ADE semantic setting of 100 learnable queries and COCO instance setting of 300
conditional queries. It is also the same as OpenSeeD using 100 learnable queries for stuff classes
and 300 conditional queries for thing classes. Based on the Base-scale image and text encoder back-
bones, given different queries, we scale models with the configuration of two tasks and datasets.
The training set is the combination of COCO with instance segmentation and ADE with semantic
segmentation. In Table 9, we observe that increasing the query number can improve the perfor-
mance. However, the memory cost also increases considerably. Because such GPU memory cost is
not affordable for our team when scaling up to large-scale backbones, in other experiments across
the paper, we keep the “100+300” setting consistently. This also enables a fair comparison to other
methods.

A.1.4 MODEL SIZE AND SPEED COMPARISON

We evaluate the model size in terms of the numbers of parameters (Params) and conduct a speed
comparison by reporting frames-per-second (FPS). The speed tests are performed on A100 NVIDIA
GPU with 40GB memory by taking the average computing time with batch size 1 on the entire
validation set, using Detectron2 Wu et al. (2019). All models listed in Table 10 are characterized
by large-scale backbone models. In general, there is no substantial difference in the forward speed
across three models. The increase in parameters for both X-Decoder and our QueryMeldNet over
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OneFormer is primarily attributed to the introduction of a language encoder, given that they are
open-vocabulary models.

A.2 ADDITIONAL EXPERIMENTAL DETAILS

Training settings For the experiments of Section 4.1, we train our model with a batch size of 32.
AdamW is used as the optimizer with a base learning rate of 2e-4 for the segmentation encoder
and decoder, and 2e-5 , 10 warmup iterations, and a weight decay of 0.05. We decay the learning
rate at 0.9 and 0.95 fractions of the total number of training steps by a factor of 10. We train for a
total of 50 epochs. On the experiments of Sections 4.2 and 4.3, we follow the same settings but the
batch size is scaled up to 128. Swin-Base and CLIP-Base are used for query comparison in Table 2.
Their larger-scale variants are used in other sections. The codes and models will be released upon
acceptance.

Datasets In order to mitigate the data leakage issue, we implement exclusion in our training data.
Specifically, for the COCO 2017 training set, examples belonging to RefCOCO, RefCOCO+, Ref-
COCOg validation sets are excluded. Conversely, training examples from RefCOCO, RefCOCO+,
RefCOCOg that overlap with COCO 2017 validation set are also excluded. Similar exclusion pro-
cedures are applied to LVIS training set, removing examples associated with the RefCOCO, Ref-
COCO+, RefCOCOg validation sets. Distinct data augmentation strategies are applied based on the
type of training data. For instance, semantic and panoptic data, we follow the augmentation strat-
egy of Mask DINO Li et al. (2023a). For referring segmentation data, the augmentation data is the
same as instance segmentation but random clip is excluded. For foreground segmentation training
data, we follow the data augmentation of InSPyReNet Kim et al. (2022b). Different upsampling
ratios for each dataset are applied during joint training, which are maintained as specified in Table
11. In total, the QueryMeldNet is trained on around 2M distinct images examples and 57M mask
annotations. It is noted that the comparison in Table 3 is a system-level comparison. The training
data varies across each method. For instance, X-decoder Zou et al. (2023a) additionally incorporates
image-text corpora in its training process.

A.3 ETHICAL CONSIDERATIONS

We discuss the ethical considerations from three aspects: Environmental Impact: Training
QueryMeldNet requires significant computational resources. The environmental impact of such
resource-intensive processes should be taken into account, and efforts should be made to develop
more energy-efficient algorithms. Transparency and Explainability: Like other deep learning
models, QueryMeldNet is also considered “black boxes” because it is challenging to understand
how they reach specific decisions. Ensuring transparency and explainability is essential to build
trust and accountability, especially in applications with significant consequences. Bias and Fair-
ness: Like other machine learning models, image segmentation models can be biased based on the
data they are trained on. If the training data is not diverse and representative, the model may perform
poorly on certain demographics or groups, perpetuating existing biases. However, this problem can
be resolved to a certain extent by QueryMeldNet thanks to its versatility of joint training on multiple
diverse datasets and tasks.

A.4 LIMITATIONS

Recently, a newly emerging reasoning segmentation task has been introduced Lai et al. (2023). The
task is designed to output a segmentation mask given a complex and implicit query text. For exam-
ple, given an image with various fruits, the query is “what is the fruit with the most Vitamin C in this
image”. This task demands a level of reasoning typically handled by multi-modal Large Language
Models. Currently, QueryMeldNet does not explicitly support this task. However, addressing this
limitation is part of our agenda for future research.
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Table 5: The comparison to state of the arts on open-set benchmarks. ‘−’ represents no results reported in the
original paper. We bold the best entry in each column.

ADE PC-59 PC-459 BDD SeginW
Method PQ Mask AP Box AP mIoU mIoU mIoU PQ Mask AP
LSeg+ Ghiasi et al. (2022) - - - 18.0 46.5 7.8 - -
MSeg Lambert et al. (2020) - - - 19.1 - - - -
SPNet Xian et al. (2019) - - - - 24.3 - - -
ZS3Net Bucher et al. (2019) - - - - 19.4 - - -
MaskCLIP Ding et al. (2022) 15.1 6.0 14.9 23.7 45.9 10.0 - -
GroupViT Xu et al. (2022) - - - 10.6 25.9 4.9 - -
OpenSeg Ghiasi et al. (2022) - - - 21.1 42.1 9.0 - -
ODISE Xu et al. (2023) 22.6 14.4 15.8 29.9 57.3 14.5 - -
X-Decoder Zou et al. (2023a) 21.8 13.1 17.5 29.6 64.0 16.1 17.8 32.3
OpenSeeD Zhang et al. (2023) 19.7 15.0 17.7 23.4 - - 19.4 36.1
DaTaSeg Gu et al. (2023) - - - - 51.4 11.1 - -
QueryMeldNet 22.1 17.3 19.2 25.0 65.0 18.1 29.3 43.4
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Table 7: The impact of synthetic masks
Training data Mask AP Box AP
COCO ins 49.7 55.3
COCO ins + Objects365-syn-m 50.5 56.8

Table 8: The impact of synthetic captions
Training data mIoU
RefCOCOg 57.8
syn-COCO 58.8
RefCOCOg + COCO-syn 62.6

Table 9: The impact of query numbers.

#learnable+#conditional ADE COCO
mIoU Mask AP Box AP

100+300 51.7 49.6 54.9
300+900 52.0 50.7 57.4

Table 10: The model size and speed comparison.

Method Params FPS
OneFormer Jain et al. (2023) 219M 5.6
X-Decoder Zou et al. (2023a) 280M 6.1
QueryMeldNet 286M 5.1

Table 11: Upsampling ratio of joint training. “referring” refers to the combination of RefCOCO, RefCOCO+,
RefCOCOg Kazemzadeh et al. (2014); Yu et al. (2016). “foreground” refers to the combination of seven fore-
ground datasets, HRSOD Zeng et al. (2019), DIS Qin et al. (2022), THUS Cheng et al. (2015), COIFT Mansilla
& Miranda (2016), ThinObjects5K Liew et al. (2021), UHRSD Xie et al. (2022), DUTS Wang et al. (2017).

Dataset Ratio #Images #Annotations
COCO 3 100K 1.3M

ADE20K 30 20K 271K
LVIS 3 100K 1.3M

Visual Genome 9 100K 2.3M
Objects365 1 1.7M 25M

referring 6 54K 124K
syn-COCO 3 100K 1.3M

syn-Objects365 1 1.7M 25M
foreground 9 100K 100K
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